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Our seminar course

I want to thank Giovanni Sommaruga for inviting me to include my
notes in this volume. He suggested that it should comprise a “many
facetted view on axiomatics, something like a tour d’horizon of the
subject.” I had written these note in preparation for a seminar course
that I co-taught with Amartya Sen and Eric Maskin. The title of the
course was Axiomatic Reasoning and it followed two other course we
three gave: Reasoning via Models and Utilty; and it preceded a course
entitled Subjectivity/ Objectivity.

This, then, is not a standard article with thesis, development, and
conclusion. There will be nothing that could be labelled ’original’ in
it. It rather is a collection of notes and quotations meant as ‘starter’ to
precede course readings, and to initiate reflections and discussions. The
intent of our four courses was to create an opportunity for ourselves and
our students to live with a concept for a significant length of time—
without specifying a particular goal other than to become at home
with, intimate with, the concept in broad terms in its various facts and
its various moods. To become acquainted with a bit of the history of
the concept, its reception, its development.

Such an experience can provide resonances which enrich thoughts
that one may have, or can connect with ideas that one encounters,
years later.1 Our aim was to shape our seminar following the different
experiences, background, viewpoints, and preferences of our students.

1 This follows the format of some seminars I once taught with the late historian
of Science John Murdoch. Murdoch would ask me at the beginning of the year:

What do you want to know?

and he would shape the readings and theme of the ensuing course often based on
my answer. This “What do you want to know,” being abruptly personal, allowed
the seminars to be somewhat oblique to the standard professional academic themes
of discourse.
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Part 1. Introduction to the theme of Axiomatic Reasoning

The etymological root of the word axiom is the Greek αξi ōµα mean-
ing ’what is fitting.’ The concept axiom is often taken to mean ’self-
evident assertion,’ but we will take a much broader view, allowing it
to encompass frame-creating assertions ranging from ’common notions’
(Euclid’s favorite) to ‘rules,’ ‘postulates,’ ‘hypotheses,‘ and even defi-
nitions’ if they play a suitable role in the ensuing discussion.

Axioms as a tool, a way of formulating a reasoned argument, a way
of making explicit one’s ’priors’ or prior assumptions, a way of stipu-
lating assertions very clearly so as to investigate their consequences, of
organizing beliefs; a way of. . . in short, reasoning, has been with us for
a long time, and in various guises.

Axiomatic frameworks offer striking transparency and help open to
view the lurking assumptions and presumptions that might otherwise
be unacknowledged. This mode of thought has been with us at least
since Aristotle.

Axioms in formal (and even sometimes in somewhat informal) struc-
tures constitute an ’MO’ of mathematics at least since Euclid, but
surely earlier as well. “Surely,” despite, curiously, the lack of any ear-
lier record of it; and despite the fact that there is substantial record
of much earlier mathematical thought. Egyptian mathematical pa-
pyri contain quite an array of problems and their solutions—e.g., the
Moscow Mathematical Papyrus, dated approximately 1700 BC offers a
correct discussion regarding the volume of a truncated square pyramid
and a step-by-step computation of a particular example—but nowhere
in these papyri is there as much as a hint of any mathematical protocol
for demonstration, let alone any axiomatic foundational structure.

We will see how the very core of meaning and use of axiom in math-
ematics has undergone quite an evolution, through Euclid, his later
commentators, Hilbert’s revision of the notion of axiom, and the more
contemporary set theorists.

Axioms are standard structures as they appear in models in the sci-
ences, sometimes occurring as proclaimed ’laws’: borrowing that word
from its legal roots. Newton’s Laws act as axioms for Classical Mechan-
ics, the fundamental laws of thermodynamics for Thermodynamics.

Similarly for Economics: Axiomatic Utility Theory is very well named
where the ‘axioms’ play more the role of desiderata which may or may
not be realizable, especially in the face of the variously named ’para-
doxes’ and ’Impossibility Theorems’ (as Professors Maskin and Sen will
be discussing). Nevertheless this axiomatic format provides us with an
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enormously useful and powerful tool to understand forces at play in
Economics.

Noam Chomsky’s Structural linguistics set the stage for a very ax-
iomatic approach to language acquisition and use (with interesting later
critique) as does the vast tradition of rule-based grammars (as Profes-
sor Sen will be discussing later in this seminar).

Rules in games, and in the formal set-ups in mathematical game
theory have their distinct qualities. Even more of ’distinct quality’ is
the subtle manner in which it is sometimes understood that rules are
not expected to be strictly obeyed; e.g., as in the composition of a
sonnet.

In the Bayesian mode of inductive reasoning, the ’priors’ (as the
Bayesians call them)—which are, in effect, input axioms—are con-
stantly re-assessed in connection with the flow of further incoming data
(“the data educates the priors” as they sometimes say). This is also
quite a distinctive way of dealing with one’s axioms!

We live these days at a time when computer programs, governed
by algorithms—hence a specific form of axiomatic reasoning—make
selections for us, recommendations, choices, and sometimes critical de-
cisions. The question of when, and how, more flexible modes of human
judgment should combine with, and possibly mitigate, axiom-driven
decision processes is a daily concern, and something that we might
address, at least a bit, in our seminar2.

Most curiously, axiomatic structure has come up in various reflec-
tions regarding moral issues. (This, by the way, happens more than
merely the golden rule: we might read a bit of Spinoza’s Ethics which
is set up in the formal mode of mathematical discourse, complete with
Postulates, Definitions, and Theorems.)

Part 2. The evolution of definitions and axioms, from
ancient Greek philosophy and mathematics to
Hilbert.

Here is Socrates lecturing to Adeimantus in Plato’s Republic VI.510c,d:

. . . the men who work in geometry, calculation, and the
like treat as known the odd and the even, the figures,

2Relevant to this discussion is Stephen Wolfram’s A New Kind of Science
(https://www.wolframscience.com/) in which it is proposed that one simply re-
place equations in scientific laws with algorithms.

https://www.wolframscience.com/
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three forms of angles, and other things akin to these
in each kind of inquiry.

These things they make hypotheses and don’t think
it worthwhile to give any further account of them to
themselves or others as though they were clear to all.
Beginning from them, they . . . make the arguments for
the sake of the square itself and the diagonal itself, not
for the sake of the diagonal they draw, and likewise
with the rest. These things themselves that they mold
and draw—shadows and images in water—they now
use as images, seeking to see those things themselves,
that one can see in no other way than with thought.

1. Venerable formats for reasoned argument and
demonstration

Ancient organizational schemes of logic, such as the Organon of
Aristotle, have been vastly influential and have been—even if largely
implicit—the armature of the way in which we formulate assertions,
ask questions, and reach conclusions in mathematics as in everything
else. Aristotle begins his discussion in the Prior Analytics by setting
for himself quite a task: to pin down demonstration “and for the sake
of demonstrative science,” to:

. . . define, what is a proposition, what a term, and
what a syllogism, also what kind of syllogism is per-
fect, and what imperfect; lastly, what it is for a thing
to be, or not to be. . .

Aristotle gets to this job right away, and offers this succinct defi-
nition of proposition neatly distinguishing between those propositions
involving universal, no, or existential quantification:

A proposition then is a sentence which affirms or de-
nies something of something, and this is universal, or
particular, or indefinite.

and, turning to syllogism, the main object of exploration of the Organon,
he characterizes syllogism as:

discourse in which, certain things being stated, some-
thing other than what is stated follows of necessity
from their being so.
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Since definition, defined by Aristotle as: an account which signifies
what it is to be for something3 plays such a vital role in mathemat-
ics, the notion deserves close attention. Mathematics seems to require
as strict lack-of-ambiguity in its assertions as possible, and therefore
maximal clarity in its definitions. But perhaps—since ambiguity is
sometimes unavoidable—it is better to say that any ambiguity should
be unambiguously labeled as such.

The nature, and role, of definition in mathematical usage has evolved
in remarkable ways. We will be discussing this in more detail later, but
consider the first two definitions in Book I of Euclid’s Elements:4

(i) A point is that which has no part.
(ii) A line is breadthless length.

and their counterparts in Hilbert’s rewriting of Euclid’s Elements, which
begins with:

Let us consider three distinct systems of things. The
things composing the first system, we will call points
and designate them by the letters A, B, C,. . . ; those
of the second, we will call straight lines and designate
them by the letters a, b, c,. . . The points are called
the elements of linear geometry; the points and
straight lines, the elements of plane geometry. . .

Hilbert’s undefined terms are: point, line, plane, lie, between, and
congruence.

One might call Euclid’s and Hilbert’s formulations primordial def-
initions since they spring ab ovo–i.e., from nothing. Or at least from
‘things’ not in the formalized arena of mathematics, such as Hilbert’s
“system of things”. Euclid’s definitions of point and line seem to be

3 a puzzling definition: logos ho to ti ên einai sêmainei

4 These ‘Elements’ have quite an impressive spread, starting with the proclama-
tion that a point is characterized by the property of ’having no part,’ and ending
with its last three books, deep into the geometry of solids, their volumes, and the
five Platonic solids. It is tempting to interpret this choice of ending for the Ele-
ments as something of a response to the curious interchange between Socrates and
Glaucon in Plato’s Republic (528a-d) where the issue was whether Solid Geometry
should precede Astronomy, and whether the mathematicians had messed things up.

It also would be great to know exactly how—in contrast—the Elements of Hip-
pocrates of Chios ended. (It was written over a century before Euclid’s Elements
but, unfortunately, has been lost.)
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whittling these concepts into their pure form from some more materi-
ally graspable context (e.g., where lines have breadth)5 while for Hilbert
the essence of point and line is their relationship one to the other.

Once one allows the bedrock of—say—Set Theory, definitions are
often ‘delineations of structure,’ cut out by means of quantifiers and
predicates but making use of set theoretic, or at least priorly defined
objects. E.g. A circle is a set of points equi-distant from a single point
in the Euclidean plane. We will discuss this in a moment.

The essential roles that ‘definition’ play for us are: to delineate the
objects of interest to be studied; to encapsulate; to abbreviate; and to
focus.

2. The axiomatic ’method’

Axioms, as we’ve seen, have been around— at least—since ancient
Greek mathematical activity, but only more recently have people viewed
the act of ’listing axioms’ as a method, rather than (somewhat more
relaxedly) as a natural move to help systematize thought.

It may have been David Hilbert who actually introduced the phrase
axiomatic thinking to signal the fundamental role that the structure
of an axiomatic system plays in mathematics. Hilbert clearly views
himself as molding a somewhat new architecture of mathematical or-
ganization in his 1918 article “Axiomatisches Denken.” It begins with
a political metaphor, that neighboring sciences being like neighboring
nations need excellent internal order, but also good relations one with
another, and:

. . .The essence of these relations and the ground of
their fertility will be explained, I believe, if I sketch to
you that general method of inquiry which appears to
grow more and more significant in modern mathemat-
ics; the axiomatic method, I mean.

Hilbert’s essay ends:

In conclusion, I should like to summarize my general
understanding of the axiomatic method in a few lines.
I believe: Everything that can be the object of
scientific thinking in general, as soon as it is

5 I want to thank Eva Brann for pointing this out.
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ripe to be formulated as a theory, runs into
the axiomatic method and thereby indirectly
to mathematics. Forging ahead towards the ever
deeper layers of axioms in the above sense we attain
ever deepening insights into the essence of scientific
thinking itself, and we become ever more clearly con-
scious of the unity of our knowledge. In the evidence of
the axiomatic method, it seems, mathematics is sum-
moned to play a leading role in science in general.

3. Formulating definitions and axioms: a beginning move.

In the “Definitions” of Euclid’s Elements it is striking how these
are both definitions (or at the very least descriptions) as well as ax-
ioms. Definitions, of course, suffer the risk of being ’ambiguous’ and
collections of axioms suffer the risk of being inconsistent or—in various
ways–iinadequate. The essential roles that ‘definition’ play for us are:
to delineate the objects of interest to be studied; to encapsulate; to
abbreviate; and to focus.

As for the power of definition to provide ‘focus,’ consider the distinc-
tion between definition and characterization—as in the two equivalent
definitions of prime number (given by (i) and (ii) below)—where one
makes the choice to regard one of these as ‘definition’ and the other as
‘characterization’:

A prime number p is a (whole) number greater than one

(i) that is not expressible as the product of two smaller numbers.

or

(ii) having the property that if it divides a product of two smaller
numbers, it divides one of them.

If you choose (ii) as the fundamental definition you are placing the
notion of prime number in the broader context of ‘prime’-ness as it
applies to number systems more general than the ring of ordinary
numbers—and more specifically in the context of prime ideals of a gen-
eral ring. So choosing (ii) as definition casts (i) as a specific feature that
characterizes prime numbers, thanks to the theorem that guarantees
the equivalence of these to formulations. Going the other route—i.e.,
focusing on (i), the unfactorable quality of prime number, would then
cast (ii) as a basic more general feature also characterizing prime-ness.
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Even when axioms seem inadequate, or fail, the discussion can con-
tinue in an interesting way—very often dealing with more subjective
issues. As Gödel’s Incompleteness Theorem (see the discussion be-
low) points to the striking limitations of Hilbert’s grand notion of for-
mal system, these limitations themselves have interesting implications.
Similarly, vastly illuminating are the limitations implied by Arrow’s
Impossibility Theorem regarding social choice theory; or the ‘named
paradoxes” connected to axiomatic utility theory, such as:

• Allais’s Paradox thatmanufactures a situation where the (os-
tensible) adding of ‘equals’ (i.e., adding further equal alterna-
tives) to two choices that are open to us gets us to switch our
preferred choice. Here the issue is that a guaranteed very large
winning beats—in our assessment—a possible quite greater
winning but with a 1% probability of total loss.

or

• Ellsberg’s Paradox that points out the issue of meta-risk assessment—
i.e., Ellsberg sets up a game where you must make a choice
(A or B). And then compaes this game to a modified ver-
sion with slightly different choices (A′ or B′) In the first game
you actually know—i.e., can reasonably compute— the odds
of winning depending on your choice; and you would choose
A rather than B. Ellsberg then changes the game by modi-
fying the two choices A or B in an equal way so that you are
faced with choices A′ or B′ but the change is such that now
you don’t quite know the odds; and. . . curiously. . . now you
would choose B′.

or

• the St. Petersburg Paradox already and the (much later) ideas
of Kahnemann-Tversky—that emphasize the deeply subjective
nature—and intertwining—of utility and expectation.

The evolution of the notion of axiom, the changes in formulation,
and use, is striking. Compare the vastly different axiomatic formats
of Euclidean geometry, as conceived by Euclid, David Hilbert, George
Birkhoff, (and we’ll also briefly mention below the viewpoint of the
‘Erlangen Program’ at least as it connects with the formulation of Eu-
clidean Geometry).
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4. A curious evolution

• Euclid’s Elements, Book I

(i) Definitions
(a) A point is that which has no part.
(b) A line is breadthless length.
(c) The extremities of a line are points.
(d) A straight line is a line which lies evenly with the

points on itself.
(e) A surface is that which has length and breadth only.
(f) The extremities of a surface are lines.
(g) A plane surface is a surface which lies evenly with

the straight lines on itself.
(h) (Def’n. 13) A boundary is that which is an extrem-

ity of anything.
(i) (Def’n. 14) A figure is that which is contained by

any boundary or boundaries.
(j) (Def’n. 15) A circle is a plane figure contained by

one line such that all the straight lines falling upon it
from one point among those lying within the figure
are equal to one another;

(k) (Def’n. 16) And the point is called the centre of the
circle.

(ii) Postulates
(a) To draw a straight line from any point to any point.
(b) To produce a finite straight line continuously in a

straight line.
(c) To describe a circle with any centre and distance.
(d) That all right angles are equal to one another.
(e) (‘Fifth Postulate’:) That, if a straight line falling

on two straight lines make the interior angles on the
same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles.

(iii) Common Notions

(a) Things which are equal to the same thing are also
equal to one another.

(b) If equals be added to equals, the wholes are equal.
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(c) If equals be subtracted from equals, the remainders
are equal.

(d) Things which coincide with one another are equal
to one another.

(e) The whole is greater than the part.

– Comparison with Archimedes

Consider, for example, the treatise On the Sphere and
Cylinder of Archimedes, where he lists five ‘assumptions’—
i.e., in effect: axioms—that he will depend upon:

(i) Of all the lines which have the same extremities the
straight line is the least.

(ii) Of other lines in a plane and having the same ex-
tremities any two of them are unequal if they are
both concave in the same direction and one is be-
tween the other and the straight line with the same
extremities.

(iii) . . . similar to (i) but defining plane among surfaces
with the same ‘ extremities’.

(iv) . . . similar to (ii) but distinguishing surfaces among
surfaces with the same ‘ extremities’.

(v) “Archimedes Principle”: Further of unequal lines,
unequal planes, unequal solids, the greater exceeds
the lesser by such a magnitude that when added to
itself, can be made to exceed any assigned magni-
tude among those which are comparable. . .

– What are these assumptions of Archimedes? Descriptions,
definitions, or axioms? Are they meant to be ad hoc—
designed for the specific treatise in which they appear?

– Issues of uniqueness are perhaps implied both in Eu-
clid, and Archimedes, but not specifically mentioned. E.g.:

∗ The following ‘familiar’ definitions, not at all in the
spirit of the definitions in Book I appear in later
interpretations of Euclid:

A straight line is [implied: uniquely] de-
termined by two of its points.

Or:
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A straight line segment is the [implied: unique]
curve of shortest distance between its end-
points.

∗ Or uniqueness, for example, of that central point in
Def’ns 15 and 16?

– Substrate: For me, the most striking fact about these
definitions is that they don’t rely on set theoretic vocab-
ulary. We moderns immediately think ‘sets,’ ‘subsets,’
‘membership in sets,’ etc. and tend to build our struc-
tures starting with sets as substrate.

– Motion: Euclid has no vocabulary at all for ‘continuous
motion,’ ‘transformation,’ ‘function’ except as these issues
are introduced in the Postulates and/or when one triangle
is “applied” to another. Discuss the ‘Erlangen Program.’

On the Postulates:

– The emphasis is on Construction rather than Existence.

– Regarding The Fifth Postulate: the minute one questions
its independence, one is on the way to model-formation,
but, of course, this is not at all in the spirit of Euclid.

On the Common Notions:

– These are closest to modern axiomatics, formulating rules
regarding the terms equal and greater than. The intu-
itive notion—that, say, two angles are equal if there is a
Euclidean transformation bringing one exactly onto the
other—is utterly absent from Euclid’s vocabulary.

• Comparison with Nicholas of Oresmes’ treatise: The
Geometry of Qualities and with the analytic approach to
geometry

This deserves extensive discussion!
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• Hilbert’s Euclidean Geometry

Hilbert’s axiom system is constructed with six primitive
notions:

(i) three primitive terms:

– point;
– line;
– plane;

and

(ii) three primitive relations:

– Betweenness, a ternary relation linking points;
– Lies on (Containment), three binary relations, one

linking points and straight lines, one linking points
and planes, and one linking straight lines and planes;

– Congruence, two binary relations, one linking line
segments and one linking angles. Note that line seg-
ments, angles, and triangles may each be defined in
terms of points and straight lines, using the rela-
tions of betweenness and containment. All points,
straight lines, and planes in the following axioms are
distinct unless otherwise stated.

And there are these structures, axioms, and lists of ‘de-
fined terms”:

(iii) Incidence: For every two points A and B there exists a
line a that contains them both. . .

(iv) Order: If a point B lies between points A and C, B is
also between C and A, and there exists a line containing
the distinct points A,B,C . . . If A and C are two points of
a line, then there exists at least one point B lying between
A and C. Of any three points situated on a line, there is
no more than one which lies between the other two.
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(v) Pasch’s Axiom: Let A, B, C be three points not lying in
the same line and let L be a line lying in the plane ABC
and not passing through any of the points A, B, C. Then,
if the line L passes through a point of the segment AB, it
will also pass through either a point of the segment BC
or a point of the segment AC.

(vi) Axiom of Parallels: Let m be any line and A be a
point not on it. Then there is a unique line in the plane,
determined by m and A, that passes through A and does
not intersect m.

(vii) Congruence: If A, B are two points on a line L, and if
A′ is a point upon the same or another line L′, then, upon
a given side of A′ on the straight line L′, we can always
find a point B′ so that the segment AB is congruent to
the segment A′B . . .

(viii) Continuity:
– Axiom of Archimedes: If AB and CD are any seg-

ments then there exists a number n such that n seg-
ments CD constructed contiguously from A, along
the ray from A through B, will pass beyond the
point B.

– Axiom of line completeness: An extension of a set
of points on a line with its order and congruence
relations that would preserve the relations existing
among the original elements as well as the funda-
mental properties of line order and congruence that
follows from [the axioms discussed] is impossible.

– Defined Terms: segment, ray, interior, triangle, ’lie
on the same side’, . . .

• George Birkhoff’s Axioms for Euclidean Geometry

Undefined Elements and Relations:
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– points A, B, . . .
– sets of points called lines `, m. . .
– distance between any two points A and B: a nonnegative

real number d(A,B) such that d(A,B) = d(B,A).
– angle formed by three ordered points A,O,B(A 6= O,B 6=
O) : ∠AOB a real number (mod 2π). The point O is
called the vertex of the angle.

– Postulate I. (Postulate of Line Measure) The points
A,B, . . . of any line ` can be placed into one-to-one
correspondence with the real numbers, so that for x
a non-negative real number, |xA− xB| = xd(A,B) for all
points A,B.

– Postulate II. (Point-Line Postulate) One and only one
line ` contains two given points P,Q (P 6= Q).

– Postulate III. (Postulate of Angle Measure) The half-
lines `, m. . . through any point O can be put into
one-to-one correspondence with the real numbers
a(mod 2π), so that, if A 6= O and B 6= O are points of
` and m, respectively, the difference am− al (mod 2π) is
∠AOB. Furthermore if the point B on m varies continu-
ously in a line ` not containing the vertex O, the number
am varies continuously also.

– Postulate IV. (Similarity Postulate) If in two triangles

∆ABC,∆A′B′C ′

and for some constant k > 0,

d(A′, B′) = kd(A,B), d(A′, C ′) = kd(A,C),

and
∠B′A′C ′ = ±∠BAC,

then also

d(B′, C ′) = kd(B,C),∠A′B′C ′ = ±∠ABC,
and

∠A′C ′B′ = ±∠ACB.

Defined Terms:

A point B is between A and C (A 6= C), if d(A,B) +
d(B,C) = d(A,C). The half-line `′ with endpoint O is
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defined by two points O,A in line ` (A 6= O) as the set of
all points A′ of ` such that O is not between A and A′. The
points A and C, together with all point B between A and
C, for segment AC. If A,B,C are three distinct points, the
segments AB,BC,CA are said to form a triangle ∆ABC
with sides AB,BC,CA and vertices A,B,C.

Topics that we might discuss regarding Hilbert:

• Hilbert’s Axioms offer an articulation very different from Eu-
clid’s: the triple definitions/postulates/common notions being
replaced by primitive terms/primitive relations/structures and
axioms.

• The common notions (i.e., logical pre-structures like ‘equality’)
are implicitly assumed rather than formulated.

• Modern quantification is explicit. E.g., the ‘incidence Axiom’
calls up universal and existential quantification: ∀ points A,
B, ∃ a line through A and B.

• Geometry as a structure, following the Erlangen Program.

• Set Theory: Most importantly, Hilbert expresses his axioms
in Set theoretic vocabulary.

But if one uses Set Theory as a ‘substrate’ on which to build
the structures of mathematics, as in the classical Grundla-
gen der Mathematik of Bernays and Hilbert, one must tangle
with all the definitional questions that are faced by Set The-
ory (starting with: what is a set? and continuing with the
discussion generated by the work of Frege, Russell, etc.) 6.

• Infinity. And then compare all this with the discussion about
the existence of infinite sets in Bernays-Hilbert’s Grundlagen
der Mathematik, Vol. I:

. . . reference to non-mathematical objects can not set-
tle the question whether an infinite manifold exists;

6 For example, go back to Dedekind’s marvelous idea of capturing the notion
of infinite by discussing self-maps (this notion popularized by people checking into
Hilbert’s hotel). You might formulate Dedekind’s idea this way: a set S is infinite
if it admits an injective but non-surjective self-map. . . and then confuse yourself by
trying to figure out how this compares with the property that S admits a surjective
but non-injective self-map.
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the question must be solved within mathematics it-
self. But how should one make a start with such a
solution? At first glance it seems that something im-
possible is being demanded here: to present infinitely
many individuals is impossible in principle; therefore
an infinite domain of individuals as such can
only be indicated through its structure, i.e.,
through relations holding among its elements.
In other words: a proof must be given that for this
domain certain formal relations can be satisfied. The
existence of an infinite domain of individuals can not
be represented in any other way than through the
satisfiability of certain logical formulas. . .

From Hilbert’s On The Infinite:

. . .We encounter a completely different and quite unique
conception of the notion of infinity in the important
and fruitful method of ideal elements. The method of
ideal elements is used even in elementary plane geom-
etry. The points and straight lines of the plane orig-
inally are real, actually existent objects. One of the
axioms that hold for them is the axiom of connection:
one and only one straight line passes through two
points. It follows from this axiom that two straight
lines intersect at most at one point. There is no the-
orem that two straight lines always intersect at some
point, however, for the two straight lines might well
be parallel. Still we know that by introducing ideal
elements, viz., infinitely long lines and points at infin-
ity, we can make the theorem that two straight lines
always intersect at one and only one point come out
universally true. These ideal “infinite” elements have
the advantage of making the system of connection
laws as simple and perspicuous as possible. More-
over, because of the symmetry between a point and a
straight line, there results the very fruitful principle
of duality for geometry.. . .

Topics that we might discuss regarding Birkhoff:
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• The big distinction between the three ‘Euclidean axiom-formulations’
(Euclid’s, Hilbert’s, and Birkhoff’s) is—I believe–in the implic-
itly assumed substrates that ground each of the axiom systems:

– Euclid assumes that we are—at least vaguely—familiar
with the basic nature of ‘Euclidean Space’ and his mission
is to describe it more precisely and give terminology so
that we may offer reasoned arguments about its features
and make constructions in it. Discuss: proportions versus
numbers.

– Hilbert—in effect—generates his ‘Euclidean space’ by re-
lational axioms, depending on the substrate (undiscussed
explicitly) of set theory.

– Birkhoff brings in (in a way fundamental to his approach)
metric considerations; hence his ’substrate’ includes quite
explicitly the system of real numbers.

5. From Synthetic to Analytic

All three axiom systems fall under the general rubric of ”syn-
thetic geometries,” i.e., set-ups that formulate conditions re-
garding essentially geometric features. Note that there is no
mention of the real numbers or any other number system in Eu-
clid’s or Hilbert’s Axioms; this is not true of Birkhoff’s axioms.
All three systems are quite different from ’analytic geometry’
which would set things up—from the start—by working in the
substrate of R2 or R3 and providing i geometric definitions in
purely algebraic language. Birkhoff’s axioms do move closer
to that, but are still (interestingly) synthetic.

Here’s Felix Klein’s definition of the distinction between an-
alytic and synthetic geometry:

Synthetic geometry is that which studies figures as
such, without recourse to formulas, whereas analytic
geometry consistently makes use of such formulas as
can be written down after the adoption of an appro-
priate system of coordinates.

and here are his comments in an essay he wrote:
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On the Antithesis between the Synthetic and
the Analytic Method in Modern Geometry:

The distinction between modern synthesis and mod-
ern analytic geometry must no longer be regarded as
essential, inasmuch as both subject-matter and meth-
ods of reasoning have gradually taken a similar form
in both. We choose therefore in the text as common
designation of them both the term projective geom-
etry. Although the synthetic method has more to
do with space-perception and thereby imparts a rare
charm to its first simple developments, the realm of
space-perception is nevertheless not closed to the an-
alytic method, and the formulae of analytic geome-
try can be looked upon as a precise and perspicuous
statement of geometrical relations.

Also, when I was first learning geometry, Herbert Buseman
was the main proponent of keeping as much “synthetic ge-
ometry” as possible, but even he realized that he was being
out-dated as a purist. He wrote:

Although reluctantly, geometers must admit that the
beauty of synthetic geometry has lost its appeal for
the new generation. The reasons are clear: not so
long ago synthetic geometry was the only field in
which the reasoning proceeded strictly from axioms,
whereas this appeal so fundamental to many math-
ematically interested people is now made by many
other fields.

There’s a good Wikipedia page about this: https://en.

wikipedia.org/wiki/Synthetic_geometry

Given all these sentiments, I take Birkhoff’s axioms as being
something of a compromise: it is largely synthetic, but with
an analytic flavor.

In contrast to all three axiom systems, one has The Erlangen
Program.

Discuss. . .

https://en.wikipedia.org/wiki/Synthetic_geometry
https://en.wikipedia.org/wiki/Synthetic_geometry
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6. From Axioms to Models: example of hyperbolic
geometry

Often—when we frame an axiomatic system—- we have a specific
structure in mind (Euclid surely did!) and our axiomatic system is a
way of allowing us to understand, to study, the structure. Once the
axiomatic system is formulated, though, we can reverse the process
and ask for concrete structures that model7 (or perhaps are modeled
by) our axiomatic system. There are celebrated stories about this issue
(non-Euclidean geometry) where various slight change of one postulate
(“Euclid’s Fifth Postulate’) provides axiomatics for various different
geometries—Hyperbolic Geometry being one of them.

Essential roles played by models (vis-á-vis axiomatic systems) is that

• the axiomatic systems may elucidate the models;
• the models will establish the consistency of the axioms (i.e.,

proving that they’re not self-contradictory);
• the models will offer the intuition needed to think construc-

tively about the axioms.

All this is nicely illustrated by the example of the multiplicity of dif-
ferent models for the same system of axioms of Hyperbolic Geometry.
With Hyperbolic Geometry we have an assortment of different models
any one of which conforms to the axiomatic system of Hyperbolic Ge-
ometry and we display them below. And this is a possible topic for our
discussion.

7 Model Theory, a subject we will touch on later focuses even more explicitly on
the relation between setting-up a language-and-structure and models for such.
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• Klein model (used by many)

Geodesics are straight lines in the (open) unit disc.

• Poincaré disc model (loved by geometers)

Geodesics are arcs of circles perpendicular to the boundary.

• Poincaré half-plane model (loved by number theorists)

Geodesics are vertical lines from the real axis to infinity; or
semicircles perpendicular to the real axis.

• Lorentz model or hyperboloid model (loved by physicists)
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This coral, I’m told, is very approximately a hyperbolic planar sur-
face embedded in Euclidean space:

M. C. Escher’s Circle Limit III in which “strings of fish shoot up
like rockets from infinitely far away” and then “fall back again whence
they came.” (This approximates a tiling by ‘hyperbolical equilateral
triangles and squares’ represented in the Poincaré disc model.)
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Here are lines through a given point and parallel to a given line,
illustrated in the Poincaré disk model:

A good discussion of this is in en.wikipedia.org/wiki/Hyperbolic_

geometry

Part 3. ‘Axiomatic formats’ in philosophy, Formal logic, and
issues regarding foundation(s) of mathematics
and. . . axioms in theology

.

7. Axioms, again

It may pay, at this point, to summarize the various uses we have
seen of the axiomatic format.

(i) To provide an explicit organized framework for thought: ax-
ioms may be framed to set out the starting assumptions in a
line of reasoning. Or, more formally, to formulate a specific
algorithmic procedure.

(ii) To describe in as explicit terms as possible certain specific
human interactions: either fully descriptive (e.g., this is—or
may be a rough model of what people do), or more normative,
desiderata perhaps. This is as in axiomatic utility theory.

(iii) To stipulate a ‘mathematical structure’: as in axioms for Eu-
clidean or Hyperbolic Geometry. This can be descriptive—
i.e., a characterization of a geometry (in the style of Euclid)
or more—one might say—ontological (in the style of Hilbert)
where the axioms are meant to be an abstract structure that
has, as one of its features, Euclidean Geometry as (a) model.
It is a structure that defines Euclidean Geometry.

(iv) To ‘delineate” a mathematical structure from a previously con-
structed axiomatic system. A good example being:

 en.wikipedia.org/wiki/Hyperbolic_geometry
 en.wikipedia.org/wiki/Hyperbolic_geometry
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Analytic Geometry:

• A point is (given by) a couple (x, y) where x
and y are real numbers; i.e., the plane is (given
by) the 2-dimensional vector space R2 over the
field R of real numbers.
• A line is the locus of a “linear equation”

y = ax+ b

where a, b ∈ R.
• etc.. . .

In a sense Birkhoff’s axiom system is something of a hybrid
synthetic/analytic axiomatic set-up.

8. Axioms. . . and ‘psychology’

In axiomatic formulations of models for utility—e.g. axiomatic utili-
tarianism; or in attempts to model the manner in which we—individually,
or collectively—make choices, it would seem that the axioms play an
essential role as the starting point of a discussion—the axioms reflect-
ing the seemingly-rational way that people do (or should) behave in
making their individual or collective choices.

However,—crudely speaking—psychology often intervenes, making
these axioms not entirely reliable predictors of behavior, and softening
their effect as normative signposts. This is illuminated by the named
paradoxes (Ellsberg, Allais, St. Petersburg) of Social choice theory,
and by our reading of Kahneman & Tversky’s Rational choice and the
framing of decisions where among many other things, they show that

• two formulations of the same problem may elicit different pref-
erences, in violation of the axiom of invariance.
• The dominance rule is obeyed when its application is trans-

parent, but dominance can easily be “masked by a frame in
which the inferior option yields a more favorable out- come in
an identified state of the world.”

Whether the relation of dominance is detected de-
pends on framing as well as on the sophistication and
experience of the decision maker.

In Kahneman & Tversky’s language: different framings call into play
different personal ‘takes’ on the axioms. A transformation, then, from
rules of rational choice to the more malleable rules for subjective rea-
sonable choice. This was already implicit in Daniel Bernoulli’s notion
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of the concavity of the (function describing) the value of goods, or
money. Of course, Kahneman & Tversky go much further in consid-
ering ‘subjective takes on things’ (and in many directions: even in
their weight functions which might be more descriptively labelled as
subjective evaluation of probabilities).

9. A crash course in Formal Logic

A. Formal Systems. A Formal System consists of:

• A finite set of symbols, that can be used for constructing for-
mulas (i.e. finite strings of symbols).
• A grammar, which tells how well-formed formulas (abbreviated

wff) are constructed out of the symbols in the alphabet. It is
usually required that there be a decision procedure for deciding
whether a formula is well formed or not.
• A set of axioms or axiom schemata: each axiom must be a wff.
• A set of inference rules.

B. Propositional Calculus (PC). The apparatus:

• symbols for ‘variables:’ p, q, . . .
• ’operators:’

¬,

· (or ∨),

∧,

⊃ (or → or =⇒ ),

=

• ’brackets:’ ( )

The ’meaning’ of the operators are (in order):
¬ means not,
· means and,
∧ means or,
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⊃ means implies; and
= means equivalent in truth-value.

The point about truth-value is that there is indeed a sort of calculus
where—if you interpret each variable-symbol (e.g. p) as standing for
the statement: p is true there are natural rules that guarantee that
certain statements formulated with the above apparatus are true (or
false). For example: if p is true, then—in this calculus— ¬p is false,
and vice versa.

The brackets are pretty important. For example, there’s no associa-
tive law: p · (q ∧ r) is not the same as (p · q) ∧ r, the former meaning

p and either q or r

while the latter means: p and q, or r.

Some inference rules:

• modus ponens: a, a =⇒ b
b

(and b
a =⇒ b

)

• and-addition; and-elimination: a, b
a∨b ; a∨b

a, b

• or-introduction: a
a∧b

• Double-negative-reduction: ¬¬a
a

(and a
¬¬a)

• Various ‘resolutions:’ a∧b,¬a
b

, etc.

Discuss: wff, consistency, completeness, decidability

Example: Two symbols, p, q both taken as axioms. Then (e.g.,)
any wff that doesn’t have a ¬ sign in it is true.

p, q, p ∧ q, p ∨ q, (p =⇒ q), p ∧ (p ∨ q), . . .

But there isn’t much one can do with Propositional Calculus. One
needs a richer structure:

C. First-order logic. This provides us with apparatus with which
we can actually work. The new ingredients:

First there should be some domain of discourse—call it Ω—which I
won’t describe too explicitly, but then:
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• Terms: By an elementary term one means a member of
that stipulated domain of discourse. The set of terms is then
inductively defined by the following rules:
(i) Elementary terms.

(ii) Variables. Any variable is a term.
(iii) Functions. Any expression f(t1, t2, . . . , tn) of n arguments

(where each argument is a term) and f is a function symbol
of valence n) is a term.

• Predicates. These are, in effect, statements with a free variable
(or a finite number of independent free variables) contained in
them. A predicate should be viewed as a specific quality that
a term might possess.

For example, suppose the domain of discourse is the set of
real numbers. Let x denote a ’free variable’ and the predicate
P (x) is: “is positive.” That is, it is short for the sentence ‘x
is positive”. where the “x” here is taken to be a variable that
might range though members of ‘the domain of discourse.’ So,
fixing on some such member (e.g., π) you get the formula P (π) :
π > 0. Another example: consider the predicate P (x, y) that
stands for the sentence “x is greater than y” where the domain
of discourse, again, is the set of real numbers. Often predicates
are simply associated with the sets of terms that are described
by the sentence that ‘interprets’ the predicate.

• Quantifiers ∀, ∃; e.g., these quantifiers ‘quantify’ the predi-
cates; they will be forming sentences such as:

∀x ∈ R | x2 ≥ 0.

• Formulas

The set of formulas (also called well-formed formulas or WFFs) is
inductively defined by the following rules:

(i) If P (x1, x2, . . . , xn) is an“ n-ary predicate symbol and (a1, a2, . . . , an)
are terms then P (a1, a2, . . . , an) is a formula.

(ii) If a, b are terms, then a = b is a formula.
(iii) If Φ is a formula, then ¬Φ is a formula.
(iv) If Φ and Ψ are formulas, then (Φ ∧ Ψ), (Φ ∨ Ψ) and (Φ→Ψ)

are formulas.
(v) If ϕ is a formula and x is a variable, then ∀xϕ—i.e., (for all

x, ϕ holds)—is a formula.
(vi) If ϕ is a formula and x is a variable, then ∃xϕ—i.e., (there

exists a term a such that ϕ(a) holds)—is a formula.
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Only expressions which can be obtained by finitely many applications
of rules (i)-(vi) are formulas. The formulas obtained from the first two
rules are said to be atomic formulas.

One can also make sense of ‘higher-order’ theories, where—say for
‘second-order logic’ predicates may be interpreted as sets of sets, and
quantification can be over sets (as well as members of sets).

Exercise: What ’logical system’ do you need to define the natural
numbers

N := {1, 2, 3, . . . , }?

E.g., We might do it this way:

Definition 1. N is a set

(i) containing an element 1 ∈ N and
(ii) admitting a mapping (call it the successor mapping)

s : N→ N

that is
(iii) injective (i.e., ∀x1, x2 ∈ N if x1 6= x2 then s(x1) 6= s(x2)) and
(iv) the element 1 is not in the image of s and
(v) N is minimal with respect to the above properties in the sense

that any subset N′ ⊂ N containing 1 and stable under the
successor mapping s is equal to N.

So, describe the formal system necessary to encompass this axiomatic
format.

10. Model Theory

Model theory begins by offering a format for doing mathematics
within an explicitly shaped ‘Language’ (in the style of ‘universal algebra’)—
where the ‘models’ will be sets with extra structure—and where its sen-
tences interpreted in any ‘model’ have truth-values that conform to the
rules of first-order logic.

The ‘opening move’ of Model Theory is a powerful and revealing
disarticulation of semantics from substance. Here’s what I mean: if
you are not model-theoretic and want to formulate, say, graph theory,
you might—for example—just define a graph to be given by a set V of
vertices and a set E of edges, each edge attaching two distinct vertices
and you might also insist that no two vertices are attached by more
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than one edge. Or you might give a more topological account of this

structure.

9/11/2018 1-s2.0-S0166218X12002831-gr1.jpg (242×230)

https://ars.els-cdn.com/content/image/1-s2.0-S0166218X12002831-gr1.jpg 1/1

In any event, your formulation begins with a set and then some
structure is imposed on it.

Model Theory, reverses this. It begins by offering an explicitly shaped
language in which first-order logic is incorporated. In the case of our
example of graph theory, the language would have a symbol E labeled
as a binary relation (symmetric, but not reflexive) in connection with
which we label as true sentences:

∀x, y(xEy ↔ yEx)

and

xEy =⇒ x 6= y.

An ’interpretation’ of this language—or synonymously, a ’model’ for
this would be a ‘representation’ of this language in (some version of)
Set Theory. That is, it would give us a set V endowed with a binary
relation E for which the labeled-as-true sentences are. . . in fact true;
i.e., such a model is simply a graph, where the set of vertices is the set
V and the set of edges is given by the binary relation E.

11. Completeness, Consistency

A Formal System (consisting in, say, a first order theory with a finite
collection of axioms) is consistent if it is not the case that there exists
a wff P such that P and ¬P can both be proved from those axioms.
It is complete if for every wff P either P or ¬P can be proved.

. . .Discussion. . .

Take a look—just a look—at Martin Davis, Gödel’s incompleteness
Theorem, Notices of the AMS 53 (2006) 414-418 http://www.ams.

org/notices/200604/fea-davis.pdf

http://www.ams.org/notices/200604/fea-davis.pdf
http://www.ams.org/notices/200604/fea-davis.pdf
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12. Axiomatic language in Ethics

There is much to discuss here: It is (essentially) the Euclidean format
for the organization of rational argument—including first principles of
a very general nature (often labelled Definitions and Axioms) formally
set down and referred to explicitly in the justification of each step of
arguments that have played important roles in moral philosophy. For
example:

A. From: Baruch de Spinoza, Ethics.
The organization of his Ethics has a Euclidean framework where

there are very explicitly displayed Definitions, Axioms, and Propo-
sitions and where the propositions have arguments labeled Proof in
which every line of argument refers only to prior Definitions, Axioms,
or Propositions.8.

The long quotation below is from PART II of Spinoza’s Ethics:

On the Nature and Origin of the Mind

First, I would like some discussion about this, since I don’t have any
idea how Spinoza expects us to deal with this ‘borrowed’ Euclidean
format:

DEFINITION I. By body I mean a mode which ex-
presses in a certain determinate manner the essence of
God, in so far as he is considered as an extended thing.
(See Pt. i., Prop. xxv., Coroll.)

DEFINITION II. I consider as belonging to the
essence of a thing that, which being given, the thing is
necessarily given also, and, which being removed, the
thing is necessarily removed also; in other words, that
without which the thing, and which itself without the
thing, can neither be nor be conceived.

DEFINITION III. By idea, I mean the mental
conception which is formed by the mind as a thinking
thing.

Explanation: I say conception rather than percep-
tion, because the word perception seems to imply that

8 See https://www.gutenberg.org/files/3800/3800-h/3800-h.htm

https://www.gutenberg.org/files/3800/3800-h/3800-h.htm
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the mind is passive in respect to the object; whereas
conception seems to express an activity of the mind.

DEFINITION VI. Reality and perfection I use as
synonymous terms.

. . .

AXIOMS

. . .

AXIOM II. Man thinks.

AXIOM III. Modes of thinking, such as love, de-
sire, or any other of the passions, do not take place,
unless there be in the same individual an idea of the
thing loved, desired, etc. But the idea can exist with-
out the presence of any other mode of thinking.

. . .

PROPOSITIONS

PROP. I. Thought is an attribute of God, or God
is a thinking thing.

Proof: Particular thoughts, or this and that thought,
are modes which, in a certain conditioned manner, ex-
press the nature of God (Pt. i., Prop. xxv., Coroll.).
God therefore possesses the attribute (Pt. i., Def.
v.) of which the concept is involved in all particular
thoughts, which latter are conceived thereby. Thought,
therefore, is one of the infinite attributes of God, which
express God’s eternal and infinite essence (Pt. i., Def.
vi.). In other words, God is a thinking thing. Q.E.D.

Spinoza ends his treatise Ethics in a curious manner, offering a a
quite different take than St. Anselm’s proof of the existence of God—
or indeed on the ontological proofs offered by Gödel:
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PROP. XIII. A mental image is more often vivid, in
proportion as it is associated with a greater number of
other images.

Proof. In proportion as an image is associated with
a greater number of other images, so (II. xviii.) are
there more causes whereby it can be aroused. Q.E.D.

PROP. XIV. The mind can bring it about, that all
bodily modifications or images of things may be re-
ferred to the idea of God.

Proof. There is no modification of the body, whereof
the mind may not form some clear and distinct con-
ception (V. iv.); wherefore it can bring it about, that
they should all be referred to the idea of God (I. xv.).
Q.E.D.

PROP. XV. He who clearly and distinctly under-
stands himself and his emotions loves God, and so
much the more in proportion as he more understands
himself and his emotions.

Proof. He who clearly and distinctly understands
himself and his emotions feels pleasure (III. liii.), and
this pleasure is (by the last Prop.) accompanied by
the idea of God; therefore (Def. of the Emotions, vi.)
such an one loves God, and (for the same reason) so
much the more in proportion as he more understands
himself and his emotions. Q.E.D.

PROP. XVI. This love towards God must hold the
chief place in the mind.

B. The Categorical Imperative. Perhaps the most quoted example
of axiomatics in ethics is Immanuel Kant’s ‘golden rule’: the categorical
imperative as formulated in his Critique of Practical Reason.9.

Act in such a way that the maxim of your will can at
the same time always hold as a principle of a universal
legislation.

9 See page 38 (Fundamental Principle of Pure Practical Reason) in
http://www.kantwesley.com/Kant/CritiqueOfPracticalReason.pdf

http://www.kantwesley.com/Kant/CritiqueOfPracticalReason.pdf
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This succinct proposition expands impressively in its applications,
and is meant to fit into the context of various Theorems of moral-
ity stated by Kant. Kant insists on the imperative here, noting that
“Pure geometry has postulates as practical propositions which, how-
ever, contain nothing further than the presupposition that one is able
to do something if it were required.” Geometry’s propositions are, Kant
says, “therefore, practical rules under a problematical condition of the
will.” (What Kant is signaling here is that in Geometry one can con-
struct a circle or not: there’s no obligation to perform any act—but
his theorems of morality oblige ’the will’ to act in the above way.)

Earlier in his Introduction Kant writes:

For in the present work we will begin with principles
and go to concepts, and only then from these, where
possible, continue on to the senses. With speculative
reason, in contrast, we began with the senses and had
to end with the principles.

which I take to mean that even though he works in a formal setting
(with statements labeled as “Theorems,” etc. ) he is inverting the
usual order of appearance of elements in a formal system—starting
with conclusions (“principles”) and having them reveal basic concepts
(an analysis of propositional truths rather than a synthesis).

C. Ontological Arguments. But the most curious engagement of
axiomatics in ethics are the various “Ontological arguments” related to
the existence (or at least to the definition) of God. These arguments
can be essentially pro- (i.e., claiming that God’s existence is proved) as
in St. Anselm, or Spinoza; or essentially critical as in Aquinas or Kant.
An enlightening account of these arguments, and their history, can
be found in the Stanford Encyclopedia of Philosophy’s entry https:

//plato.stanford.edu/entries/ontological-arguments/. (Read
especially sections 1-3.)

A curious common thread in many of the ontological arguments is
to allow ‘existence’ to be a possible predicate ( or not!) of the various
things-of-thought. St. Anselm, for example, puts a value judgment on
this predicate :it’s more perfect to exist than not!10. Compare this with
Spinoza’s Definition IV quoted above.

10Old joke:
A: I wish I never was born!
B: Oh, only one in a million is that lucky.

https://plato.stanford.edu/entries/ontological-arguments/
https://plato.stanford.edu/entries/ontological-arguments/


NOTES IN PREPARATION FOR A COURSE IN AXIOMATIC REASONING 35

So if you conjure the most perfect thing-of-thought that can be con-
ceived, well: if it doesn’t exist, there’s your contradiction. For now
imagine whatever it is that you conjured up, but as existing, and you’ve
just conceived of a yet more perfect thing-of-thought—voilá.

Often in these ontological arguments one sees the unqualified use
of the quantifier ∃ to establish existence (of something) as being a
predicate (of that something). That is: one asserts existence of an
entity, without specifying in what realm that entity is (so-to-speak)
’taken from.’

In symbols: as long as you have a set in mind as your domain of
discourse—call it Ω—it makes sense to consider formulas such as:

∃x ∈ Ω such that . . . ,

but you’re asking for trouble if you have no specific set such as Ω in
mind and just want to deal with the formula:

∃x such that . . . .

( This puts such arguments in the same framework as unqualified use
of the quantifier ∀, as is behind Russell’s paradox and the various uses
of ‘unqualified universal quantification, related to the classical crisis in
the foundations of mathematics.)

Baruch de Spinoza, however, in his Ethics has—as far as I can make
out—a very different take. Spinoza gives three different ‘proofs’. These
might be characterized as follows.

(i) Two versions of the ‘ontological argument’:

• God’s essence (simply) entails existence.

• The potentiality of non-existence is a negation
of power, and contrariwise the potentiality of
existence is a power, as is obvious.

(ii) A version of the principle of insufficient reason:

If, then, no cause or reason can be given, which pre-
vents the existence of God, or which destroys his ex-
istence, we must certainly conclude that he necessar-
ily does exist. If such a reason or cause should be
given, it must either be drawn from the very nature
of God, or be external to him—that is, drawn from
another substance of another nature. For if it were
of the same nature, God, by that very fact, would be
admitted to exist. But substance of another nature
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could have nothing in common with God (by Prop.
ii.), and therefore would be unable either to cause or
to destroy his existence.

13. Axiom-Definitions in Classical Physics

We have already encountered instances of ’organizing statements’
setting up an axiomatic framework, where it isn’t quite clear to what
extent a statement is a definition of something or an axiom about
the behavior of something11. A simple example of this is the labelled
Definition 16 in Euclid’s Elements: And the point is called the centre
of the circle. That this point is ‘unique’ has ‘gone without saying,’ i.e.,
the definition carries along with it the uniqueness assertion, as axiom.

Newtons three Laws form–or at least suggest—a formal axiom sys-
tem. Specifically interesting for our seminar is the structure, the na-
ture, and various historical revisions imposed on these axioms. More-
over, at times these laws move from their status as axiom (the status
they enjoy in straight Newtonian mechanics) to part-definition or to
something less easily describable. Here are Newton’s Laws, not in
their original language, but in their original strength and intent as
they were given in Newton’s 1687 treatise: Mathematical Principles of
Natural Philosophy:

• First law: In an inertial frame of reference, an
object either remains at rest or continues to move
at a constant velocity, unless acted upon by a
force.
• Second law: In an inertial reference frame, the

vector sum of the forces F on an object is equal
to the mass m of that object multiplied by the
acceleration a of the object:

F = ma.

• Third law: When one body exerts a force on
a second body, the second body simultaneously
exerts a force equal in magnitude and opposite in
direction on the first body.

11 A historically (and substantially) important example of a shift from definition
to law, and perhaps back again, occurs in the early discussions of what it means
to be computable. See “Not a Definition, a Natural Law” in Allyn Jackson’s essay
Emil Post: Psychological Fidelity published in the journal Inference https://

inference-review.com/article/psychological-fidelity

https://inference-review.com/article/psychological-fidelity
https://inference-review.com/article/psychological-fidelity
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These are the starting laws, that launched that extraordinarily exact
science—classical mechanics.

A. Kant’s metaphysical counterpart to Newton’s laws. Almost
exactly a century later (1786) Kant published a treatise Metaphysical
Foundations of Natural Science12 as an attempt to revisit Newton’s laws
from a metaphysical perspective—and in a wildly idiosyncratic way.
In contrast to Newton’s very often-quoted “Hypotheses non fingo,” (I
make no—metaphysical—hypotheses) Kant is not shy of making them!
For example, Here’s Kant’s definition of matter:

Matter is whatever is movable and can be an object
of experience.

The first definition in his first chapter is:

Definition 1: I call something material if and only
if it is movable in space. Any space that is movable
is what we call material or relative space. What we
think of as the space in which all motion occurs—space
that is therefore absolutely immovable—is called pure
space or absolute space.

Starting with this definition—to express it anachronistically—Kant
is working out the issue of dependence on frame of reference—in par-
ticular the idea that motion is a relative notion. He proclaims as a
Principle:

Every motion that could be an object of experience
can be viewed either as
• the motion of a body in a space that is at rest or

as
• the rest of a body in a space that is moving in

the opposite direction with equal speed. Its a free
choice.

(This might be a point for discussion in our seminar, since, here and
at other places in his essay, Kant is formulating something that—
in modern language—might be phrased as the question of whether a
coordinate-free language is possible for the framing of physical laws.)

Regarding gravitational attraction, he offers this description, but
labelled as propositions:

12 http://www.earlymoderntexts.com/assets/pdfs/kant1786.pdf

http://www.earlymoderntexts.com/assets/pdfs/kant1786.pdf
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Proposition 7: The attraction that is essential to all
matter is an unmediated action through empty space
of one portion of matter on another.

Proposition 8: The basic attractive force, on which
the very possibility of matter depends, reaches out di-
rectly from every part of the universe to every other
part, to infinity.

And eventually, Kant formulates his version of the laws:

• First law of mechanics: Through all changes
of corporeal Nature, the over-all amount of mat-
ter remains the same— neither increased nor less-
ened.
• Second law of mechanics: Every change in

matter has an external cause. (Every motion-
less body remains at rest, and every moving body
continues to move in the same direction at the
same speed, unless an external cause compels it
to change.)
• Third mechanical law: In all communication

of motion, action and reaction are always equal
to one another.

(A further possible topic for discussion might be whether Kant suc-
ceeds or fails in giving Newton’s laws a metaphysical underpinning—or
in elucidating the underlying issues. Or: what is Kant actually trying
to get at?)

B. Ernst Mach’s reconfiguration of Newton’s laws. Going for-
ward yet another century, there is Mach’s retake. Most striking is his
view of Newton’s second Law. Simply formulated above, it was that
the law F = ma might be viewed as defining the concept of mass: the
quantity m is, in fact defined by its appearance as a constant in such a
law. Specifically, this second law is the following assertion:

Appropriately understood —relative to any specific
body ( conceived of as “point-mass”) the ’ratio’ F/a is
constant; and this constant is defined to be the mass
of this body.

This turns the tables, a bit, on the second law, focusing on its role as
a definition of one of the three components of this Newtonian system.
Indeed Mach had a few variant formulations of this definition: one of
them in terms of a little drama involving a closed system consisting
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of two bodies A and B doing whatever they are doing to each other
(repelling or attracting) and as a result having accelerations aA and aB
at which point (making implicit use of Newton’s Third law) one can
define the ratio of the masses of bodies A and B to be:

mA/mB = −aB/aA,

which has the sdded virtue of not ever dealing explicitly with the notion
of Force13

C. D’Alembert’s revision. More than a century earlier than Mach,
there appeared a different rewriting of Newton’s second law known
(now) as D’Alembert’s Principle. This principle seems to have been
created by a shockingly simple—you might think:—trick. But, in fact,
it represents an extremely important change of viewpoint related to
(and perhaps inspiring) an entire genre of conservation laws and sta-
tionary principles. Here is D’Alembert’s simple idea. Write Newton’s
second law, F = ma, in this (clearly equivalent) way:

F −ma = 0.

Dubbing “−ma” as a sort of fictional force (referred to as inertial
force) you get that the equilibrium of the system is marked (in this
somewhat semantic juggle) as the sum of all the forces on the system
being: 0. A conservation of forces. This is the precursor of two other
rewritings of Newton’s laws—these going under the names of Lagrange,
and Hamilton. (An interesting theme for a final paper would be a dis-
cussion of the way in which these formulations difffer from each other,
and from Newton’s original formulation.) Viewing Newton’s second
law (as D’Alembert did) as a ‘conservation law’ is in the spirit of other
conservation laws, such as conservation of energy—which in a sense
was more of a principle to be defended rather than a pure axiom, in
that whenever, in some set-up, the ’conservation principle of energy’
seemed to be violated, the physicists confronted by this seeming viola-
tion fashioned a new facet or form of energy to put into the equation
so as to maintain conservation.

13 For a very critical discussion of the merits of Mach’s approach, see There Is
No Really Good Definition of Mass by Eugene Hecht http://physicsland.com/

Physics10_files/Mass.pdf

See also About the definition of mass in (Machian) Classical Mechanics by Marco
Guerra and Antonio Sparzani (Foundations of Physics Letters, 7, No. 1, 1994)

http://physicsland.com/Physics10_files/Mass.pdf
http://physicsland.com/Physics10_files/Mass.pdf
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Part 4. Axioms for Set Theory, Algorithms, Gödel’s
Incompleteness Theorem

D. Readings:

(i) Martin Davis, Gödel’s incompleteness Theorem, Notices of the
AMS 53 (2006) 414-418
http://www.ams.org/notices/200604/fea-davis.pdf

(ii) Allyn Jackson, Emil Post: Psychological fidelity, Inference, 4
(2018)
https://inference-review.com/article/psychological-fidelity

(iii) Wikipedia on Gödel’s incompleteness Theorem https://en.

wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems

E. How rigorous will we be? The answer is: not rigorous at all,
and in no way self-contained; but I shall only hint at the train of
arguments—introducing a minimum of notation—but I’ll try to use-
fully evoke the general sense of these arguments, and be as honest as I
can be, in all this ‘evoking.’.

14. Listable sets of integers

(synonyms: recursively enumerable, computably enumerable, algo-
rithmically enumerable)

Let’s start with some examples of sets that are easy to “list”

•
2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

•
2!, 3!, 4!, 5!, . . .

Discuss what is meant by easy.

http://www.ams.org/notices/200604/fea-davis.pdf
https://inference-review.com/article/psychological-fidelity
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
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Generally, a subset L ⊂ Z is called listable14 if there exists a fi-
nite computer program whose output gives a sequence α1, α2, α3, . . . of
integers such that the set L is precisely this collection of numbers; i.e.,

L = {α1, α2, α3 . . . }.

A computer algorithm that does job this will be called a computer
algorithm that “lists L.”

Note, though, that–even if the computer spits out a “new” integer
every second— the ordering in which the numbers in the computer’s
listing of L come may be very up and down in terms of size. Therefore
if you suspect that a given number, say 3, is not in L and need to have
a definite guarantee of the truth of your suspicion, well ( if you are
right!) running the computer algorithm for any finite length of time—
with the helter-skelter sizes of numbers that come up will be of no help
to you: if 3 does show up, it is—of course–therefore in L; if it hasn’t
yet shown up, no matter how long the computer has run, this tells you
nothing about whether it is or isn’t in L.

For example, (I’m taking an offhand random example) consider the
set of numbers that are expressible as a sum of two sixth powers minus
a sum of two sixth powers. Now the set Lo of such numbers is listable.
There is a simple way of systematically listing all such numbers. Run
systematically through all quadruples of whole numbers A,B,C,D or-
ganizing these quadruples by size in what is called ‘diagonal ordering’
and collecting the values n := A6 + B6 − C6 −D6, this constituting a
list of the elements of Lo.

What are the numbers n that are not in Lo? I (personally) don’t
know15 whether, say, 3 is or is not in Lo.

Suppose you have a listable subset of positive numbers:

14 A very readable introduction to a bit of this theory (and especially the his-
torical and personal context in which it arose) is Allyn Jackson’s essay; see D(ii)
above. For a pretty readable intro to the notion of listable set see https://en.

wikipedia.org/wiki/Recursively_enumerable_set noting that listable is called
recursively enumerable there. For a hint about hierarchies of ‘relative listability’
take a quick look at https://en.wikipedia.org/wiki/Post%27s_theorem.

15. . . but I haven’t thought much about how difficult it is to know. . .

https://en.wikipedia.org/wiki/Recursively_enumerable_set
https://en.wikipedia.org/wiki/Recursively_enumerable_set
https://en.wikipedia.org/wiki/Post%27s_theorem
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L ⊂ N := {1, 2, 3, . . . }.

By the complement of such a set L one means the set of all numbers
in N that are not in L. Call this complement L⊥. So the union of L
and L⊥ is all of N:

L ∪ L⊥ = N.

Lemma 14.1. Day and Night: There is an algorithm to determine
whether any number n = 1, 2, 3, . . . is contained in L if and only if
both L and L⊥ are listable16.

Proof: If there is such an algorithm, go through the positive integers
one by one, and for each integer n use the algorithm to determine
whether it is or isn’t contained in L and put that number n in the
appropriate listing of L if the algorithm says it is, and in L⊥ if the
algorithm says it isn’t.

Going the other way, suppose that both L and L⊥ are listable. For
any integer n spend your days listing L and your nights listing L⊥ and
you are guaranteed to find n at some day or night; this gives us the
algorithm that determines whether n is or isn’t contained in L.

15. Emil Post’s Fundamental Discovery

A fundamental result of Cantor is that there are sets that are un-
listable. This follows from the fact that the set of all listable sets is a
countable set of sets because the set of all possible lists are countable. . .
but the set of all sets is an uncountable set. So there has to exist some
unlistable set.

But a fundamental discovery of Emil Post is that there exists a
listable set L whose complement L⊥ is unlistable17. It follows (e.g.,
from Lemma 14.1) that there is no decision procedure to determine
whether any given integer n is or is not contained in L.

Much of what comes later are afterthoughts to—and elaborations
of— this discovery!

16 In the literature, if a set L has the property that both L and L⊥ are listable,
then L is called recursive.

17 I.e., following the previous footnote: (in the literature) the set L would be
called recursively enumerable but not recursive.
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16. Gödel’s Incompleteness Theorem

Suppose we have a formal system F (e.g., as described in Section 9)
that is consistent— i.e., is such that for no wff P is it true that P and
¬P is provable in F—and has a rich enough vocabulary to perform
whatever it is required to do below18. We aren’t being at all explicit
here, so take this as a (perhaps overly relaxed) way of directly getting
to the heart of the idea of the incompleteness theorem.

For our formal system F there is a language, we have the standard
apparatus and clear rules of inference etc.as described in Section 9, so
we can actually algorithmically list all well-formed-formulae. Do that
for m = 1, 2, 3, . . . , giving us a complete list

(16.1) m 7→ Pm

that runs through every well-formed formula.

Definition 2. One says that a formal system is complete if for any
proposition P formulated in the language of the system either the propo-
sition P or its negation ¬P is provable.

Now take any one of Post’s sets

(16.2) {1, 2, 3, . . . } ↔ L
listable in the language of F such that the complement L⊥ is unlistable.

Theorem 16.3. (Gödel) There is at least one positive integer ν for
which neither the statement:

P : ν is not in L

nor its negation

¬P : ν is in L

is provable in the formal system F .

Proof:

Euclidean geometry without the parallel postulate is incomplete, be-
cause some statements in the language (such as the parallel postulate
itself) can not be proved from the remaining axioms. Proof: Working

18 For example: we are requiring our formal systems to be effectively axioma-
tized (also called effectively generated) so that its set of theorems is a listable set.
That is, there is a computer program that, in principle, could enumerate precisely
the theorems of the system. The standard formal systems Peano arithmetic and
Zermelo-Fraenkel set theory (ZFC) have that property.
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systematically, take each positive integer n and spend your days and
nights this way. For a fixed n here is the procedure, which I’ll call
Proc(n):

Each Day: look at successive 100 entries in the list
(16.2) of elements of L to check if n is among those
entries. If, on some day, you find n in L your work is
done. Just remember all that work.

Each Night: examine successive 100 well-formed
formulae in the list (16.1) to see if, for some Pm among
those entries, Pm is a proof that ν is not in L. If,
on some night, you find that one of those well-form
formulae Pm is a proof that ν is not in L your work is
done. Just remember it.

OK, here are the possibilities:

(i) The ‘procedure’ Proc(n) terminates finitely for every positive
integer n. That is, we have an algorithm that for all n deter-
mines in finite time whether n is or is not in L.

(ii) There “is” a positive integer ν such that the ‘procedure’ Proc(ν)
never terminates.

Consider, first, (i) above: if (i) held it would give us a finite algorithm
to list the elements of L⊥: for every n run systematically through your
days and nights, throwing out the n’s that show up in daytime but list
the n’s for which a proof Pm (that n ∈ L⊥) has been found in those
nighttimes. This, in effect, gives an algorithmic listing of L⊥—contrary
to assumptions. So, (i) cannot occur.

This leaves (ii). Note that such a number ν cannot be a member of
L, for it if were, it would be found some day. So

• ν is a member of L⊥; i.e., the statement ν is in L is not
provable; and:
• there’s also no proof—in the formal system F—of the negation

of this—i.e., of the statement ν is not in L—since if there
were, the procedure Proc(ν) would terminate.

QED

Questions:

(i) Why did I put quotation-marks in the “is” in the statement of
(ii) above?

(ii) How does this discussion change when I change the formal
system F (within which we are working)?
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17. A Diophantine (synonym: ‘arithmetic’) formulation:
the result of Matiyasevich-Robinson-Davis-Putnam: a

counter-statement to Hilbert’s Tenth Problem.

Theorem 17.1. (MRDP) For any listable set of positive integers L
there is a polynomial p(t, x1, x2, . . . , xd) in some finite number (d + 1)
of variables with integer coefficients such that n is in L if and only if
there are integers (a1, a2, . . . , ad) such that

(17.2) p(n, a1, a2, . . . , ad) = 0.

Corollary 17.3. (Unsolvability: a counter-statement to Hilbert’s Tenth
Problem) there is a polynomial p(t, x1, x2, . . . , xd) with integer coef-
ficients for which there is no algorithm to determine for n running
through all positive integers whether p(n, x1, x2, . . . , xd) has a solution
(i.e., integers (a1, a2, . . . , ad) satisfying Equation 17.2).

Proof of Corollary 17.3 (given Theorem 17.1): Just take any
listable set L for which L⊥ is unlistable, use Theorem 17.1 to find the
corresponding polynomial, and interpret what this means.

Unfortunately too brief discussion—but at least mention of
these topics:

(i) Various ways of thinking about Gödel’s Incompleteness Theo-
rem. E.g., “independence.”

(ii) Peano Arithmetic, ZFC.
(iii) Gödel’s view of Set Theory.
(iv) Current ‘programs’: Harvey Friedman; Hugh Woodin.

18. What is a set?

I’m not sure we know (definitively) yet. It is a pretty lean mathemat-
ical object, evoked—if not captured—by the simple phrase a collection
of things. Nevertheless sets provide the substrate for such a wide va-
riety of mathematical objects that an axiom system that ‘models’ set
theory is clearly of foundational importance in mathematics.

That the axiom system for Set Theory is free of contradictions (i.e., is
’consistent’) is, of course, necessary; and we should take particular care
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to achieve consistency, especially with Russell’s paradox as a cautionary
tale.

The most common such axiom system, Zermelo-Fraenkel Set theory
referred to as ZF—or if one adds the axiom of choice to its list of
axioms, one calls it ZFC—was proposed in the early twentieth century
by Ernst Zermelo and Abraham Fraenkel.

Instead of presenting this axiom system as a ‘formulated thing,’ it
might be more engaging if we discuss it, building it (or something close
to it) up, by stages in conversation. The most dramatic procedure for
such building-up is due to Von Neumann.

We allow our set theory to have the standard first-order logic as
semantics so we can use, for example, the standard quantifications ∀
and ∃, etc. .

Since we are trying to capture the notion of set as a formal entity
having the intuitive meaning of collection of things, the most econom-
ical thing one might do—and Z-F does this!—is to

• have just one type of object in our vocabulary (these objects
are either to be thought of as sets or objects that are members
of some set or of some sets; or these objects are both sets
in themselves and members of other sets: all this depends on
their properties in connection with the unique relation (∈) that
will be introduced in the bullet below; these objects will be
designated by some letter (e.g., x, y, . . . )

and

• have just one formal relation (membership, denoted ∈). So, for
x, y in our discourse, it might be the case that x ∈ y—namely,
x is a member of the set y. It might also be the case that
x ∈ y ∈ z (i.e., y is a member of the set z but is also a set in
its own right, containing x as a member).

A. The ambiguity of “and so on.” Building sets; as von Neu-
mann did. Start with the set containing no element, the empty set { }
which we’ll call ∅. We then—ridiculous as this may seem—consider
the set containing only one element, the empty set: {∅}. Well then, we
can imagine keeping going: form the set containing the two elements:

{ ∅, {∅} },
the set containing the three elements:

{ ∅, {∅} { ∅, {∅} },
and so on. . .
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Namely, this procedure proposes to construct an unlimited collection
of sets (from nothing). In fact even the elements of these sets are,
curiously, themselves sets. So all the objects of this discourse launched
by von Neumann are themselves sets (!) Can we produce a system of
axioms that

• formalizes the construction that von Neumann has proposed
(so every object is a set) and
• provides a formal architecture reasonable for Set Theory?

The axiomatic system ZF consists of eight axioms: and if one throws
in the very tricky Axiom of Choice as ninth axiom one calls the system
ZFC.

B. Equality and ‘Extensionality’. Discuss “extension versus in-
tention”

We want two objects a, b of our discourse to be regarded as equal
if—in English—every element of the set a is equal to an element of the
set b and vice versa; and also every set containing a as an element also
contains b as an element and vice versa. If you are worried about this
looking suspiciously like a circular definition, in that the word equal
appears in the formulation—how about:

∀z[z ∈ x⇔ z ∈ y] ∧ ∀w[x ∈ w ⇔ y ∈ w].

Now the Axiom of Extensionality can be formulated as

∀x∀y[∀z(z ∈ x⇔ z ∈ y)⇒ ∀w(x ∈ w ⇔ y ∈ w)],

which says that if x and y have the same elements, then they belong
to the same sets; i.e., they’re equal.

Axioms that produce sets from other sets

C. Definition: A set z is a subset of a set x if and only if every
element of z is also an element of x:

(z ⊆ x)⇔ (∀q(q ∈ z ⇒ q ∈ x)).

D. The Axiom of Specification: An axiom guaranteeing that
we may create a subset of a given set z by imposing conditions
on the elements of z.



48 B. MAZUR

If z is a set and φ(x) is some formula imposing a condition on the
variable x then

A := {x ∈ z : φ(x)}
is a set too.

Note that a formula φ(x) alone is not enough to produce a set (one of
the troublesome features of various ontological proofs of the existence
of God): this axiom requires you to stipulate a set z from which you
want to cut out a piece (as subset) by imposing some predicate as a
condition.

E. The Axiom of Power Sets: An axiom saying (essentially)
that the ‘collection’ of all subsets of a given set is again itself
a set (in its own right).

The Axiom of Power Set specifically states that for any set x, there
is a set y that contains every subset of x:

∀x∃y∀z[z ⊆ x⇒ z ∈ y].

The axiom schema of specification can then be used to define the
power set P(x) as the subset of such a y containing the subsets of x
exactly:

P (x) = {z ∈ y : z ⊆ x}.

F. Axiom of pairing: If x and y are sets, then there exists a set B
which contains x and y as elements.

∀x∀y∃B(x ∈ B ∧ y ∈ B).

(The axiom schema of specification can be used to reduce this to a set
with exactly these two elements.) Note that taking x = y we then get
that if x is any set, the singleton {x} (set containing x as its unique
member) is again a set.

G. Axiom of union. The union over the elements of a set exists.
The axiom of union states that for any set of sets

F
there is a set C containing every element that is a member of some
member of F .

Letting S(w) abbreviate w ∪ {w} where w is some set, we get—from
the Axioms of pairing and union that S(w) is indeed a set. So, for
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example, assuming that von Neumann’s ∅ is assumed to exist as a set
in our theory, each of the following creatures in von Neumann’s list
also are sets in our theory:

∅, { ∅, {∅} }, { ∅, {∅} { ∅, {∅} }, etc.

Note that it would be perfectly consistent with the collection of ax-
ioms discussed so far to have a model of set theory where every set is
finite. In fact, there might be no sets at all in our model, so . . .

H. Axiom of Infinity. Recall that S(w) := w ∪ {w} where w is a
set. The Axiom of Infinity states that there exists a set X such that
the empty set ∅ is a member of X and, whenever a set y is a member
of X, then S(y) is also a member of X. In effect, we are requiring that
the (‘infinite’) union of the sets in von Neumann’s list is also a set in
our theory.

∃X [∅ ∈ X ∧ ∀y(y ∈ X ⇒ S(y) ∈ X)] .

Now it would be good to know that X has infinitely many members
(this issue is hinted at in the scare-quotes around the word “infinite’
above). We need that the sets listed in the definition of X are all
different, because if two of these sets are the same, the sequence will
loop around in a finite cycle of sets. A Russellian quandary.

The axiom of regularity below is a clever way of establishing a basic
property of the relation ∈ and preventing loops from happening:

I. Axiom of regularity. We include as axiom the requirement that
every non-empty set x contains a member y such that x and y are
disjoint sets.

∀x (x 6= ∅→ ∃y ∈ x (y ∩ x = ∅)).

The remaining one (or two) axioms

The above evocation of the first 7 of the 8 axioms of ZF is meant
to spark a discussion—I hope there’s time for such discussion in our
last sessions. We have not discussed the 8-th axiom The Axiom of
Replacement which asserts that images of (appropriately) definable
functions from sets to set, f : S → T, are again sets; nor the final
axiom The Axiom of Choice (that turns ZF to ZFC). But I hope
we can talk a bit about the impact of Gödel’s Incompleteness on the
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project of setting up a formal system that is comprehensive enough to
be a ’foundation’ for mathematical practice. And on the connection
with higher cardinalities. And. . . the important issue of mathematical
induction.
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