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In computation of special values of L-functions Karl and I have
come up with some data that give pictures somewhat
surprising to us.

So far our computations aren’t substantial enough to make
firm conjectures—let alone statements that we can prove—so
this is work in the very early stages of . . . ‘progress.’

We would be grateful for any advice, and help in accumulating
more data.



Dirichlet Characters

Let d ,m ∈ Z≥1. Denoting by µd the subgroup of C consisting
of d-th roots of unity, let

χ : Z→ {0} t µd ⊂ C

be a primitive Dirichlet character of conductor m and order d ,
cutting out a (real) degree d cyclic field extension F/Q.

We can also view χ as an injective homomorphism (α 7→ χ(α))

χ : Gal(F/Q) ↪→ C∗

for F/Q a specific cyclic Galois extension of degree d .
The map χ generates a ring homomorphism of the
corresponding group ring:

χ : Z[Gal(F/Q)]→ C.
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The L-function of E

Fix an elliptic curve E over Q.

Consider its L-function—for choice of Dirichlet character χ
(and associated cyclic field extension F/Q):,

L(E , χ, s) :=
∏

p prime

(
1− app

−s + χ(p)pk−1−2s
)−1

where the integers ap have (dually) a local arithmetic meaning
related to E over Fp and also an automorphic meaning since
they are also the coefficients (of prime index) of the
normalized modular form

fE (q) =
∑
N≥1

anq
n

uniformizing the elliptic curve E .



Special L- values

The Birch-Swinnerton-Dyer Conjecture gives (important)

global arithmetic meaning to the ‘special L-values:’

L(E , χ, 1) ∈ C.

Among other things,

L(E , χ, 1) = 0 → Rank(E (F )) > Rank(E (Q)).
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The route we take in computing L(E , χ) :

Modular symbols →

Theta coefficients →

Theta elements→

L-values



The Statistical Picture given by. . .

Modular symbols

Theta coefficients

Theta elements

L-values

are all different. . .



We’ll

(a) Give a rapid description of what’s known and conjectured
about Modular symbols;

(b) discuss data for Theta coefficients, and then

(c) present some data for Theta elements

pointing out the curious features this data presents—in hopes
of launching a discussion about interpretation, and possibilities
for augmenting our computations.



Modular Symbols
The (plus or minus) modular symbol attached to E

[r ]±

is a certain function—relatively straightforward to
compute—on rational numbers r = a

m
∈ Q:

taking values in near integers—i.e., rational numbers with
fixed denominator

a
m 7→ [ am ]±E = [ am ]± ∈ 1

δZ ∈ Q
‘
Here δ = δE ∈ Z≥1is just a ‘denominator’ that shows up.
Also: for ease of notation in these slides, unless noting
otherwise, I’ll suppose we’re consistently dealing with, for
example, [ a

m
]+ and drop the “+”.
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The combinatorics of Modular Symbols

Let N be the conductor of E . For every r ∈ Q, modular
symbols satisfy:

I [∞] = 0 by definition

I There is a δ ∈ Z>0 independent of r such that δ · [r ] ∈ Z

I [r ] = [r + 1] since fE (z) = fE (z + 1)

I [r ]± = ±[−r ]± by definition
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Invariance under the action of Γ0(N)

If

T :=

(
a b
cN d

)
∈ Γ0(N) ⊂ SL)2(Z),

so that for r ∈ Q t {∞},

T (r) =
ar + b

cNr + d
∈ Q t {∞},

we have the following relation in modular symbols:

[r ] = [T (r)]− [T (∞)].



The Atkin-Lehner and Hecke relations

I Atkin-Lehner relation: if w is the

global root number of E , and aa′N ≡ 1

(mod m), then

[a′/m] = w [a/m]

I Hecke relation: if a prime ` - N and a`
is the `-th Fourier coefficient of fE , then

a`[r ] = [`r ] +
∑`−1

i=0 [(r + i)/`]
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Modular symbols are connected (by the

Birch-Stephens Theorem) to ‘special L-values’

for χ a primitive Dirichlet character cutting out a

cyclic field extension F/Q
We will be dealing with sums of modular symbols and sums of
Theta coefficients weighted by (say, even) Dirichlet characters
χ:

m∑
a=1

χ(a)[a/m] ∈ Q̄ (modular symbols)

= χ(
∑

α∈Gal(F/Q)

cα · α)

with
cα ∈ Q.
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Theta coefficients

These cα are the ‘Theta coefficients’:

cα :=
∑
a 7→α

[
a

m
].



Theta elements

Setting:

ΘE ,F :=
∑

α∈Gal(F/Q)

cαα ∈ Q[Gal(F/Q)]

(these are the ‘Theta elements’)

χ(ΘE ,F ) =
m∑

a=1

χ(a)[a/m] =
∑

α∈Gal(F/Q)

cαχ(α) ∈ Q̄



Which brings us to L-values:

m∑
a=1

χ(a)[a/m]+ =
τ(χ)L(E , χ̄, 1)

Ω+
∈ C .



The Birch-Stephens Theorem

m∑
a=1

χ(a)[a/m]+

= χ(
∑

α∈Gal(F/Q)

cα · α)

= χ(ΘE ,F )

=
τ(χ)L(E , χ̄, 1)

Ω+
.



E.g.:

If χ is a Dirichlet character of conductor m ∈ Z≥1 and degree
d cutting out F/Q then

L(E , χ, 1) = 0 ⇐⇒
∑

a∈(Z/mZ)×
χ(a)[a/m] = 0.



So the Birch-Stephens Theorem connects the

statistical structure of. . .

m∑
a=1

χ(a)[a/m]+ ∈ Q̄ (modular symbols)

∑
α∈Gal(F/Q)

cα · α ∈ Q̄[Gal(F/Q)] (Theta coefficients)

ΘE ,F ∈ Q̄[Gal(F/Q)] (Theta elements)

with

τ(χ)L(E , χ̄, 1)

Ω+
∈ C (L− values).



Discussion of Data

We’ll briefly discuss data for

I modular symbols and

I Theta coefficients,

but then get on to consider the curious data for

I Theta Elements.



The modular symbol data

For m,X > 1, let Sm denote the multiset

Sm :=

{
[a/m]√
log(m)

: a ∈ (Z/mZ)×
}

and put:

ΣX :=
⋃
m<X

Sm.



Distribution of modular symbols

Theorem (Petridis-Risager)
There is an explicit VE ∈ R such that as X →∞, the
distribution of the ΣX converges to a normal distribution with
mean zero and variance VE .

The variance VE is essentially L(Sym2(E ), 1).

Conjecture
As m→∞, the distribution of the individual Sm converges to
a normal distribution with mean zero and variance VE .
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Summary: Distribution of Theta-coefficients (say,

when d = p, a prime)

I Each cα is a sum of ϕ(m)/p modular symbols [a/m],

I As X →∞ the multiset of all [a/m]/
√

log(m); m < X
converges to a normal distribution with variance VE .

I Conjecturally, the finer multiset of [a/m]/
√

log(m) also
converges to a normal distribution with variance VE as
m→∞.



so one might expect that as m→∞ the collection of all
(appropriately normalized) Theta coefficients; i.e.,

cα

√
p

VE log(m)ϕ(m)

satisfies a normal distribution with variance 1.



Distribution of the cα

However, calculations seem to show that this is not the case.

But it looks not too far off.

Without going into the specifics of how we normalize and
collect ΛE ,d(t), the data of normalized Theta coefficients for
elliptic curves E and cyclic Galois extensions of Q of degree d
here are some pictures:
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I For each of the three elliptic curves 11A1, 37A1, and
32A1 (in the notation of Cremona’s tables, and

I five (prime) values of d ,

I we computed the first (approximately) 50,000 generic2

Theta Coefficients cF ,α as F runs through cyclic
extensions of degree d and smallest conductor (prime to
d and to the conductor of E ).

.

The resulting approximations to ΛE ,d are shown in Figures 1
through 3. In each plot the dashed line is the normal
distribution.

2See Definition 5.3 in Mazur-Rubin: Arithmetic Conjectures suggested
by the statistical behavior of modular symbols,
https://arxiv.org/pdf/1910.12798v4

https://arxiv.org/pdf/1910.12798v4
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Figure: Approximations to ΛE ,d for E = 11A1.
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Figure: Approximations to ΛE ,d for E = 37A1.
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Figure: Approximations to ΛE ,d for E = 32A1.



Question
What can we say about these ΛE ,d(t)?



Correlation of Theta-coefficients in a given

Theta-element

Letting d = p be prime, and χ a Dirichlet character of order p
cutting out F/Q, recall that

L(E , χ, 1) = 0 ↔
∑

α∈Gal(F/Q)

cE ,F ;αχ(α) = 0 ↔

—the cE ,F ;α are all equal for α ∈ Gal(F/Q) —

I.e., to get vanishing you must have lots of “correlation” in the
Theta coefficients corresponding to the same Theta element.



Setting up the ambient space

This is the ambient space in which we want to visualize data
related to Theta Elements

(corresponding to characters χ of order p ≥ 3 a prime and
conductor m).

But here we’ll only deal with elliptic curves E over Q (and
with conductors m)

I such that E has root number w = −1

I and—we restrict m to have the property that its
conductor, N viewed as an element in (Z/mZ)∗ is in the
kernel of

(Z/mZ)∗ → Gal(F/Q).



Symmetry

In such a case we have clean symmetry:

cα = −c{α−1}.



The ambient space (for the data given by Theta

Elements)

Letting R[Z/pZ] be the group ring of the cyclic group
Z/pZ—with R as coefficient ring, define:

W := (R[Z/pZ])− ⊂ R[Z/pZ];

i.e., W is the R-vector space of dimension p−1
2

on which

I (Z/pZ)∗ in its action as a group of automorphisms of
Z/pZ induces an action on the R-vector space W ,

and where

I −1 ∈ (Z/pZ)∗ acts on W as scalar multiplication by −1.



A basis for the R-vector space W in R[Z/pZ]:

Elements

z =

p−1∑
i=0

zi〈i〉 ∈ R[Z/pZ]

(for zi ∈ R and 〈i〉 ∈ Z/pZ)

that are in W have the property that

I z0 = 0 and

I for 1 ≤ a ≤ p − 1 we have: z(p−a) = −za.

So a basis for W is given by:

{wi := 〈i〉 − 〈p − i〉 ∈ R[Z/pZ] for 1 ≤ i ≤ (p − 1)/2}



The spines

The data we get appear to organize themselves around certain
lines in W that we call the spines.

For 1 ≤ a ≤ (p − 1)/2 put:

sa :=

(p−1)/2∑
k=1

sin(
2πka

p
)wa ∈ W ⊂ R[Z/pZ]

The “spines” are the lines (in W)—i.e. one-dimensional
R-vector spaces—generated by the sa.
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There are (p − 1)/2 such spines forming a single orbit under
the action of (Z/pZ)∗ on W .

Each spine is stabilized by the action of 〈−1〉 ∈ (Z/pZ)∗

where this action induces the involution ’multiplication by −1’
on each spine.

These (p − 1)/2 spines are linearly independent in the
(p − 1)/2-dimensional R-vector space W .



The (Z/pZ)∗ orbit in W determined by a Theta

element ΘE ,F =
∑

α cα · α

Since

cα = −c{α−1}

is the symmetry in the coefficients of ΘE ,F , if we choose any
isomorphism

φ : Gal(F/Q) ' // Z/pZ



We get:

φ : Gal(F/Q) ' //

⊂
��

Z/pZ
=

��
Z[Gal(F/Q)]

φ // Z[Z/pZ]

and the image of ΘE ,F ∈ Q[Gal(F/Q)] in R[Z/pZ] lands in
the minus subspace,

W := R[Z/pZ]−,

i.e., the ambient space for our data.



The images of ΘE ,F under the various choices of isomorphisms
φ taken together produce a single (Z/pZ)∗ orbit of points in
W .



Equivalently,

choosing any generator g ∈ Gal(F/Q) and defining

Θ
{g}
E ,F :=

p−1∑
j=0

cg j · 〈j〉 ∈ W

note that the coefficients of Θ
{g}
E ,F in terms of the basis we gave

for W are just the ‘first’ (p − 1)/2 Theta coefficients, i.e.,

Θ
{g}
E ,F :=

(p−1)/2∑
j=1

cg j ·(〈j〉 − 〈−j〉) ∈ W



What we’re plotting:

For fixed prime p and fixed elliptic curve E and for varying
Galois cyclic field extensions F/Q of degree p we’ll plot those
(Z/pZ)∗ orbits of points in W that are the images of ΘE ,F .

We find that the data forms a star-like structure about the
spines. We see no clear reason why that should be so, and
hope to gather enough data to be able to make a quantitative
conjecture that accounts for the pictures.



The starlike structure in W of the ‘distribution’

given by the (Z/pZ)∗ orbits of images of ΘE ,F

Here they are for the prime p = 5 and elliptic curves

E = 37a1, 43a1, 53a1, 1001a1, and 10001a1

where the data was tabulated for 10,381 fields F (essentially
all cyclic Galois extensions of degree 5 with prime conductor
up to 500,000);



E = 37a1



E = 43a1



E = 53a1



E = 1001a1



E = 10001a1



The 3-d video: E = 37a1 with p = 7

—if I can figure out how to present it—


