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. . . came I into the world, that I should bear witness unto
the truth.

proclaimed Jesus to Pontius Pilate,1 whose response was the taut unan-
swerable question:

”What is Truth?”

If Pilate went to the dictionary he would not have been enlightened:

• truth =the quality or state of being true;
• true = accurate or exact;
• accurate= correct in all details; exact;
• correct = in accordance with fact or truth.

But don’t worry, all the most important words have circular definitions.
And there are no satisfactory synonyms for true: try replacing the
adjective in the phrase “true friend” by any of the putative synonyms
above.

Deliberation, Reasoning, Assessment, Estimation (and in any of the
many forms these activities take) all have a mission that could be
labelled by that peculiar word Truth—a word that seems to take on a
different shade of meaning each time it is used.

1according to the gospel of John
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For example, Truth in law proceedings is a ‘means’ to achieve a
sense of fairness, of justice; it’s not exactly the ‘end.’ In the quota-
tion above, Jesus used the phrase bear witness to the truth–which is
natural enough since he was after all, in a judicial setting. Witnesses
in courtrooms since the 13-th century are asked to take the oath that
they will tell “the truth, the whole truth, and nothing but the truth.”
But such “wholeness” might well be compromised by the architecture
of legal format—where certain specific facts–no matter how true—may
be disallowed from being introduced into the proceedings; facts wit-
nessed as hearsay are not allowed; and, in contrast, certain other issues
may well be, by prior agreement, simply ‘stipulated’ (to be accepted as
evidence. . . with no further argument for or against them). The nature
of evidence, of course, is the key issue2.

And then there is the overarching structure of legal fiction.

The aim of the course “PHIL 248: Truth” that I taught with Amartya
Sen and Eric Maskin in the Fall semester of 2021 was to live with that
word Truth this semester, to get a better understanding of its shades
of meaning in our various areas of interest and experience and thought.
By “our” I mean: the students and auditors, as well as my co-teachers
and myself. This is the fifth seminar-course I’ve taught with Amartya
Sen and Eric Maskin3. As described in the Syllabus, each of us dealt
with specific aspects of this immense subject, with emphasis weighted
by the interests, background, and preferences of the participants. These
notes consist of a slightly edited version of the handouts and slides I
presented at our seminar.

The three sessions that I chaired focused on philosophical, statistical
and mathematical aspects as in sections 1,2,3 below.

2Regarding this, Shadows of Evidence http://people.math.harvard.edu/

~mazur/papers/Framing.comments.pdf is a handout I distributed as ’introduc-
tory notes’ to a seminar-course The Nature of Evidence that I taught at the Harvard
Law School with Noah Feldman.

3Example: Here is my introductory write-up for the course we taught that was
focused on ’Axiomatic Reasoning http://people.math.harvard.edu/~mazur/

papers/Axiomatic-Reasoning.pdf.
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Part 1. A brief description of my three sessions

• Truth in the context of ancient Greek philosophy: Section 1
• Scientific Experiment and the Language of Statistics: Section 2
• Mathematics: Section 3

1. Truth in the context of ancient Greek philosophy

One shouldn’t go overboard making etymological implications but. . .
the Greek word for Truth is a-lethia (un-hidden)4 with its distinctive via
negativa feel. Many of the verbs that describe ’truth-seeking’‘ hint at
some kind of backstory: de-liberate, dis-cover, re-cognize—all resonant
with the sentiment expressed in Plato’s Phaedo, that knowledge is re-
collection (anamnesis)5

Aristotle in his books Topics, Prior Analytics, and Posterior Ana-
lytics (and also Rhetoric) establishes a setting, and sketches a format
that is a basis for our quotidian activities—deliberation, discussion,
argument, and communication of ideas—as we attempt to find some
truth for ourselves, and persuade others of it.6.

4For an engaging—easy to read—discussion of its use by the pre-Socratics—and
by Plato and Aristotle (as well as by some moderns) read Aletheia in Greek thought
until Aristotle by Jan Wolenski, Annals of Pure and Applied Logic 127 (2004) 339-
360; note: You can get the article on line by Googling the title and author; I don’t
cite its url here since it’s long; it would take up half a page.

5an-amnesis ∼ un-forgetting.

6Compare this discussion in Aristotle with the notion of sensus communis. This
Latin phrase, taking over from Aristotle’s aisthesis koine seems to have meant dif-
ferent things in different times, but in more contemporary sources it refers, vaguely,
to the bedrock of common opinion, common judgment. It is what allows for a ba-
sis of discussion (e.g., as is what Descartes means by le bon sens in his ‘Discourse
on Method’) or for what is commonly agreed upon (e.g., taste as in Section 40 of
Kant’s Critique of Judgment).

More to the point, a feeling that some viewpoint or opinion enjoys corroboration
by the ‘sensus communis’ strongly reinforces our sense that it is true. So this is a
fundamental notion to discuss, and to understand. But we won’t have time to deal
with the broad literature about it ; e.g.:

• Hans Gadamer’s Truth and Method: Gadamer interprets G.B. Vico’s On
the Study Methods of Our Time appeal to the sensus communis as being a
claim that ‘abstract universality of reason’ is not what “gives the human
will its direction” but rather it is the ”concrete universality represented by
the community of a group, a people, a nation, or the while human race.”—
the point being that sensus communis is the protective bulwark of Truth
for “the human sciences.”
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Logic as in the Prior Analytics and Posterior Analytics offers a frame-
work within which we formulate our thoughts justifying statements we
argue are true. It’s, at the very least, the scaffolding for building such
arguments and expressing such statements For example, in Book I of
the Prior Analytics7 Aristotle defines what he refers to as a syllogism:

A syllogism is an argument (logos8) in which, certain
things being posited, something other than what was
laid down results by necessity because these things are
so. (24b19-20)

Mathematical logic in its more contemporary dress is an offshoot of
this.

There is not much hint in these particular books of Aristotle regard-
ing some transcendental element to truth captured by these day-to-day
activities. (Except for his discussion of cause 9 in the Posterior Ana-
lytics (Book II, Part 11).)

Aristotle’s mission is naturally quite different, though, in the Meta-
physics where he takes on the notion of being, of substance, and of
essence10. But often, a business-like approach prevails in his writing,
as in Book VI of the Nichomachean Ethics:

• Thomas Reid’s An Inquiry into the Human Mind: On the Principles of
Common Sense (1764)(Derek R. Brookes ed., Pennsylvania State Univ.
Press 1997).

• The Third Earl of Shaftsbury’s Sensus Communis; An Essay on the Free-
dom of Wit and Humour (1709) in CHARACTERISTICKS OF MEN,
MANNERS, OPINIONS, TIMES 37 (Liberty Fund 2001).

7Aristotle’s Prior Analytics Book I: Translated with an introduction and com-
mentary by Gisela Striker (Clarendon Aristotle Series) 1st Edition.

8But see Stephen Read’s commentary on the translation of the word lo-
gos as‘argument’ in this quotation: https://www.st-andrews.ac.uk/~slr/The_

Syllogism.pdf

9(aitia:) sometimes translated as simply: “explanation.”

“We think we have scientific knowledge when we know the cause,
and there are four causes:

(1) the definable form,
(2) an antecedent which necessitates a consequent,
(3) the efficient cause,
(4) the final cause.”

10which is a nice enough English term standing for the Latin essentia, a made-up
word dating from the middle ages meant to translate the (wonderful, in my opinion)
phrase that Aristotle himself used: to ti esti: “the what is it?”
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Let it be assumed that the states by virtue of which the
soul possesses truth by way of affirmation or denial are
five in number, i.e.,

technê, epistêmê, phronêsis, sophia, and nous;
we do not include judgement and opinion because in
these we may be mistaken.

The Platonic and Aristotelian terms episteme and techne11 on the
one hand; doxa, phronesis12 on the other—and sophia hovering above
all—constitute a range of temperaments of thought.

Palimpsested onto this gamut of vocabulary are the four levels of
imagination and thought13: noesis, dianoia: and then pistis, eikasia
corresponding to the “divided line” in Book VI of Plato’s Republic.

2. Scientific Experiment and the Language of Statistics

From the early 17th century (and Francis Bacon’s Novum Organum)
until now there has been lively debate as to what constitutes a scientific
experiment, and how to derive conclusions from such experiments14.
Bacon moves away from Aristotelian terminology (e.g., syllogism) and
leans on the word induction:

The syllogism consists of propositions; propositions of
words; words are the signs of notions. If, therefore, the
notions (which form the basis of the whole) be confused
and carelessly abstracted from things, there is no solidity
in the superstructure. Our only hope, then, is in genuine
induction.

2.1. Sensus communis. This Latin phrase, taking over from Aristo-
tle’s aisthesis koine seems to mean different things each time anyone
uses it, but in more contemporary sources it refers, vaguely, to the
bedrock of common opinion, common judgment. It is what allows for
a basis of discussion (e.g., as is what Descartes means by le bon sens
in his ‘Discourse on Method’). More to the point, a feeling that some

11Roughly: knowledge, theoretical and practical
12Roughly: common belief and practical wisdom
13Roughly, in descending order—comprehension of principle and discursive re-

flection (in the upper realm) and then: confidential conjecture and finally: not
particularly substantiated conjecture (in the lower realm)

14For background see https://plato.stanford.edu/entries/

francis-bacon/#SciMetNovOrgTheInd.
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viewpoint or opinion enjoys corroboration by the ‘sensus communis’
strongly reinforces our sense that it is true. So this is a fundamental
notion to discuss, and to understand. What’s more, it brings together
lots of interesting—I’m hoping— reading; among other things:

• Hans Gadamer’s Truth and Method15.
• Thomas Reid’s An Inquiry into the Human Mind: On the Prin-

ciples of Common Sense (1764)(Derek R. Brookes ed., Pennsyl-
vania State Univ. Press 1997).
• The Third Earl of Shaftsbury’s Sensus Communis; An Essay

on the Freedom of Wit and Humour (1709) in CHARACTERI-
STICKS OF MEN, MANNERS, OPINIONS, TIMES 37 (Lib-
erty Fund 2001).

More importantly, the concept of sensus communis ties in with Im-
manuel Kant’s notion of the universal subjective—(in the Critique of
Judgment); and slightly less explicitly with his synthetic a priori—(in
the Critique of Pure Reason).
Which brings us to:

2.2. The Language of Statistics. There is a vast contemporary lit-
erature about Scientific Experiment and it’s various formats—such as
natural experiment and randomized control experiment. Discussion of
this is central to our topic.

When we are given some numerical statement labeled a ‘statistic’
(from a source we trust) we feel—naturally—that this statement of-
fers some truth about the underlying substance that gave rise to that
statistic. But how to describe this type of truth?

The two distinct viewpoints presented by the “Frequentist” and the
“Bayesians” offer a choice of attitudes toward the nature truth in
statistics—and they provide us with distinct vocabulary to describe
these attitudes.

How well we can understand the truth that specific statistics from
a database conveys depends on how well informed we are about how

15Gadamer interprets G.B. Vico’s On the Study Methods of Our Time appeal to
the sensus communis as being a claim that ‘abstract universality of reason’ is not
what “gives the human will its direction” but rather it is the ”concrete universality
represented by the community of a group, a people, a nation, or the while human
race.”—the point being that sensus communis is the protective bulwark of Truth
for “the human sciences.”
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the data was initially collected. If it is a sample taken from a larger
collection of instances, what exactly were the choices involved in that
sample?

Even if it is intended to be the total collection, how accurate are
the records —e.g., see the CDC discussion of this regarding the to-
tal number of deaths due to Covid-19 (they cautiously refer to these
numbers as “latest provisional death counts”) https://www.cdc.gov/
nchs/nvss/covid-19.htm#understanding-the-numbers.

Then there is the question of how much noise there is is mixed in
with the data (e.g., as in Nate Silver’s The Signal and the Noise16) and
how to deal with such noise.

And finally, the eternal question regarding correlation versus causa-
tion.

All these important questions deserve exploring.

3. Mathematics

We can discuss the nature of Truth in Mathematics without requir-
ing that much technical background. The architecture of Truth, for
mathematical thought, is Proof but there are issues that transcend
proof —and this can be vividly seen in the history of the subject that
surrounds, and depends upon, the simple question:

What is a set?

a question that has not been, in any way, definitely settled.17 It will
come as no surprise that the act of appropriately defining a concept
plays a powerful role in setting up a usable arena within which math-
ematical truth might emerge.

And there are the various (traditional) attitudes regarding the con-
nection of Mathematics to Truth—these come with the labels formal-
ism, constructivism, intuitionism, and mathematical platonism.

16The Signal and the Noise: why so many predictions fail—but some don’t
The Penguin Press, New York (2012)

17Here is a recent interesting popular article about this:
https://www.quantamagazine.org/how-many-numbers-exist-infinity-proof-

moves-math-closer-to-an-answer-20210715/.
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A chief requirement in mathematical statements is non-ambiguity18,
utterly clear labeling19 (i.e., what is proved and based on what as-
sumptions has it been proved; what is expected to be true but not yet
proved, etc.) and, of course, consistency.

The question What are ‘axioms’ and how can they be most effectively
used to organize thought—to lead us to ’truth’? is one that is most
naturally dealt with in the context of Mathematics, even though this
is so important an issue for so many other disciplines.

The subject “Mathematics” has always been the springboard for
philosophical thought,

• from the ancients,
as in the legendary sign at the portal of Plato’s Academy:
mèdeis ageômetrètos eisitô mou tèn stegèn —-i.e.: “let no one
ignorant of geometry come under my roof.”
• to the moderns,

as in David Hume’s wry comment that he observed, on exam-
ining the foundations of mathematics that:

the imagination, when set into any train of thinking,
is apt to continue even when its object fails it, and,
like a galley put into motion by the oars, carries on its
course without any new impulse.

(On Human Nature and the Understanding IV.2)

Or as in Kant’s opening question in the Critique of Pure Reason:
“How is Mathematics Possible?”—where, assuming that it is possible,
he derives philosophical consequences. And in his notion of the syn-
thetic a priori he examines the manner in which (what he calls) the
intuitions are yoked to mathematical truth.

Part 2. A longer description of the three sessions

For the first session, Truth in the context of ancient Greek philosophy
see the quotations from the assigned readings given in the file Readings
regarding Truth in the context of ancient Greek philosophy

18or maybe one should more realistically say: a high level of non-ambiguity
19‘Truth in advertising’



10 BARRY MAZUR

4. Second Session: Scientific Experiment and the Language of
Statistics

• We will continue one thread of Professor Maskin’s discussion
last week about the “conventional story about scientific progress:
• first, phenomenon to be explained is closely observed with many

observations/experiments made
• on basis of observations—a hypothesis/model explaining obser-

vations proposed induction; then
• hypothesis makes additional predictions these are then checked
• if they don’t check out, hypothesis modified continuing interplay

between observation and theoretical work
• if predictions are confirmed, hypothesis elevated to status of

theory, and stands as accepted explanation until perhaps anom-
alies arise and theory replaced. Like most conventional wisdom,
story is too simple: actual science more complicated than that
• but this is not terrible description of how a lot of science takes

place. . . ”
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4.1. The initiation of the modern era of scientific experiment.
From the early 17th century (and Francis Bacon’s Novum Organum;
[1] ) until now there has been lively debate as to what constitutes
a scientific experiment, and how to derive conclusions from such ex-
periments20. Bacon moves away from Aristotelian terminology (e.g.,
syllogism) and leans on the word induction:

The syllogism consists of propositions; propositions of
words; words are the signs of notions. If, therefore, the
notions (which form the basis of the whole) be confused
and carelessly abstracted from things, there is no solidity
in the superstructure. Our only hope, then, is in genuine
induction.

Readings 1. Francis Bacon—the short essay Of Truth [2].

This essay is dripping with Moral Schadenfreude. It begins, though,
innocently enough:

What is truth? said jesting Pilate, and would not stay
for an answer. Certainly there be, that delight in gid-
diness, and count it a bondage to fix a belief; affecting
free-will in thinking, as well as in acting. And though
the sects of philosophers of that kind be gone, yet there
remain certain discoursing wits, which are of the same
veins, though there be not so much blood in them, as
was in those of the ancients.

Readings 2. Francis Bacon–Novum Organum [1] (Book 1 XXXIX
to LXII)—in preparation for a discussion about Bacon’s four “idols”:
Idols of

• the Tribe (a sense of the truth common to humanity),
• the Den (the truth, given the comprehension, or sentiments of

particular individuals—or groups of individuals)
• the Market (the truth as [a consequence of] our way of commu-

nicating with one another)
• the Theatre (the truth arising from . . . “theory.”)

4.2. Types of Experiments. There is a vast contemporary literature
about Scientific Experiment and it’s various formats—such as natural
experiment and randomized control experiment. Discussion of this is
central to our topic:

20For background see https://plato.stanford.edu/entries/

francis-bacon/#SciMetNovOrgTheInd.
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4.3. The organization of the data base. How well we can un-
derstand the truth that specific statistics from a database conveys
depends—among other things—on how well informed we are about
how the data was initially collected. If it is a sample taken from a
larger collection of instances, what exactly were the choices involved in
that sample?

Even if it is intended to be the total collection, how accurate are the
records?

Consider, for example, the official disclaimers about COVID-19 Pro-
visional Death Counts. . .

• Provisional death counts may not match counts from other
sources, such as media reports or numbers from county health
departments. Counts by NCHS often track 1-2 weeks behind
other data.
• Death certificates take time to be completed. It takes extra

time to code COVID-19 deaths. Most deaths from COVID-19
must be coded by a person, which takes an average of 7 days.
• States report at different rates. Currently, 63% of all U.S.

deaths are reported within 10 days of the date of death, but
there is significant variation between states.
• Other reporting systems use different definitions or methods

for counting deaths. Death counts should not be compared
across states. Some states report deaths on a daily basis, while
other states report deaths weekly or monthlyState vital record
reporting may also be affected or delayed by COVID-19 related
response activities.

4.4. Noise. Then there is the question of how much noise there is
mixed in with the data (e.g., as in Nate Silver’s:The Signal and the
Noise: why so many predictions fail—but some don’t.)

Also take a look at: Why Most Published Research Findings Are
False (by J. Ioannides)

And the eternal question regarding correlation versus causation.

—Mention Norvig-Chomsky debate—

—discuss—
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4.5. Statistics and ‘numbers’— e.g., P ≤ 0.05. The American
Statistical Association offered a list of misconceptions among which
are:

• P > 0.05 is the probability that the null hypothesis is true.
• 1− P is the probability that the alternative hypothesis is true.
• A statistically significant test result (P ≤ 0.05) means that the

test hypothesis is false or should be rejected.
• A P−value greater than 0.05 means that no effect was observed.

The ASA panel (after much discussion!) defined the P value as
something about the probability under a specified statistical model of
a previously specified statistical summary of the data.

4.6. Randomized Control Experiment.

The discovery of (essentially) Vitamin C as being effective against
scurvy was via an early (the first?) recorded Randomized Control Test
by James Lind—in 1747— who was the surgeon to HMS Salisbury, a
ship whose crew suffered an outbreak of the disease.

On the 20th of May 1747, I selected twelve patients in
the scurvy, on board the Salisbury at sea. Their cases
were as similar as I could have them. . .

Lind then separated the twelve into six groups of two–giving different
treatments to each group. One lucky group got oranges and lemons:
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The consequence was, that the most sudden and visible
good effects were perceived from the use of oranges and
lemons; one of those who had taken them, being at the
end of six days fit for duty. . .The other was the best
recovered of any in his condition; and. . .was appointed
to attend the rest of the sick.

4.7. Natural Experiment. Example taken from [3]: In Helena, Mon-
tana a smoking ban was in effect in all public spaces, including bars and
restaurants, during the six-month period from June 2002 to December
2002. Helena is geographically isolated and served by only one hospi-
tal. The investigators observed that the rate of heart attacks dropped
by 40% while the smoking ban was in effect.

Opponents of the law prevailed in getting the enforcement of the law
suspended after six months, after which the rate of heart attacks went
back up. The study [4] was an example of a natural experiment, called
a case-crossover experiment, where the exposure is removed for a time
and then returned. The study also noted its own weaknesses which
potentially suggest that the inability to control variables in natural
experiments can impede investigators from drawing firm conclusions.

4.8. Statistics and Experiment. When we are given some numer-
ical statement labeled a ‘statistic’ (from a source we trust) we feel—
naturally—that this statement offers some truth about the underlying
substance that gave rise to that statistic. But how to describe this type
of truth?

The two distinct viewpoints presented by the “Frequentist” and the
“Bayesians” offer a choice of attitudes toward the nature truth in
statistics—and they provide us with distinct vocabulary to describe
these attitudes.

How well we can understand the truth that specific statistics from
a database conveys depends on how well informed we are about how
the data was initially collected. If it is a sample taken from a larger
collection of instances, what exactly were the choices involved in that
sample?

Even if it is intended to be the total collection, how accurate are
the records —e.g., see the CDC discussion of this regarding the to-
tal number of deaths due to Covid-19 (they cautiously refer to these
numbers as “latest provisional death counts”) https://www.cdc.gov/
nchs/nvss/covid-19.htm#understanding-the-numbers.
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Then there is the question of how much noise there is is mixed in
with the data (e.g., as in Nate Silver’s The Signal and the Noise21) and
how to deal with such noise.

And finally, the eternal question regarding correlation versus causa-
tion.

4.9. ‘Educating your beliefs’ versus ‘Testing your Hypothe-
ses’.

‘Bayesian intertwining’

The naive view of an empirical investigation which we might call
the straight Baconian model for a scientific investigation has, as we
have discussed, the simple recipe:

Set-up and Hypotheses −→ Data Collecting −→ Processing Data and Conclusion.

The manner in which one proceeds from data to conclusion is often
understood to be a straight comparison of what the hypotheses would
predict and what the data reveals22, the comparison being (usually)
quantitative with a pre-specified tolerance of discrepancy (between pre-
diction and observation).

All this is significantly modified by the Bayesian viewpoint, which
methodically intertwines the first two steps, and has a different take
on each of these ingredients: hypothesis, data, conclusions. We’ll dis-
cuss this below23. We’ll look at the Bayesian viewpoint as offering a
‘model’ to help us understand, and deal with, the interplay between
those ingredients. Let’s call it the Bayesian model for a scientific
investigation.

A further issue that complicates the contrast of models of getting
to scientific conclusions alluded to above is the difference between the

21The Signal and the Noise: why so many predictions fail—but some don’t
The Penguin Press, New York (2012)

22although it might be difficult to find this expressed in Bacon’s writings as
bluntly

23A disclaimer: I know very little statistics; I’m a total outsider to this field and
especially to the extended conversation—and the somewhat sharp disagreements—
that Bayesians and Frequentists have.
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Bayesian’s and the Frequentist’s work; their methods are not the same,
and they have slightly different primary goals.

We’ll get to that, eventually.

4.10. Prior information and the Birthday problem. To introduce
ourselves to this ’Bayesian intertwining’ (taking as a black box—at
least at first—some of the mathematical procedures involved) let’s re-
visit a famous problem: the birthday problem. You have a class of fifth
graders in an elementary school. Suppose there are 23 students in the
class. What is the probability that two of them have the same birth-
day? Or, to seem more mathematical, suppose there are n students.
What is the answer as a function of n?

Here is the simple naive analysis of this problem. We assume, of
course, that the probability of anyone having a birthday at any specific
day, e.g., April 22, is 1/365 (ignoring the leap year issue). Think of
the teacher marking off—successively— on a calendar the birthdays of
each student. We are going to gauge the possibility that in his class
of n students there are no two birthdays on the same calendar day.
The first student’s birthday is duly marked. We can’t possibly have a
concurrence of birthdays (call it a hit) at this point, there being only
one mark. So we can record “1” as the probability that we didn’t get
a hit at least so far24.

As for the second student, the probability of him or her not having
a birthday on the same day as student #1—i.e., that there not be a
hit— is

1− 1

365
=

364

365
.

Given this situation, and passing to the third student, in order for
there not to be a hit, his or her birthday has to avoid two days, so that
probability is

1− 2

365
=

363

365
.

24We are going to write probabilities as numbers between 0 and 1. So if the
probability of an event is 1

2 that’s the same as saying that it is even odds of it
happening or not happening or that 50% of the time it happens, or one sometimes
simply says that there’s is a 50/50 chance of it occurring.
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Putting the two probabilities together we get that–so far in our
count—the probability that there isn’t a hit with these three students
is

(1− 1

365
)(1− 2

365
) = (

364

365
) · (363

365
).

Working up (by mathematical induction) the probability that there’s
no hit, with n students is then:

(1− 1

365
)(1− 2

365
) · · · (1− n− 1

365
),

which when n = 23 is close to 1
2
. That is, for a class of 23 students the

chances are 50/50 that there’s a concurrence of birthdays—given this
analysis.

My Bayesian friend Susan Holmes tells me that she has actually tried
this out a number of times in real live classes, and discovered that the
odds seem to be much better than 50/50 for 23 students; you even seem
to get 50/50 with classes of as low as 16 students.

There is something too naive in the analysis above, says Susan. We
should, at least, make the following (initial) correction to our setting-up
of the problem. We said above:

We assume, of course, that the probability of anyone
having a birthday at any specific day, e.g., April 22, is
1/365

BUT we actually know stuff about the structure of our problem that
we haven’t really registered in making that assumption.

For example, it is a class of fifth-graders so, chances are, they were
all (or mostly) born in the same year. In particular, the years of their
birth all (or mostly) had the same weekends and weekdays. In the
era of possible c-sections and induced births—given that doctors and
hospital staff would prefer to work on weekdays rather than weekends—
one might imagine that the probability of being born on a weekday is
somewhat skewed. We also know more that might make us think that
fixing 1/365 at the rate is too naive.

Perhaps then, instead of sticking to the probability p = 1/365 per
day hypothesis, allow a bit of freedom and a priori allow that there are
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different probabilities

p1, p2, p3, · · · , p365
for each day of the year25, about which we can make very very rough
guesses. But let us not write this in stone yet. Make a mildly educated
guess of these pi; e.g., if “i” is a Saturday or Sunday (or a holiday),
then pi is probably slightly less than 1/365; if a weekday, slightly more.
This initial guess (of the values of p1, p2, p3, · · · , p365) we’ll call a Prior.
From any prior we can deduce—essentially by a straight computation
as we did above with the “constant prior: 1/365”—all the expected
odds and whatever statistics one wants.

BUT we have hardly gotten our best answer! All these pi’s consti-
tuted, after all, just our very very rough guess based on some intu-
itive hunch, prior to having any hard data. Computing with these pi’s
gives us a “number” as output—perhaps more accurate than the 23 we
started this discussion with, but how does this number compare with
the actual numbers we’re actually accumulating by sampling birthday
statistics for classes of fifth-graders? The Bayesian will use this ac-
cumulating Data to “correct” the prior (guessed) probabilities pi, to
be more in tune with the data. This is what I mean by the Bayesian
intertwining: the data–as it comes in–is used to “educate the prior.”
This educated-prior is called (naturally) a posterior. In some sense,
the principal role of data in this Baysian model is to be fed back into
the prior to refine it to produce successive posteriors rather than (with
a straight up or down judgment) to verify or contradict an hypothesis.

Starting anew with the latest posterior rather than the original
prior we can deduce—essentially as we did above with the “constant
1/365” or any prior prior —all the expected odds and whatever sta-
tistics one wants.

In fact, there are no firm hypotheses within the Bayesian model,
and no firm conclusions. I said, though: “within the Bayesian model.”
Nevertheless from this procedure one might extract a conclusion, but
this is outside the format.

This is a preliminary move in the Bayesian direction, but we aren’t
quite there yet. Another–and better–way of viewing this move (reflect-
ing our most up-to-date version of belief about the set-up) is that the

25these summing to 1
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initial values

p1, p2, p3, · · · , p365
should not be taken as hard unchangeable numbers but rather are to be
viewed as “random variables” in their own right, and subject to their
own distributions, which we are bent on determining, given enough
Data. The grand function of the data is to be fed back to educate the
prior but retaining its status as probabilities. The movement here is as
follows:

Prior (probabilities)
Data−→ Posterior (probabilities).

The black box—so far—is that I have not yet said anything about
the mathematical procedure Bayesians use to feed back (as an after-
burner) information obtained by the Data into the prior assumptions, in
order to effect the “education” of these prior assumptions and thereby
produce the posterior. For the moment—in this discussion—it is more
important for me simply to emphasize that whatever this procedure is
it is, in fact, a predetermined procedure.

4.11. Predesignation versus the self-corrective nature of in-
ductive reasoning. Now you might well worry that this Bayesian
ploy is like curve-fitting various hypotheses26 to the data—a kind of
hypothesis-fishing expedition, if you want. You keep changing the en-
tire format of the problem, based on accumulating data. The Bayesians
have, as I understand it, a claim: that any two ’reasonable’ priors, when
“corrected” by enough data will give very close posteriors. That is, the
initial rough-hewn nature of the prior will iron out with enough data.
Their motto:

Enough data swamps the prior.

I’ve been playing around with another formulation of that motto:

26I want to use the word hypothesis loosely, for the moment; that is, the way we
generally use the word; and not in the specific manner that statisticians use it.
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Any data-set is, in fact, a ‘data point’ giving us infor-
mation about the probability distribution of priors.

In contrast, there is a motto that captures the sentiment of a Fre-
quentist:

Fix hypotheses. This determines a probability distribu-
tion to be expected in the data. Compute data. If your
hypotheses are good, in the limit the data should con-
form to that probability distribution.

About the above, one of the early great theorizers in this subject
(and specifically regarding probability, randomness, and the law of
large numbers) was Jacob Bernoulli. He also was a theologian preach-
ing a specifically Swiss version of Calvinism. You see the problem here!
There is a strict vein of predetermined destiny or fatalism in his theol-
ogy, someone who is the father of the theory of randomness. How does
he reconcile these two opposites? Elegantly, is the answer! He con-
cludes27 his treatise Ars Conjectandi, commenting on his law of large
numbers, this way:

Whence at last this remarkable result is seen to follow,
that if the observations of all events were continued for
the whole of eternity (with the probability finally trans-
formed into perfect certainty) then everything in the
world would be observed to happen in fixed ratios and
with a constant law of alternation. Thus in even the
most accidental and fortuitous we would be bound to
acknowledge a certain quasi necessity and, so to speak,
fatality. I do not know whether or not Plato already
wished to assert this result in his dogma of the universal
return of things to their former positions [apokatastasis],
in which he predicted that after the unrolling of innu-
merable centuries everything would return to its original
state.

27 It is, in fact, the conclusion of the posthumously published treatise (1713) but
it isn’t clear to me whether or not he had meant to keep working on the manuscript.
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Apokatastasis is a theological term, referring to a return to a state
before the fall (of Adam and Eve)28.

4.12. Priors as ‘Meta-probabilities’. Suppose you are a cancer spe-
cialist studying a specific kind of cancer and want to know if there is
a gender difference: do more men than women get this type of cancer?
Or more women than men?

Now suppose I asked you (cancer specialist) to make some kind of
guess—when considering groups of people that get this cancer—about
the proportion of men-to-women that get it. You might tabulate this as
a probability P that a random choice of person in this group is male. So
P is a number between 0 and 1. You might actually give me a number
if you are very confident, but more likely, for a spread of possible values
of P , you’ll give me an estimate of greater or lesser levels of confidence
you have that this P is indeed the sought-for-probability. Taking the
question I asked more systematically, you might interpret it as follows:

As P ranges through all of its possible values, from 0
(no males get it) to 1 (only males get it) tell me (your
guess of) the probability that P is the ratio M

M+W
where

M is the number of men and W the number of women
in the group? In effect, draw me a graph telling your

28Noah Feldman once suggested to me that Calvinists might be perfectly at
home with random processes leading to firm limiting fatalism, in that the fates
of souls—in Calvinist dogma—are randomly assigned and not according to any of
their virtues; i.e., to misquote someone else: “goodness had nothing to do with it.”

Also, we might connect the above with C.S. Peirce’s 1883 paper “A Theory of
Probable Inference.” For a readable discussion of this paper, see: Len O’Neill’s
Peirce and the Nature of Evidence published in the Transaction of the Charles
S. Peirce Society 29 Indiana Univ. Press (1993) pp. 211-224. Peirce makes a
distinction between statistical deduction and statistical induction the first being
thought of as reasoning from an entire population to a sample, and the second
being reasoning from sample to population. As O’Neill says, in the first it is a
matter of long run frequency (i.e, the Frequentist’s motto) whereas the second is
related to a Peircean conception of the self-corrective nature of inductive reasoning
(and this sounds like the Bayesian protocol).

Peirce dwells on the issue of predesignation in the Frequentist’s context (i.e., you
fix a model and then collect evidence for or against it; you don’t start changing the
model midstream in view of the incoming evidence). As already mentioned, there is
a curious type of meta-predesignation in the Bayesian context, in that the manner
in which you change the model, given incoming evidence, is indeed pre-designated.
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probability-estimate for each of the P ’s in the range be-
tween 0 and 1.

Your initial guess, and initial graph, is the Prior ( I privately call it the
meta-probability). It will be educated by the data accumulating.

Let’s imagine that you say “I have no idea! This probability P could–
as far as I know–equally likely be any number between 0 and 1.” If so,
and if you had to draw a graph illustrating this noncommittal view,
you’d draw the graph of a horizontal line over the interval [0, 1]. Or,
you might have some reason to believe that P is close to 1/2 but no
really firm reason to believe this and you might have no idea whether
gender differences enter at all. Then the graph describing your sense
of the likelihood of the values of P would be humped symmetrically
about P = 1/2. Or if you are essentially certain that it is 1/2 you
might draw it to be symmetrically spiked at P = 1/2.

What you are drawing is–in a sense–a meta-probability density since
you are giving a portrait of your sense of how probable you think each
value between 0 and 1 might be the actual probability-that men-get-
this-type-of-cancer. Your portrait is the graph of some probability
density function f(t).

There are theoretical reasons to suggest, for some such problems,
that you would do well to be drawing the graphs of a specific well-known
family called beta-distributions. These beta-distributions come as a
two parameter family29 βa,b(t). That is, fix any two positive numbers
a, b (these numbers a, b are called the shape parameters of the beta-
distribution) and you get such a graph.

Here are some general ground-rules for choosing these βs: shape
parameters that are equal give distributions symmetric about 1/2; i.e.,
you choose such a β if you expect that gender plays no role in the
probability of contracting this cancer. Choosing a > b means that you
are skewing things to the left; i.e., you believe that men get this type of
cancer less frequently than women; choosing b > a means the reverse.
The larger these parameters, the sharper the peak of the curve; i.e.,
the more “sure” you are that the probability occurs at the peak.

Choose parameters, say, a = 2, b = 5; or, say, a = 2, b = 2 and you
have probability distributions β2,5(t), or β2,2(t), these being the blue
and the magenta graphs in the figure below (taken from a wonderful
Wikipedia entry: http://en.wikipedia.org/wiki/Beta_distribution).

c

29These are distributions ta−1(1 − t)b−1dt normalized to have integral equal to
1 over the unit interval.
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4.13. Back to our three steps.

(1) (Choosing the Prior) Now, Bayesian cancer doctor that you
are, when you start doing your statistics, choose a Prior. For
this type of question you might do well, as I said, to choose
some beta-distribution. If you imagine that there might be a
gender bias here, but have no idea in which direction, you might
choose one that is symmetric about t = 1/2 (which, as it turns
out, means that you’d be taking shape parameters a equal to
b). But size up the situation as best as you can, taking into
account everything that you think is important to the problem
and come up with a choice of a Prior. Let us say that your
Prior is βa,b(t).

(2) (The Data) Suppose you now get a data sample of 100 people
with cancer—perhaps the result of some specific study of some
particular population, and suppose that 60 of these cancer vic-
tims are men (so 40 are women).

(3) (Passing to the Posterior) The beauty of the family of beta-
distributions is that when you appropriately educate a beta-
distribution (the Prior) with new data, the new distribution
(the Posterior) is again a beta-distribution. The only thing is
that the shape parameters may change; say, from (a, b) to a new
pair of numbers (a′, b′):

βa,b(t)
new data−→ βa′,b′(t)

I’m told that this change can be very easily computed. That
is, in this example problem, the a′, b′ will depend on hardly
more than the original a, b, the percentage of men with cancer,
and the size of the study.

4.14. A numerical example and a question. For this example I’m
normalizing things so the numbers work simply so we don’t get bogged
down in mere arithmetic. Imagine that your Prior is β20,20 and you
test a sample population (of just the right size for the normalizations
to work out as I’m going to assume they do below) and in that popu-
lation Men/ Women cancer ratio is 60/40. The Posterior is then (I’m
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told) β20+60,20+40. And if you compute (based on that Posterior) the
probability that men get this type of cancer more than women, that
probability is:

0.955 . . .

If you did the analogous thing with the Prior β10,10, getting, as Pos-
terior, β10+60,10+40 you’d compute (based on that Posterior) the prob-
ability that men get this type of cancer more than women to be:

0.966 . . .

Question: Why is it reasonable that the second estimate of proba-
bility of gender-difference be bigger than the first?

4.15. Bayes’ Theorem. I will assume that people have learned some-
thing of the background of Bayes himself from the other readings, and
just concentrate on the statement and intent of his theorem. (A discus-
sion of his theorem often is the start of expositions on Bayesian things,
but it seems to me that one needs some of our prior discussion if we
want (not merely to understand the theorem, but) to focus on its effect:
a distinctive model of the role of statistical inference in the formation
of scientific conclusions.

To begin, imagine that we have a region C of the Euclidean plane
(say, an open compact subset) and two (open) subsets of C, X, Y ⊂ C,
so that we also may consider their intersection X∩Y viewed as a subset
of X and of Y .

Letting the absolute value sign
| | indicate area, we have the tautology:
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(∗) |X ∩ Y |
|Y |

· |Y |
|C|

=
|X ∩ Y |
|X|

· |X|
|C|

.

This is evident.
Now, interpret C as a community of individuals or entitities, and

X, Y as the sub-communities of C consisting of individuals that have
specific traits (call them, respective, ‘trait x’ and ‘trait y’). View ’area’
as giving numbers of individuals.

Then:

• we can think of |X∩Y |
|Y | as the probability that an individual in

the community C has trait x, given that it has trait y. This is
usually abbreviated: P (x | y).

• we can think of |X∩Y |
|X| as the probability that an individual in

the community C has trait y, given that it has trait x. This is
usually abbreviated: P (y | x).

• we can think of |X|
|C| as the probability that an individual in the

community C has trait x, abbreviated as P (x), and

• we can think of |Y |
|C| as the probability that an individual in the

community C has trait y, abbreviated as P (y).

Rewriting the tautology (*) above in terms of these probabilities “P”
we have:

(∗∗) P (x | y) · P (y) = P (y | x) · P (x).

interpreted as:

The conditional probability that an individual in the
community C has trait x, given that it has trait y times
the probability that an individual of the community has
trait y

is equal to

the conditional probability that an individual in the
community C has trait y, given that it has trait x times
the probability that an individual of the community has
trait x.

This is Bayes’ Theorem, which is sometimes written:
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(∗ ∗ ∗) P (x | y) =
P (y | x) · P (x)

P (y)
.

So, what does this theorem have to do with the discussion we’ve
given in the previous sections of this handout? The answer (in my
opinion) has two prongs.

• I think that the more important connection that Bayes’ Theo-
rem has to the general Bayesian viewpoint is that the theorem is
a ‘promissory note,’ so to speak, that conditional probabilities—
i.e., probabilities based on conditions that express what things
we know about the situation—will be our vocabulary, and we
have the beginnings of a way of dealing with conditionality.

• But it also has a ‘straightforward’ type of application. Here’s
one of enumerably many such simple examples (all below gotten
from Wikipedia).

Suppose you are an entymologist dealing with a species of
beetles and there is a rare subspecies of beetle, usually identi-
fiable because of a certain pattern on its back. I say, usually,
but not always. Here is what you know:

– the probability30, given that you have an individual of the
rare subspecies, that the pattern occurs on its back is 98%.
I.e.,

P (Pattern|Rare) = 98%,

and

– the probability, given that you have a ‘common’ individual
of the species, that the pattern occurs on its back is 5%.
I.e.,

P (Pattern|Common) = 5%.

Moreover, the rare subspecies accounts for only 0.1% of the
entire population of this species of beetle.

Now you capture a beetle with the pattern on its back. What
is the probability that it is a member of the rare subspecies?
That is, what is P (Rare|Pattern)? Bayes Theorem comes to
the rescue.

30I’ll give probabilities here in terms of percentages.
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For further concrete applications, see http://en.wikipedia.org/wiki/
Bayes’_theorem which is the first (and probably the most useful) of
the many hits you get when you Google “Bayes’ Theorem.”

To discuss. . .

4.16. The nature of Truth in the vocabulary of Statistics.
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5. For my third session: Shades of Mathematical Truth

I’m pretty sure that Immanuel Kant would put the mathematical
statement

(1) 2 + 1 = 3

in the category of assertions that he calls the analytic a priori. I know
that he views the statement

(2) 5 + 7 = 12

as quite different!—he refers to the latter equation in his Critique of
Pure Reason as an example of his notion: the synthetic a priori31.

31The word ‘priori’ signals that these categories are genres of thought prior exer-
cised without (i.e., prior to) considering things other than the circle of the faculties
of our mind—e.g. prior to input coming from perceptions, or more generally, from
“the world”—all that being a posteriori.

The synthetic a priori, for Kant, requires some engagement with our intuitions—
as he calls them—space and time, these being not “out there,” as one might nat-
urally think but rather, as Kant would have it, resources of our faculties of mind:
resources in which we dress objects of thought so as to be able to properly think
about them.
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The former counts as analytic a priori in the sense that the left-hand
side of Equation (1) is simply the definition of the right-hand side. In
effect its a tautology.

But to understand Equation (2) you need to organize a structure
of attack; e.g., in some form or other you will have incorporated (as
part of your apparatus of comprehension) a version of an associative
law. You need to go beyond the mere statement: you shape a mental
strategy, satisfactorily go through the exercise of thought it leads you
to do and. . . understand something.

So Equations (1) and (2) relate to different shades, if not grades, of
truth.

An elementary example of synthetic a priori—that might capture the
imagination more than Equation (2) above—is given by Proposition 32
of Book 1 of Euclid’s Elements: the sum of the angles of a triangle is
180o:
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Figure 1

The difference with the previous example is that a construction—a
‘synthetic act’— launches the standard proof of this theorem. You first
choose a side of the triangle as base; then draw the line parallel to that
base, through the opposite vertex; and then note that the three angles
(A,C and B as in the above figure) at the vertex opposite the chosen
base are, in fact, equal to the three angles of the triangle. (Here you use
a previous result that guarantees that for a line L that cuts a pair of
parallel lines, the opposite angles created at the points of intersection
of L with each of the parallel lines are equal).

There is another major difference between this proposition and Equa-
tion (2). Namely, appropriately interpreted32, this proposition actually
characterizes the Euclidean plane (among all smooth not-necessarily-
Euclidean ‘planes’). In a sense, the proposition can be taken to offer
a definition of the Euclidean plane. (The Pythagorean Theorem—
appropriately understood— also characterizes the Euclidean plane.)

32e.g., ’straight lines’ are taken to be geodesics
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5.1. Definitions as conveyors of truth. The essential roles that ‘defi-
nition’ play for us are: to delineate the objects of interest to be studied;
to encapsulate; to abbreviate; and to focus.

• Definitions, then, can range from lowly tautologies (e.g., Equa-
tion (1)) to illuminating examples of pieces of mathematics that
Kant would call synthetic a priori (e.g., Proposition 32).

• Defining Infinity: Here is an exercise (for people with math
backgrounds): what is the difference between these four possible
definitions of infinite set? (The first is due to Dedekind and
resonates with that corridor in Hilbert’s Hotel):

Definition∞1 : A set S is infinite if there exists an injective
mapping f : S → S that is not surjective33 (equivalently: is not
a one:one correspondence between the set S and itself).

.

Definition∞2 : A set S is infinite if there exists a surjective
mapping f : S → S that is not injective (equivalently: is not a
one:one correspondence between the set S and itself).

Definition∞3 : A set S is infinite if there exists an injective
mapping of the set N of natural numbers into S.

(The set of natural numbers is what you think it is: N :=
{1, 2, 3, 4, . . . }, even though the ancients were dubious about
the number 1 as being in the same category as the other whole
numbers. To actually define34 this set N without making use of

33A mapping (f : S → T ) from a set S to a set T is called injective (synonym:
“one-one into”) if for any two different elements x 6= y ∈ S their images under the
mapping f are also different; i.e., f(x) 6= f(y) ∈ T . That is, there is no collapsing:

x

f ��

y

f��
z

A mapping f : S → T is surjective (synonym: “onto”) if every element z ∈ T
is in the image of S under the mapping f ; i.e., there exists an element x ∈ S such
that f(x) = z.

34And here, the late middle English sense of the word ‘define’ (to bring to an
end) fits neatly.
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the dot-dot-dots requires some apparatus—e.g., mathematical
induction).

Definition ∞4 : A set S is infinite if there exists an surjec-
tive mapping of the set S onto N.

5.2. Definition or Characterization? Within the appropriate axiomatic
set-theoretic context, the four definitions of “infinite set” are equiva-
lent, so we have a choice:

• We can choose one of them as our primary definition, and the
other three can be thought of as ‘characterizations’ of the then-
defined concept—infinite set.
item We can simply say: these are all equivalent and any one
can serve as “the” definition.

The relationship between these choices depend on the ambient ax-
iomatic context in which are working. For example, if you accept the
‘Axiom of Choice’ then if a set is infinite following Definition ∞2 it is
also infinite following Definition ∞1.

The question, then, (What is an infinite set?) depends on the choice:
definition versus characterization. The same holds for:

5.3. What is a Prime Number?

As for the power of definition to provide ‘focus,’ consider the two
equivalent definitions of prime number (given by (1) and (2) below)—
where one is left to make the choice of regarding one of these as ‘defi-
nition’ and the other as ‘characterization’:

A prime number p is a (whole) number greater than one

(1) that is not expressible as the product of two smaller numbers.

or

(2) having the property that if it divides a product of two numbers,
it divides one of them.

If you choose (2) as the fundamental definition you are placing the
notion of prime number in the broader context of ‘prime’-ness as it
applies to number systems more general than the ring of ordinary
numbers—and more specifically in the context of prime ideals of a
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general ring. So choosing (2) as definition casts (1) as a specific fea-
ture that characterizes prime numbers, thanks to the theorem that
guarantees the equivalence of these to formulations. Going the other
route—i.e., focusing on (1), the unfactorable quality of prime number,
would then cast (2) as a basic more general feature also characterizing
prime-ness.

As for dependence on context, we might turn to the question—
necessarily prior to the question What is an infinite set?—namely:

5.4. What is a set?

I’m not sure we have a definitive answer to this yet. A ’set’ is
a pretty lean mathematical object, evoked—if not captured—by the
simple phrase a collection of things. Nevertheless sets provide the sub-
strate for such a wide variety of mathematical objects. So, an axiom
system that ‘models’ set theory is clearly of foundational importance
in mathematics.

Discuss; Section 21 of [5]

5.5. Shapes of Mathematical Proof. The historical discussion has
been laced with curious proclamations, such as:

Pure mathematics is a branch of logic.

( — Max Black, The Nature of Mathematics [1]35)

This is what is known as the logicist’s view and we can discuss it.

We should also discuss the other (traditional) attitudes regarding the
connection of Mathematics to ‘Proof,—and hence to Truth—namely:
formalism, constructivism, intuitionism, and mathematical platonism.

But I prefer to put less specific, but more directly comprehensible
labels on the fundamental substrata of mathematical proof (and math-
ematical thought):

• Language
• Mind
• Some transcendental architecture

35who also wrote that we could see in Leibniz “the germ of the entire logistic
conception.”
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where formalism, intuitionism, and mathematical platonism fall re-
spectively into these three categories, and constructivism straddles the
first two.

Language: The (extreme) formalist view has it that the essence of
Mathematics is ”the grammar of all symbolic systems . . . ,” or again,
as ”the crystallized syntax of all systems of interrelated objects.” (cf.
[1]). That is: mathematics is given by its very language: the ba-
sic elements are—primitive symbols, and strings of symbols—together
with recursive rules for manipulating them, and for determining which
strings count as well-formed. (See [2].)

discuss

Mind: Intuitionism takes mathematics as a direct manifestation of
our mental faculties, the result of our mental constructions, with em-
phasis on the word construction.

The Brouwerian View (L.E.J. Brouwer —1881-1966): A mathemat-
ical statement is ‘true’ if it is the (logical) consequence of an explicit
mental construction. (See [3]).

The Kantian view would have the ‘a priori’ properties of mathematics
arising from the mental faculties and intuitions (i.e., space and time
in Kant’s sense) operating within, and on, themselves without any
necessary reference to perception or other connection to the world.

discuss

Transcendental architecture: The view labeled mathematical platon-
ism would have mathematical concepts—e.g., “number, circle, etc”—
exist, and these are to be investigated as a physicist investigates (e.g.)
atoms. (See [4]. For a somewhat chatty discussion of this, see [6].)

discuss

5.6. Mathematical Truth approached by Heuristics, Plausible
Inference, Conjecture. How do we gain confidence in [mathemati-
cal] guesses, before we actually prove them?

• experiment, computation, accumulation of confirming data in
special cases
• reasoning from consequence,

• reasoning from randomness,
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• reasoning from analogy.

discuss [7], [8]; (see Section 5.7 below)

5.7. Specific Readings to be discussed. I. Read the opening para-
graph of each of these: [2], [3], and [4].

II. Read:

(1) Axiomatic Reasoning [5]:

• Section 3; pages 10,11

• Section 8, A, B; pages 20-23

• Sections 11,12; pages 29, 30.

• Section 21; page 47.

(2) Conjecture [8]:

Sections 2-5; pages 199-202

(3) Is it Plausible? [7]:

Section 2; page 8.
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[8] Conjecture, Synthèse 111 (2):197-210 (1997)


