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Phillip Lopate writes1 “The great promise of essays is the freedom they offer to explore, digress,
[and] acknowledge uncertainty . . . ” In this book, Mumford, one of my oldest friends, has selected
some entries from his blog in which he muses thoughtfully about a wide range of topics, motivated
primarily by the unfolding of his curiosity. He has a gift for putting two or more disparate thoughts
and structures together in a manner that both connects them and elucidates them.

Like the essayist Montaigne whose Book the first has chapters on intention, sorrow, idleness,
and liars, Mumford’s selection of topics range widely – the book is broken into six parts: Opening
More Eyes to Mathematics; The History of Mathematics; AI, Neuroscience, and Consciousness;
And Now, Some Bits of Real Math; Coming to Terms with the Quantum; and Nothing is Simple
in the Real World.

Among the chapters ofNumbers and the World we find the Pythagorean Theorem, Grothendieck’s
Theory of Schemes, the literacy and numeracy of Babylonian goddesses, modern art and modern
math, rogue waves, DNA, Spinoza, robots, and much more. To give a sense of the book, I will
focus on a few of the themes treated in Mumford’s essays. It is a book better simply to read than
be told about.

1 Beauty and Mathematics

You do mathematics because you want to apply your findings to real life questions or you are seeking
some pure understanding. The ’surprise’ is often the emergence of a structure that is exciting, that
is beautiful. This has an echo—except for the forbidding role played by duty—in the attitude
expressed by the Prioress in Isak Dinesen’s Seven Gothic Tales2:
Straight is the line of duty,
Curved is the line of beauty.
Follow the straight line; thou shalt see
The curved line ever follows thee.

Mumford contemplates the question what is a beautiful mathematical formula? He recalls that
at one point two different collaborative teams of mathematicians had independently sought to
answer this question – but in two radically different ways. The first – described in the website
www.concinnitasproject.org – is by producing and exhibiting art objects that exemplify the
striking beauty of mathematical formulae. The second team’s aim was to map via fMRI scans the
brain activity of people as they think about a piece of mathematics to establish correlations with
the inner experience of beauty that they say they experience.

1https://myfivethings.com/class/reading-and-writing-the-essay/

2p. 116 in Seven Gothic Tales, Modern Library, Random House, 1934.
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Mumford interweaves an account of this with personal reflections about his family and their
close connection with Art. He also considers how the grand emergence of Abstract Art and the
flourishing of Abstract Mathematics occur at the same time. This might be a reflection of a more
suffuse ‘flavor of the time,’ a Zeitgeist.

He writes:

The discovery that randomness can be harnessed to create both math and art seems to
have taken place in the short period 1945-1950. (p. 65)

Jackson Pollock was at the forefront in engaging with the beauty of randomness. His paint
hitting the canvas captures at that instant the rush of beauty, of the same sort of vibrancy shared
with ocean waves as they clash against a rocky shore – or, for that matter, as the hydrodynamical
equations that attempt to describe this type of activity.

Randomness is a major theme in the book. Mumford offers the thought (in Chapter 13. An Ap-
plied Mathematician’s Foundations of Math, and elsewhere in his writings) “that random variables
must be treated as a third type of variable along with real numbers and integers.” (p. 153)

What might that mean? Well, a number is just a . . . number. A random variable, if you want
to think of it as a number, is a number that will be the result of some action, but nevertheless
can be an item of discussion even before that action is completed. In other words, its value, if we
can use the word value, is determined by some probability distribution. For example, it would be
the exact position that your dart will hit the dartboard, able to be thought about even before you
throw the dart.

In an illuminating footnote (p. 154), Mumford likens the idea of ‘taking random variables
as numbers’ as being analogous to generic points in algebraic geometry. Let’s take an example.
Any complex number z in the complex plane gives rise to a prime ideal in the ring C[X] of all
polynomials in the variable X with complex number coefficients, namely, the ideal generated by
the linear polynomialX−z. This is, in fact, a maximal ideal in that ring. Taking the quotient of the
ring C[X] by the ideal generated by X − z imposes the condition that X = z, that is, it specializes
the variable X to the complex number z. All maximal ideals in this ring are of that form, so we
can simply say: the complex plane consists of nothing more than the set of the maximal ideals in
that ring, the quotient by each ideal specializing the variable X to a specific complex number.

But this discussion leaves out one prime ideal in C[X], namely the ideal {0}, the ideal generated
by the ‘trivial polynomial,’ which is indeed a prime ideal. It is contained, of course, in all prime
ideals. Passing to the quotient by this ideal {0}, does absolutely nothing, has no ”specializing
effect” on the variable X. It is natural, then, to dub {0} the generic point of the complex plane.
We can think of it as hovering over every honest point in the complex plane, in that it, as an ideal,
is contained in all the other ideals.

There is, of course, a more general framework. For any commutative ring R consider the set of
all of its prime ideals. Call that set Spec(R); any element of this set can be thought of as a point.
Let’s say that any one of those points P specializes to, that is, it hovers over another point Q if the
prime ideal P is contained in the prime ideal Q. (Hence passing to the quotient by the ideal Q is a
stricter focus of specialization than passing to the quotient by the ideal P .) In this general context
there can be quite an intricate constellation of points hovering over other points. The idea, then,
that Mumford considers, of ‘taking random variables as numbers’ might be to imagine a more fluid
‘Spec structure’ where random variables are given a status analogous to numbers, and they are
thought to hover, according to a probability distribution, over naive numbers.

Richard Dedekind in his 1858 essay Continuity and Irrational Numbers introduced what we now
call ‘Dedekind cuts,’ referring to that construction as the “creation of new point-individuals.” He
wrote that the real line is infinitely richer in point-individuals than the set of rational numbers in
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number-individuals. Mumford’s suggestion creates an infinitely rich assortment of ‘random-variable-
individuals.’

2 What kinds of mathematicians are there?

The traditional categorization of mathematicians is pretty simple: it ranges from Formalists who
are happy in broad axiomatic settings, allowing for nonconstructive – and nonconstructed – math-
ematical concepts convoked by the axiom of choice to Finitists like Yessinin-Volpin [6] who might
hesitate for a second before conceding that 2100 exists.

Mumford has his own more vivid categorization of mathematical thinkers. He views them in
tribes depending on “what most strongly drives them in their esoteric world” (p. 27) and he labels
these tribes explorers, alchemists, wrestlers and detectives.

Mumford thinks of himself as a member of a sub-clan of explorers that he calls mappers.
According to Mumford, mappers are mathematicians who are keen on surveying the whole range

of possibilities of a species of mathematical objects. Mappers make ‘maps’ of all examples of the
particular type of mathematical object they are interested in understanding, the idea being that if
you take them all together, they may – and they often do – reveal a deeper structure than they do
when taken one by one. Such maps are called moduli spaces.

Mumford is the foremost artisan of the fundamental moduli spaces that form the core of modern
algebraic geometry. His essential constructions, for example, of the moduli spaces of projective
curves of genus g, or of principally polarized abelian varieties, are prime examples of the beauty of
the subject, and powerful tools to help us understand algebraic varieties.

To give a sense of what is involved in forming such a moduli space, consider this simple mathe-
matical concept taught in High School geometry classes: similar plane triangles. Two triangles in
the plane are called similar if after taking one of them and zooming its size, translating, rotating,
and flipping it in the plane appropriately, you can bring it to fit precisely onto the other one.

Can we find a ’map’ that has the property that each point on the map corresponds to a similarity
class of plane triangle, and each similarity class corresponds to a point on the map? Moreover will
it be true, in an appropriate sense, that the very structure of the map respects the relationship that
similarity classes have to one another?

The answer to that question is yes: take a plane triangle ∆ ⊂ R2 as a representative of its
class of triangles that are similar to it. By appropriate ‘zooming’ we can replace ∆ so that its
longest edge is of length 1. This hasn’t changed its similarity class. Now move ∆ by translating
and rotating appropriately so that its edge of length 1 is given by the unit interval on the x-axis,3

and flip the plane by an appropriate flip, for example, (x, y) 7→ (x,±y), or (x, y) 7→ (1− x,±y),
so that the image of ∆ now has its ‘third vertex’ v = (x, y) lying in M := the piece of the unit disc
defined by:

{(x, y) ∈ R2 | 0 ≤ x ≤ 1

2
, y > 0 and (x− 1)2 + y2 ≤ 1}.

None of these maneuvers have changed the similarity class of our ∆.
This ‘piece of disc’ M constitutes a map of all similarity classes of plane triangles. For a point

v ∈M build a triangle ∆v with vertices (0, 0), (0, 1) and v. As v runs through all the points of our
mapM , the triangles ∆v will run through representatives of every similarity class, and if v ̸= v′ then
∆v and ∆v′ will be dissimilar—that is, will represent different similarity classes. Moreover, if two
points on our map are close, then the similarity classes they represent are also, in an appropriate

3and if it is isosceles or equilateral, then do this for one of its edges of length 1
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Figure 1: The moduli space of equivalence classes of similar plane triangles
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sense, close. Note that similarity classes of isosceles triangle correspond to the boundary points of
our map M and the class of the equilateral triangle has the honor of being the topmost point.

Of course, this is an extremely simple example, merely a hint of what it means to have a map
(a ‘moduli space’) that parametrizes all instances of some mathematical species.

Quite often it happens in practice that the moduli space of a species of mathematical object
has an even richer structure than the species it is meant to explain. And understanding the inner
structure of moduli spaces may have great rewards; for example, a thorough comprehension of a
certain relevant moduli space led to the proof, by Andrew Wiles and Richard Taylor, of Fermat’s
Last Theorem.

3 Getting acquainted with the prime numbers, a few at a time

Mumford’s Chapter 11, Finding the Rhythms of the Primes, is in the part of the book that begins
with the warning: “And now for some real math” and, indeed, more mathematical background is
required to follow it than is required in other parts of the book. Mumford considers one of the
fundamental achievements of Pure Mathematics: a theory now over a century and a half old yet
remains rife with open problems, the most well-known open problem being something called the
Riemann Hypothesis. I won’t explicitly enter this vast mathematical territory, except to say that
the prime numbers

2, 3, 5, 7, 11, 13, 17, . . .

are the atoms in the world of Numbers; any whole number greater than 1 is a molecule built uniquely
as a product of atoms. How the primes are distributed in the sequence

1,2,3, 4,5, 6,7, 8, 9, 10,11. . .

of all numbers is one of the great mathematical questions. The number of prime numbers less than
or equal to any number X – usually called π(X) – can be (surprisingly, and somehow) explicitly
given by a formula expressed in terms of another infinite set of (rather strange) complex numbers,
namely, the nontrivial zeros of the Riemann zeta-function. The Riemann Hypothesis states that
these zeroes are of the form 1

2 + ω
√
−1 where ω is a real number.4

4This hypothesis appears in Riemann’s 1859 paper [5]—but there it is not labelled ’hypothesis’ or ’conjecture’ but
it is clearly Riemann’s expectation:

“. . . it is very probable that all roots are real. Certainly one would wish for a stricter proof here;
I have meanwhile temporarily put aside the search for this after some futile attempts, as it appears
unnecessary for the next objective of my investigation.”
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Since 1
2 + ω

√
−1 is a zero of the Riemann zeta-function if and only if 1

2 − ω
√
−1 is a zero, we

can organize the information given by these roots 1
2 ± ω

√
−1 simply by considering the increasing

sequence of positive real numbers, ω1, ω2, ω3, . . . , that appear as “ω”s.
These real numbers are colloquially referred to as the ‘spectrum’ of the prime numbers. Any of

these numbers is easily computed to any order of accuracy one wishes:

ω1 = 14.134725 . . .

ω2 = 21.022040 . . .

ω3 = 25.010858 . . .

ω4 = 30.424876 . . .

ω5 = 32.935062 . . .

ω6 = 37.586178 . . .

The reason for the label spectrum is that an appropriately normalized (infinite) trigonometric
sum involving cos(ωix) for i = 1, 2, 3, . . . converges5 to a function of the real variable x that has
discontinuities exactly when x is a power of a prime number—that is, a function that reveals, by
its very basic structure, the placement of prime numbers in the real number line. The explicit
connection between the arithmetic structure that is the placement of the set of prime numbers on
the real line and the analytic structure that is its spectrum is given by a relation called the von
Mangoldt Formula,

{2, 3, 5, 7, 11, . . . } ←− von Mangoldt Formula −→ {ω1, ω2, ω3, . . . }
The utility of this formula can’t be overestimated: by performing a certain amount of analysis

related to the spectrum, the right-hand-side of that formula, one produces analytic expressions that
approximate the growth of π(X), the essence of the left-hand-side of that formula. Moreover, those
analytic approximating expressions get closer and closer to the function π(X).

Mumford goes in the opposite direction. Utterly enjoying the experimentation in the manner,
he says, of an applied mathematician he uses just a few prime numbers to produce approximations
of the first few ωs. For example he gets 14.185 . . . as an approximation to ω1 = 14.1347 . . . . He
invites the reader to play with this piece of mathematics, writing that

. . . the basic idea behind Riemann’s periodic terms is indeed apparent in these small
primes. This is especially startling because the convergence of the explicit formula is
very slow: there are very many rapidly oscillating terms beyond the first one so there
is no compelling reason why the lowest ωk should nail these primes this well. This
suggests there might be other formulas relating the primes with the zeros clarifying this
correspondence.(p. 128)6

4 Independence of Scale.

D’Arcy Thompson, in his book On Growth and Form7 quotes Galileo commenting that scale matters
([4] p. 19):

5In a manner that needs specific definition.
6In this same direction, see the recently published paper Aperiodic diffraction grating based on the relationship

between primes and zeros of the Riemann zeta function by A.E. Madison, D.A. Kozodaev, A.N. Kazankov, P.A.
Madison, V.A. Moshnikov, Technical Physics 69 No. 4 (2024) 620-624.

7Published by Cambridge University Press (1917).

5



Figure 2: A Neural Net

. . . it was Galileo who, well nigh 300 years ago, had first laid down this general principle
which we now know by the name of the principle of similitude; and he did so with the
utmost possible clearness, and with a great wealth of illustration, drawn from structures
living and dead. He showed that neither can man build a house nor can nature construct
an animal beyond a certain size, while retaining the same proportions and employing
the same materials as sufficed in the case of a smaller structure. The thing will fall to
pieces of its own weight unless we either change its relative proportions, which will at
length cause it to become clumsy, monstrous and inefficient, or else we must find a new
material, harder and stronger than was used before.

Mumford notes that mouse and human brains are strikingly similar in structure (and, to some
small extent, also in function), even though they are strikingly different in size. The mouse has
about 13 million cortical neurons while the human has about 16 billion. It is rare to find a
structure that, if multiplied in size by (over) a thousand, retains its basic function without major
re-organization. There is one example that comes to mind that has this feature: its basic function
is relatively independent of scale, namely, Neural Nets and ‘deep (machine) learning.’

A Neural Net is, in effect, a directed graph, where the vertices—called ’units’— are thought of
as analogous to the neurons in a brain, and each ‘edge’ connecting one vertex to another is assigned
a weight—a number corresponding to the fluidity of passage along that edge.

There is a battery of nodes in the Neural Net devoted to providing an input and a battery of
nodes yielding output (see Figure 2). For example, a Neural Net might be designed to do the job
of ‘reading’ sloppy handwriting: the input would be (the appropriate constellation of bits that are
given by) scribbled numbers and the desired output would then be (the appropriate constellation
of bits that give) the correct typographically clean number.

The learning phase of the Neural Net is to iteratively adjust the weights of its edges appropriately
so that it does that job better and better. One views the weights on the edges in a Bayesian manner
as priors, and, given those weights, one then feeds the Neural Net some input and assesses how
far the corresponding output is from the correct response. Taking this “assessment of error” as
guide, one modifies the weights appropriately in expectation of reducing the size of the error.
As the Bayesians say: one ‘educates the priors’ by changing them ever so slightly to produce a
slightly more correct output. These changed weights, the posteriors, become the priors for the next
run-through. The manner in which this ‘education’ occurs is called ‘gradient descent’ which is a
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multi-dimensional extension of the classical Newton’s method for finding a zero of a differentiable
(one variable) function. To be sure, the dimensions related to any useful Neural net (that is, the
number of nodes involved) and the number of Bayesian feedback loops required are staggeringly
high.

But Neural Nets can do work with as few as mouse-like or as many as human-like numbers of
neurons. Mumford writes:

I like to demonstrate in my lectures the way neural nets work with a “Mickey Mouse”
example of a neural net with only 12 weights that learns nearly perfectly in front of
the live audience to discriminate points in the plane inside a circle from those outside,
using simple gradient descent. OpenAI’s most recent language program GPT-3 . . . has
175 billion weights and is trained by the same old gradient descent. (pp. 98–99)

5 The World

The title of the Book is Numbers and The World and indeed, Mumford thrusts himself into issues,
some moving and illuminating, some turbulent, of the world. He begins his Part 6 Nothing is
Simple in the Real World in a touching remembrance of Klaus and Alice Peters, their publishing
company AKPeters, their devotedness to “publishing as a service;” and how small math publishers
faced the danger of being swallowed by big ones “without an intellectual mission.” Burdened by
such a threat, Klaus Peters wrote:

Alice and I feel that we have lived a dream to preserve and provide a service that was
once considered worthwhile.(p. 190)

Part 6 continues with an admirable, intensely personal account of his experiences in the world—
including Japan, the Middle East, Turkey, and India—experiences that gave him “a greater under-
standing of nationalism; that is, nationalistic governments that “appear to have taken over a large
part of the world.” (p. 194)

In one chapter Mumford considers whether his Russian mathematical colleague and friend, Igor
Shafarevich, should really be viewed as anti-semitic, given the fact that the National Academy of
Sciences censured him for “anti-semitic writings and actions” (p. 195) in 1992. This censure was at
least in part based on Shafarevich’s book Russophobia, published in 1989, which is a strident call
for national purity and adherence to Russian values, both of which Shafarevich felt were threatened
by a (predominantly) Jewish intellectual elite that he called the “little people.” Some have called
this a “thinly veiled” attack on Jews, while others have sardonically said it “lives up to the best
traditions of antisemitic propaganda.”

That Shafarevich himself, in a letter to Mumford, denied the technical label of antisemite seems
irrelevant: his (dangerous) book singles out a list of people, predominantly Jews, as blemishing na-
tional purity. Throughout history such calls for national purity have had catastrophic consequences.

6 Spinoza, Euclid, Substance and Attributes

In a wonderful chapter, Mumford reflects on his personal shift regarding his thoughts about religion,
and his thoughts about Being and Time.

Struggling to find my own path, I stumbled last year upon Spinoza and, to my surprise,
found a great deal that I could understand, though not without a struggle. (p. 203)
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In his treatise The Ethics [3] Spinoza8 arms himself for this kind of struggle of thought by
framing his argument in a format reminiscent of Euclid’s Elements—with Definitions, Axioms, and
Propositions explicitly stated and with Proofs rooted in this rational structure.

The type of ’struggle of thought’ that Mumford experienced may well be intrinsic to any thinking
that requires grappling with a view of pantheistic universality. Consider, for example, St. Anselm,
a precursor of Spinoza who lived half a millennium before him. Anselm wrote in the Preface to his
Proslogium; Or Discourse on the Existence of God ([1]):

. . . one day, when I was exceedingly wearied with resisting its importunity, in the very
conflict of my thoughts, the proof of which I had despaired offered itself, so that I
eagerly embraced the thoughts which I was strenuously repelling.

This kind of awkwardness in contemplation is a useful feature; helpful in dealing with the puzzle
and paradox of eternity. Awkwardness is shared in Book XI of Chapter XVI of St. Augustine’s
Confessions9 where he reflects;

What, then, is time? If no one asks me, I know what it is. If I wish to explain it to him
who asks me, I do not know.

Mumford focusses on Spinoza’s notion of substance, given by Definition III: that which is in
itself, and is conceived through itself: in other words, that of which a conception can be formed
independently of any other conception. Mumford brings the word substance back to its Greek roots,
ousia, present participle of einai meaning ‘being.’

Spinoza’s Definition III sets up for his Definition VI: By God I mean a being absolutely in-
finite—that is, a substance consisting in infinite attributes, of which each expresses eternal and
infinite essentiality. These definitions lead to Spinoza’s Proposition XI: God, or substance, con-
sisting of infinite attributes, of which each expresses eternal and infinite essentiality, necessarily
exists.

Mumford explains how Spinoza moves into the classical issue of mind-and-body, writing: “God,
[Spinoza believed] has infinitely many attributes but only two of them are manifest to our meagre
human existences: extension and thought ” (p. 207). Mumford used the term attribute as it appears
in Spinoza’s Definition IV: By attribute, I mean that which the intellect perceives as constituting
the essence of substance.

On the one hand, it is perfectly reasonable to think of attribute as just signifying ‘adjectival
description;’ for example, if you say cold drink then ‘cold’ is an attribute of the drink you had
in mind. On the other hand, if, as in Spinoza’s definition, an attribute constitutes the essence of
substance, then should we think of an attribute as some kind of ‘entity,’ a ‘thing’ in itself?

Mumford continues his discussion of the classical dualism (p. 207):

One should think of these attributes as two of the very many faces of God’s essence.
The attribute of extension characterizes material objects that exist in space and time.

At this point, Mumford tosses off this striking thought:

In modern physics, we would certainly add “fields”; though non-material, they occupy
space and time, so partake of extension. The attribute of thought characterizes all
the contents, all the conceptions of our minds. Thus Descartes’ mind/body problem is
solved by there being two attributes in God’s substance. (p. 207)

8Benedict de Spinoza (1632-1677).
9See also: Eva Brann What, then, is time? Paul Dry Books (2001).
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It is as if “fields” constitute, so to speak, an extension of the realm of the attribute extension.
Perhaps an intermediary attribute between the material and the noetic.

The concept of ‘field’ emerged on the stage of Physics as an ‘intermediary’ of a different sort.
In layman terms, the capabilities of radio transmission puts a strain on the law of conservation of
energy: The energy exerted by a radio transmitter is emitted, travels, and in (say) nanoseconds is
received as energy by the radio receiver. If one wants to conserve energy one needs to propose some
entity that holds this energy during those nanoseconds of transit. Enter: electro-magnetic fields.

James Clerk Maxwell developed this, describing the behavior of electro-magnetism as analogous
to hydraulic dynamics, an idea that was fairly immediately appreciated. In his (1855) essay “On
Faraday’s Lines of Force” he emphasized the analogy, writing:10

By a physical analogy I mean that partial similarity between the laws of one science
and those of another which makes each of them illustrate the other. . . . [W]e find the
same resemblance in mathematical form between two different phenomena.

The notion that fields, of various types, might constitute intermediaries between matter and
thought, a kind of merging of matter and thought, is neatly illustrated by Werner Heisenberg’s
reflections about the laws of Quantum Mechanics, as quoted by Mumford (p. 160):

We can no longer speak of the behavior of the particle independently of the process
of observation. As a final consequence, the natural laws formulated mathematically in
quantum theory no longer deal with the elementary particles themselves but with our
knowledge of them. Nor is it any longer possible to ask whether or not these particles
exist in space and time objectively . . . When we speak of the picture of nature in the
exact science of our age, we do not mean a picture of nature so much as a picture of
our relationships with nature.

This extraordinary chapter, Spinoza and Euclid, was written during the recent pandemic. What
a vast span of thought it encompasses. Mumford offers his opinion that “the wall between science
and religion is on the verge of crumbling,” (p. 203) and the chapter ends by reciting

“T’was grace that brought us safe thus far, And grace will lead us home.”(p. 213)
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