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1. Introduction

Our article is in memory of John Coates, in memory of his energy, his generosity of
thought, his appreciation of ideas.

(Barry M.:)

He was an inspiration to me from the earliest days that I knew him—
when—beginning in 1969— he was a Benjamin Pierce Assistant Professor
at Harvard, to the later years, when he was based in Orsay, France and I
was at the IHES and when the two of us would jog together as he would
explain his latest mathematical thought.

(Michael H.:)

T. Feng was partially supported by an NSF Postdoctoral Fellowship under Grant No. DMS1902927.

M. Harris was partially supported by NSF Grant DMS-2001369, and by a Simons Foundation Fellowship,
Award number 663678.

B. Mazur was partially supported by the NSF Grant DMS 2152149.
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I had the privilege of meeting John as a new Ph.D. My thesis had been
largely inspired by the Coates-Wiles paper, which had appeared just one
year before. John’s encouragement and support was precious at this stage
of my career. Although I failed to find interesting applications of my
thesis work and shifted my attention to other questions, I remained in
close contact with John, especially after John moved to France. Always
elegant, always diplomatic, always with just the slightest trace of a smile
on his lips, during his brief stay at Orsay and the École Normale Supérieure
John left an influence on number theory in France that is still felt today.
After he settled in Cambridge he did the same for Europe as a whole.
John was uniquely effective in helping to build European number theory,
and this left a deep impression on me when he moved to France, showing
me that it was possible to use the modest powers of a European academic
creatively as well as constructively. I never made any decisions that might
significantly affect our mathematical community without first consulting
John. Inevitably, John’s influence on me was primarily mathematical,
through his own work and through that of his mathematical descendents.
No other number theorist of his generation had such a vast mathematical
family as John—I have published papers with eight of them, with more on
the way. Inspired by Barry’s work on Selmer groups and by unpublished
work of Ralph Greenberg, John, together with his student Bernadette
Perrin-Riou, reformulated and reinvigorated (classical) Iwasawa theory by
extending it to motives. This perspective shaped my return to Iwasawa
theory, starting with a joint paper with Jacques Tilouine – the last of
John’s students in France. And, though this may not be so immediately
apparent, it also shapes my thoughts about the project on which this paper
is a report.

(Tony F.:)

Unfortunately I never had the pleasure of meeting John Coates in person,
but I have had many encounters with his mathematics, which was and
continues to be an inspiration for me.

2. Beyond class field theory

Let F be a number field and K be an open subgroup of the restricted product
∏′

p∈|F |O
×
p .

Let K∞ denote the maximal compact subgroup of (F⊗QR)×; thus K∞
∼−→ (±1)r1×(S1)r2 ,

where S1 is the unit circle; here as usual, r1 is the number of real embeddings and r2 is the
number of complex embeddings. Define the idèle class groupoid as the quotient stack

IK = IF,K := [F×\A×F /K ·K∞].

Here the brackets mean that we take the quotient in the sense of groupoids, or in other
words we form the homotopy quotient. The “idèle class group” traditionally considered
in class field theory is the quotient group F×\A×F /K · K∞, which can be thought of as
π0(IK). However, the groupoid IK has an interesting homotopy type that we will also want
to consider.

Traditional class field theory describes π0(IK), as K varies, as the abelianizations of
certain Galois groups of the maximal field extension of F with ramification dictated by
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K. However, we have good reason to want to describe the entirety of IK , and not just
its component groups, in terms of Galois theory. In other words, we would like to enlarge
class field theory to account for the entire idèle class group and not just its group π0(IK) of
connected components. The purpose of the present article is to explain that this is possible:
what we shall see is that within this new framework, IF,K accounts completely for what we
call the derived abelianization of the absolute Galois group of F .

Why might we want this? IK is the locally symmetric space associated to the reductive
group G = GL(1) over F . We expect— thanks to ideas of Galatius-Venkatesh [8] — that
there’s an analogous but perhaps subtler relation between the topology of locally symmetric
spaces attached to more general reductive groups and their corresponding Galois represen-
tations. See [5] for an introduction to this circle of ideas. The general conjectures seem
intractable at present, but they encompass the case G = GL(1), so we might as well try to
solve that (easiest) case first. This will be done in forthcoming joint work of the authors
and Arpon Raksit [6]. Although the case of GL(1) is relatively simple, it arises as a useful
technical tool in studying other G (for example, one might want to “twist by characters”, or
“fix determinants”, etc), and so nailing down this case should help in the more interesting
cases as well. The present survey explains a component of [6] that we call “derived class
field theory”.

In this survey we aim to give an informal and intuitive explanation, therefore omitting
technicalities on higher category theory and homotopical algebra, as well as focusing on
simplifying special cases. Precise and complete details will appear in the article (joint with
Raksit) [6].

3. A derived Langlands correspondence for GL(1) – the Galois side

3.1. Derived abelianization. Let Γ be a discrete group. The abelianization of Γ is an
abelian group Γab for which the projection G −→ Gab is the universal solution to the
problem of morphisms from G to any abelian group. That is, for an abelian group A,

Homgps(G,A) = Homgps(G
ab, A).

We have

Gab = G/[G,G] = H1(G,Z). (3.1)

Just as Gab gives us one-dimensional homology of G (as in Equation (3.1) above) the
derived abelianization of Γ, denoted Γab,•, is represented by a simplicial abelian group that
is constructed canonically in the appropriate category and captures all of H∗(G,Z). Specif-
ically, there is a canonical isomorphism

πi(Γ
ab,•) ' Hi+1(G,Z) (3.2)

for ı ≥ 0.
Intuitively speaking, the derived abelianization should be a kind of “derived functor of

abelianization”. However, the process of “deriving” the abelianization functor cannot be
approached as in classical homological algebra, since the category of groups is far from being
the sort of abelian category to which the classical theory of derived functors applies. What
one uses instead is Quillen’s theory of homotopical algebra [13].

Recall that homological algebra is implemented using the notion of chain complex, which
however is very specific to abelian categories. In contrast, Quillen’s homotopical algebra
uses the notion of simplicial objects, which applies to totally general categories. A simplicial
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object of a category C is a collection of objects Cn ∈ C for n ≥ 0, together with maps
Cm → Cn whose combinatorics is modeled on the maps of standard simplices

∆n := {(t0, . . . , tn) ∈ Rn+1
+ :

∑
ti = 1}.

More precisely, the simplex ∆n is spanned by the n + 1 vertices, with the vertex labeled i
satisfying ti = 1. There are maps ∆n → ∆m induced by non-decreasing maps {0, . . . , n} →
{0, . . . ,m}. The category of finite non-empty sets is called the simplex category ∆, and a
simplicial object of C is a functor ∆op → C. The corresponding functor category Fun(∆op,C)
is abbreviated sC.

There is a so-called “Quillen equivalence” between simplicial sets and CW complexes (a
class of “nice” topological spaces), which informally says that one can think of simplicial
sets and CW complexes as being interchangeable up to homotopy. For this reason, one often
refers to simplicial sets as “spaces”, and thinks of the adjective “simplicial” as synonymous
to “topological”. A simplicial group (resp. simplicial abelian group) is a simplicial object in
the category of groups (resp. abelian groups).

The formalism of derived functors makes use, not only of simplicial objects, but also
of appropriate generalizations of “quasi-isomorphisms” and “projective resolutions”. Such
notions are provided by Quillen’s theory of model categories, which is a specification of
distinguished families of morphisms in sC satisfying suitable properties. The existence of a
model category structure on sC is not guaranteed, but much work has gone into producing
such structures on categories of interest. Often one starts with a standard model structure
on the category sSet of simplicial sets, and then bootstraps from this to sets with finitary
algebraic structure such as groups, abelian groups, rings, etc. We will not discuss these
details; see instead [2]. Once a model category structure is in place, one constructs derived
functors by a procedure analogous to the traditional calculus in derived categories, using
“projective resolutions”. (Actually in [6] this will all be used in a different way, using the
framework of ∞-categories [11].)

What does this have to do with homological algebra? Recall that a chain complex is
called connective if it is supported in non-negative degrees. If C is an abelian category, then
we denote by Ch+(C) the category of connective chain complexes of objects in C. The Dold-
Kan correspondence [9, §III.2] gives an equivalence between sC and Ch+(C), demonstrating
that in the case of abelian categories the “simplicial” theory of homotopical algebra recovers
the older “chain complex” theory of homological algebra.

Circling back to abelian groups: we use the formalism of simplicial abelian groups as the
context for derived functors involving abelian groups. A simplicial abelian group G• has
homotopy groups πi(G

•); these coincide with the homotopy groups of the topological space
corresponding to the underlying simplicial set of G•. The “singular simplices” functor from
topological spaces to simplicial sets promotes to a functor from topological abelian groups
to simplicial abelian groups. With these preparatory remarks in place, we return to the
subject of derived abelianization.

Construction 3.1 (Derived abelianization). The paper [6] gives several explicit descriptions
of the derived abelianization Γab,•, which require a bit more language to explain. Instead,
we will give a more down-to-earth model for its homotopy type. Let Γ be a simplicial abelian
group. Let (BΓ, e) be the bar construction on Γ, viewed as a pointed space (see [12, Chapter
16, §5] for an explanation of the bar construction).

Given any pointed space (X,x), there is the infinite symmetric product [10, p.282]

Sym(X,x) = lim−→
n

Symn(X)
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where Symn(X) = Xn/Sn and the transition maps append the basepoint x. It is a topo-
logical abelian monoid, under concatenation.

Then the homotopy type of the derived abelianization of Γ is represented by the topo-
logical abelian group Ω Sym(BΓ, e) where Ω is the (based) loop space functor.

As a sanity check, note that if Γ is discrete, then

π0(Ω Sym(BΓ, e)) ∼= π1(Sym(BΓ, e)) ∼= H1(Γ; Z) ∼= Γab.

This affirms the intuition that (for discrete Γ) Γab,• should be a space whose underlying
group of connected components is Γab. In fact, the Dold-Thom theorem [3] implies that—as
signaled in (3.1) above— for all i ≥ 0 we have:

πi(Ω Sym(BΓ, e)) ∼= πi+1(Sym(BΓ, e)) ∼= Hi+1(Γ; Z), (3.3)

giving us some understanding of the higher homotopy groups of Γab,• as well.
Under the Quillen equivalence between CW complexes and simplicial abelian groups,

Ω Sym(BΓ, e) may be viewed as a simplicial abelian group. Then under the Dold-Kan
equivalence, it corresponds to a connective chain complex. This turns out to be a familiar
object: as a chain complex, Γab,• is quasi-isomorphic to the (reduced, shifted) homology

chains C∗(X,Z)[−1]; this is a refinement of (3.3).

Remark 3.2 (Derived abelianization of profinite groups). Since we are interested in Galois
groups, we will want to take the derived abelianization of profinite groups. In this case it
is natural to modify the derived abelianization construction to produce a profinite abelian
group. If Γ is a profinite group, then we denote by Γab,• its profinite derived abelianization
(the universal profinite simplicial abelian group to which it maps). This can be described
explicitly as follows: if Γ = lim←−α Γα is a profinite presentation of Γ, then Γab,• ∼= lim←−α Γab,•α .

3.2. Derived abelianization of Galois groups. Let ΓS = π1(Spec(OF [1/S])) be the
Galois group of the maximal extension FS/F unramified outside a finite set S of prime

ideals, equipped with its natural profinite construction. We let Γab,•S be as in Remark 3.2.
Then under a profinite version of the Dold-Kan correspondence, we have

Γab,•S
∼−→ C∗(ΓS , Ẑ)[−1]. (3.4)

In particular,

π0(Γab,•S ) = H1(ΓS , Ẑ) ∼= ΓabS (3.5)

is the classical profinite abelianization.

4. A derived Langlands correspondence for GL(1) – the automorphic side

Class field theory identifies the classical abelianization of π1(Spec (OF [1/S])) with the
class group of OF [1/S]. We will now describe an enhancement of this story. To simplify
the exposition we will focus on the case where S is empty and F is totally imaginary.
Otherwise, there are subleties coming from the interaction of real places with the prime 2.
These subtleties are treated in detail in [6].

4.1. The Picard groupoid of Spec (OF ). Recall that the class group ofOF may be defined
as the group of equivalence classes of line bundles over Spec OF . A more refined structure is
the Picard groupoid of OF , which is the category whose objects are line bundles on OF and
morphisms are isomorphisms of line bundles. This construction makes sense more generally
on any scheme X, and we shall denote the Picard groupoid of X by Pic(X). This Picard
groupoid may be viewed as a simplicial set via the simplicial nerve construction; indeed
a fundamental tenet of the approach to higher category theory in [11] is to unify spaces
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and categories under the umbrella of simplicial sets. Moreover, the tensor product of line
bundles induces a symmetric monoidal structure on the category Pic(X), which translates
into an abelian group structure on the corresponding simplicial set. Denote by Pic(X) the
Picard groupoid of OF , viewed interchangeably as a symmetric monoidal category or as a
simplicial abelian group. In these terms the class group may be described as

Cl(OF ) = π0 Pic(OF ). (4.1)

This is a reflection of the fact that for any scheme X, there is a natural isomorphism
between H1(X,Gm) and equivalence classes of line bundles on X. More generally, there
is a cohomological description of the Picard groupoid. We may view H1(X,Gm) as the
0th cohomology group of the cohomology complex C•(X,Gm[1]), which is well-defined in
the homotopy category of complexes. There is a truncation functor τ≤0 on the category of
chain complexes, which extracts the connective cover of a complex, and it is a general fact
that the Picard category of X is naturally isomorphic to τ≤0C•(X,Gm[1]), the connective
cover of the cohomology complex C•(X,Gm[1]). Taking the 0th cohomology group of this
isomorphism recovers (4.1).

4.2. The Picard groupoid and the idèle class groupoid. If F is the function field of a
curve X over a finite field, then Weil’s construction identifies the idèle class group IF,Kmax

,
where Kmax is the product over all places v of F of the maximal compact subgroups of F×v ,
with the groupoid of line bundles on X. A similar construction can be applied when F is a
number field, which involves metrics at archimedean places. However, these can be ignored
under our simplifying assumption that F is totally imaginary. So we can get away (under
this assumption) with just considering the Picard groupoid Pic(Spec (OF )); we then get a
natural homotopy equivalence

Pic(Spec (OF )) ' IF,Kmax

We let K = Kmax in what follows. We then have a cohomological description of the idèle
class group, as

τ≤0C•(X,Gm[1]) ' Pic(Spec (OF )) ' IF,K . (4.2)

4.3. The profinite completion of the Picard groupoid and flat cohomology. The
approach to the derived abelianization outlined above is by way of the p-adic derived defor-
mation ring. To compare this with the Picard groupoid, we introduce the p-adic completion
of the latter. We consider the Kummer exact sequence

1→ µn → Gm
n→ Gm → 1 (4.3)

which we can write as an isomorphism in the derived category of sheaves on the flat topology
of Spec (OF ):

[Gm
n→ Gm] ' µn[1]; (Gm)̂ := lim←−

m

Gm/n ' lim←−
m

µn[1]. (4.4)

We denote by C∗(OF , •) the cohomology complex of Spec (OF ) of the fppf sheaf •. The
profinite completion of C∗(X,Gm) is therefore

C∗(OF ,Gm)̂ := lim←−
n

C∗(OF ,Gm)/n
∼−→ C∗(OF , lim←−

n

Gm/n) ∼= C∗(OF , µ[1]) (4.5)

where µ := lim←−n µn is the Tate module of roots of unity.

Combining (4.5) with (4.4), we identify the profinite completion of C∗(OF ,Gm) with the
flat cohomology complex:

C∗(OF ,Gm)̂ ' C∗(OF , µ[1]) (4.6)
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There is a generalization of profinite completion to simplicial sets and simplicial abelian
groups. The considerations above then yield

Pic(OF )̂
∼−→ τ≤0C

∗(OF , µ[2]). (4.7)

5. Derived class field theory via Poitou-Tate duality

5.1. Derived Poitou-Tate duality. Recall that an oriented manifold M enjoys Poincaré
duality, which can be formulated as an isomorphism

Hi(M,Z) ∼= Hn−i
c (M,Z)

where n = dimM . In fact, this can be promoted to an isomorphism of complexes (in a
suitable localization of the category of complexes)

Ci(M,Z) ∼= Cn−ic (M,Z).

There is an analogy between number fields and 3-manifolds, under which Poincaré duality is
analogous to the so-called Poitou-Tate duality. The latter is a bit subtle, but the upshot is
that for a finite fppf sheaf F with Cartier dual FD := Hom(F ,Gm), there are isomorphisms

Hi(OF ,F) ∼= H3−i
c (OF ,FD).

Here the compactly supported cohomology groups H3−i
c (OF ,FD) are a bit more involved

to define in general – they are defined formally as cones of restriction maps to Archimedean
places, where one also has to replace cohomology by Tate cohomology. However, under our
simplifying assumptions we will have H3−i

c (OF ,FD) = H3−i(OF ,FD), and we can ignore
the compact support condition entirely. It turns out that in this case, similarly to the case
of manifolds, one can promote Poitou-Tate duality to an isomorphism

C∗(OF ,F) ∼= C∗(OF ,FD[3]).

This promotion is quite formal but we prefer to leave the details to [6]. Applying this with
F = µn and taking limits in n, the upshot is a natural isomorphism

C∗(OF , Ẑ) ∼= C∗(OF , µ[3]).

Combining this with (4.7) gives the following:

Pic(OF )̂
∼−→ τ≤0C

∗
flat(OF , µ[2])

∼−→ τ≤0C∗(π1(OF ), Ẑ[−1]) (5.1)

5.2. Derived class field theory. Now we put together the isomorphism (5.1) with (3.4)
and (4.6) to find the following dual description of the derived abelianization of Galois groups:

Theorem 5.1. Suppose that F is a totally imaginary number field. Then there is a natural
isomorphism (

π1(Spec (OF ))ab,•
)̂
' (IF,K )̂

where K =
∏
v O
×
F,v is the maximal compact subgroup of the finite idèles, such that taking

π0 recovers the usual isomorphism of class field theory

π1(Spec (OF ))ab ∼= π0(IF,K).
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5.3. Allowing for ramification. The version of derived class field theory explained above
recovers the idèle quotient π0(IF,K) when K is the product of the unit groups Ov at all
primes v. For more general K, one can interpret π0(IF,K) as the group of equivalence classes
of invertible OF -modules M with a given level K structure. This is defined as follows. If
K ⊂

∏
v∈S Ov is the principal congruence subgroup KJ of level J , where J ⊂ OF is an ideal

supported at S, then a level K structure is a trivialization

ι : OF /J
∼−→ M/JM.

In general, any open subgroup K ⊂
∏
v∈S Ov contains some KJ , and a level K structure is

an equivalence class of level KJ -structures for the action of K/KJ . There is a (relatively
formal) way to enhance Theorem 5.1 to encompass such level structures, using relative
derived abelianization, which will be explained in [6].

6. Functoriality

6.1. Behavior under finite field extensions. Let E/F be a finite extension of degree n.
Fix a finite set S of non-archimedean places of F and let ΓF,S = π1(OF ), ΓE,S = π1(OE).
Let KS

F =
∏
v/∈S Ov ⊂ A×F , KS

E ⊂ A×E , be the corresponding subgroups The following
commutative diagrams are the derived versions of the familiar functorialities of class field
theory; the profinite completions have been omitted.

IKS
E

NE/F

��

// Γab,•E,S

incl

��
IKS

F

// Γab,•F,S

(6.1)

IKS
E

// Γab,•E,S

IKS
F

incl

OO

// Γab,•F,S

tr

OO
(6.2)

The horizontal maps are the derived class field theory equivalences discussed above.
The vertical maps labelled incl are the natural inclusions, which go in opposite directions

for the idèle classes and Galois groups (inclusion followed by abelianization, in the latter
case). The map NE/F is the norm map. As usual, the only map that requires explanation
is the right-hand vertical map in (6.2). This is the transfer, which on homotopy groups is
given by the corestriction on group cohomology.

6.2. Iwasawa theory. Now suppose F = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ . . . is a tower of extensions
of F , with Gal(Fn/F )

∼−→ Z/pnZ, so that F∞ = ∪nFn is a Zp-extension of F . This is the
setting of Iwasawa theory to which so much of John Coates’s work was devoted. Write
Γ = Gal(F∞/F ).

In classical Iwasawa theory, one considers the limit and colimit of the classical abelian-
izations Γab

Fn,S,p
in this tower

Γab
F∞,S,p := lim←−

n

Γab
Fn,S,p; A

ab
F∞,S,p = lim−→

n

Γab
Fn,S,p. (6.3)

Here the subscript p denotes p-adic completion. One views the resulting objects in (6.3)
as compact and discrete modules, respectively, over the Iwasawa algebra Zp[[Γ]], where the
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double brackets denote the completion of the group algebra with respect to the inverse limit
topology.

There is a remarkable analogy between the structure of Aab
F∞,S,p as a module over the

Iwasawa algebra Zp[[Γ]] and the geometric cohomology of a smooth projective curve X/Fp
as a module over the Frobenius, which is at the heart of Iwasawa theory. In the setting of
the smooth projective curve, recent work in the Geometric Langlands program [1] proposes
a refined Langlands correspondence for X, using the realization of the derived space of
local systems on X as the Frobenius-fixed points of the derived space of local systems on
XFp

. (See also [7].) The incorporation of derived structure is crucial, and one can speculate

that a similar story exists over number fields, with the Iwasawa algebra playing the role of
the Frobenius. This speculation is currently being investigated in work-in-progress of the
authors.
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