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Abstract

Recent advancements in atomic, molecular, and optical platforms have propelled the study of
many-body physics into a new era. The ability to construct large ensembles of precisely manipulated
elementary components is revolutionizing both the toolbox and the mindset for exploring the intricate
relationship between microscopic details and macroscopic phenomena. This exploration lies at the
heart of many-body physics, particularly in the context of out-of-equilibrium many-body dynamics.
Indeed, the past decades have witnessed a resurgence of classic topics alongside the emergence of
new inquiries in the field of many-body dynamics, covering a spectrum from fundamental dynamical
properties to their practical applications in quantum technology. This thesis contributes to such a
vibrant field by employing a combination of analytical and numerical methodologies to investigate
various aspects of out-of-equilibrium dynamics, such as thermalization, hydrodynamics, and responses
to drives. Furthermore, this study is intimately intertwined with experimental investigation, where
empirical observations enrich theoretical frameworks, and theoretical predictions guide experimental

pursuits and practical applications.
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Chapter 1

Introduction



1.1 Out-of-equilibrium many-body dynamics: A new frontier for atomic,

molecular, and optical physics

In the vast landscape of physics research, three primary frontiers stand out prominently, two
of which appear more natural to contemplate: astrophysics, exploring the cosmos at the grandest
scales, and particle physics, probing the tiniest scales of matter. Yet, amidst these well-trodden
paths lies a third, less apparent but equally profound direction, many-body physics, focusing on
universal phenomena in large ensembles of physical objects and typically transcending the scale of
each individual object. Within many-body systems, although interactions often distill to a few-body
essence, the ensuing dynamics unfold with remarkable complexity compared to few-body systems.
This duality underscores a fundamental principle: while collective many-body behaviors intimately
rely on the microscopic details of few-body interactions, they often arise, seemingly independent
of these microscopic intricacies. Indeed, new principles sometimes emerge solely from the sheer
abundance of objects involved.

Historically, the study of emergent many-body phenomena has been tightly linked with condensed
matter physics and material science. These systems, inherently many-body interacting, are often
regarded as comprising an infinite number of degrees of freedom, thus residing in what is termed as
the thermodynamic limit. In contrast, atomic, molecular and optical (AMO) physics, initially centered
its investigation around few-body phenomena, such as atom and molecule spectroscopy. Only in recent
decades has there been a discernible but natural shift in focus towards the exploration of many-body
phenomena within AMO systems.

In theoretical study of many-body physics, the concept of toy models, or minimum models,
plays a central role. A toy model possesses the minimum microscopic properties necessary for the
macroscopic collective behaviors of interest, and in essence acts as a bridge between them in any
physical system. However, real-world condensed matter systems often deviate significantly from
idealized toy models. In practice, condensed matter physics typically commence the explorations from
macroscopic behaviors, with considerable effort dedicated to making appropriate approximation of a

complicated Hamiltonian, isolating the relevant degrees of freedom while discarding the irrelevant
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Table 1.1: Overview of contemporary quantum platforms from the perspective of building controllable many-
body quantum platforms from elementary quantum objects. In addition to the listed systems composed of any
single type of elementary building blocks, there are also hybrid platforms combining various types [47H55]].

weakly-coupled one, and ultimately leading to a connection with a toy model. This immediately raises
the question: are there scenarios in which we can exclusively focus on pristine toy models? To put it in
another way, how relevant are these toy models for experimental validations and practical applications?

Recent advancements in AMO physics—the ability to build relatively large many-body systems
with the previously well-studied individual degrees of freedom—have provided partial answers to these
inquiries. In contrast to condensed matter physics, a reversed perspective is often adopted for AMO
systems. Here, microscopic details of interactions between individual degrees of freedom are usually

well-understood and well-controlled. Consequently, these few-body systems serve as clean and simple

Conventional approach to couple superconducting qubits by an intermediate electrical coupling circuit is inherently
limited to nearest-neighbor coupling. Long-range interaction is enabled by recent developement of quantum bus, usually
implemented as a microwave cavity [34437].



building blocks for constructing many-body systems. However, the step of construction has long posed
a significant challenge in AMO experiments. Nonetheless, the experimental techniques in various types
of AMO systems have developed over the past decade, facilitating the creation of many-body systems
with a diverse range of building blocks, spanning from natural objects such as photons, electrons,
atoms, ions and molecules to “artificial atoms” like superconducting LC oscillators and quantum
dots [56H63]]. Each of these blocks possesses unique microscopic features, thereby paving the way for
innovative explorations in a large variety of many-body phenomena (Table [I.T).

This systematic bottom-up construction of many-body systems in experiments yields a profound
impact on theoretical investigations into many-body physics. Precise control of the microscopic details
enables faithful realization of the toy models in experimental setups, allowing direct verification
and exploration of the dictionary between microscopic details and emergent many-body behaviors
predicted by theory. Furthermore, versatile manipulation of microscopic degrees of freedom has
spurred the development of theoretical frameworks aimed at precisely designing many-body systems,
which offers significant potential for practical applications. Indeed, the emergence of the entire field of
quantum information, including quantum simulation and computation, quantum communication, and
quantum metrology, owes much to the recent development in AMO physics [64-88]].

Accompanied with the increasingly precise control of the microscopic details comes a parallel
advancement of time-resolved and space-resolved measurements. In the context of many-body
systems, this progress synchronizes with the shift in research focus from equilibrium to out-of-
equilibrium dynamical properties. From an application standpoint, controlled dynamics, rather than
mere equilibrium, of a system is almost a necessary starting point. A prime example is the long-term
goal of building quantum computers, which essentially requires the generation of arbitrary quantum
many-body dynamics. From a theory perspective, the exploration of dynamical properties holds
significant importance but remains persistently challenging. While statistical mechanics has emerged
as a simple yet powerful framework to capture the physics of many-particle systems in or close to
thermal equilibrium over the past century, the dynamics of systems brought out of equilibrium, often
referred to as quench dynamics, become notably more complicated and lack a unified theoretical

description. Even for specific systems and simple product initial states, figuring out the subsequent



dynamics is typically a formidable task in both analytical and numerical studies.

The thesis will focus on out-of-equilibrium dynamical phenomena across a spectrum of many-body
systems. These systems are in tight relation with the contemporary topics in AMO physics and
quantum science, particularly quantum simulation and quantum metrology. For each topic, the thesis
will offer theoretical investigations, usually involving a combination of analytical approaches and
numerical simulations. Simultaneously, these theoretical investigations will be complemented by either
a corresponding experimental study or a concrete experimental proposal, ensuring a comprehensive

exploration of the subject matter.



1.2 Equilibration of quantum many-body systems

Equilibrium in the context of many-body systems refers to a status whose macroscopic proper-
ties remains time-invariant. The well-established theory of statistical mechanics provides a simple

framework for describing equilibrium systems, defined through microcanonical ensemble

pmicro,E X Z ’€> <€’1 (1-1)
e€|E,E+4E|
or canonical ensemble
ﬁcanon,ﬁ xe Pl = Zei‘Be|€> <€’ (1.2)
€

In stark contrast, Understanding out-of-equilibrium systems proves significantly more challenging.
Yet, empirical evidence suggests a universal property for such systems: they almost inevitably evolve
towards equilibrium over time, a phenomenon known as thermalization. During the thermalization
process, observables tend to approach values consistent with those calculated for a thermal ensem-

ble [89-93]]. To be more precise, for a physical observable O, the infinite-time average

1 /7 .
Ow = lim = / (O)dt, (1.3)
T Jo

T—o0

agrees with that of a microcanonical (or canonical) ensemble
O = 1lim = | (O)dt = Opiero 111y = TlBpmicro (Ol (1.4)

where the energy <H ) of the microcanonical ensemble is determined to match the dynamical system.

A stronger statement also requires the fluctuation of the observable

1 /T .
50% = 1lim = | (O — Ox)?)dt (1.5)
T—oo T Jo
to agree with the ensemble value
(sorznicro,uf[) = Tr[pmicro,(ﬂ)éz] - Tr[ﬁmicro,(lfl)o]z‘ (1.6)

In open systems, thermalization toward a equilibrium state often manifests as a system becoming

increasingly entangled with its environment, However, thermalization of closed systems is more



subtle. Intuitively, the remaining parts of the whole system acts as a thermal bath for sufficiently small
subsystems [89,91H96]]. While this argument also works for both classical systems from deterministic
initial states and quantum systems from pure initial states, the latter is more straighforward to illustrate.
In particular, instead of considering an arbitrary operator, one can restrict the equilibration condition
(Eq. to few-body observables <O> An equivalent statement can be made for the reduced density
matrices of small enough subsystems: they approach a macrocanonical ensembles fg,p o e~PHww
late times.

Despite this simple intuition for equilibration in close systems, a plenty of questions remain
unanswered, at least partially. Two very natural directions along this line arise. First, it is natural to
ask whether a system can fail to thermalize and thus evade equilibrium even at infinitly long times.
The prevailing conjectured many-body localization phase of disordered quantum systems is one of the
promising candidate, but much about it still remains unknown [90, 95 97H108]]. Some other examples
may not completely evade thermalization, but the equilibration process takes parametrically long times,
known as prethermalization [[109H115]]. Second, what are the exact procedures for a quantum many-
body system to thermalize? In general, during thermalization process, different parts of the system
exchange information and conserved quantities, which should exhibit completely distinct behaviors. In
particular, information scrambling is closely related to the loss of local quantum coherence, but the
transport of conserved quantities is relatively independent of that and can be a purely classical process.
This further leads to the question of how certain classical behaviors, such hydrodynamics, emerge in
quantum systems.

Chapter Two will primarily explore several questions along these two lines. Moreover, the
overarching concept of thermalization will also serve as the foundation for investigating a few other
questions about quantum dynamics in subsequent chapters. For orientation, we introduce some

fundamental background knowledge about thermalization in this section.

1.2.1 Eigenstate structure of quantum thermalization

In closed quantum systems, the properties of the eigenstates contain all information necessary for

understanding their dynamics. Therefore, one approach to comprehending and analyzing thermlization



is to inspect the eigenstate structure of the system. Indeed, the current best understanding, relying on a
few natural assumptions about eigenstate properties, can demonstrate the presence of thermalization
in generic interacting quantum systems. The essence of these assumptions is the conjecture that a
thermalizing Hamiltonian, when projected into a small energy window, resembles random matrices [[89-
931,196, [116H118]].

The most important result is the eigenstate thermalization hypothesis (ETH) [89-96) [106]. The

motivation for ETH is simple. Decomposing the initial in the eigenstate basis, the infinite-time average

(Eq.[1.3) becomes

T—o0 s
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where we assume no degeneracy. Similarly, the condition for the fluctuation (Eq. [I.5) becomes

502, :%E}r;of / dte= i ct ((€|O%]e) — 20u(€'|Of€) + OF,)
(1.8)
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Comparison between these two expressions and the microcanonical ensemble values motivates the
ETH
<€/|O’€> = 56,€’Omicro,l:: + e_SE/ZRe,e’f(EI AE), (1.9)

where Sp is the thermodynamic entropy, R s is a normal distributed random number, E = (¢ +€’) /2
and Ae = (e — €’) are the average energy and the energy difference of the two states, respectively.
Crucially, ETH assumes that the expectation value of the local observable O, ;... z and the spectral
function f(E, Ae) are smooth in E and Ae. Moreover, the spectral function is related with the

fluctuation of the microcanonical ensemble:

6O%icroE = _SE/f(E,Ae)Z d(Ae). (1.10)

Seminal work has demonstrated that ETH is sufficient to ensure thermalization, given that energy
fluctuation of JE determined by the initial state is sufficient small. Indeed, for any locally interacting
system of size N, an initial state without macroscopic superposition has a sub-extensive energy

fluctuation, i.e., E = (H?) — (H)? o /N (in comparison, energy is always extensive (H) = E o



N), and thus naturally satisfies the above requirement. Hence, the diagonal (first) elements in Eq.

ensures that the infinite-time average agrees with a microcanonical ensemble at energy <H ):
O = Z |C€‘20micr0,1:= + eisg/zRE,e'f(E‘/ 0) = Omicr0,<H>' (L1D)
€

The off-diagonal (second) elements in Eq. [I.9]leads to the agreement between the time-averaged

fluctuation with the microcanonical ensemble with energy E and energy fluctuation 6E:

603, =Y _|cc|*(e|Ole") (€'|Ole) — O3, = /3_55R2 f(E,Ae)? d(Ae) = 60 (1.12)
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Note that although ETH is sufficient to guarantee thermalization, it remains an open question whether
this is also a necessary condition [93-93]].

Another related characteristic of thermalizing systems is the level statistics, more directly descent
from random matrix theory [93, (116} [117, [119-122]]. Here, the intuition is the level repulsion or
avioded level crossing: a perturbation connects two approximately degenerate eigenstates will largely
lift the degeneracy, given that the perturbation strength is larger than their original small gap. For
generic thermalizing system, the matrix element of any local operator O between nearby eigenstates
e~ 5e/2 f(E, Ae) decays at mort algebraically for A€ < Jiocar [+ and thus is exponentially large than the
many-body energy gaps. Therefore, adding any small perturbation AO on a thermalizing Hamiltonian
will lead to level repulsion between many-body engenstates. Considering a series of thermalizing
Hamiltonians differing by a small perturbation A0, they can be thought of to relate to each other
by adding AO, and should therefore all exhibit level repulsion. As the such repulsion happens
between any pair of eigenstates, the energy gaps should follow a more homogeneous distribution ﬂ
Taking one step further, the random coupling with roughly uniform magnitude between any pair of
eigenstates within Ae < Jjocq1 Suggests that the effective Hamiltonian in this energy window can be

well approximated by a random matrix. Indeed, for static systems with time-reversal symmetry (i.e.,

2This decay saturates at the Thouless energy.

3Here we assume that the Hamiltonian does not have any symmetry, i.c., it does not have any conserved quantities. If
the Hamiltonian has symmetries but still non-integrable, level repulsion applies to each symmetry sector independently.
However, if the Hamiltonian is integrable, there are too many symmetries to resolve and level repulsion is practically hard to
analyze.



all matrix elements in the Hamiltonian are real), such effective random Hamiltonian is captured by the
so-called Gaussian orthogonal ensemble (GOE), predicting a Wigner—Dyson distribution for adjacent
energy gaps 0, = €,41 — €y E] [93) 1116} [117,119-122]). In contrast, non-thermalizing systems do not
exhibit level repulsion so that the many-body eigenenergies are random and uncorrelated, leading to a

Poisson distribution for the adjacent energy gaps [100, [124-126]].
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0.8 - Unitargy Ensemble
__0.6F
=
A 0.4F
0.2
| | |
0.0 1 2 3

J

Figure 1.1: Statistics of energy gaps ¢ in non-thermalizing and thermalizing quantum systems are described by
Poisson distribution and random matrix theory, respectively. For non-thermalizing systems, the energy gap has
increasing probability as § — 0. For thermalizing systems with [without] time reversal symmetries, captured by
orthogonal[unitary] ensembles, the energy gap has a vanishing probability as § — 0, which reflects the existence
of level repulsion. Note that the energy gap distribution is agnostic of whether the system is static (Gasussian
ensemble) or time-periodic (circular ensemble).

We conclude the above discussion with two complementary perspectives to view the relation
between quantum thermalization and ETH as well as the random matrix theory. First, a pessimistic
perspective is that ETH only converts one hypothesis that generic closed quantum systems always ther-
malize to another that they in general have certain eigenstate structures. Nevertheless, there is a more
optimistic perspective: connecting thermalization to the eigenstate structure is a great achievement
itself. Practically, this connection provides a way to numerically (and sometimes analytically) investi-
gate whether a specific system thermalizes. Indeed, in the study of systems that escape thermalization,
e.g., many-body localized systems, the energy gap distribution is the most effective diagnostic.

Although originated from the non-interacting counterpart Anderson localization [127, [128]], many-

4Static systems without time-reversal symmetry are described by the Gaussian unitary ensemble (GUE), and the
corresponding distribution of the adjacent energy gap is the same as the normalized spacing between the zeros of the
Riemann’s zeta function. Periodically driven (Floquet) systems with discreted time translation symmetry are described by
the circular orthogonal ensemble (COE) and circular unitary ensemble (CUE) [123].

10



body localization exhibits fundamentally different features 90, 95, (97, [106H108]]. In general, non-
interacting systems never truly thermalizes, and therefore Anderson localization features disorder-
induced localized wavefunctions but does not contrast clean systems in thermalization properties. In
comparison, one defining feature of many-body localization is the emergent integrability, i.e., extensive
number of quasilocal integrals of motion [129-132]]. Therefore, similar to truly integrable systems,
energy gaps of MBL systems follow Poisson distribution rather than Wigner-Dyson distribution. A

convenient metric that distinguishes the two distributions is the so-called r-ratio between adjacent

(rn) = <min{5"’(5”“}> (1.13)

max{dy, 6,11}

energy gaps, defined as

where (- - - ) denotes averaging over eigenstates (usually within a small energy window). Crucially,
(ra)por = 2log2 — 1 ~ 0.3863 Poisson distribution and (r,)gop ~ 0.5359 for Wigner-Dyson
distributionE] [99, 100} [123] 134} [135]. The level statistics reflects the time dynamics, at any late times,
the system will always have memory of the local details of the initial state and does not approach the

thermal ensemble only determined by the initial energy [[131}[136].

1.2.2 Two-step equilibration

For thermalizing many-body quantum systems, understanding how they reach thermal equilibrium
is a natural inquiry. Here, we focus on systems with locality, meaning that each part of the systems
solely interacts its neighbors only via its boundary. In such systems, achieving global equilibrium
involves two steps, reflecting the equilibration of two distinct types of quantities: non-conserved and
conserved quantities [[137H140]. As a subsystem becomes significantly entangled with the rest of the
system, the non-conserved local quantities supported only by that subsystem tend to forget their original
values and approach their thermal equilibrium values. This process aligns with the maximal entropy
principle. In contrast, local conserved quantities, such energy density, can only change via transport
into other parts of the system, a process that occurs much more slowly. Combining these observations

leads to the following self-consistent picture. In the first step of equilibration, small subsystems

For GUE, COE and CUE, the corresponding r-ratios are (r)gog ~ 0.6027, (rn)cop ~ 0.5269 and (r,)cyug ~
0.5965, respectively [123][133].

11



approach local thermal equilibrium, described by a Gibbs ensemble whose properties are determined
by the local density of a complete set of conserved quantities [137-140]. In general, such local
densities exhibit inhomogeneity across the entire system, reflecting spatial variation of of temperature,
pressure, chemical potential, etc. In the second step, the local conserved quantities get redistributed
via transport process. Over an an extensively long time, the entire system eventually approaches
global equilibrium. This second step is often referred to as the emergent hydrodynamics [141-148]].
Specifically, by defining the density of the conserved quantities in a coarse-grained way, so that the
underlying discrete structure, such as lattice structure, becomes irrelevant, one can then attempt to
write down the continuous differential equations to capture transport dynamics (formally analogous to
the study of fluid motion).

While diffusion represents the most common hydrodynamic behavior, characterized by the familiar
diffusion equation B%q = DV2q, the presence of disorder, symmetry types, and integrability can
significantly impact the hydrodynamics in quantum systems, making it a vibrant area of research. For
instance, disorder, even if not strong enough to prevent thermalization, may result in a parametric
slow-down of transport, leading to investigations into subdiffusion [149-153]]. Symmetry type can
also qualitatively alter the transport dynamics: any continuous symmetry larger than U(1) gives rise
to more than one conserved quantity; the interplay between these conserved quantities sometimes
requires a set of coupled hydrodynamical equations to capture the their transport behaviors.

Integrability plays a even more important role. The number of conserved quantities become
extensive with system size in integrable systems, requiring an extensive number of hydrodynamical
equations. From a complementary perspective, quasi-particles in integrable systems have a infinitely
long lifetime so that the system never completely loses the memory about the initial state and thus
never “truly” thermalizes. Consequently, a different framework is required to describe the dynamics of
such systems. The key concepts behind this framework are the generalized Gibbs ensemble (GGE) and
the generalized hydrodynamics (GHD) [[154H157]]. Under maximal-entropy principles, Gibbs states
of a non-integrable are defined by pGiphs = e PHFLi Qi where {Q;} are a finite set of conserved
quantities and {y;} are the corresponding chemical potentials [I58H162]. In integrable systems,

the GGE replaces Gibbs ensemble by taking into account an infinite set of conserved quantities.
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Correspondingly, the two-step equilibration process of integrable systems is slightly modified: the
system first approaches local equilibration characterized by a local GGE, and then all the conserved
quantities transport across the system captured by the movement of quasi-particles rather than an
infinite set of hydrodynamical equations for conserved quantities themselves [163-169]. Roughly
speaking, quasi-particle basis and conserved quantity basis are related by a linear transform, but
simplifying the analyze. One might wonder how a finite-size subsystem reflects the existence of
an infinite number of conserved quantities. Generally, only the conserved quantities with a size
smaller than the coarse-graining lengthscale have well-defined hydrodynamics. In most cases, these
hydrodynamics are effectively decoupled from the sufficiently large quasi-particles, such as the spin
hydrodynamics in the anisotropic one-dimensional nearest neighbor XXZ model, resulting in a closed
set of equations [[170-172]]. However, in some exotic scenarios, such the KPZ-type hydrodynamics one-
dimensional nearest-neighbor Heisenberg model, increasingly larger quasi-particles become relevant
as the system equilibrates [171H173]]. In these cases, the coarse graining lengthscale should be treated
as a dynamic quantity, and there is likely not sharp separation between the local equilibration process

and hydrodynamics.
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1.3 Periodically driven systems

At a very high level, Floquet (periodically driven) systems can be viewed as sitting between
systems with static Hamiltonians and those with very generic time-dependent Hamiltonians. On the
one hand, Floquet systems are intrinsically non-equilibrium. Apparently, a quantum state (density
matrix) cannot always be an eigenstate (Gibbs ensemble) of a time-dependent Hamiltonian as time
changes. On the other hand, the Hamiltonian of Floquet systems still shares much similarity with
a static one, as it remains simple and regularly repeats itself in the temporal direction. From the
perspective of symmetry, continuous time-translation symmetry, which is the defining feature of
static Hamiltonians, is not completely broken in Floquet systems; instead, it downgrades to discrete
time-translation symmetry. The combination of these features makes it possible to transfer a few
concepts, such as thermalization and phases of matter, from static to Floquet systems, albeit with
significant modifications and the introduction of novel ingredients. In this section, I will introduce
a few basic yet universal properties of Floquet systems, providing the background knowledge and

motivation for the research results presented later.

1.3.1 Floquet Hamiltonian and quasi-energy

The most generic Hamiltonian for Floquet systems only requires periodicity in time, i.e., H(t) =
H(t+ T) with T the Floquet period and w = ZT” denoting the Floquet frequency. Thanks to the
periodicity, solving the Floquet dynamics in the quantum case reduces to the study of two unitary

operators:

Up = Te i ho HO) dt (1.14)

Uo(to) = Te th HO @ for 4 < T. (1.15)

In particular, Ur generates the evolution between integer multiples of the driving period, and U ()
determines the evolution (usually referred to as micro-motion) within a driving period. The properties
of the former are encoded in its eigenstates |1, ) and the corresponding quasi-energy defined by €,
via [174H178]

Ur[ipo)r = ™" [thn). (1.16)
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Crucially, the quasi-energy is not unique and is determined only up to an additional integer multiples
of 27”, reflecting the freedom to add 27t phases when obtaining the Floquet Hamiltonian Hf as the
logarithm of U [174H178l]:

Up = e BT, (1.17)

Similar to static models, these eigenstates provide a basis for the Floquet dynamics; they are stationary
if one only measures the system at integer multiples of Floquet periods. Using the additional unitary
operator Uy, one can construct the Floquet eigenstates |, (t))r = e " TUy(t — mT)|¢p,) with

m = | £ |, which satisfies i W”‘( i

= H(t)|«(t))F for all time. This explicit construction reproduces
the Floquet-Bloch theorem, stating that any Floquet eigenstate must be a product of time periodic state

and a non-periodic phase factor, i.e., |¢(t + T))r = e T |p(¢))F.

1.3.2 Floquet-Magnus expansion and Floquet heating

In most of the Floquet systems, the stroboscopic evolution at integer periods are enough to reflect
the dynamical features, making the time-independent Floquet Hamiltonian, Hp, the focal point. While
it is possible to calculate Hr from UF, this process is generally more complex and less informative,
since UF is hard to compute at the first place and Hr does not contain more information than UF.
Alternatively, a more practical and meaningful pursuit is to construct Hr directly from H(t). Indeed,
the Floquet-Magnus expansion offers a partial solution, which aims to construct a perturbative series

in T, or equivalently in 1/w [175H178]:

T (m
Hp = ZWHI(T . (1.18)
The first few terms are
1 T
= f/ dtH(t) = Ho, (119)
M= == _ v [HeHd
H 21T2/ dt/ A [H (), H(E)] —k;) % (1.20)
S 2 /O dt / at’ / at" ([H(1), [H(E), H(E)) + [HE"), [H(E), HE)])
[[H, Hol, Hy] [[H—k/Hk—k/],Hk/] (1.21)
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where H,, = % fOT H(t)e'“*dt denotes the k-th Fourier component of H(t). Higher order terms
H I(Cm), containing multiple nested commutators involving m + 1 copies of H(t) in the time domain or
Hj, in the frequency domain, can be formally constructed in a similar way.

However, the Floquet-Magnus expansion is not guarenteed to converge, particularly for generic
many-body Floquet systems in the thermodynamic limit, i.e., system size goes to infinity. In this
scenario, the series diverges even as w — 0. This divergence arises due to the proliferation of
terms in the multiple commutators as m increases In particular, taking a locally interacting system of
size N with at most /-body interaction, the multiple commutators in H I(Cm) consists of ~ N m!(2])"
local terms. Then the magnitude of the m-th order term in the Floquet Magnus expansion goes as
~ Nm!(2Jipcar/w)™/ m?, where Jjoca is the local energy scale or more precisely the energy difference
caused by changing a single local degree of freedom. Apparently, it decreases until nopt < W/ Jical>
making Floquet-Magnus expansion an asymptotic series [[176, (178 [179].

Upon initial inspection, the divergence of the expansion may appear to conflict with the existence
of the Floquet Hamiltonian Hr. However, this apparent inconsistency can be reconciled by considering
the role of locality [179]. The Floquet-Magnus series inherently preserves locality from H(t) because
of the specific way it is constructed. In contrast, Hr is in general highly non-local, even if H(t) is a
locally interacting Hamiltonian. This observation leads to a surprising physical consequence: while
the stroboscopic dynamics of a Floquet system can be replicated exactly by a static Hamiltonian, its
thermalization behavior is extremely distinct from that of a truly static, locally interacting Hamilto-
nian. Specifically, the long-time static state lacks non-trivial local features. To understand Floquet
thermalization, there are two complementary pictures. For the eigenstates, ETH is modified to be
Floquet ETH. The expectation value of any few-body observable is trivially the same for all Floquet
eigenstates, i.e., ({,|O|¢,) = Tr[0]/dim(O). Consequently, regarding the long-time steady states,
the reduced density matrix for any subsystem will approach the featureless identity operator. Since a
featureless state typically signifies infinite temperature, the Floquet thermalization phenomenon is also
known as Floquet heating. While the use of the word “heating” seems imprecise here, it will become

much more evident and natural after the discussion in subsequent discussion.
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1.3.3 Floquet prethermalization and effective Hamiltonian

Although the Floquet-Magnus expansion does not converge, in the high-frequency regime w >
Jiocal (so that the expansion does not immediately diverge at the lowest orders), the truncated expansion

Mopt 1

Hp = ) o H" (1.22)
"

as a Hamiltonian still plays an important role in Floquet systems. Since the time-dependent Hamiltonian
H(t) is no longer a constant of motion, the conventional notion of energy does not apply to Floquet
systems. It turns out that H¥"" provides the most natural definition of energy. Specifically, in a broad
class of Floquet quench dynamics, it is demonstrated that (i ()| HE"™|¢(t)) changes extremely
slowly with time  before it eventually approaches Tr[HE"] (infinite temperature), known as Floquet
prethermalization [[178H190]. The physical intuition is simple. Collective dynamics of clusters with
a size much smaller than w/ [iyeq is off-resonant with the drive and thus the basis of the undriven
Hamiltonian slightly mix to form a “dressed” basis, which is reflected by the fact that HF" not
only includes the zero-th order time average of H(t) but also a series of higher-order corrections.
In contrast, correlated rearrangements of clusters with a size much larger than w/ [jocq) is resonant
with the drive; however, they can only occur via ~ w/ Jiocq Off-resonant intermediate steps, resulting
in an effective amplitude on the order of exp(—w/ Jiocal)- A rigorous proof further elaborates this
intuition by decomposing Hp = HI""¢ + H® expanding ||UfHI™Up — HF""¢|| as multiple
commutators between HF""® and H*"", and counting the number of disconnected few-body terms.
More importantly, H{'"" may act as an effective Hamiltonian over timescales when Floquet heating is
negligible [183] [191HI97]l. To be more precise, the dynamics of local observables under HE"™ and
under H(t) are nearly identical, i.e., |(p(t)|O](t)) — (¥ (0)|eHF*"tOe~HF""t |1p(0))| <« Tr[O]
for evolution time t < exp(w/ Jiocal)-

It is worth making a few important remarks. First, while the entire framework of divergent
Floquet-Magnus expansions, Floquet heating and prethermalization applies to the most generic Floquet
systems, there exist a few exceptions where the expansion converges in the first place. For example,
strong disorder may make a Floquet many-body localized system, and the emergent local integral of

motions largely reduces the amplitude of the commutators in the expansion (Eq. (123} 1133198~
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201]. From a dynamics perspective, correlated rearrangements resonant with the drive are significantly
suppressed by the disorder. Second, while Floquet prethermalization has been proven and demonstrated
in a broad class of systems, it still remains an active and important direction to explore the minimum
requirement for slow heating and the existence of a prethermal effective Hamiltonian. Finally, the
effective Hamiltonian is more subtle and requires more stringent conditions than the slow heating.
In the meantime, it play a more crucial role in Floquet dynamics. As presented in the following

subsection, it serves as the workhorse for major applications of Floquet theory.

1.3.4 Application of Floquet theory

To date, most research on Floquet systems naturally falls into two categories. First, the stroboscopic
dynamics of a Floquet system can be captured by a static Hamiltonian Hp. In the fast driving
regime, the static Hamiltonian is well approximated by H¥"" with locality, suggesting that a Floquet
Hamiltonian can be utilized to mimic a static one. Second, the Floquet system can exhibit intrinsically
non-equilibrium phenomena that do not have any analogue in static systems.

Floquet engineering—Depending on the nature of microscopic structures, each individual AMO
experimental system has a specific form of native Hamiltonian. However, much more forms of
Hamiltonians are desired in the study of quantum dynamics as well as in the application of quantum
technology. To resolve this tension, a widely used technique is to “decorate” the native Hamiltonians
via the so-called Floquet engineering [2, 176, (177, 2024206l]. The guiding principle is the (truncated)
Floquet-Magnus expansion.

The most natural setup is as follows. The system primarily evolves freely under the native
Hamiltonian Hy. At some specific intervals, one can turn on some simple terms with large amplitude
but for a short time, so that the system undergoes controlled evolution through certain unitary operators
U. Typical examples of U include 7r-pulses and %-pulses. Through a sequence of alternating free

evolution under Hy and a series of intervention steps U;, the dynamics of the system is generated by
- Uze~"Hots (e~ Hot2 [, p=1Hol1, (1.23)

In the most general case, such evolution is complicated. Nevertheless, one can focus on a special
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scenario where the Floquet theory can perfectly apply. Specifically, a finite series of {Hi, t;} are
repeated in a pattern. Rewriting the repeated segment of Eq. [I.23]in a different form:

i -1\ k=1 . o o ‘
[T ) [(TT0 ) ™ (T ) | - [(Calh)" e s (Goln) | [CfeFori | e—iFon,
k=1 k=1

(1.24)
In most situations, one further requires Hle U; = 1, and the time-dependent Hamiltonian for a
. A\t . -
Floquet period becomes piece-wise, i.e., a Hamiltonian series { (I—[;;ll Uk> Hy (H;(_:ll Uk) } with a
duration series {#; }. The Floquet-Magnus expansion then naturally applies. At the leading order, the
static Hamiltonian realized by Floquet engineering is

i1 _\T i1
Zti <kH1 Uk> Ho <kH Uk>
HEngineer = - — Yt =1 . (1.25)
i

i
The magnitude of higher-order correction is in general controlled by t; || H;||, but there exist systematic
ways to cancel out a few leading-order corrections: among different series of U; that realize the same
desired effective Hamiltonian to the zero-th order, symmetry consideration can help to find the optimal
choice [203, 207-211]].
In spin-1/2 systems, two notable examples of Floquet engineering are the XY8 sequence and the

WAHUHA (Waugh-Huber-Haeberlen) sequence:

 Carr-Purcell-Meiboom-Gill (CPMG) sequence and its derivatives consist of evenly spaced 7t-
pulses [2, 203, 212H218]]. The effective Hamiltonian differs from the original static Hamiltonian
only by dropping all single-body term, or more generally all terms involving odd number of spin

8X {Z 8X
operators such as 575 Sk

* WAHUHA sequence comprises a series of evenly spaced 7t/2-pulses (along different spin
axes) [202, [219]. The effective Hamiltonian is a symmetrized version of the original static

Hamiltonian along the three directions in terms of the spin operators $*, §¥ and §=.

Floquet phases of matter—Due to the existence of a static Hamiltonian Hf that describes the
Floquet dynamics, one might naively think the long-time steady states in Floquet system to be

characterized by exactly the same framework for phases of matter in truly static systems [220].
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However, this is not the case. Two key reasons underscore this distinction, each corresponding to an
intriguing phenomenon which has recently attracted much attention.

First, phases of matter are not defined on a single point in the parameter space, but rather according
to the robustness against a certain set of perturbations. In particular, perturbations allowed to exist in a
static Hamiltonian are not the same as those emerging in Hr that are constrained by the original H ().
For example, time-dependent perturbations, forbidden in intrinsically static systems, can be present in
Floquet systems and make certain symmetry broken phases less stable. On the other hand, analogous
to other discrete symmetries, the discrete nature of the time-translation in H(t) makes it easier to
spontaneously break than a continuous one. A notable example along this direction is the discrete time
crystal [194-196, 22123 1]]. Here, the discrete time-translation symmetry can be the only symmetry
in H(t). However, another local symmetry (e.g., Z symmetry of spin-up and spin-down) emerges in
the effective Hamiltonian (Hr or HE'"™°); when this symmetry is spontaneously broken, the dynamics
also automatically breaks the time-translational symmetry and develops the time crystalline order.
Crucially, the crystalline order is robust against perturbations that explicitly violates the emergent local
symmetry in the original H(#), but will immediately smooth out if H () loses temporal periodicity.

Second, the discrete nature of HF restricts its capture of dynamics to discrete points in time. Indeed,
in the example of Floquet symmetry-protected-topological (SPT) matters [232H243]], one must go
beyond the stroboscopic picture. In static SPT systems, the energy bands that encodes the topological
characteristics follow a natural order from the bottom to the top of energy spectrum. The number of
edge modes can then be counted by summing up the topological number for the bands below an energy
gap. In contrast, the quasi-energy spectrum of Hr is determined on a module, reflecting the fact that
any integer multiples of w can be freely added to a quasi-energy band. As a result, Floquet systems
lack a notion of bands below energy gaps. The problem is more clear in the time domain. To determine
the dynamics of an edge mode (e.g., to determine when it moves clockwise or anti-clockwise) requires
continuous track the micromotions on the edge, instead of taking discrete snapshots in time.

Finally, one should always be aware that Hr tends to be highly non-local for many-body systems,
leading to eventual thermalization to featureless thermal states. Escaping from such thermal states and

realize non-equilibrium phases necessitates breaking ergodicity. Beyond the aforementioned Floquet
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MBL and prethermalization, systems exhibiting quantum scar, stark localization, or Hilbert space

fragmentation may also be possible candidates [244-247].
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1.4 Quantum metrology

Measuring physical parameters with ever-increasing precision remains as an endless pursuit in
nearly all scientific researches such as probing gravitational wave or measuring electron electric
dipole moment, and technological applications such as sensing pressure or magnetic field strength.
Modern metrology—scientific study of measurements—can be traced back to late 18th century when
decimal-based metric system was created, well predating the discovery of quantum mechanics [248]].
In classical systems, to achieve greater sensitivity in measurement is essentially equivalent to better
isolate the sensor or the probe from the environment so that the classical fluctuations, such as thermal
or magnetic noise, are reduced. However, quantum metrology, which utilizes quantum systems as
sensors or probes, introduces fundamentally new principles. Even within a closed quantum system,
the measurement outcome of an observable is generally not deterministic due to inherent quantum
fluctuation [249) 250]. In this section, I introduce some fundamentals of quantum metrology, to better

contextualizes and motivates the study in Chapter 4.

1.4.1 Phase estimation

In precision measurements, determining the strength of physical parameters often relies on mapping
it to a relative phase shift between different components of a quantum state. Such phase shift cannot be
directed measured but inferred from the measurement of certain physical observables. As a result, the
precision of phase estimation is determined by the standard deviation of the observable, normalized by
the sensitivity of its dependence on the phase, i.e., the derivative of the mean value with respect to the
phasd®| [249-251]).

The simplest prototypical example is the Ramsey interferometry [252]: let the the two eigenstates
| 1) and | |) (with an energy splitting caused by the external parameter to sense) of a two-level system
acquire a relative phase 6 during the sensing procedure and measure 0 [253] 254]). Starting with the
probe state | 1), one can apply a 77/2-pulse to transform it to |x) = (| 1) + | 1))/+V/2. Following

the phase accumulation, the state becomes (e~%/2| 1) 4-¢/%/2| |})/~/2. A final 7r/2-pulse is then

SFor a given state, one should find out the most suitable observable that provides the best sensitivity.
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applied to obtain the final state COS% | 1)+ sin% | 1), and the phase 60 can be estimated by measuring the
projection onto the initial state pT = | 1)(1 |. In this protocol, the sensitivity of the phase estimation

from a single two-level system is then determined by

<1 |d(P inf| |d cos2?
[59]smg1e=(Var[P¢])2/' <d(j> = |51; y =1, (1.26)

However, to set a reference for the comparison with N entangled particles as discussed later, a more
relevant scenario is to perform phase estimation with N uncorrelated two-level particles, which can be
equivalently viewed as N identical copies of the same two-level system. According to the central limit
theorem, the variance of the measurement outcome decreases by a factor of N while the mean remains

the same, so the sensitivity of phase estimation becomes

50 = [(59]sing1e _ 1 '
VN VN

Despite illustrated in this specific example of Ramsey interferometry, such dependence on N turns out

(1.27)

to be extremely general in quantum metrology, known as the standard quantum limit (SQL): the best
sensitivity attainable without entanglement[z] [255,1256].

A complementary perspective of the Ramsey interferometry is a quantum spin-1/2 object sensing a
magnetic field through its precession angle [257]. In this scenario, the spin-1/2 object is represented as
a vector on the Bloch sphere. Initially oriented perpendicular to the magnetic field, the spin undergoes
precession by an angle 6 around the magnetic field. To determine 6 requires mapping out the initial and
the final directions of the spin. However, the projection of a spin-1/2 onto any direction yields £+1/2
for each individual spin. With N copies of spin-1/2, the measurement outcome follows a binomial
distribution with a standard deviation of ~ 1/ \/N .

While these above two perspectives are equivalent, they naturally motivate two distinct approaches
in entangled many-body systems, aimed at achieving more precise estimation of 6 using an entangled
N-body state [258]. To conduct the Ramsey interferometry with N entangled two-level systems,
one straightforward method is to consider Greenberger-Horne-Zeilinger (GHZ) state |GHZ) =

% [259]. Simply substituting % with |GHZ), the total phase accumulation becomes

7Note that we focus on the physical quantity that acts independently on each quantum degree of freedom.
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amplified by N, and the sensitivity improves to

2 N6

A 1 d<pTT> . d cos 1

In contrast to the standard quantum limit, this dependence is generally referred to as the Heisenberg
limit, representing the best attainable sensitivity even in the presence of entanglement [260, 261]].
Relatedly, the sensitivity is referred to as exhibiting Heisenberg scaling, if it satisfies 0 o % with a
larger prefactor.

To generalize the picture of a single precessing spin-1/2 vector to entangled N spins, one can
consider the “Bloch sphere” of the total spin vector. Despite the spin precession angle around the
magnetic field remaining 6, the variance of the total spin projection perpendicular to the mean spin
direction can be reduced [262H264]. Such spin states with reduced variance are termed spin squeezed

states, with the reduction characterized by the spin squeezing parameter [263), [264]

mjn Var[ﬁ ’ Stotal]
ﬁl<stotal>

|<§t0tal>|2

where the spin length as the denominator accounts for the fact that with a fixed precession angle 6,

=N

, (1.29)

vectors with longer length induce a larger change in the mean value of their projection. Note that the
squeezing parameters relates to the sensitivity by 60 = % With N entangled spin-1/2 particles,
it is proven that the squeezing parameter is at best ﬁ and the corresponding sensitivity 06 =

\/ﬁ [265,266]. This bound is saturated by the state lim V1-2a215,0) +a|%,1) +a|§, -1),
where |, m.) is the Dicke state defined as the unique state with total angular momentum 5 (the
largest possible value for N spin-1/2) and the z-component 1, [267] 268]].

While the GHZ state and the spin squeezed states are the most well-known and widely studied
examples, they represent only a small subset of metrologically useful states [257,269-274]]. In fact, the
general framework is as follows. To probe the strength « of a physical quantity A, one can take a state

—i0A 5,i0A

0 and evolve it as e pe’, with 0 = at. Consequently, estimates of a can be directly translated

into estimates of phase 6 by measuring some observable (O)(#) = Tr[Op(8)]. Then the precision to

8Here we still focus on the physical quantity that acts independently on each quantum degree of freedom. If the goal is
to probe the phase shift caused by multi-body interaction, the best achievable sensitivity can exceed the Heisenberg limit.
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estimate 6 is given by:

(Var[O])2 (Var[O])2 (Var[0])2 (1.30)
’ .

%0 = = [Ti0Ap— iGpA]] ([0, Al

In the aforementioned examples, p = @7 (|x) (x|), and O=yN <| NEI=1HU |) =Y.V & for

both cases; Acuz = 4 (|11 +++) + [ +b ) ) (11 -+ |+ (L - |) and Asquecsing = L 8! for

the GHZ state and the squeezed state respectively.

1.4.2 Quantum Fisher information and Cramér-Rao bound

Given numerous examples of metrologically useful quantum states, a natural question to ask arises
as how to access their efficacy in probing physical quantities, or equivalently how to determine their
sensitivity in phase estimation. This inquiry is partially addressed by the Cramér-Rao bound with the
concept of quantum Fisher information (QFI) [84, 186} 275H277]. In particular, the goal is to calculate
or bound Eq. [I.30] For pure states, the Heisenberg’s uncertainty principle provides a straightforward

answer:

A A 1A 2
VaI' [O]purevar[A]pure 2 1 ‘ <[O’ A] >Pure

‘ 2 1
4

= 00y > ——.
2/ Var[A]pure

While analyzing mixed states is more complicated, the key principle remains the Heisenberg’s uncer-

(1.31)

tainty principle. Let us decompose the density matrix with a set of pure states |i):

0= plwe) (il (1.32)
k

where |k) do not need to form a orthogonal basis. The uncertainty principle for the operator A to sense

and the operator O to measure in the sensing protocol applies for each pure state |k) as

Var[O]Var[A, > — |([0, A])«|”. (1.33)

Consequently, one can bound the measurement sensitivity with Cauchy-Schwarz inequality as

1

20/ Xk kaar(A)k‘

5600 > (1.34)
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It has been shown that for any choice of {py, |{x) }, the denominator can be bounded [278-280]:

Var(A >Zkaar A > i olo, A], (1.35)

where Var(A) = Tr[A%p] — (Tr[/lp])z is the variance computed for the state 9, and Fg[p, A] is the
quantum Fisher information defined as [249, 251} 281, [282]

(?\m —A )2

Eolp, Al =2

mn

[l Alm)|*

(1.36)

with A, and |m) the eigenvalues and the eigenvectors of p, respectively. Crucially, both the upper and
the lower bounds for ¥ pyVar(A); in Eq. are tight, leading to the Cramér-Rao bound for the
sensitivity [251} 256, 278 282284

A > 1 > 1 .
~ \/Folp, Al 2y/Var[A]

The second inequality is saturated when p is pure, and the result for pure states (Eq.|1.31)) is recovered.

(1.37)

Assuming A is a sum of single-body observable, it is straightforward to see the Heisenberg limit for
sensitivity.
In general, one can formally construct the optimal observable O that saturates the Cramér-Rao

bound. Specifically, decomposed in the orthogonal basis,
O =Y 0u|Ow) (Om| (1.38)
m

where Oy, and |O,,) are the corresponding eigenvalue and the eigenvector respectively. One optimal

m) are chosen to be the eigenstates of the operator

N o Am— Ay
La=2005 3, Il Al ol (139)

where L is named as the symmetric logarithmic derivative which satisfies a(e ) — p@ )L +HL( [251].

Second, Oy, is chosen to satisfy

i(Owm][p, A]|Om)
{Om|6]Om)

O — Tr[pO0)] o (1.40)

Note that this choice of O is sufficient but not necessary. Indeed, when measuring O in the experiment,
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one actually obtains a histogram of O,,, or equivalently |Oy,){O,|. Namely, given the single-shot
read-out, the information got from measurement outcomes of Ois essentially independent of the choice
of O,,. In particular, when measuring a different observable O’ = ¥, O’ |Oy,) (O, |, each single-shot
measurement outcome labeled by O/, can be re-assigned with the correct O, as per Eq. so that
(O) can be constructed and used to estimate 6.

Moreover, the standard projection measurement (SPM) can be extended to positive-operator valued
measure (POVM), a set of Hermitian operators E. which are non-negative and satisfy Y. E. =T,
but are not necessarily orthogonal (Tr[E.E.] = 4 does not necessarily hold) [68]]. Similar to SPM,
the single-shot measurement outcomes of POVM are labelled by €. In this generalized measurement
framework, the special case of SPM (which is equivalent to measuring O) is not necessary required to
saturate the Cramér-Rao bound. Additionally, since one usually cares more about the large N limit
for quantum sensing with entangled many-body systems, O can be chosen to asymptotically satisfy
Eq. Finally, for pure states p = |¢) (1|, the Cramér-Rao bound can be saturated by a much

simpler measurement—projection onto the probe state itself, i.e., O = |¢) (v [86,277].

1.4.3 Metrological protocols

The specific example of interacting two-level systems and the the general Cramér-Rao bound
provide a clear framework to perform quantum-enhanced metrology upon obtaining a quantum state
with high QFI. A natural follow-up question is how to prepare such metrological useful states and
to measure the desired observables. This is particularly relevant to the experiments, since almost all
platforms only allow for a very limited set of manipulations, e.g., many experimental systems can
only be initialized in a simple product state and the measurable observables are restricted to local
(single-body) operators.

Probably the most straightforward protocol is to effectively perform the projection measurement
that saturates the Cramér-Rao bound. A detailed protocol, known as Loschmidt echo [283]], is as

follows [286-288] P}

°In the SU(1, 1) interferometry [289], the second optical parametric amplifiers can also be viewed as performing a time
reversal evolution.
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1. Evolve a product initial state |4) with a unitary evolution U to a state [¢) = U|yo) hopefully

with a large Fg[|y), A] = Var |y, [A];
2. Evolve under A to encode the information of the strength of A (the physical quantity to sense);
3. Evolve backward with Ut and perform a projection measurement onto the initial state.

Formally, the measured signal is given by

(ol (U*e=*ATIgo0) (9ol 0*e® A0 ) [g0) = (pleA1y) (ple ), (1.41)

which is exactly equivalent to the standard protocol saturating the Cramér-Rao bound discussed in
the previous subsection. While the entire procedure does not specify a U that prepares |) or the
corresponding operator A that provide large QFI, it avoids projection measurement on the complicated
entangled state |i) by mapping the final measurement basis to the original simple product-state basis
via backward evolution.

The projection measurement on the initial state requires single-site resolution, a capability not
available in many experimental platforms, such as solid state defect systems and bulk gas of ultra-cold
atoms. Nevertheless, a simplified protocol that only requires measurement of global averaged quantity
can be applied. To be specific, one can initialize the system in a fully polarized initial state (in the
spin representation), which has the maximum polarization, and correspondingly measure the total
polarization of the final state [288] 290-296]. Crucially, the difference between the initial and the
final polarization directly reflects the overlap between the two states, and thus provides the similar
information as the projection measurement. It is essential to highlight that the global measurement
is required to overcome the classical shot noise—the variance of the measurement outcome should
faithfully reflect the quantum superposition states with different total polarization, rather than being
dominated by classical noise, such as detection error and particle loss [}

In the protocol outlined above for utilizing high QFI, a key step involves performing the backward
evolution U*. However, this poses a significant challenge in almost all experimental systems: even if

achievable, it always demands dedicate control. Moreover, any backward evolution is exponentially

10The impact of classical noise is not catastrophic [288} [290]
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susceptible to the inevitable noise present in real platforms. Thus, metrological protocols free of
backward evolution are highly desired. Squeezing serves as a prime example of such protocols, which
relies solely on forward evolution and the measurement of global sum of simple local quantities, such
as total spin polarization [263, 264, [297H301]]. However, achieving a squeezed state comes at an
unavoidable cost—it necessitates not only high QFI but also a more refined entanglement structure.
Finally, it is important to emphasize that the starting point of all these protocols is a U generating
metrologically useful states from a suitable initial state. While designing metrological protocols
based on this assumption represents an active direction, an equally, if not more important pursuit,
is to search for appropriate U. Despite a few isolated example procedures, mostly via quench
dynamics [256, 263|264, 302-303], there still lack a more systematic framework and more general

rules to generate metrologically useful states.
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1.5 Simulating out-of-equilibrium many-body dynamics

To numerically investigate the dynamics of out-of-equilibrium quantum systems, a variety of
numerical methods have been developed [306H319, 319H328]]. Comprehensive explanations and
detailed discussion of the intricacies of these methods are well covered in the literature [329-345]].
Within this section, I will outline the fundamental concepts underlying a few of these numerical tools,
along with their optimal applications to specific types of problems.

To compute the dynamics of quantum systems, two frameworks are generally employed: 1)
Schrodinger’s equations of motion, which describe the evolution of quantum states, and 2) Heisen-
berg’s equations of motion, which govern the evolution of quantum operators. In the case of open
systems, it becomes necessary to evolve the quantum density operators, instead of quantum states, and
correspondingly to use master equations. Although these frameworks are physically equivalent, their
numerical implementations vary significantly, particularly when incorporating approximations.

In Schrédinger’s picture, one needs to keep track of a quantum state [p(¢)), of which the evolution

is generated by the Hamiltonian H(t), through Schrédinger’s equation:

d
ilp(t) = Hb)lp(t)), (1.42)
with its formal solution given by
(1)) = Te b HE [p(0)), (1.43)

In practical computations, discretization of the time step is often necessary, especially when H(t) is

time-dependent. This leads to iterative computation of the time trace:
[W(t +dt)) ~ e HOU (1)), (1.44)

Even in scenarios where H is time-independent, Eqn. [T.44] plays an fundamental role in simulating

H(t)dt are typically

dynamics due to the following reasons: 1) approximations made to compute ¢~
valid only when ||H||dt < 1, and 2) the operation ¢~ ()4t needs to be computed only once and then

applied iteratively to the state.

The evolution of mixed states p =), g Pa,pla) (Bl has a slightly different structure. For a generic
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open quantum system, the Lindblad master equation takes the form:
. . + 1 + 1 .l..
p = —i[H,p] + ) 7(SipS] - 55i5ip = 50SiSi), (1.45)
i

where H again generates the Hermitian Hamiltonian evolution, and {S;, y; } represent the Lindblad
operators (with their corresponding rates) responsible for incoherent dynamics. Notably, the master
equation is linear in p. Given this linearity, although we typically think of the density matrix, p, as a

d-by-d matrix,

P11 P12 - Pud
o= P21 P22 - Pod ’ (1.46)
Pd1 Pda2 - Pdd

for numerical procedures, it is more convenient to represent p as a d>-dimensional column vector:

T
Based on this data structure, the Lindblad master equation can be reformulated as:
Pvec = —iLPvec, (1.48)

where L is a d*-by-d?> dimensional matrix and can be expressed as

. 1 1
L=(H®I-I®H") +12’yi(5i ® SiT — Esjsi ®@I-—51® Ssts)) (1.49)
1

Consequently, the formal solution for . mirrors the state evolution in Eq. [T.44;

Pvec(t+dt) = e LWag (1), (1.50)

This treatment of the density matrices simplifies the adaptation of most numerical methods designed
for pure quantum states to accommodate mixed states.

The operator dynamics are similar to density matrices:

O =i[H,0). (1.51)
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However, in addition to their analogous treatment as the density matrices, operator evolution more
closely resembles classical equations of motion, and thus is more amenable to semi-classical treatment.

The key steps to simulate evolution are: 1) representing the state i) or the density operator p, and

—iH(t)dt . ,—iL(t)

2) performing the linear operation e ore at step-by-step. This immediately suggests an
exponential difficulty. The dimension of Hilbert space, i.e., the size of the state vector and the Hamilto-
nian, grows exponentially with system sizes. Faithfully capturing the dynamics requires exponentially
large memory to represent the quantum states and the Hamiltonian, as well as computing multiplication
of exponentially large matrices. Conceptually, nearly all approximate methods essentially project the
evolved state into a subspace, either by directly constructing such a subspace or by assuming an ansatz
wavefunction parameterized by much fewer variables. This substantially reduce the complexity of

matrix operation, and in some scenarios demands significantly less memory to track the quantum state.

Consequently, all these constraints shape the current landscape of the numerical capability (Table [I.2).

Numerical Ideal types of system System Evolution
method to work in size time

KrEy ]13053[42?7 i Arbitrary geometry and interaction é ;’8 Arbitrarily long

TEBD [348]] 1D short-range interaction; ~10/]

TDVP [348] 2D or long-range interaction <108

DMT [349] with smaller system size > 107/]]"|
TVMC Homogeneous interaction ~ 10? Depend on

TWA When mean-field approximation applicable | ~ 10% system type

Table 1.2: Summary of numerical tools for simulating quantum many-body dynamics and the corresponding
optimal regimes to work at. See the references for public packages implementing these numerical methods.

1.5.1 Exact diagonalization and Krylov

Implementing exact diagonalization is the most straightforward among all numerical meth-

ods [306l 331]]. The Hamiltonian H is written in full matrix form spanning in the entire Hilbert

—iHdt

space. Correspondingly, the unitary operation e is obtained by fully diagonalizing H: first

decompose the Hamiltonian as H = PDP~!, where D is diagonal and P is a unitary matrix, and then

"'DMT may exhibit relatively large error in capturing early-time local equilibration dynamics from far-from-equilibrium
pure initial states, but it quickly becomes more accurate afterwards.

32



compute e~ 1t = pe=iDdtp=1 With the presence of symmetries, H becomes block diagonal, and di-

agonalization is better performed in each individual symmetry sectors to mitigate numerical instability
and reduce computational complexity. As of the current date, ED represent the most reliable method
for studying quantum many-body dynamics, and can be applied to any generic system, irrespective
of interaction type or geometry, albeit at the expense of being strictly limited by the exponentially
increasing computation resources with system sizes.

In contrast to ED, Krylov subspace method accelerates the calculation of the matrix exponential by

approximately projecting it onto a much smaller subspace [307,[332], spanned by

{ly), Hlp), H*[y), ..., H"|¢)}, (1.52)

where the subspace dimension m is much smaller than the Hilbert space dimension. Due to the
small leakage out of the Krylov subspace, the error accumulates and is controlled by the size of the
Krylov subspace m and the time step dt. However, computed evolution usually converges surprisingly
fast as m increases and dt decreases, thereby also qualifying as an exact method for simulating
quantum dynamics. While applicable to all types of Hamiltonians, Krylov method has a significant
advantage when leveraging the fact that almost all the realistic Hamiltonians only consists of few-body
interactions. In particular, when constructing the Krylov subspace, the multiplication is much faster
if the Hamiltonian is sparse. Additionally, one can treat the Hamiltonian as rules to map between
quantum states, instead of constructing the full matrix form the Hamiltonian, which helps to largely

reduce the required memory.

1.5.2 Time evolving block decimation

At its core, TEBD consists of three essential ingredients: 1) representing a quantum state in a
matrix-product form, 2) time-evolving the matrix-product state (MPS) leading to a new MPS with
increased memory usage, 3) approximating the new MPS through a truncation procedure to lower the
memory usage.

Matrix-product state—Taking spin systems as an example, the quantum state of spin-S system

with size N (with local Hilbert space dimension d = 25 + 1) is fully determined by the 4N coefficients
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in the local dN-dimensional basis |s1, 52, .. .,5N):

d
) = Y CopspsnlS152, -2 5N)- (1.53)

{s1,52,-5N}
The key idea behind MPS is to rewrite these coefficients as the contraction of a series of rank-3 tensors

so that the quantum state is represented by a product of matrices 308310} 333H336]:

X
C51,52,...,SN — Z I‘Lll}slrgzl},?zr‘[f’z]’?3 - I‘[N*HSN—ll"[N}SN (154)

AN-2,&N-1 " OAN-1 /
X102, N1

where s; is the index for physical legs, «; is the index for bond legs that are contracted between adjacent
sites, and x (called bond dimension) is the dimension of the bond legs. Crucially, log x constrains the
quantum state an MPS can represent by setting the upper bound for the entanglement entropy (more
strictly zeroth Rényi entanglement entropy) between the subsystems on the left and the right side of
the bond. Obviously, with exponentially large xy = d™/2, an MPS can exactly represent any quantum
states. However, this incurs excessive computational costs without providing commensurate benefits.
Hence, much smaller ) is always utilized in practice at the cost of accuracy loss due to projecting the
quantum states onto a low-entanglement subspace.

Unitary evolution— There are two primary ways to implement unitary evolution. If the system
is one-dimensional and the Hamiltonian is finite-range interacting, i.e., H = }_; h;, where h; is the
local Hamiltonian supported only on sites with finite separation, global unitary evolution can be

approximated with a series of local unitaries by using the Suzuki—Trotter expansion:

p—iHAt o it ,—ihadt || —ihdt (155)

Therefore, in each step, only a few Tl need to be updated locally. For example, a two-site local unitary
operator e~ ihidt = l1%1514151511 (obtained by directly computing matrix exponential of a two-site
Hamiltonian) can be viewed as a rank-4 tensor with a dimension of d along each axis. In a local update,

) r,[,f}fq,“irﬁfjjf;“ becomes replaced by

d 1 o
g q /ol ! i+1]s:
) quSr+l'5ifo+1rﬁf}f;,airgi,ai]’H. (1.56)

! ol
5irSiv1

Following a Schmidt decomposition, this rank-4 tensor is split to two rank-3 tensors, restoring the
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original form of F,Efl]fll,xl with a larger bond dimension of at most xd

Alternatively, if the Hamiltonian is long-range (or effectively long-range when mapping higher-
dimensional geometry to one dimension), the strategy of local operation will not be valid. In such
cases, one can write the global unitary operator also in the matrix product form, i.e., matrix-product

operator (MPO) E

—iHdt __ [1]51,, 4 1]2]52,8} 1 +[3]53.5! N1 151 [NJsas!
e Y Us, ™ Upopy " Upaps ™ Upn sy Baa v (1.57)
1,2/,--/PN-1

where s; and s; are the indices for physical legs corresponding to bras and kets respectively, and A is

the bond dimension. After one step of time evolution, all Tk}fill,xi are updated to

d [i]si,sh [i]s
Yu Lo (1.58)
s/

Combining the bond index «; and fB;, the updated matrix restores to the original form as a rank-3
tensor, with a new bond dimension of xA.

Truncation—Following each step of unitary evolution via either of the aforementioned methods,
the bond dimension Y generally increases. In order to constrain memory usage, one must make

Li]si

approximations to I';.” 4

to truncate the bond dimension to a preset maximum Xmax [311H314]
336H338]]. Truncation in TEBD involves performing a Schmidt decomposition of the rank-4 tensor
Y r,[,f}fgmrl[,fjjf;+l, and retaining only the vectors corresponding to largest Schmidt coefficients, i.e.,
the largest singular eigenvalues in the singular value decomposition (SVD). This procedure has a clear
physical interpretation: it retains terms contributing the most and discards those contributing the least
to the entanglement.

Error source and limitation—Two main sources of error affect the accuracy of TEBD. First, Trotter
errors arise in the Suzuki-Trotter expansion (Eq.[1.55). Depending on details of the Hamiltonians
and the specific expansion pattern (e.g., zig-zag or bricklayer), the approximation is correct up to

different order of dt. Namely, the Trotter error in a single step ~ (dt)‘s with § > 1, leading to an

error ~ (d t)éil for the entire evolution. This means that reducing the time step df can polynomially

12Note that to obtain the MPO for unitary operator, one usually starts from an MPO form of Hamiltonian, and directly
perform MPO exponential using approximate algorithm [320].
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improve the Trotter error.

The second type of error, truncation error, is more fundamental. It essentially reflects the fact
that MPS with relatively small bond dimension cannot represent highly entangled states. A trunca-
tion procedure that enforces the dynamics to stay in the small-entanglement subspace is a drastic
modification to the quantum states. Therefore, the limitation of TEBD is apparent: Since generic
many-body quantum systems, especially those in higher dimensions or with long-range interactions,
tend to become highly entangled at late times, TEBD is generally expected to better capture short-time
dynamics from untangled initial states. Nevertheless, there are a few special scenarios where TEBD
also works reasonably well even at relatively late times, such as many-body localized systems where

entanglement grows slowly (typically logrithmically with time).

1.5.3 Density matrix truncation

DMT is spiritually very similar to TEBD, but incorporates several major modifications aimed to
better capture late-time dynamics of strongly-interacting quantum systems as well as the Lindblad
evolution of open quantum systems [317, 318]. The motivation for such modifications are based on
the anticipated behaviors of relaxation process. At early times, the quantum states are simple in terms
of low entanglement, and are thus easy to represent with a small number of parameters. In contrast, at
late times, a thermalizing quantum system, despite being highly entangled, exhibit a different kind
of simplicity: it becomes close to thermal equilibrium and few-body observables display short-range
spatial correlations. A slightly deeper understanding suggests that the late-time dynamics are also easy
to track. Near thermal equilibrium, the remainder part of the system can be thought of as an effective
bath for a subsystem; capturing few-body observables is equivalent to correctly evolving the reduced
density matrices of such small-size subsystems. All these insights suggest the desired features of DMT.
First, it employs a density matrix instead of a pure quantum state to represent the status of the system.
Second, time evolution and truncation procedure need to be modified to be compatible with density
matrices. Finally, the truncation procedure should prioritize the treatment of few-body correlations
over entanglement, as emphasized in TEBD.

Matrix product density operators—Vectorizing density matrices (Eq. on local degrees of
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freedom allows one to write the density operator of the entire system in mathematically the same
form of a pure quantum state (Eq. [[.53). Therefore, analogous to MPS, a density operator can be
encoded by a series of rank-3 tensor as a matrix-product density operator (MPDO), with the dimension
for physical legs being d? [315, [316]. It is important to note that the local basis for vectorization is
not necessarily the product basis of bras and kets. Choosing a Hermitian basis (e.g., Pauli basis for
spin-1/2) ensures that all the coefficients are real numbers, and therefore saves roughly half of memory
usage and improves numerical stability.

Time evolution—Working with MPDO, time evolution takes the same procedure as in the MPS case,
consisting of either Trotterized local updates or a global MPO multiplication. The only adjustment is
to replace the Hamiltonian in the MPS evolution with the superoperator L in Eq.

Novel truncation procedure—A truncation to reduce the bond dimension ) is again required
after each step of evolution. In contrast to TEBD where the preservation of components with large
entanglement is prioritized, DMT explicitly prioritizes the preservation of short-range correlations. To
this end, DMT divides x into two components: y = yPreserve | yextra ypreserve jg ajjocated to store
the information of all observables on £ (named the preservation diameter) contiguous sites around the

extra ;

truncated tensor, or more generally a set of selected operators in the MPO formm X is then used

to preserve the remaining correlations with largest magnitude. To be slightly more specific, consider
the rank-4 tensor }_,. rﬁf}fg,mir}@ﬁf{“ which can be viewed as a yd?-by-xd? matrix, with the columns
(rows) corresponding to the linear space spanned by operators living on the left (right) side of the

I‘[H'l]szﬁrl

truncation bond. After truncation, the projection of ), F,[xl;fil,a, it

onto a x-dimensional left
(right) subspace can remain unchanged. Therefore, to preserve the local observables of choice and
the observables with the largest correlations across the bond, one only need to identify the subspace

spanned by the corresponding operators.

13 Although truncation does not directly affect these operators, their dynamics are influenced by the truncation of larger
sized operators via the evolution of the system.
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1.5.4 Time-dependent variational methods

Any efficient numerical method for simulating dynamics of large quantum systems must feature a
low-cost parametrization of the quantum wave function, usually with polynomially many parameters
compared to the with exponentially many coefficients in the full quantum description. This parametriza-
tion serves as an ansatz wavefunction. From this perspective, its proximity to the actual quantum
state determines the accuracy of the corresponding numerical methods Given such an ansatz

wavefunction, there are two straightforward strategies to implement the time evolution step-by-step:

* Allowing non-ansatz dynamics. In this approach, the time dynamics in each step are first
allowed to go outside othe ansatz form, then followed by an approximation to the closest ansatz

wavefunction. Both TEBD and DMT methods discussed above follow this strategy.

* Evolution within the anszatz manifold. This strategy, formalized as the time-dependent vari-
ational principle (TDVP) [350]], ensures that the system always evolves within the manifold

spanned by the ansatz wavefunction.

To be specific, Schrodinger’s equation (Eq.[1.42) for |¢(¢)) can also be interpreted as minimizing

|(1- 1) (ifwen - A0 o)

where the first multiplier accounts for removing the normalization condition for the wave function ['%}

, (1.59)

If |(t)) is allowed to span the entire Hilbert space, then this equation can always be minimized to 0,
recovering Schrodinger’s equation. However, within the ansatz wave function manifold, this equation
typically does not vanish, and the minimization problem results in an approximate solution for the
dynamics.

MPS-based TDVP— One natural choice of the ansatz wavefunction is MPS, assumed to be
parameterized by a set of time-dependent parameters {A1, Ay,...,A,}. At any time £, in order to

stay in the MPS manifold, the change of the quantum state % 9 (t))approx must lie in the tangent

space spanned by {9, |[(t)),9x,|$(t)), ..., 0, [¢(t))}. Therefore, the optimal | (#))approx that

14For example, MPS is a good ansatz wavefunction for states with low entanglement.

15We note that Eq. can be rigorously derived with variation principle of least action
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minimizes Eq. is simply the projection of the exact % |t(f))exact ONto this tangent basis:

VO appro = T (20, 0(0)]) (190t ) 20, 00
" (1.60)

=i (9, (0(0]) (AW (), [9(1)

Crucially, the overlap between two quantum states, as the key ingredient in this above equation, can be
efficiently evaluate with the MPS form [319, 319].
Time-dependent variational Monte Carlo— If the ansatz wave function takes the most general

general form
[¥) =Y em(Ar, .o, An)|m), (1.61)
m

where |m) forms a complete basis, the overlap between two states typically requires summation of
exponentially many terms and thus is hard to compute. An alternative is to use Monte Carlo methods.

Plugging the ansatz wave function Eq. into Eq. it is straightforward to show that the
optimal approximation of 7\ = (%, ceey %) is the best approximate solution of the over-determined

linear equation systems

AL —b=0 (1.62)

. . . - dcm . » ac,, .
where A is an m-by-n matrix with A, , = za;—n — zm %c;, ﬁ, and 7 is an length-m vector

with b, = (m|H|ip(t)) — Cm%. Formally, the solution is given by

=

A= (ATA)1ATD, (1.63)

where the calculation of (ATA),s, = ¥, A%, /Ay and (A'D), =¥, A, by should be evaluated
via Monte Carlo methods.
To be more concrete, time-dependent variational Monte Carlo (tVMC) assumes a specific form of

wave function:

(AL, A) = exp (Zoﬁ,’ﬂm) , (1.64)

n

where Ol = diag(Ogn], Ogn],. ..) are observables diagonal in the {|m)} basis. In terms of Ol", the
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n-th column of A as a vector A" can be written as

el = ilm Aln] —jc <lp(t)lo[n]’lp(t)>
AL = im0 1g(0)) — i LI IO (169

The calculation of the two ingredients in Eq. then becomes largely simplified to the evaluation of

polynomially many observables:

(ATA)y, = AlML. Al = (OO — (Ot (O, (1.66)
(ATD), = A" .5 = (O A — (Ot (A), (1.67)
where (- - - ) denotes ((£)| - - - |ip(t)). For each of these observables, instead of matrix multiplication

(which is still exponentially hard), Monte Carlo method should be employed [322] 1339 (340, [342]].
Specifically, one samples the coefficients |c,,|? using the Metropolis—Hastings algorithm [351]]. Each
update step has a time complexity proportional to the number of the parameters Ay,. If {|m) } forms
local basis for the many-body system, and all the O in the ansatz are few-body operators, each

update step will only cost constant time.

1.5.5 Semi-classical approach: truncated Wigner approximation

In the framework of Hamiltonian mechanics for classical systems, the equations of motion for

classical variables O,; are generated straightforwardly by the Poisson bracket,
O.cl = {H/ Ocl}~ (1.68)

The dynamics of a closed classical system can thus be conceptualized as an initial value problem of a
non-linear first-order ordinary differential equation system. To obtain numerical solutions, temporal
discretization and linear multistep (Runge-Kutta) methods are typically employed, with higher-order
Runge-Kutta methods often being necessary in many-body dynamics to reduce discretization errors.
Switching back to quantum systems, the operator dynamics (Eq. are formally identical
to the dynamics of classical variables (Eq.[I.68), upon mapping quantum commutators to classical
Poisson brackets. However, two fundamental distinctions arise due to quantum observables being

operators rather than numbers. First, a simple replacement of quantum operators with their expectation
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values in Eq. loses the information about quantum fluctuations. Second, unlike in determin-
istic classical dynamics, the expectation values of quantum observables do not factorize, namely,
<OZ~O]-> £ (0)) <O]~>. This non-factorizability complicates the equations of motion, as taking expecta-
tion values on both sides of Eq[I.5T]for all single-body operators fails to yield a closed set of equations.
Theoretically, a complete description involving exponentially many equations of motions can capture
all the many multi-body observables. However, this becomes equivalent to Schrodinger’s equation and
the exponential difficulty reemerges.

Within the framework of operator evolution, the concept of Wigner quasiprobability distribution
enables an approximate method, named truncated Wigner approximation, to numerically solve the
quantum dynamics in a semi-classical way. In such approximation, quantum states with quantum
fluctuations and probabilistic measurement outcomes are mimicked by classical ensembles with
statistical fluctuations. In particular, this numerical protocol comprises three steps [325H328|, 1344,
345]: 1) Randomly select a classical state from an initial classical ensemble based on the Wigner
quasiprobability distribution[lfl; 2) Generate the subsequent dynamics as if the system is classical, i.e.,
treating the multi-body observables on the right-hand side of Eq.[I.5T]as c-numbers, hence simply
treating them as products of single-body observables; and 3) Iteratively repeat the previous two steps
and average over enough classical trajectories to obtain the dynamics of the quantum system.

For continuous quantum degrees of freedom, the Wigner distribution typically forms a continuous
function in the phase space. For instance, to simulate kinetic motions of quantum particles, the initial
ensemble can be chosen as a normal distribution in the position-momentum phase space [328|,1344,[345]].
In contrast, internal degrees of freedom with discrete level structures requires a discrete version of
Wigner function [352]]. This leads to the discrete truncated Wigner approximation (dTWA) [325H327].
Consider spin-1/2 systems as an example: for a fully polarized initial state where all spins are aligned

along x-axis, each classical spin vector (S% ;, S”

Y282+ 5% ;) in the associated initial discrete classical

16The Wigner distribution for the initial quantum state must be positive definite, which is generally satisfied for simple
product states. This is consistent with the expectation that the dynamics from an highly entangled quantum states (which
have negative Wigner distribution) in general cannot be simulated by classical methods.
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ensemble follows an independent and identical distribution

1 11 1 1 1 1, 1

11 11

N —

It is worth remarking that a less strict but more intuitive perspective is that this choice of initial
ensemble ensures both the mean and the variance of the classical observables to agree with the

corresponding quantum objects.
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Chapter 2

Relaxation process to equilibrium

The prevailing consensus asserts that macroscopic classical phenomena naturally emerge from mi-
croscopic quantum laws [[164, [353H358]]. In the context of many-body system relaxing towards
equilibrium, even in the absence of a precise microscopic description, classical hydrodynamics pro-
vides a powerful framework for characterizing the late-time macroscopic behavior of local, conserved
quantities, such as energy. Typically, one expects a far-from-equilibrium system to initially undergo
local thermalization and rapidly approaching local equilibrium. By then, the system becomes described
by the density of a few spatially inhomogenous conserved quantities, such as energy density. These
conserved charges then travel across and redistribute throughout the system, eventually leading to
global equilibrium; in this latter step, a hydrodynamical description (i.e., a set of continuous classical
differential equations for coarse-grained quantum observables) usually applies [[164,[359-368]].
Despite this seemingly intuitive process, the actual relaxation dynamics of quantum many-body
systems are significantly more intricate. Firstly, for an open quantum system coupled to an environ-
ment, the shift towards classical behavior at late times is expected due to dephasing from the bath,
erasing the intrinsic quantum coherence of the system. However, in an isolated strongly-interacting
quantum system, understanding how classical description emerges and the requisite conditions for such
emergence remain fundamental open questions [[164, [166, 318,367, [369-373]]. In fact, exceptions
exist, such as many-body localized systems, which do not evolve towards thermal equilibrium in the

first place. Secondly, the quantitative prediction of emergent “classical” properties of a system (e.g., dif-
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fusivity, viscosity, heating rate under a drive) from a generic microscopic quantum Hamiltonian poses a
persistent challenge for analytics, numerics and experiments [164], 166,318 1367,1369, 370,373, (374].
Finally, while the general expectation of hydrodynamics usually holds, the late-time hydrodynamical
behaviors may still be qualitatively distinct in different systems, systemically characterized by the con-
cept “dynamical universality class”. It has recently become another active direction to identify various
universality classes and explore their relationship to the fundamental properties of quantum models,
such as integrability, symmetries and the presence of disorder or external drive [367, 1372} 1373375~
378]. This chapter will present several advancements along these research directions on both the

theoretical and the experimental fronts.
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2.1 Emergent hydrodynamics in nonequilibrium quantum systems

2.1.1 Introduction

Understanding the non-equilibrium dynamics of strongly correlated quantum systems represents
a central challenge at the interface of condensed matter, atomic physics and quantum information
science. This challenge stems in part from the fact that such systems can be taken out of equilibrium
in a multitude of different ways, each with its own set of expectations and guiding intuition.

For example, under a quench, one typically expects a many-body system to quickly evolve toward
local thermal equilibrium [89, 90, 92, (93] 96| 1379]]. At first sight, this suggests a simple description.
However, capturing both the microscopic details of short-time thermalization as well as the cross-over
to late-time hydrodynamics remains an open challenge [[149, 150, (152} 153} 380H384]]. Indeed, despite
nearly a century of progress, no general framework exists for perhaps the simplest question: How does
one derive a classical diffusion coefficient from a quantum many-body Hamiltonian?

Alternatively, a many-body system can also be taken out of equilibrium via periodic (Floquet)
driving — a strategy which has received a tremendous amount of recent attention in the context of
novel Floquet phases of matter [221H2261 232,236,385/ 1386 In this case, the non-equilibrium system
is generically expected to absorb energy from the driving field (so-called Floquet heating) until it
approaches a featureless infinite temperature state 177, [387-391]].

While these questions are naturally unified under the umbrella of non-equilibrium dynamics ﬂ
understanding the interplay between Floquet heating, emergent hydrodynamics and microscopic
thermalization represents a crucial step toward the characterization and control of non-equilibrium
many-body systems [[178}, (180} 181}, 1914194} 1392]]. That one expects such connections can already
been seen in certain limits; for example, in the limit of a high-frequency Floquet drive, energy absorp-
tion is set by an extremely slow heating rate. Thus, one anticipates a relatively long timescale where
the system’s stroboscopic dynamics can be captured by an effective static prethermal Hamiltonian.
These expectations immediately lead to the following question: How do the late-time dynamics of

driven quantum systems account for both the prethermal Hamiltonian’s hydrodynamics and the energy

Many other phenomena also fall under this umbrella including dynamics in localized and open stochastic systems
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absorption associated with Floquet heating?

Until now, such questions have remained largely unexplored owing to the fact that they sit in
a region of phase space where neither theoretical techniques nor numerical methods easily apply.
However, a number of recently proposed numerical methods [317} 1321} 1345, 1371}, 1393]] promise to
bridge this gap and directly connect microscopic models to emergent macroscopic hydrodynamics. In
this section, we will focus on one such method — density matrix truncation (DMT) [317] — which
modifies time-evolving block decimation (TEBD) by representing states as matrix product density
operators (MPDOs) and prioritizing short-range (over long-range) correlations.

Working with a generic, one-dimensional spin model, in this section, we use DMT to investigate a
broad range of non-equilibrium phenomena ranging from Floquet heating to emergent hydrodynamics.
Our main results are three fold. First, we find that DMT accurately captures two essential pieces
of Floquet physics: prethermalization and heating to infinite temperature (Fig. [2.1). Crucially, the
truncation step intrinsic to DMT enables us to efficiently explore the late-time dynamics of large-scale
quantum systems (up to L = 100), at the cost of imperfectly simulating the system’s early-time
dynamics.

This trade-off hinges on DMT’s efficient representation of local thermal states, making it a natural
tool for studying emergent hydrodynamics. Our latter two results illustrate this in two distinct contexts:
1) directly measuring the energy diffusion coefficient for a static Hamiltonian, and 2) demonstrating the
interplay between Floquet heating and diffusion in an inhomogeneously driven spin chain. We hasten
to emphasize that such calculations are fundamentally impossible for either exact diagonalization
based methods (owing to the size of the Hilbert space) or conventional TEBD methods (owing to the

large amount of entanglement at late times).

2.1.2 Model and phenomenology

We study the dynamics of a one-dimensional spin-1/2 chain whose evolution is governed by a

time periodic Hamiltonian H(t) = Hgutic + Hgrive(t), Where

L—-1
Hgaie = Y _[JoF07 1 + Jx0F o] +he Yo7, (2.1)
i=1 j
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Figure 2.1: Floquet thermalization of an L = 100 spin chain. (a) Average energy density measured with respect
to Hgatic = Degr under a global drive. The heating timescale T* is extracted from the energy’s exponential
approach to its infinite-temperature value, and depends exponentially on the driving frequency (for explicit
scaling, see Fig.[2.7p.) (b) The second Rényi entropy of the leftmost three sites. The dashed lines are computed
using the prethermal Gibbs ensemble. (c) Spatial profiles of energy density under a half-system drive with
(Hgatic) /L = —0.25. Insets: the drive’s time dependence (a) and schematics of the global drive (b) and the
half-system drive (c).

with o being the Pauli operators acting on site i. The drive, Hyrive (f) = Hgrive(f + T), exhibits a
period T = 27t/ w and corresponds to an oscillating field in the i and £ directions:
L
Harive () = ):1 vi(t) (yoy + h=07) . (2.2)
-
In this work we will consider two different driving protocols (Fig. insets) a global drive, with
all spins driven [v;(t) = sgncos(wt)], and a half-system drive, with only the right half driven
[Vi<r/2(f) = 0 and v;~ /o (f) = sgn cos(wt)]. Throughout the letter, we work in the high-frequency
regime with w > 5], and choose the parameters to be {], Jx, hx, hy, h.} = {1,0.75,0.21,0.17,0.13}.

We expect our choice of the model and parameters to be generic as we observe the same phenomenology

upon varying both the parameters and the interaction Hamiltonian.
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The quenched dynamics of a high-frequency driven system is characterized by two timescales.
The heating timescale, T* (Fig. [2.1j), determines the rate of energy absorption from the drive and
is proven to be at least exponential in the frequency of the drive, T* > O(e¥ / Jocal ), where Jiocal is
a local energy scale [178|[181)[191-194]. Up until T*, the stroboscopic dynamics of the system is
well described by the static prethermal Hamiltonian Degr = Hgtatic + O(w_l ), which can be obtained
as the truncation of the Floquet-Magnus expansion of the evolution operator [178 (192} [193]]. The

prethermalization timescale, Tp_,

(Fig. ,b), determines the time at which the system approaches an
equilibrium state with respect to Degr. When 7p_, < 7%, the system exhibits a well defined, long-lived
prethermal regime.

In Figs. 2.1h,b, we illustrate these two timescales by computing the dynamics of an L = 100
Floquet spin chain using DMT ﬂ The average energy density (Hguaic(f))/ L exhibits the expected
phenomenology (Fig. ): it remains constant (up to w~! corrections) until T*, after which it begins
to approach its infinite temperature value (Hgutic) T—co = 0.

To probe the prethermalization timescale Tp ., a different diagnostic is needed. In particular, we
compute the second Rényi entropy, S, = —log, tr [pg] , where ps is the reduced density matrix of
the three leftmost spins. While the system begins in a product state with S; = 0, its entropy quickly
approaches a prethermal plateau, consistent with the Gibbs state of D¢ at a temperature that matches

the initial energy density (Fig. @). The timescale at which this occurs corresponds to Tp . and,

eff
indeed, we observe Tp_, ~ 1/ Jiocal independent of the driving frequency w. Similar to the energy

density, at late times { > T*, S, begins to approach its infinite temperature value, SZT =% = 3 bits.

2.1.3 Benchmarking DMT

To confirm the reliability of DMT in the simulation of Floquet dynamics, we compare it with
Krylov subspace methods. This analysis not only gauges the applicability of DMT, but also leads to
insights into the nature of the Floquet heating process. In particualr, we utilize three diagnostics to

compare the time evolution between DMT and Krylov: the average energy density (Fig.[2.2), local

2In our calculations, we consider a generic initial state, typically taken to be a Néel state with a domain wall every four
spins. We have checked that our observations are independent of initial state.
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Figure 2.2: (a)(b)(c) Comparison between DMT and Krylov of the time evolution of an L = 20 spin chain
under a global drive (at fixed bond dimension x = 64). (a) Average energy density (Hguic)/L. (b) A
typical local observable 0507 (c) The second Rényi entropy S; of the leftmost three sites. The arrows mark
resonance-like dips, which DMT fails to capture. The dashed lines are computed using the prethermal Gibbs
ensemble. Insets (early-time behavior at frequency w = 10): (b) errors in the local observable 5<(75{7f0> =

(05075)DMT — (0507))Kry» (¢) errors in Sy. (d) Second Rényi entropy of the half chain, (e) a two-site local
observable (f) a single-site local observable as functions of the average energy density for the imaginary-time
evolved Gibbs state e PPeff and the late-time Floquet state (L = 20, w = 6). The agreement between the two
states demonstrates that the late-time Floquet system is simply evolving between different Gibbs states of D,g.
Inset: The average energy density as a function of inverse temperature.

two-point correlation functions (Fig. [2.2b), and the second Rényi entropy (Fig. [2.2).

At early times (¢ < Tp,,), one observes substantial disagreements between DMT and Krylov
(Fig.[2.2b,c). This is to be expected. Indeed, the accurate description of early-time thermalization
dynamics depends sensitively on the details of long-range correlations which DMT does not capture.
An exception to this is the energy density, whose changes are expected to be exponentially small
in frequency [193]]. This is indeed born out by the numerics where one finds that

(Hgtatic) / L remains quasi-conserved and in excellent agreement with Krylov (Fig. ).
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Figure 2.3: Energy density at (a) bond dimension y = 32,64, 128 and (b) the preservation diameter £ = 3,5, 7.
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One might naively expect the early-time disagreements to lead to equally large intermediate-time
(tp,s < t < T*) deviations. This is not what we observe. Indeed, all three diagnostics show excellent
agreement between DMT and Krylov (Fig.[2.2). This arises from a confluence of two factors. First,
DMT accurately captures the system’s energy density, which in turn, fully determines the prethermal
Gibbs state; second, DMT can efficiently represent such a Gibbs state. Thus, although DMT fails to
capture the approach to the prethermal Gibbs state, it nevertheless reaches the same equilibrium state
att ~ Tp_,. Afterwards (for t > Tp ), the system is simply evolving between different Gibbs states
of Degs (Fig. [2.2def), wherein one expects agreement between DMT and Krylov even at relatively low
bond dimension (Fig. [2.2abc).

Small disagreements between DMT and Krylov, however, re-emerge at very late times (t > T*)
and large frequencies, reflecting the physical nature of Floquet heating (Fig. 2.2). In particular,
as the frequency increases, absorbing an energy quantum from the drive requires the correlated
rearrangement of a greater number of spins [[181,[191}[193]]. However, these longer-ranged correlations
are not strictly preserved by DMT, leading to an artificial (truncation-induced) suppression of heating
at large frequencies (Fig. [2.3).

This raises the question: How does the accuracy of DMT converge with both bond dimension and
preservation diameter? As expected, increasing x at fixed ¢ improves the accuracy of DMT since the

amount of information preserved during each truncation step is greater, Fig. 2.3p. Curiously, tuning
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¢ at fixed x can also affect the accuracy, despite not changing the amount of information preserved,
Fig.[2.3b. This suggests the tantalizing possibility that one can achieve high accuracy at relatively low

bond dimension by carefully choosing the operators which are preserved.

2.1.4 Floquet heating dynamics

As a first demonstration of DMT’s potential for extracting quantitative information about the
Floquet dynamics, we directly measure the heating rate. We find that both (Hgic) /L and Sy exhibit
an exponential approach toward their infinite-temperature values: |(Hggic) / L| o et/ and (52T = —

Sp) o« e/,

To this end, we extract Tz and 7¢ as independent measures of the Floquet heating
timescale ﬂ For a Gibbs ensemble of H at temperature T, the probability p; assigned to the i’th

eigenstate (with €; being its eigenenergy) can be approximated to the first order as

o €7ﬁ€i N 1— ,561' i |
PiT [e=BH] T te[1-BH] 275(1 = pei), (2.3)

where B = 1/T, 2F is the dimension of the Hilbert space, and we can always set tr H = 0. The energy

is then written as:

E=) pei~2") (1-Bee=-2"") pef . 2.4)

A similar estimate can be made for the second Rényi entropy of the entire system:

AS; =L—S,=L+log, ) p; ~log, lz—L Y (1- ,Bei)zi =p2 LY e« pPx EX (2.5)

. Crucially, they agree with one another across all system sizes studied (L = 20-100), as shown in
Fig.[2.7p. Varying the frequency of the drive further allows us to extract the effective local energy scale
which controls the heating dynamics: ]E) a1 = 1.21 £0.04 and ]lical = 1.16 £ 0.04. This is consistent
Hyatic|| /L ~ 1.26 ]

with the microscopic onsite energy scale,

3The factor of 2 difference in the definitions of Tf and T¢ ensures the consistency between the extracted heating
timescales from (Hggyic) and S (in the high-temperature regime)

4We define the microscopic onsite energy scale as the norm of the local Hamiltonian on each bond I ]‘Tiz‘Tz'ZH +

JxoF ol + hy(0F + 0, 1) /2][; this differs by a (subextensive) boundary term from || Hstaic| /L.
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Figure 2.4: The average energy density (Hguaic|Hsatic) /L and the entropy AS; = SZT =% — Sy(f) decay
exponentially zero. The Floquet heating rate corresponds to the slopes in the logarithmic scale.

2.1.5 Observing emergent hydrodynamics

Having established that DMT accurately captures the late-time thermalization of Floquet systems,
we now apply it to the study of a much broader question: the emergent hydrodynamics of large
(undriven) quantum spin chains (L = 100). In particular, our main goal here is to measure the diffusion
coefficient as a function of temperature.

Our setup is the following. On top of an initial thermal state with respect to Hy,tic, we add a small
spatial inhomogeneity in the energy density (taken to be a Fourier mode). In particular, we consider an

initial Gibb ensemble [l

op =7 exp { B [H+1H! 0] } 2.9)

5In DMT, the thermal state can be straightforwardly generated by performing imaginary time evolution on the infinite
temperature state 07—qo o 1:

P = z™! exp {_16 {H + 77I_Iperturb] } . (2.6)

In contrast, because Krylov subspace methods can only treat pure states, it is impossible to directly compute expectations of
the thermal state. Nevertheless, expectation values over the thermal density matrix pg can be obtained by averaging over
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where

Z hicos - km (2.10)

perturb
site i=0

represents a family of perturbation which generates the g-th mode of the excess local conserved
quantity h;. To probe the energy diffusion, we specifically choose /; to be the local energy density
operator Jo707 | + Jxoi 07 | + %(Uix + 07 ).

Once the initial state is generated, we evolve system with Hgyec, and observe that the initial
spatial profile of the local energy quickly decays and the system becomes spatially uniform due to the
diffusion of the energy density. Crucially, the amplitude of this spatial variation decays exponentially,
with a rate that scales as k?, where k is the wave-vector of the Fourier mode. This quadratic scaling

is characteristic of diffusion and confirms the emergence of hydrodynamics from our microscopic

quantum Hamiltonian.
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Figure 2.5: (a) The evolution of the first Fourier mode under Hgatic. (b) The decay rate of Fourier modes
depends quadratically on the wavevector. The system size considered is L = 100. Inset: Decay of Fourier
modes at large system size. f3 is chosen such that the average energy density is set to be € = —0.1. (c) Extracted
diffusion coefficient as a function of energy density in the undriven spin chain.

initial states, which are then imaginary time evolved:

w{ops} = 3 1 (w00 1) ~ 5 1 [(w

Due to the large size D of the Hilbert space, we cannot perform the entire calculation. Instead we approximate it by averaging

over Nype number of random initial states |;):

1/2] [ 1/2’¢1>] ) 2.7)

iy o< Y cili), c;normal distributed complex variables (2.8)

Due to quantum typicality, such random states behave as infinite temperature states (for local operators) [394], and so the
number of Ny, need not be very large (we use Nype = 50).
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A few remarks are in order. First, by further varying the temperature of the initial Gibbs ensemble
(1/Bin Eq. , one can also study the diffusion coefficient, D(€), as a function of the energy density
€ (Fig.[2.5c). Second, in this setup, we have also confirmed that DMT gives dynamics consistent
with Krylov at small system sizes (L = 20). Third, our method, near infinite temperature (¢ = 0),
matches independent calculations of the diffusion [395]. Finally, we emphasize that such a numerical
observation of emergent hydrodynamics is well beyond the reach of conventional numerics and

fundamentally leverages DMT’s ability to prepare and evolve highly-entangled states near thermal

equilibrium.
Setup Probe . <1 =1 J.>1
Domain wall P(t) o t* a=1 | a=2/3[353] | a=1/2
Fourier mode | Ax(t) = A(ktP) | p=1 B=3/2 =2

Table 2.1: Depending on the value of anisotropy, spin transport in 1D XXZ model exhibit different types of
hydrodynamics at high temperature.

Moreover, we note that our procedure can also be applied to the study of integrable systems,
where different types of anomalous transport can occur, since integrable systems in general relax to
generalized Gibbs ensembles (GGE) rather than simple Gibbs ensembles. [164, 166} 171} 1353, 396+
398]]. We highlight this by computing spin transport in the XXZ model. Depending on the Ising
anisotropy, one expect the spin transport to be ballistic, super-diffusive or diffusive (see Table [2.1).
While these behaviors have been probed via other numerical methods in the setup of polarization
transport across a domain wall, we corroborate the existing results by studying the decay of the Fourier

modes in our setup described above ( (Fig. [2.6)).

2.1.6 Interplay between driving and hydrodynamics

Taking things one step further, we now combine the two previous settings and explore a situation
where the interplay between Floquet heating and diffusive transport is crucial for understanding the
system’s thermalization dynamics. In particular, let us consider the time evolution of a spin chain
where only the right half of the system is periodically driven (inset, Fig.[2.T¢). At time t = 0, the

system is initialized in a Néel state with a domain wall every four spins.
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Figure 2.6: Spin relaxation dynamics in 1D XXZ model from initial Fourier modes. Upper panel: spatial
profiles of local polarization. Lower panel: the amplitude of the Fourier modes as a function of time. In different
parameter regimes, we utilize different scaling exponents to collapse the curves for different wavevectors k,
again clearly demonstrating ballistic, super-diffusive and diffusive transport in agreement with Table@

After an initial period of local equilibration, the combination of inhomogenous driving and
interactions leads to three distinct features in the dynamics of the local energy density, as illustrated
in Fig.[2.7c. First, the local energy density on the right half of the spin chain is larger, reflecting the
location where driving, and thus Floquet heating, is occurring. Second, the energy density across the
entire chain gradually increases in time as energy from the right half is transported toward the left half.
Third, as the system approaches its infinite temperature state, the overall energy-density inhomogeneity
between the left and right halves of the system is reduced.

Leveraging our previous characterizations of both heating and transport, we combine them into
such a single hydrodynamical description. The only missing element is a small correction to the
transport due to the inhomogeneity of the drive, whose strength we characterize by a small, frequency
dependent parameter 7.

We now ask the following question: Can all three of these behaviors be quantitatively captured
using a simple hydrodynamical equation? If so, one might naturally posit the following modified

diffusion equation:

e(x, 1)
7

de(x, 1) = D(e)a,%(u n qg(x)]e(x,t)) — o(x) @.11)
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Figure 2.7: (a) Heating timescale, T*, extracted in energy density (E) and subsystem entropy (S;) for L =
20, 100. In agreement with theoretical prediction, T* depends exponentially on w. For both driving protocols,
we extract the same local energy scale ]l]f; a1 = 1.21. However, the half-system drive exhibits a heating
timescale twice as large as the global drive. (b) Extracted # decreases as the driving frequency increases. (c)
Hydrodynamical description captures the interplay between Floquet heating and diffusive energy transport
with half-system drive. Solid curves are computed using DMT. Dashed black curves are computed using a
hydrodynamical equation, Eq. 2.TT} where one feeds in the DMT-calculated energy-density profile at time
t = 200. Subsequent time evolution under the differential equation quantitatively reproduces the exact results
from DMT.

Here, ¢(x) is a step-like spatial profile which accounts for the fact that only half the spin chain is being
driven ﬂ The term proportional to # corresponds to the aforementioned correction to the transport
owing to the inhomogeneity of the drive, while the final term in the equation captures the Floquet

heating. We emphasize that for the heating rate and the diffusion coefficient, we utilize the previously

The equations governing the heat transport in classical systems are: d;e(x,t) = dxj(x,t) + q(x,t) and j(x,t) o
9xT(x,t). Since we drive only the right half of the chain, the mapping from energy density €(x, t) to temperature T(x, t),
as well as the energy absorption g(x, t), varies explicitly in position along the chain. The lowest order €(x, t) correction to
T(x,t) yields a heat current j(x, t) & dxT(x,t) < 9[(1 + 1g(x))e(x, t)], in which g(x) captures this inhomogeneity in the
mapping from € to T, and the small parameter 7 characterizes its magnitude. Motivated by the heating term in the global
drive case, we expect the local heating q(x,t) = —g(x)e/T*. To be specific, g(x) = 1 + J tanh[(x — L/2)/¢] with
¢ = 5. Our results are not sensitive to the particular choice of g(x), as long as it resembles a smoothed out step function.
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(and independently) determined values 1/} and D(e), respectively (Fig. and Fig. ).

In order to test our hydrodynamical description, we feed in the energy density profile computed us-
ing DMT (at time ¢ = 200) into Eq. 2.11]and check whether the differential equation can quantitatively
reproduce the remaining time dynamics (Fig. ) IZ} Our only fitting parameter is #, and we take it
to be constant across the entire evolution. We find that 7 < 1 and decreases as frequency increases,
consistent with our expectation that for larger driving frequencies, D, is more homogenous across
the chain [Fig.[2.7p]. Remarkably, we observe excellent agreement for the remaining time evolution
across all frequencies tested (Fig. [2.Tk and [2.7c)! To this end, our results confirm that only a few
coarse-grained observables are relevant to the late-time evolution of an interacting quantum system,

even under a periodic drive.

7We solve the hydrodynamical equation in the momentum space. In particular, by performing the Fourier transform:
e(x,t) = Y0 fu(t) cos E*, the hydrodynamical equation becomes

2 0 2 L
otfi(t) = —fi(t)D {kfn} - ﬁnz fu(t) {DW {kfn} + Tl*}/o dx g(x) Cosk%cos n—zx,

=0

which can be solved iteratively. In practice, we consider only the first 40 Fourier modes (n < 40), which does not inccur
significant error.

57



2.2 Emergent hydrodynamics in a strongly interacting dipolar spin

ensemble

2.2.1 Introduction

Unlike the analytical and numerical study, in which the major obstacle is to track the evolution
of quantum states in an exponentially large Hilbert space, experimental exploration of late-time hy-
drodynamics is often challenging due to a few completely distinct reasons. First, while experimental
systems by nature evolve quantum mechanically and encode all the information about the dynamics,
preparing initial states and measuring final values of observables become two delicate operations. In
addition, to investigate how the macroscopic quantities (e.g. diffusivity, viscosity, compressibility) are
determined by microscopic degrees of freedom further demands flexible and versatile control of the
quantum Hamiltonian. Despite these challenges, tremendous progress in time-resolved measurement
techniques (also understood as “pump-and-probe” protocols) has enabled the direct experimental
observation of emergent classical diffusion in several classes of quantum systems [354), 355, 1399}
403]]. There are, however, a wide variety of classical dynamical “universality classes” other than
diffusion[153} [171} 404, 1403]]; even within the most common universality of diffusion, certain sub-
stantial corrections may persist for extraordinarily long times [406-411]. In this section, we focus on
time-resolved experiments in a closed quantum system, which exhibits an unconventional approach to
late-time diffusion characterized by a long-lived, non-Gaussian polarization profile.

Our experimental platform consists of two strongly-interacting species of electronic spins in
diamond: substitutional nitrogen defects (P1 centers) and nitrogen-vacancy (N'V) color centers [0,
412]. By controlling the relative density of these two species, we demonstrate the ability to prepare
inhomogeneous spatial profiles of a conserved spin density, as well as to locally probe the resulting
nanoscale spin dynamics (Fig. [2.8)). These dynamics can be tuned via three independent controls: 1)
the initial spin polarization, 2) the average spacing between spins, and 3) the magnitude of the on-site
random fields.

Exploring this phase space leads us to an understanding of how the details of the microscopic spin

Hamiltonian modify conventional diffusion. By tracking the local autocorrelation function of the spin
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polarization, S, (t), we observe the emergence of a long-time, diffusive power-law, S, (t) ~ £3/2 for
over an order of magnitude in time (Fig.[2.8b). However, the details of this autocorrelation function over
a broad range of timescales indicate that, following local initialization, the spin polarization distribution
remains non-Gaussian throughout the time-scales accessible in the experiment; this originates from the
presence of strong disorder in our system, which leads to a distribution of local diffusion coefficients

and a Yukawa-like spin polarization profile (Fig. 2.84).
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Figure 2.8: (a) Schematic depicting the emergence of hydrodynamics in a strongly interacting dipolar spin
ensemble. Optical pumping (green arrow) of the NV center (red) enables it to behave as a polarization source
for nearby P1 centers (blue), resulting in the preparation of a local, inhomogenous spin-polarization profile.
Dynamics then lead to the spreading of this profile as a function of time. (b) Dynamics of the survival probability
Sp(t) of the v = 1/3 P1 subgroup in sample S2 at T = 25 K following a polarization period of 7, = 30 us.
After an initial transient, S p(t) approaches a robust power-law decay ~ 3 /2, indicating diffusion. The late-
time dynamics are accurately described by the diffusion equation (gray dashed line). (inset) Relative residuals
when fitting with (red) or without (grey) an additional long-range correction Cj.k> (Fig. Appendix .
In the hydrodynamical regime (grey shaded region) both models capture the data. (c) Illustration of our semi-
classical description for the spin-polarization dynamics. Each pair of spins exchanges polarization via the
dipolar interaction. The presence of other nearby P1 spins leads to an energy mismatch J and a homogeneous
broadening 7y; these parameters are independently measured via pulsed optically detected magnetic resonance
and spin-echo decoherence. (d) Initializing with unit polarization, a robust non-Gaussian polarization profile
emerges from the semi-classical model for all experimentally accessible time-scales. The crossover from a
Yukawa to Gaussian polarization profile is accurately captured by including the disorder-induced dynamical
modification, Cdynkzath, in the diffusion equation with Cqyn, = 204 £45 nm3.
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2.2.2 Hybrid spin platform

We choose to work with samples containing a P1 density ~ 100 ppm and an NV density ~ 0.5 ppm,
leading to a geometry where each spin-1 NV center is surrounded by a strongly-interacting ensemble
of spin-1/2 P1 centers (Fig.[2.8p). In this geometry, the NV center naturally plays the role of both a
polarization source and a local probe for nearby P1 centers. These roles rely upon two ingredients.
First, the NV center can be optically initialized (to |[mYY = 0)) and read out using green laser
illumination, which does not affect the P1 center. Second, the NV and P1 centers can coherently
exchange spin polarization when brought into resonance via an external magnetic field (Fig.[2.9n) [412];
this polarization exchange is driven by the Am; = 42 components of the magnetic dipole-dipole
interaction:

Hyvpr = — ) J—O (A; [STP +S™P7] 4+ BiS*Pf), (2.12)
i TNV,
where Jo = (27r) x 52 MHz - nm? characterizes the strength of the dipolar interaction, ryy ; is the
distance between the NV center and the i P1 center, A; and B; capture the angular dependence of the
dipolar interaction (Appendix , while S* and P* are raising and lowering operators for the NV
and P1, respectively. We note that Hyy.p; corresponds to the energy-conserving terms of the dipolar
interaction, upon restricting our attention to the NV spin subspace {|0), | — 1)} (Fig.[2.9%).

In addition, the P1 centers also exhibit dipolar interactions among themselves driven by the

Amg = 0 component:
Hpip = — Y, r];’ (4 [P By + P PF| + By PipY) 2.13)
i<j i
where A,-,]-, Eil]- are the analogous angular coefficients (Appendix .
When the NV and P1 are off-resonant, we observe an NV depolarization timescale, Tyepol =

2.3 + 0.1 ms, consistent with room-temperature, spin-phonon relaxation (Fig.[2.9b) [6]. By applying
a magnetic field, B = 511 G, along the NV axis, the NV’s

0) <+ |—1) transition becomes resonant
with the P1’s }—%> > ‘+%> transition (Fig. ), and we find that Tqepo) decreases by over two
orders of magnitude to 8.9 £ 0.6 us (Fig. ) [412]. We emphasize that the reduced Tgepor should

not be thought of as extrinsic decoherence, but rather as a consequence of coherent NV-P1 interactions
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(Fig. 2.9).

2.2.3 Local spin polarization

By continuously repolarizing the NV center via green laser excitation, one can use Hyy.p; to
transfer spin polarization to nearby P1 centers; this polarization is further spread-out among the P1s by
Hpi.p;. The duration of the laser excitation, Tp, then controls the amplitude, shape and width of the
local spin polarization. A longer T, leads to a larger local P1 polarization, which acts as a “frozen core”
around the NV center (inset, Fig. @b), suppressing dipolar spin exchange from Hynv.p; [413]]. This
suppression suggests that Tqepol, measured affer P1 polarization, should be significantly enhanced.
This is indeed borne out by the data. As shown in Fig. ,d, T4epor is extended by an order of
magnitude as a function of increasing 7,. The increase saturates as T, approaches the spin-phonon

relaxation time and the polarization process reaches a steady state (Fig. [2.9d) [414].

2.2.4 Probing nanoscale spin dynamics

To study the long-time dynamics associated with the dipolar-induced spreading of our initial
polarization profiles, it is essential to distinguish between early-time local equilibration and late-time
emergent dynamics. To this end, we introduce an experimental technique which allows us to explicitly
observe local thermalization. In particular, after polarizing for T,, we utilize a microwave 7t-pulse to
shelve the NV population from |0) into the highly off-resonant |+1) state (bottom inset, Fig.[2.9p).
Next, we perform a global microwave 7t-pulse on the |—3) < |+3%) Pl-transition, flipping the
ensemble’s spin polarization. Finally, we unshelve the NV population, effectively preparing an initial
condition where the NV is antipolarized relative to the P1 ensemble (top inset, Fig.[2.9).

The dynamics starting from this antipolarized configuration are markedly distinct. First, the NV
polarization quickly changes sign and reaches a negative value, indicating local thermalization with the
oppositely oriented P1 ensemble. Second, the larger the antipolarization (controlled by T,), the faster
the NV initially decays (Fig.[2.9¢,d). Crucially, this allows us to extract a characteristic time-scale for
local thermalization, Ty, ~ 12 pys.

Returning to the polarized case, we can now leverage the shelving technique to experimentally
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Figure 2.9: (a) In the absence of a magnetic field, the P1’s spin-1/2 sub-levels are degenerate, while the NV’s spin-
1 sub-levels exhibit a zero field splitting, Dgs = (271) x 2.87 GHz. By applying an external magnetic field, the
P1 and NV center can be brought into resonance. (b) When the NV and P1 are off-resonant (orange), B = 360 G,
the NV exhibits a stretched exponential decay ~ e (t/TIY) (dashed line) with T{\W = 2.3+ 0.1 ms, consistent
with spin-phonon relaxation. When the NV is resonant with the v = 1/3 subgroup of P1s (green), B = 511 G,
depolarization occurs significantly more rapidly and is strongly dependent upon the polarization time T,; a longer
Tp leads to a larger local polarization of P1 centers (inset) and a correspondingly longer NV relaxation time.
Dashed green lines correspond to the NV dynamics as captured by our semi-classical model (Appendix [A.2). (c)
NV depolarization dynamics with an anti-polarized v = 1/3 P1 ensemble (top inset). Depolarization occurs in
two distinct steps: an initial decay, ¢ < Ty, ~ 12 ps, corresponding to local equilibration with the P1 ensemble,
followed by late-time diffusion. (bottom inset) Pulse sequence describing the preparation of the anti-polarized
P1 ensemble. (d) Depolarization time Tdepol (extracted as the 1/e decay time of the initial polarization) as
a function of Tp for different effective P1 densities v. The anti-polarized case for v = 1/3 is denoted as P1
Flip [panel (c) above]. As T, approaches P1’s Ty ~ 1 ms, Tqepo) saturates. (e) P1 spin coherence time, T,
for different dynamical decoupling sequences, Ramsey [0.032 & 0.005 us], XY-8 [1.27 & 0.02 us] and an
interaction decoupling sequence [4.4 &= 0.1 us using DROID [210, 211]]; coherence times are extracted from
single exponential fits (dashed blue lines). (inset) Data plotted in semi-log. (f) Depolarization dynamics for
Tp = 1000 ps with variable NV-shelving time, Ty (inset). The Tw-independent collapse of the late-time data
confirms the NV’s role as a local probe of the P1’s polarization dynamics. All data are taken using sample S1 at
room temperature T ~ 300 K.

isolate the emergent late-time dynamics. In particular, we polarize for time 7, shelve the NV and then
wait for a variable time T, to allow the P1 polarization to spread. Upon unshelving the NV, we observe
a two-step relaxation process, as depicted in Fig. [2.9f. After an initial step of rapid local equilibration,
the late-time dynamics exhibit a T, -independent collapse. Crucially, this demonstrates that for £ > T,

the NV polarization functions as a local probe of the amplitude of the P1 polarization profile, P(¢,);
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alternatively, one can also think of the NV’s polarization as an autocorrelation function that captures

the survival probability of the P1’s polarization dynamics [415]].

2.2.5 Observation of emergent diffusion

At late times, the conservation of total polarization and the dynamical exponent z = 2 determine
the characteristic behavior of the survival probability in d dimensions, S, (t) ~ t~%/2; the simplest

hydrodynamic model capturing this corresponds to Gaussian diffusion:

P(t,r)

0;P(t,r) = DV?P(t,r) — T
1

+Q(t, 1), (2.14)

where D is the diffusion coefficient. The latter two terms in Eqn. (2.14) are motivated by our ex-
periment: Q(t,7) is a source term that characterizes the P1 polarization process, while Tj is an
extrinsic relaxation time, after which the experimental signal becomes suppressed (Appendix [A.3.1).
In order to maximize the experimental window for observing emergent hydrodynamics, we work at
low temperatures T = 25 K, where the NV’s T{\W time extends by an order of magnitude, and the P1’s
T, time extends by a factor of three [416]. The source Q(¢,r) contains contributions from each of the
randomly distributed N'Vs, whose finite density produces an overall uniform background polarization
that decays exponentially in time. Isolating the nanoscale polarization dynamics from this background
(Appendix , we observe a robust power-law decay of the survival probability, S, (t) ~ t3/2,
for over a decade in time, demonstrating the emergence of spin diffusion [Fig. 2.8b] [415]. Extracting
the corresponding diffusion coefficient from S, (t) = Piota/ (47tDt)3/? requires one additional piece
of information, namely, the total amount of spin polarization, Py, transferred to the P1 ensemble.
Fortunately, this is naturally determined by combining the height of the measured polarization back-
ground with the density of NVs, which we independently calibrate using a spin-locking experiment.

This enables us to experimentally extract the spin-diffusion coefficient: D = 0.35 4= 0.05 nm?/ us

[Table[2.2]].
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Effective v=1/3 v=1/4 v =1/12
density
S1 S1
Sample S1 52 undriven Qg4 = 11.7 MHz S1
D [nm?/7s] 0.28+0.06 | 0.35+0.05 | 0.2540.06 0.33 £0.09 0.11 £0.03
¢D [nm?/7s] | 0.824+0.17 | 1.03 £0.13 | 0.74 +0.18 0.95+0.26 0.33 £0.08
D2y [nm?/7s] | 0.98 £0.03 | 1.09 +0.02 | 0.66 4 0.04 0.95+0.02 0.21 £0.03

Table 2.2: Across all samples, temperatures, P1 densities and disorder strengths. Accounting for the appropriate
non-Gaussian geometric factor, § = 27173, yields agreement between the diffusion coefficient extracted from
the survival probability and that extracted from the growth of (r2> (computed via our semi-classical model).
Samples S1 and S2 both contain a P1 density of ~ 110 ppm, while their NV densities are ~ 0.7 ppm and
~ 0.3 ppm, respectively. Measurements on S1 are performed at room temperature, while measurements on S2 are
taken at T = 25 K. For sample S1, we also consider two additional tuning parameters: (i) different effective P1
densities, Vv € {%, %, %}, tuned via the hyperfine structure (Fig. ), and (ii) different disorder strengths, W,
tuned via continuous microwave driving (Fig.[2.11d). The reported uncertainties include propagated uncertainties
from other experimentally extracted parameters (e.g. T and pNy). Despite overlapping error bars, a detailed
analysis [2.10] confirms that the driven diffusion coefficient is statistically larger than the undriven case. Error
bars represent 1 s.d. accounting statistical uncertainties.

((om) [ v=1/3 [ v=1/4 | v=1/12
Sample S1 | 129+14 | 13.6+14 | 203£1.9
Sample S2 | 143+16 | 151+15 | 193+19

Table 2.3: Extracted £ from the spin polarization dynamics for the different sample considered (S1 and S2) and
the different P1 subgroups. With decreasing density, we observe a corresponding increase in the lengthscale ¢.
Crucially, £ remains always larger than the P1-P1 distance highlighting that its value is not a simple consequence
of the discrete nature of the spins in our system. Note that in order to extract £ = /Cqyn, We utilize our semi-
classical model to obtain the full spatial profile of the polarization decay and fit the profile to the analytically
solved dynamics under the diffusion correction (including the dynamical correction), starting from a Yukawa
form for the polarization profile. To minimize finite size and time biases, we consider the dynamics between
tmin and tmax. the latter set to the time when the polarization per spin at the edge is larger than 3 x 107°.

2.2.6 An unconventional approach to diffusion

While the hydrodynamic model in Eqn. (2.14) captures the correct dynamical exponent, it assumes
that the dynamics follow Gaussian diffusion at all times. However, disorder induces important
modifications to this picture and leads to a novel dynamical correction. In particular, around each P1
center there is a distinct local environment, arising from both positional disorder and the presence of
on-site random fields (generated by other paramagnetic spin defects). This leads to a spatially-varying
local diffusion coefficient. As an initial polarization profile spreads, its dynamics naturally average

over an increasing number of local P1 environments. This generates a dynamical modification to the
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Figure 2.10: (Left Panel) Distribution of diffusion coefficients from our fitting procedure (lighter color corre-
sponds to higher probability). Given a diffusion coefficient D, we observe that the extracted diffusion coefficient
under a drive Dy, of the other v = 1/4 group is consistently larger, highlighting that the drive modifies
the diffusive dynamics by changing the onsite disorder of the system. (Right panel) Distribution of Dy, for
D € [0.24,0.25). Dashed vertical line corresponds to the value of D.

diffusion equation, whose leading contribution is Cdynkzat (Appendix :
0Pk (t) = — [DK* + Caynk?ds + - - - | Pi(t), (2.15)

where Py (t) is the Fourier component of the polarization with wavevector k. This term induces two
striking modifications to the diffusive dynamics. First, the early time polarization profile follows
a Yukawa-like form ~ %e‘r/ ¢, and only crosses over to a Gaussian at late times (Appendix .
Second, the relationship between the height of the polarization profile S, (t), and its width ~ VDt is
fundamentally altered; more precisely, in order to faithfully extract D from S, (t), one must account
for the non-Gaussianity of the polarization profile.

To connect our nanoscale spin dynamics to these disorder-induced hydrodynamical features,
we utilize a semi-classical description of the polarization evolution based upon Fermi’s golden rule
(Fig.[2.8c, Appendix[A.2). Accounting for both positional disorder and on-site random fields, numerical
simulations of the polarization dynamics exhibit excellent agreement with the experimentally measured
Sy (t) for over three decades in time (Fig. ). Our semi-classical model also provides direct access
to the spatial polarization profile, which remains robustly non-Gaussian throughout the time-scale of
the experiment, indicative of unconventional diffusion. Remarkably, the polarization profile precisely
exhibits the predicted Yukawa to Gaussian crossover (Fig.[2.8d) and enables us to extract the coefficient

of the dynamical modification [Eqn. 1i as Cdyn = 204 + 45 nm? [Table. A few remarks are
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in order. First, this coefficient defines a physical length scale, { = |/Cqyn = 14.3 + 1.6 nm, which

"/t of the polarization profile. More intuitively, £ can be

sets the decay of the Yukawa form ~ %e‘
thought of as the length-scale over which the disorder-induced variations of the local P1 environments
start to become averaged out. Thus, only when the polarization expands to a characteristic size much
larger than ¢, will the dynamics approach Gaussian diffusion.

Second, as evinced in Fig. 2.8, for a wide range of intermediate time-scales, the polarization
profile is well-described by a simple exponential, which modifies the relationship between the survival
probability and the diffusion coefficient. This modification can be computed analytically and takes the
form of a geometric factor § = 2711/3 18| wherein D — gD (Table . Crucially, the mean square
displacement of the polarization profile, (r?)(t) = 6D (=)t , provides an independent measure of the
diffusion coefficient [417, 418]. As highlighted in Table [2.2] only by accounting for the disorder-
induced geometric factor do we observe agreement between the diffusion coefficient extracted from

Sp(t) and (r?)(t); this agreement directly demonstrates the non-Gaussian nature of the observed

dynamics.

2.2.7 Microscopic control of emergent spin diffusion

We now demonstrate the ability to directly translate changes in the underlying microscopic
Hamiltonian to changes in the emergent macroscopic behavior. In order to engineer the Hamiltonian,
we exploit the hyperfine structure of the P1 defect, enabling control over the effective density and the
on-site random field disorder. In particular, sweeping the strength of the external magnetic field from
490 G to 540 G reveals five spectroscopically distinct subgroups of the P1 ensemble, each containing
a different fraction of the total P1 spins, with density ratios v = {11—2, %, %, %, %} (Fig. = and
Supplementary Information) [6}1412]]. Thus, tuning the external magnetic field provides discrete control

over the average spacing between resonant P1 spins. As shown in Fig.[2.TT, the survival probability

for both the v = 1/4 and v = 1/12 P1 subgroups exhibits significantly slower spin diffusion than the

8The difference in their shapes of the Gaussian and the exponential modifies the relationship between the height and the
width of the distribution and thus how one can extract the diffusion coefficient. In the Gaussian case this relationship is given
by Sy () = Pyot/ (27(r?))3/2 while in the exponential case it is given by S5 (t) = Prot/ [872((r?))3/2], where Pyy is the
total polarization in the system. Replacing with <r2) = 6Dt and equating the two survival probabilities leads to a constant
factor correction ¢ = 27t1/3 between the two diffusion coefficients.
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Figure 2.11: (a) Depolarization rate, T(;;,Ol, of the NV center as a function of magnetic field after 7, = 1 ps.
The NV exhibits five distinct resonances corresponding to five different subgroups of P1s with density ratios

Ve {11—2, }I' %, %, 11—2} For panels (b,d) below, we fix the magnetic field strength, B = 496.5 G, wherein the

NV is resonant with a v = 1/4 P1 subgroup (indicated by the arrow); the top axis shows the frequency of
the P1 subgroups at this field strength. (b) Fixing a polarization time, 7, = 300 s, and an interaction time
t = 3 ps (inset), we probe the polarization transfer between the NV and the resonant v = % P1 subgroup. By
driving the other P1 subgroups, one can effectively reduce the magnitude of the on-site disorder by “echoing”
out a portion of the Ising piece of the dipolar interactions. Sweeping the microwave driving frequency, w, we
observe an enhanced NV decay when it is resonant with the v = ﬁ, %, % subgroups as well as an additional
“forbidden” transition, F. By comparing against numerical simulations for a single P1 spin (dashed black line),
we conclude that—aside from the v = % resonance where an additional hyperfine depolarization channel plays
a crucial role—echoing out disorder enhances the coherent many-body interactions and leads to faster dynamics.
(c) Dynamics of S,(t) for different effective P1 densities with 7, = 100 ps; control over the P1 density is
achieved by tuning the external magnetic field to bring the NV into resonance with the v = %, % and % P1
subgroups. A smaller P1 density leads to correspondingly slower spin diffusion [Table 2.2]. (d) Dynamics
of S,(t) for different on-site disorder strengths with 7, = 300 ys. Under continuous microwave driving
[Qdrive = (271) X 11.7 MHz] of the other v = 1 P1 subgroup (inset), the effective disorder is suppressed and
spin diffusion is enhanced [Table . Dashed lines in (c) and (d) correspond to Sp(t) obtained via Eqn. (2.14).
All experimental data are taken using sample S1 at room temperature T ~ 300 K.

v = 1/3 subgroup. This is consistent with the presence of weaker interactions arising from the larger

spin spacing, and leads to smaller values for the measured diffusion coefficient (Table [2.2)).
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Figure 2.12: Fitting of the diffusive description with different terms and fixed T; = 2.6 ms in sample S2 with
Tp = 30 ps. Different columns represent fitting to a different range of the data (highlighted by the red shaded
region). The inclusion of more terms in the diffusive description allows for a better fit of the data, however the
improvement in the fitting range is only significant when the fitting regimes includes early time data (< 30 us),
as highlighted in the second row of the relative residuals. All data are presented with logarithmically spaced y
axis, except in the grey shaded region where a linear regime is used to highlight the fluctuations of the residuals
around 0. Fits in Fig. 1b correspond to the third column.

Finally, one can also experimentally control the strength of the on-site random field disorder via
continuous driving. Since these fields are dominated by the Ising portion of the interactions between
the various P1 subgroups, rapid microwave driving of a single subgroup causes its contributions to the
disorder to become averaged out (Fig.[2.T1p). Indeed, by bringing the NV into resonance with one
of the v = 1/4 subgroups (black arrow, Fig.[2.11j), while driving the other v = 1/4 subgroup, we

observe faster spin diffusion, consistent with a reduction in disorder [Fig. 2.1Td and Table 2.2].

2.2.8 Outlook

Looking forward, our work opens the door to a number of intriguing future directions. First,
the presence of long-range, power-law interactions can lead to different dynamical universality
classes [419]]. Within our semi-classical model, the polarization dynamics are governed by an ef-
fective ~ 1/r% power-law (Eq. in Appendix . Interestingly, much like disorder, this
particular power-law also leads to an unconventional approach to diffusion, albeit governed by a
distinct non-analytic correction ~ Cj,k> (Appendix ; our data (Fig. inset and Fig.
do not exhibit clear signatures of this power-law correction and we leave its observation to future
work. Second, the ability to experimentally isolate local equilibration dynamics naturally points to

the study of many-body localization and Floquet thermalization [95, 420]]. In long-range interacting
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systems, the precise criteria for delocalization remain unknown [421} 422]], while in Floquet systems,
the late-time dynamics involve a complex interplay between heating and hydrodynamic behaviour
[189, 318]]. Finally, the presence of a Yukawa-like polarization profile in our system is reminiscent
of an open question in the biochemical sciences, namely, what is the underlying mechanism behind
the wide-spread emergence of Fickian yet non-Gaussian diffusion in complex fluids [406-411]]; in
such systems, it is notoriously difficult to change the microscopic equations of motion, suggesting the
possibility for our platform to be utilized as a controllable “simulator” of soft, heterogeneous materials.
A direct route for exploring this question is to leverage sub-diffraction imaging techniques or magnetic

field gradients in order to measure correlation functions between spatially separated NVs [423] 424]].
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2.3 Exploiting disorder to probe spin and energy hydrodynamics

2.3.1 Introduction

Owing to the development of large-scale quantum simulation platforms ranging from ultracold
atoms and superconducting circuits, to solid-state spin systems [[157} 364, (399, 1425|426, the pursuit
to experimentally characterizing the nature of these hydrodynamical descriptions has seen tremendous
advances [[152,[153] (164} [166| 167,170, (171}, (173 318,354 [355] 1357, 1358l 369}, [373] 378}, 1393 427
429]. In order to control and probe many-body dynamics in such systems, one typically requires
a combination of strong interactions, giving rise to the most interesting dynamical behaviors, and
local addressing, that can probe them. In the majority of platforms, these two features are in tension:
Strong interactions arise when the constituent degrees of freedom are closely spaced, which in turn
challenges the ability to perform local measurements [430,431]]. The tension is particularly acute in
solid-state platforms where electronic and nuclear spins can exhibit strong interactions only when
spaced at nano-meter lengthscales. One of the solutions, as presented in the previous section, is to
work with multiple species of defects in a hybrid system: The species with high density plays the role
of a strongly interacting system, while a much more dilute species is used as the local probe.

In this section, we will demonstrate another protocol: Disorder, often times unavoidable in solids
and long-considered detrimental for quantum coherence and transport, can be a powerful source of local
control. First, by dephasing a homogenous state using the disorder, we demonstrate the preparation of
states whose polarization on different sites is uncorrelated. Second, we show that single-site, spin-spin
correlation functions can be directly measured using spin echo. The intuition behind our approach
is the following — owing to the lack of spatial correlations, non-local components of the correlation
function are averaged out, leaving only a sum of autocorrelations. Applying our technique in the
context of nuclear magnetic resonance, we demonstrate the direct observation and characterization of
nano-scale spin and energy transport, without the need for magnetic field gradients, sub-diffraction
techniques, or multiple spin species [364} 400, 1423\ 1424] 432-434]]. Combining with Floquet driving
technique to engineer the system’s Hamiltonian, we investigate the cross-over between ballistic and

diffusive hydrodynamics. Interestingly, in certain parameter regimes, we observe the coexistence of
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diffusive spin transport with ballistic energy transport, a hallmark of interacting integrable systems.
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Figure 2.13: (a) Chemical structure of Fluorapatite. 9F nuclear spins (blue balls) form a quasi-1D structure
and can exhibit different classes of hydrodynamics under various effective Hamiltonians realized by Floquet
engineering. 3'P atoms (gray) provide intrinsic on-site disordered fields on '°F spins, which enables the
preparation of random states and observables. (b), The experimental protocol to obtain local autocorrelations
consists of three main stages. The central ingredient is to realize spatially uncorrelated random states and
observables in the preparation and the measurement stages. Hamiltonian engineering enables varying the
quantum dynamics. ¢, The sequence to prepare random states and observables contains four steps: (i) initialize
the system to a spatially homogeneous state with polarization along x axis, (ii) apply disordered field along z
axis to encode (iii) local information into the spin phases, (iv) perform phase cycling to eliminate the residual
homogeneous part. The arrows represent spin operators whose bases are specified on the right for the random
Zeeman state and the random DQ state, respectively. To effectively measure spatially random observables, we
apply the same sequence in reverse order to the final state before measuring the homogeneous magnetization

(Appendix[A-4).

2.3.2 Experimental system

Our experiments are performed on S = 1/2 °F nuclear spins within a single crystal of fluorapatite.
The sample in the experiment is a single crystal of fluorapatite (FAp) with formula Cas(POy4)sF.
The most abundant isotopes of F and P have 1/2 nuclear spin, while the most abundant isotopes
of Ca and O have zero nuclear spin. Fluorapatite is a hexagonal mineral with space group P63 /m,
where the 1°F spin-1/2 nuclei form linear chains along the c-axis. Each fluorine spin in the chain is
surrounded by three equidistant 3'P spin-1/2 nuclei. The sample is placed at room temperature inside

a superconducting magnet producing a uniform B = 7 T field aligning along the [001] axis. The
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Hamiltonian of the system is given by

Hiot = wr Y S5+ wp Y s5 + Happ (2.16)
k K

Hgip = Hrr + Hpp + Hpp
) 2.17)

_y M vk 5.3, 3(S; - 7ix) (Sk - ik
P |7k |2 '

j<k
The first two terms represent the Zeeman interactions of the F(S) and P(I) spins, respectively, with
frequencies wr = yrB &~ (271)282.37 MHz and wp = ypB = (27)121.51 MHz, where g, p are
the gyromagnetic ratios, 7jx is the vector between the (j, k) spin pair.

A few approximations are made as follows. First, due to the strong external magnetic field, all
the nuclear spins are quantized along the [001] axis with a Zeeman splitting much larger the dipolar
interaction. Hence, we can truncate the dipolar Hamiltonian to its energy-conserving part (secular
Hamiltonian), because . Second, since the coupling between 3'P spins (1.20 krad s~! for nearest
31p_31P pairs) is much weaker than the coupling between '°F spins (32.76 krad s ! for nearest ’F-1°F
pairs), as well as the 1?F-31P coupling (6.12 krad s~1), dynamics of 3'P spins can be ignored for short
time and I only provides a static random field. In addition, as the temperature is much higher than the
Zeeman energy, each 3'P spin is randomly polarized with negligible correlation between different >'P
spins. As a result, Hgp can be viewed as an on-site disordered field for '°F spins. Finally, the coupling
between nearest '°F spins within a 1D chain along [001] direction is much (~ 40 times) stronger than
the coupling between nearest pairs along other directions. Therefore, we treat the '°F as an ensemble

of decoupled quasi-1D spin chains, and our 3D many-body system effectively reflects the dynamics of

1D spin chains with the Hamiltonian (Fig. [2.13):

1 , ‘ 4
Hgip = Hrr + Hais = 5 Zk 2i (268K — s)sk — s)sk) + ijsfz, (2.18)
]< j

where Hgi is effectively an random on-site field with strength wj = Yol ]F f I¥ chosen from a Gaussian

distribution with a width of 6 krad s~1; Hpp describes a quasi-one-dimensional spin-1/2 system.
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Figure 2.14: (a) Distribution of the on-site field strength on 1°F, computed under the assumption that each
of its neighboring 3'P nuclear spins independently point along +z or —z direction with the same probability.
The interaction strength between 19F and 3P are determined by their relative position (Fig. ) [435]. A
total number of 45 closest 3!P are included in calculation. The distribution is perfectly fitted by a sum of four
Gaussian distributions with the same width, the centers at + % JFP and i% JFP and the height ratio of 3:3: 1 : 1.
A single Gaussian function can also capture the distribution reasonably well, and is used for simplicity in the
numerical simulation for the transport dynamics. (b) Left axis: Decoherence profile generated by the calculated
distribution of on-site field and the single-peak Gaussian approximation. Right axis: Statistical correlation
between the random amplitudes of local observables on two closest °F. As the coherence approaches zero, the
statistical correlation also vanishes. The decay profiles computed by assuming a single Gaussian distribtution
and the true distribution are qualitatively consistent.

2.3.3 Protocol to measure autocorrelations

In order to probe the infinite temperature transport of spin and energy in our system, one must
measure autocorrelation functions of the form ~ Tr[S];(t)S]Z‘(O)]. To do so, we begin by evolving a
weakly polarized thermal state pg o (1 + € Y S]Z) into a target initial state p o< 1 4 €0,. Next, we
evolve this initial state under a desired Hamiltonian H for a time ¢, yielding p(t) = e~ pe'!'*. Finally,
we measure a tunable observable, Oy,; in practice, via RF pulses, this observable is mapped onto the
magnetization along the x-axis, M = Zj S{c, which we directly read out via an inductive measurement.
The resulting signal is equivalent to the infinite temperature correlation function, Tr[O, () On(0)].
Clearly, if O, and Oy, are translationally-invariant, the measured signal contains non-local correlations
between all pairs of spins, e.g. }_jx Tr[S];(t)Slg (0)].

To access local correlation functions, such as the spin survival probability [364}415]], we prepare
initial states and measure observables such that the spin-polarization at different sites is uncorrelated
and averages to zero. An exemplary goal is to prepare and measure the random Zeeman state given

by O, = Zj ochQ(t), where a; are independent and identically distributed random variables with
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zero average. This would immediately enable the measurement of sum of single-site autocorrelations
since 1 (ajeve) Tr[SL (£) S5(0)] o X2 8 Tr[SL(£)S5(0)] = X, Tr[SL(#)SL(0)], which is proportional
to single-site autocorrelations Tr[S];(t)Sé(O)] for translationally invariant Hamiltonian or disordered

Hamiltonian with translationally invariant statistics.
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Preparation time, 7 (ms)

Figure 2.15: First two principal components (PC) of the experimentally prepared random Zeeman (a) and DQ
states (b). The horizontal axis label stands for sum of all permutations of the corresponding spin operators, e.g.
XY corresponds to v/2(S, S]y+1 + S]ySfl) normalized such that the Frobenius norm is 2-. The amplitude is
weighted by the square root of the eigenvalue 1/A;. For random Zeeman state, A; = 0.985(1), A, = 0.0066(1);
For random DQ state, A1 = 0.963(9), A2 = 0.0019(5). The eigenvalues are normalized such that ), A, = 1.
The preparation time is 1.08 ms for random Zeeman state and 0.96 ms for random DQ state. The green and blue
bars show the experimental results, the black wireframes show the ideal states. (c), Overlap of experimentally
prepared random Zeeman (green) and DQ (blue) state with the corresponding homogeneous state quickly decays
to zero. The overlap of two observables O1, O, are defined as Tr(O10,) / /Tt (O101)Tr(0,0,).

Let us now describe our disorder-based experimental protocol for preparing O, (Fig. ). First,
we rotate the thermal polarization to the x-axis, initializing a state o (1 + € Y Sﬂc) Then, we evolve
under Hy;s for a time T, such that the excess magnetization of each spin is oriented along a random
direction in the xy-plane. In order to ensure that the time evolution during T is generated only by Hy;s,
we utilize concatenated WAHUHA sequences to dynamically decouple Hgp [219]. Next, we employ
phase cycling to project the random polarization of each spin onto the y-axis. A final RF pulse returns
the polarization along z, and we obtain O, = 2]' ajS];, with &; = sin (ij) H A similar strategy can
be used to enable a measurement of O, = Z]' och]Z.. In particular, just prior to the final inductive

measurement of M, we refocus the random state back to a uniform magnetization by applying the

9Since the disorder fields on different 1°F originates from the same 3!P bath, they inevitably have some statistical
(wiwier)
Wy 0.2.
]
Nevertheless, (ajaj 1) = (sin(w;7) sin(wj417)) ~ 0 for T > T, (Fig. [2.14p), satisfying the condition required for our
protocol to measure local autocorrelation.

correlation. Indeed, we compute the correlation of the disordered fields on two neighboring 1°F,
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disorder field again. The above single-site autocorrelation function can be used to detect spin transport.
An analogous approach can be used to detect autocorrelations of two-site observables, such as the local
energy density. We first use the Jeener-Broekaert pulse pair [430] to create a homogeneous two-body
correlated initial state o< 1 + € 2]»( SZCS;H + S;SZCH) Evolution under the disordered field and
phase cycling yields the random double-quantum (DQ) state with O, = Y a}(S{CSQH — SLS;H)
where 0&; = sin(wjT + wj417) and <0c;.1x;> o« j for large T. An additional 7/2-pulse naturally
realizes Op = ) a}(SéSéﬂ - S£S£+l). We note that linear combinations of these two initial states
allow us to reconstruct all of the subsequent operators we will consider.

We can carefully characterize the initial state preparation, focusing on two properties: (i) demon-
strating that O, has support only on the desired operators and (ii) confirming that }_a; = 0 and
Zoc;- = 0. For the first property, we measure I(¢,0,) = Tr[U;(¢,0,7)Op,US (¢,6,7)O,] for
various {¢, 0, v}, where U, = ®je*i75£e_i95£e*i¢sé. From I(¢,0,) we can obtain the principal
components, 7, of the random observable up to a rotationally-invariant component, O, = ZV duTy,
where d,, are independent random variables satisfying IE(d,d,) = A;0,,, with A, being the eigenval-
ues of the correlation matrix in descending order (Appendix [A.5)); note that the principal components

7T, are orthonormal, Tr(7;7;+) = 2L(5w. The first two principal components confirm our preparation

of the random Zeeman state Op = Zj ocjag and the random DQ state Op = Zj tx;(cfia){“ — Uéafrl)
with high fidelity (Fig. ,b). As I(¢, 0, ) is quadratic in O,, it does not contain information about
the sign of the individual random coefficients a; and a;-. Therefore, for the second property, we measure
the overlap of a random state O, with its corresponding homogeneous state. Indeed, we observe that
the overlap quickly decays to zero as a function of the preparation time (Fig. 2.15f), indicating that for

sufficient time-evolution under the disordered field, one naturally realizes Ea; = lsz;- =0.

2.3.4 Probing emergent spin and energy hydrodynamics

Having verified our initial state preparation, we now turn to exploring the infinite-temperature

transport of both spin and energy for three distinct classes of Hamiltonians (Fig. [2.16p): (1) non-

10Here we assume nearest-neighbor coupling for representation simplicity, but the results also hold with 1/7° long-range
coupling.
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interacting integrable, (2) interacting integrable, and (3) non-integrable. Utilizing Floquet engineering,
we build each of these Hamiltonians from the native dipolar interaction [202,437]]. In particular, our
experiments enable the realization of the following tunable model,
] (gick _ qick
H=uY 5 (shsh - s|sy)
j<k Tk

] . .
+o) 5 (Slsk-s)st) (2.19)
j<k Tk

+ th]SQ,
j

where the coefficients {1, v, h} can be independently controlled. For {v,h} = 0 and restricting to
nearest-neighbor couplings (i.e. truncating the long-range dipolar tail), the resulting XY model is
integrable and free (case 1). Upon adding non-zero v, the model remains integrable, but becomes
interacting (case 2). Finally, the addition of a weak on-site random field, &, causes the model
to generically become non-integrable (case 3). We note that the long-range nature of the dipolar
interaction renders H generically non-integrable for all of the above cases. However, our hope is that
signatures of integrability will be present in the dynamics at short times; as we will see below, this is
indeed borne out by the data.

These three different universality classes can be distinguished by the dynamical exponent, z,
associated with their spin and energy transport. Crucially, z can be directly measured via the power-law
decay of the autocorrelation function ~ +~1/Z, with z = 1 corresponding to ballistic motion, while
z = 2 corresponds to diffusion.

Let us begin with case 1. We tune {u, v, h} = {0.5,0,0} and measure the spin-spin autocorrela-
tion function (Fig.[2.16f, green) and the energy autocorrelation function (Fig.[2.16k, blue). Both exhibit
late-time power-laws consistent with z = 1, in agreement with the expectation that quasiparticles
propagate ballistically in a non-interacting, integrable model. For case 2, we tune our system to
{u,v,h} = {—0.15,0.3,0}. Intriguingly, we find that spin transports diffusively while energy trans-
ports ballistically (Fig.[2.16[d). This phenomenon owes to the existence of stable spinless quasiparticles
and is a central feature of infinite temperature transport in the so-called XXZ model [170} 171} 438

445]). Finally, for case 3, we set {u,v,h} = {—0.15,0.3,0.23} and observe that both spin and energy
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Figure 2.16: (a) Utilizing Floquet Hamiltonian engineering techniques, we can independently tune the strengths
of two types of interactions (red and black wavy lines) and random on-site field (cyan shaded area). Different
combinations of the three terms result in distinct classes of Hamiltonian: 1) Non-interacting, 2) interacting
integrable, and 3) non-integrable. (b) Parameter space of the effective Hamiltonian in Eq. 2.9 with varying
v, h and fixed u. (c)(d)(e) Local autocorrelations of spin and energy in non-interacting, interacting integrable,
and non-integrable systems. All these autocorrelations follow power-law decay ¢ ~1/Z, in which the value of the
dynamical exponent z distinguishes between different universality classes. Inset of (d): The measured energy
autocorrelation (dark blue dots) agrees better with numerical simulation with next-nearest-neighbor coupling
(solid curve) than without it (light blue dots), suggesting that the small deviation from ballistic transport at
late times is due to the long-range interaction that weakly breaks the integrability of the system. Note that we
normalize the local autocorrelations by the corresponding global autocorrelations, except the spin autocorrelation

in the non-interacting case as we do not have access to the collective conserved quantity p = Z]-(—l)j Sl

transport diffusively (Fig. [2.16), consistent with a generic non-integrable model [359] 378]. The
maximum time explored here is limited by the inter-chain coupling, which, albeit being 40 times
smaller than intra-chain coupling, becomes non-negligible at vJt ~ 50 and breaks the quasi 1D
approximation.

Two remarks are in order. First, the energy transport data in case 2 exhibit a weak deviation
from ballistic transport at the longest times explored in the experiment (inset, Fig.[2.16[). In order to
understand the origin of this deviation, we numerically compute the energy autocorrelation function
in a 1D spin chain using density matrix truncation, with and without long-range couplings [318]].
The agreement between our experiment and numerics in the former case suggests that the observed

deviation results from the weak breaking of integrability associated with the long-range intra-chain
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Figure 2.17: Spin (a) and energy (b) autocorrelation for various disorder field strength /. Extracted dynamical
exponent of spin (c) and energy (d) transport in different fitting time windows. The fitting window starts after the
transient dynamics [[ts¢zr+ = 7.7 for (¢) and [ts4+ = 2.2 for (d)]; note that the qualitative features we observed
do not depend on this specific choice. Inset of (c): Inverse of the diffusion constant D extracted by fitting the
data from Jtgpat = 7.7 t0 Jteng = 60.0, with v = 0.3 and a = 3.442A the FAp lattice constant.

couplings, which is 8 times weaker than nearest-neighbor interaction. Second, by tuning the disorder
strength during the evolution, we can controllably break integrability and access the nonintegrable
regime on the experimental timescale. In particular, we measure the energy and spin transport as we
tune /1 from O to 0.3 (Fig. ,b), and extract z using different time windows of the autocorrelation
function, starting at fst0;s = 7.7/ and ending at a variable t,,4 (Fig.[2.17c,d). For the spin transport
(Fig. ), after an initial transient, all of the models exhibit a z = 2 at intermediate times. At the
latest times, the inter-chain couplings begin to play a role, causing a decrease in z. Meanwhile, for
the energy transport at i1 = 0, z remains close to its initial ballistic value for all times. However, for
h = 0.3, the system reaches a diffusive exponent (z = 2) at intermediate times before exhibiting a

weak decrease (possibly owing to inter-chain couplings).

In summary, our results introduce a novel method to probe local spin and energy transport in
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solid-state spin ensembles. Our technique leverages the intrinsic disorder in such systems and requires
only collective control. Our local probe enables exploration of quantum many-body phenomena
unavailable in homogeneous systems, such as ballistic and diffusive hydrodynamics demonstrated
here, or subdiffusion near the many-body localization transition and the emergence of superdiffusion
with long-range interactions [[149] (150} [152] 426l 4461448]]. In addition to two-point correlation
functions, which were the focus of the present work, our protocols can naturally be generalized to
four-point, out-of-time-ordered correlations, and thus used to probe many-body quantum information
scrambling [372] 1383],1449-458]]. Beyond quantum simulation, transport measurements provide rich
information of the system, therefore can also boost quantum sensing applications in material and
biological science. Finally, we point out that a general static inhomogeneous field can similarly induce
the dephasing process and thus create random states, broadening the application of the present scheme
to quantum platforms where disorder is not naturally present, including cold atoms, trapped ions and

superconducting circuits.
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2.4 Universal Kardar-Parisi-Zhang dynamics in integrable quantum

systems

2.4.1 Introduction

Originally introduced in the context of surface growth [404], the Kardar-Parisi-Zhang (KPZ)
equation has become central to our understanding of many stochastic processes [459-461]]. While
the central limit theorem ensures that the late-time physics of linear stochastic processes is typically
Gaussian, the KPZ equation evades this fate. Instead, it represents a distinct universality class which
emerges in myriad dynamical phenomena, ranging from directed polymers and traffic models to kinetic
roughening [462H471]].

The characterization of dynamical universality classes requires one to specify both the scaling
exponents and functions of the theory. This is perhaps most familiar in the context of Brownian
motion, where the diffusive late-time behavior follows a Gaussian scaling function; the width of
the corresponding distribution grows as ~ t/Z where z = 2 is the dynamical scaling exponent.
By contrast, the scaling functions for the KPZ universality class are significantly more complex
and their exact functional form represents a relatively recent mathematical achievement [465) 1472
476]]. The associated dynamical scaling exponent is neither diffusive nor ballistic (z = 1), but rather
superdiffusive with z = 3/2.

Typically, KPZ behavior is expected in non-linear, out-of-equilibrium classical systems subject to
external noise; in this context, its observation is extremely robust and does not require any fine-tuning
or the presence of a particular symmetry. To this end, the numerical and experimental observation
of KPZ universality in a one-dimensional guantum spin-chain (i.e. the spin-1/2 Heisenberg model),
fine-tuned for both integrability and SU(2) symmetry, has attracted widespread attention [171}[173|
3531142511427, 1477H481]]. Interestingly, this observation is at odds with conventional expectations for
spin chain transport, which predict diffusion [[144,|482-484]. This naturally motivates the following
question: Is the Heisenberg chain an isolated exception, or the first example of a broader group of
quantum models in the KPZ universality class?

Seminal recent work has made elegant progress on this question by proving that all integrable spin
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chains with a non-Abelian symmetry exhibit superdiffusive transport with z = 3/2 (Fig. (173}
480, 481]]. However, a single scaling exponent does not uniquely specify the universality class and no
analysis has been able to determine the nature of the corresponding scaling functions.

In this section, we present an extensive numerical investigation that supports the following stronger
conjecture — the dynamics of all integrable spin chains with a non-Abelian symmetry belong to the
KPZ universality class [480, 481]]. Leveraging the density matrix truncation (DMT) numerical method
[317,1318]], we demonstrate that the spin dynamics of such models are precisely captured by the KPZ
scaling function (Fig.[2.20). Intriguingly, our numerical observations suggest that the conjecture holds
not only for static systems, but also for periodically driven (Floquet) systems [427, 485], as well as
supersymmetric models.

By applying perturbations to break either the non-Abelian symmetry or the integrability, we
characterize the approach to superdiffusive transport from regimes where there is analytical control on
the dynamics. We reproduce these analytical results with unprecedented accuracy, both verifying and
benchmarking our numerics, as well as providing independent evidence for the purported microscopic
mechanism underlying superdiffusion [170, [171) 1480, 481]]. Finally, we propose an experimental
implementation — based upon alkaline-earth atoms in optical lattices — capable of investigating KPZ

transport in a variety of SU(IN)-symmetric, integrable models.

2.4.2 Characterizing transport by dynamical university

To be more concrete, we study the universality classes describing the infinite-temperature dynamics
for a variety of one-dimensional quantum spin-chains. We will focus on the dynamics of a locally
conserved charge O = Y, gr, typically spin. If the system is characterized by a dynamical universality
class, at late times the correlation function must collapse under an appropriate rescaling of space and

time:

(@r(1)80(0)) 7—co o< /2 f (tlr/z) : (2.20)

This collapse defines the dynamical scaling exponent z and the scaling function f (&), which together

determine the universality class.
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Figure 2.18: (a) Schematic depicting a one dimensional chain of alkaline-earth atoms (each with N-levels)
trapped in an optical lattice and interacting via nearest-neighbor super-exchange. The equilibration of an initial
domain-wall-like imbalance encodes the underlying KPZ dynamics. (b) Domain-wall dynamics as a function of
time for an SU(3)-symmetric, integrable spin chain. (c) The polarization profiles at different times collapse upon
rescaling with t~1/Z. The dynamical exponent, z = 3/2, indicates superdiffusion and is consistent with KPZ
transport.

2.4.3 Probing transport dynamics

Let us begin by exploring the dynamical exponent. While z can in principle be extracted from the
behavior of (4, (#)§o(0)) T, a simpler and more robust numerical setup is to consider the dynamics
of a domain wall. More specifically, we perturb an infinite-temperature density matrix with a weak

domain-wall-like imbalance in the charge density (Fig.[2.18p) E

5)9L/2, (2.21)

p(t=0) o< (1 +ud)*"? @ (1 — ug

where y determines the strength of the perturbation and L is the length of the chain.
As the system equilibrates, charge crosses the domain wall—the precise details of how this occurs
reveals properties of the dynamical universality class [Fig.[2.18(b)]. In particular, we focus on the

spatial profile of the charge density q(r,t) = (4,(t)) (hereafter, denoted as polarization), as a function

we choose to work with open boundary conditions. The boundary conditions do not affect the dynamics we observed
within the timescale we considered. However, a strict analytical approach may require a careful treatment of the boundary
conditions, which is important and subtle in integrable systems [486} 487]].
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of time ¢ and displacement 7 from the domain wall. A natural measure of transport is the total
polarization transferred across the domain-wall, P (t) = ZrLé 2 (u — q(r, 1)), which provides a robust
way to determine z: P (t) o t1/Z.

Although we will explore a wide variety of integrable models (Fig. [2.20), let us begin by focusing

our discussions on the SU(3)-symmetric, spin-1 chain [488-490]:
Hsya) = Y. Si+Siv1+ (Si - Sinn)%, (2.22)
i

where §i is the vector of spin-1 operators acting on site i. Figure b) depicts the melting of the
domain wall as a function of time, starting from the initial state, o(t = 0) with § = 57 [Eqn. .
The corresponding polarization transfer, P (t), exhibits a power-law ~ t2/3 (blue line, Fig. ),
consistent with the expected z = 3/2 exponent [491]]. This exponent can be independently confirmed
via a scaling collapse of the polarization profile (Fig. [2.18k).

In order to tune the system away from superdiffusion, one can perturb the spin-chain by either
breaking the non-Abelian symmetry of the underlying equilibrium initial state [480, 481]] or the
symmetry of the Hamiltonian. To study the former, we initialize the system in p(f = 0) and add a
uniform magnetization, J (along the Z-axis) on each site. The polarization transfer exhibits markedly
distinct dynamics with a ballistic exponent, z = 1 (orange line, Fig. [2.19p). Analytically, for weak
magnetizations, the velocity of this ballistic transport is expected to scale linearly with J; this is
indeed borne out by the data (Fig. [2.19¢) [1711,492]. For the spin-1/2 Heisenberg model, an even
stronger statement can be made—the velocity extracted from DMT quantitatively agrees with analytic
calculations [via generalized hydrodynamics (GHD) (Appendix [A.6)] even in the non-linear regime
(inset, Fig.[2.19c) [170,[171].

Next, we break the symmetry of Hgyy(3) down to U(1) by considering the so-called Izergin-Korepin
family of integrable spin-1 models (Appendix |[A.7.3) [493-503]]. We parametrize the symmetry-
breaking strength by A, such that when A = 0, we recover Hgy3). For finite values of A, we observe
diffusive transport with the polarization transfer scaling as P(t) ~ 1/ (purple line, Fig. ). In
addition, the extracted diffusion coefficient, D, diverges as A — 0, consistent with the approach to

superdiffusion (Fig.[2.19(d). The analogous numerical experiment in the Heisenberg model, where A
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controls the anisotropy of the XXZ model in the easy-axis regime, again quantitatively agrees with

analytic calculations.
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Figure 2.19: (a) Conjectured landscape of KPZ transport in integrable, non-Abelian-symmetric models (blue
dot). The non-Abelian symmetry can be broken in two distinct ways, either by adding a finite charge density to
the initial state (orange line) or by perturbing the underlying Hamiltonian (purple line). (b) The total polarization
transferred across the domain wall, P(t), directly determines the dynamical exponent. For the integrable SU(3)
model, z = 3/2; when either the integrability or the symmetry is broken in the Hamiltonian, z = 2|'“f when
the initial state has non-zero charge density, z = 1. Note that the curve for the integrability breaking case
(green) is shifted down for clarity. (c) Depicts the charge transport velocity v as a function of charge density
¢ for both the SU(3) model and the SU(2) model (inset) []__31 (d) The diffusion coefficient, D, diverges as the
Izergin-Korepin and XXZ (inset) integrable models approach the SU(3) and SU(2) (inset) symmetric points. The
DMT bond dimension, x, is chosen to be {64,128,256} and {64, 128,256,512} for the SU(3) and SU(2) cases,
respectively. Green crosses in the inset mark previous numerical results obtained from tDMRG simulations with
bond dimension x ~ 2000 [445].

12Here, we perturb HSU(3> using SU(3)-symmetry-respecting, but integrability-breaking next-nearest-neighbor interac-
tions. As expected for generic non-integrable models, P (t) ~ t1/2  consistent with diffusive transport [359] 13781 1504].

13The agreement between DMT numerics and GHD analytics (which have different underlying assumptions) serves a

dual benchmarking role; in particular, it highlights DMT’s ability to faithfully characterize late-time transport dynamics and
GHD’s ability to quantitatively compute transport coefficients in integrable models [[170, 1445].

84



2.4.4 Probing KPZ dynamics

While our numerical observation of a z = 3/2 exponent in Hgyy(3) clearly establishes the presence
of superdiffusion, it does not determine the system’s dynamical universality class. Indeed, such an
exponent can also arise in long-range interacting systems exhibiting Lévy flights, as well as rescaled
diffusion [353],426, 1427|1478}, 1503].

To this end, we now investigate the universal scaling function. In particular, using our domain-wall
dynamics, we can compute the charge correlation function from the spatial gradient of the polarization

profile [427]:

AP . Opq(r,t b br
(4r(£)30(0))7=e0 = lim, qz(y )ztmf <t2/3> (2.23)

where D is a system-dependent parameter, and we use d; as a short-hand for discrete difference in the
our system: 3,q(r, 1) = (dr+1(1)) — (d(1)).

As depicted in Figure [2.20R, 9,q(7, t) indeed collapses under the rescaling, f(& = brt~2/3). For
Lévy flights, one expects power-law tails (gray dashed line), which are manifestly inconsistent with the
data. However, the difference between rescaled diffusion and KPZ is more subtle: for the former, f(&)
is Gaussian, while for KPZ, f(¢) exhibits faster decaying tails ~ exp (—0.295|Z|%) [473-473]. The
data quantitatively agree with the KPZ prediction: The longer the evolution time, the closer 0,4(7, t) is
to the KPZ scaling function (highlighted by the relative error, Fig. inset). This agreement allows
us to directly extract b = 0.460 = 0.001, which reflects the ratio between the diffusive smoothing, and
the non-linear growth and noise in the KPZ equation. We emphasize that these observations apply to
any conserved charges generated by the non-Abelian symmetry.

A complementary way to distinguish between rescaled diffusion and KPZ dynamics is to study
the ratio between the spin current, j(r,t) = — [*_ 9;q(r',#)dr’, and the polarization gradient. In
rescaled diffusion, Fick’s law ensures that the two are proportional, j(r, t) o t1/39,4(r, t), while the
non-linearity of KPZ transport leads to the breakdown of this proportionality [427,1473]]. Crucially,
as illustrated in Fig. [2.20f, we find that the ratio is not constant (as would be predicted for rescaled

diffusion) and rather, is in good agreement with the KPZ prediction.
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Figure 2.20: (a-d) The KPZ scaling function emerges from a wide variety of integrable dynamics: static,
non-Abelian-symmetric models, their Floquet counterparts, and supersymmetric models. (a)[(d)] At late times,
the rescaled polarization profiles of the SU(3)[SU(2|1)] model differ from both the Gaussian and Lévy-flight
expectations, but exhibit excellent agreement with the KPZ scaling function. Insets of (a)[(d)]: relative difference
with respect to the KPZ scaling function. We note that the agreement extends to longer length-scales as time is
increased. (b)[(c)] Late-time, rescaled polarization profiles of static [Floquet] integrable models with different
non-Abelian symmetries. For all symmetries explored, the dynamics exhibit excellent agreement with the KPZ
scaling function. Insets of (b)[(c)]: zoom-in of the polarization profiles. The system sizes in the numerical
simulation are chosen as: L = 600 for all static models, L = 1200 for Floquet SU(3) and SO(3) models, and
L = 800 for other Floquet models. (e) For all models considered, the ratio between the polarization gradient
and the current is inhomogeneous, in stark contrast with the expectation for any linear transport equation. The
observed curvature is instead in agreement with KPZ transport. (f) In integrable supersymmetric models, the
total charge transferred across the domain wall (upper panel) and the extracted dynamical exponent z (lower
panel) are consistent with superdiffusion.

2.4.5 Universality of KPZ dynamics

We now turn our attention to the conjecture that KPZ dynamics emerge in several broad classes
of integrable models. We will focus on three distinct settings: (i) static models with generic non-
Abelian symmetries, (ii) periodically-driven (Floquet) models with non-Abelian symmetries, and (iii)
supersymmetric models. In these latter two classes, even for the dynamical exponent, there are no

generic results, although some particular instances are known to exhibit superdiffusion [427,1477,1491].
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The construction of static, non-Abelian, integrable spin chains has a rich history, with different
prescriptions for each of the four classes of simple Lie groups: SU(N), SO(2N), SO(2N + 1) and
SP(2N) E (1731 497-503]. Following our previous strategy for Hgy3), we analyze the transport
dynamics of conserved charges for each of these models. In all cases, we observe excellent agreement
with the KPZ universality class (Fig.[2.20b,e).

Extending this exploration to periodically driven systems requires systematically building the
corresponding Floquet integrable models. Somewhat astonishingly, one can straightforwardly build
such models from their static counterparts [485, 506]]. The Hamiltonian is divided into terms acting
on even and odd bonds (denoted as Heyen and H,qq, respectively), which are then alternatingly

applied, leading to a Floquet unitary: U = e~ HodaT/2p=HevenT/2

. Using this procedure, we can extend
our analysis to the Floquet regime for all of the previous non-Abelian models (Fig. [2.20c,e). Our
conclusions are identical. The resulting transport falls within the KPZ universality class even though
energy is no longer conserved.

Finally, let us consider integrable models where the non-Abelian symmetry is replaced with
supersymmetry (Appendix [A.7.2). Such models have been conjectured to exhibit superdiffusion, but
observing this, either numerically or analytically, remains an open challenge [[173|477]. Here, we
focus on a pair of spinful fermionic lattice models: the ¢-] model (with ¢ = 2]), and the Essler-Korepin-
Schoutens (EKS) model [503,[507-H510]. These exhibit the two simplest supersymmetries, SU(1|2)
and SU(2|2), respectively.

The defining feature of models with supersymmetry is that their conserved charges fall into two
types: bosonic and fermionic, although only the bosonic charge can in principle exhibit superdiffu-
sion [477]]. For the ¢-] model, each lattice site can be occupied by either a spin-up fermion, a spin-down
fermion, or a hole. The conserved bosonic charges are given by the total number of holes, and the
total spin. Holes live in the Abelian U(1) sector and thus lack particle-hole symmetry leading to a

finite Drude weight and ballistic transport [477]]. Therefore, we study the spin polarization, given by

the difference between the number of spin-up and spin-down particles. As before, we prepare a weak

14A systematic way to generate such integrable models with lower symmetries by breaking a non-Abelian symmetry is
called g-deformation. The corresponding models are often called gq-deformed vertex models. All the integrable models with
non-Abelian symmetries studied in this work are with nearest-neighbor interaction (Appendix[A.7.T).
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domain-wall in the spin polarization while keeping the other charge densities—including the hole

density—constant.
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Figure 2.21: (a)[(b)] Polarization gradients in an integrable SU(2|1) [SU(2|2)] model with varying hole density.
At the same evolution time, systems with a smaller hole density are closer to the KPZ expectation.

For both the static and Floquet {-] models, we observe superdiffusive spin transport (with z = 3/2)
via both the polarization transfer (Fig.[2.20f) and the collapse of the polarization profile. The numerical
evidence that spin transport falls within the KPZ universality class is more subtle. In particular, the
polarization gradient, 9,4(7, t), exhibits a discrepancy with both the KPZ and Gaussian expectations
(Fig. ). However, the finite-time flow of d,4(r, t) approaches the KPZ scaling function in the
same qualitative fashion as is observed in the SU(3) case (insets, Fig. @,d); we conjecture that
finite-time effects are exacerbated in supersymmetric models owing to the presence of additional
ballistic modes (Fig. 2.20g). Indeed, upon decreasing the hole density, we observe an improved
convergence to KPZ universality. Note that when there are no holes, one recovers an SU(2)-symmetric
model. Curiously, this suggests that KPZ dynamics might arise in supersymmetric systems for generic
fermionic filling fractions. Moreover, a careful comparison of the relative error to the Gaussian model

suggests that rescaled diffusion cannot be the correct limiting behavior.

2.4.6 Experimental proposal

Recent advances in the control and manipulation of alkaline-earth atoms in optical lattices have
opened the door to studying SU(N)-symmetric spin models [511-520]]. In particular, we consider a

1D chain of such Fermionic species of such atoms. The lack of hyperfine coupling in the 152 1S
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electronic ground state then leads to an integrable SU(N) Fermi-Hubbard Hamiltonian:
F-H + + u
H = —fZ(Ci,aCm,,x + Ci1,0Cin) + > Z”i(”i -1), (2.24)
0 i

where f is the hopping strength of a fermion between two adjacent sites, U is the on-site repulsive

+

interaction, n; is the total fermion occupation operator on site i, Cin and c; , are the creation and the
annihilation operator of species « fermion on site 7, respectively.

Assuming U >> t and the filling factor is 1/N (i.e., one fermion per site) the system is in the
Mott-insulating phase. To the lowest order, the dynamics arise from virtual hopping processes and are
generated by the following effective Hamiltonian:

242

HYH ~ U Z CzJ'r,aCi,,BCjJrl,ﬁCiJrl,a - C:r,aci,aczr+1,ﬁci+1rﬁ
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where s?’ﬁ = |a) (B on site #; in one dimension, Hgy(y) is integrable and precisely corresponds to
the models considered above (e.g. Eqn. 2.22)), up to a constant energy shift. The observation and
characterization of KPZ transport requires the ability to address two main experimental challenges:
(i) preparing near infinite-temperature states with a well-defined domain-wall polarization and (ii)
measuring the tails of the scaling function with sub-percent accuracy.

The former can be accomplished via a two step process: first, optical pumping via an intercombina-
tion transition (e.g. ns2 15, < nsnp 3P;) can be used to generate arbitrary magnetization distributions
which are preserved upon cooling to the Mott insulator; second, with single-site addressing [425, 521
526]], a coherent optical drive can be applied to half the system in order to prepare the domain wall.
In current optical lattice experiments, the main challenge in preparing such states arises from the
need to controllably add entropy to the system after cooling the motional degrees of freedom. In past

experiments [425]], this was accomplished by applying a combination of global rotations to control
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Figure 2.22: Two different approaches towards preparing arbitrary population distributions. (a) Starting from the
|F,mp = F) state in the ground state manifold, 2 polarized laser can be used to excite the system to |F + 1, F).
Spontaneous emission then leads to decay back to the ground state manifold, into |F, F) and |F, F — 1), with a
branching ratio dictated by Clebsch-Gordan coefficients. By timing the laser duration appropriately, this enables
the arbitrary population transfer from the |F, F) to the |F, F — 1) state. (b) To continue this process toward
lower mp states, e.g. from |F, f) to |F, f — 1), one can again apply a Z polarized laser. However, this would
lead to additional leakage back to a |F, f + 1) state. To counteract this effect, an additional ¢~ polarized laser
field to excite from |F, f + 1) back into |F + 1, f) should be applied. Doing this procedure repeatedly enables
the preparation of an arbitrary spin population distribution. (c) Another approach to prepare a spin population
distribution begins by moving the entire population from the |F, F) into the lowest |F, fimin) of interest. Starting
again with unit population in the largest mp state of the manifold |F, F), we begin by performing a coherent
rotation between |F, F) and the lowest hyperfine state we wish to have finite population, say |F, fmin). (d) From
|F, fmin)» the population distribution can be built by iteratively applying a 0" polarized laser to move any extra
polarization from |F, fyin) into |F 4+ 1, fiin + 1), which then decays into higher hyperfine states, |F, fmin + 1)
and |F, fmin + 2). As long as the upper manifold has equal or larger total angular momentum, this process can
be carried out until reaching back to the |F, F) state, using an excitation from |F,F — 1) to |F + 1, F) to set its
population

the spin population, and single-site rotations to dephase individual spins with respect to one another;
however, when moving from spin-1/2 to larger spin systems, this protocol is not suitable to prepare
arbitrary spin population distributions. To circumvent this, we propose a different scheme, which
utilizes the flexibility provided by manipulating the atoms before loading them into the optical lattice.
Crucially, this allows us to leverage optical pumping techniques using the excited hyperfine manifold
to move population density across the different spin levels of interest (Fig. [2.22)).

Achieving the latter is significantly more subtle. In order to distinguish between KPZ dynamics
and rescaled diffusion, careful estimates suggest the need to experimentally resolve the scaling function
with a relative error of 6171/ ~ 103 (Fig. . In order to operate within the small domain-wall

regime where the gradient of the polarization accurately captures the two-point correlation function,
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Figure 2.23: (a)(b) x? analysis of the confidence to confirm the KPZ dynamics. By adding random noise on
the data from DMT numerics, we can mimic experimental data. For each noise instance drawn from a normal
distribution, we fit the noisy data with both the KPZ and the Gaussian expectations, and obtain the corresponding
x2. By repeating this analysis for different noise instances, we obtain the distribution of x2. The histogram of
)(2 indicates the confidence of whether the data agrees better with KPZ or Gaussian expectation. As the size
of noise decreases, x> corresponding to KPZ approaches to zero and is separated from x? corresponding to
Gaussian fit. Performing rolling average of polarization profile over # consecutive sites can effectively reduce
the effect of noise roughly by a factor of n. Using 7i = 10, a relative error of ~ 102 already distinguishes
the two hypothesis. The numerics are performed on the integrable SU(3) model with ¢ = 0.1 and L = 150.
We choose to fit the polarization profile at { = 52/]. (¢) )(2 analysis to confirm KPZ dynamics and to exclude
Gaussian expectation. To quantify the confidence with which we can conclude KPZ fits the data better, we
compute the possibility of obtaining a smaller x? in the KPZ fit than in the Gaussian fit. Without performing
a rolling average, when the relative noise amplitude is below 10™4, it becomes almost certain that the KPZ
expectation fits the data better, suggesting that the experiment can conclusively confirm the KPZ expectation at
such noise level. By further performing a rolling average over 7 sites, we can increase the minimum relative
noise required by roughly n times.

we need the domain wall size to be at most y < 0.2, leading to an absolute uncertainty in the
magnetization error of 6 ~ 2 x 10™*. Achieving this error floor requires the ability to spatially
resolve spin-transport dynamics over long time-scales and large distances. For concreteness, let us
consider 8 Sr atoms loaded into a two-dimensional optical lattice [519} 1527, 1528]]. Recent experiments
have demonstrated the elegant use of cavity-enhancement to realize homogeneous lattices capable of
supporting Mott insulators with a diameter of ~ 300 sites [527]. By implementing strong confinement
in one direction, one can subsequently divide the system into ~ 250 independent chains, each with
length ~ 150 sites. Assuming an on-site interaction energy, U ~ 3 kHz, and a tunneling rate,
t ~ 300 Hz, yields a spin-exchange interaction, | = 2t?/U ~ 60 Hz [527]. Optimizing for an

evolution time of ~ 50/ ] and assuming an experimental cycle time of ~ 10 s [519], we estimate that
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a magnetization error of 517 ~ 2 x 10~* can be achieved within two days of averaging. Finally, the
presence of a finite density (= 1% [529]) of doublons and holes in the Mott insulator will perturb the

polarization dynamics, but the exact nature of their effect remains an intriguing open question.

2.4.7 Outlook

Since it was first observed in the spin-1/2 Heisenberg model [353]], the microscopic origin of KPZ
dynamics in integrable quantum magnets has remained a mystery [S30]]. Our work suggests that any
such understanding will need to encompass a broader physical setting, including both Floquet and
supersymmetric systems. In the context of supersymmetry, an intriguing direction is to characterize
the impact of ballistic fermionic modes on the KPZ dynamics. Finally, the ability to experimentally
measure the full counting statistics of spin transport opens the door to studying KPZ dynamics from a

new perspective, which is currently challenging to access both analytically and numerically [425]531]].
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2.5 Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion

2.5.1 Introduction

First proposed to capture the spin transport of the spin-1/2 quantum Heisenberg chain at infinite
temperature [[171} 172 1353|1427 14441530, 1532]], KZP hydrodynamics have then been predicted to
emerge in all one-dimentional integrable quantum systems exhibiting a non-abelian symmetry or a
supersymmetry [[164} 166,167, [173,1396| 428 1533]]. In contrast to those canonical examples of noisy
classical systems, the appearance of KPZ scaling in quantum settings, which requires integrability and is
thus fragile to noise, is very likely to rely on a fundamentally different mechanism [173},480,1530, 1533
535]); to date, a full theory of KPZ unversality in the quantum systems remains elusive [373,536[]. At
the current stage, experimental input will not only confirm the theoretical expectation but may also
provide deeper insights into understanding the emergent KPZ hydrodynamics. Indeed, experimentally
characterizing the anomalous dynamical exponents of spin transport has been the subject of widespread
effort [479,537H539]]. However, similar to theoretical approaches, it is also challenging in experiments
to fully establish a system’s hydrodynamical universality class, since it requires characterization
beyond the dynamical exponent.

In this section, we explore the superdiffusive dynamics of the ferromagnetic Heisenberg model
using a quantum-gas microscope with single-site resolution and single-spin-sensitive detection in spin
chains of up to 50 spins. Our main results are three fold. First, we observe superdiffusive spin transport
with the dynamical exponent z = 3/2, consistent with KPZ hydrodynamics. Second, we demonstrate
that both integrability and a non-abelian symmetry are essential for observing superdiffusion: Breaking
integrability by tuning dimensionality restores diffusion, and breaking the symmetry by preparing an
initial state with net magnetization leads to ballistic transport (Fig.[2.24]A). Finally, leveraging the ability
of our experimental setup to detect spin-resolved snapshots of the entire sample, we map the shot-to-
shot dynamical fluctuations (i.e., the “full counting statistics”) of the magnetization. These fluctuations
carry clear signatures of the intrinsic non-linearity associated with KPZ hydrodynamics [540]], and

distinguish it from other potential mechanisms for superdiffusion such as Lévy flights [536].
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Figure 2.24: (a) Dynamical exponents for finite-temperature Heisenberg chains. Whereas integrable systems
typically display ballistic transport (magnetized chains, § > 0), non-integrable systems are generically diffusive
(2D Heisenberg model, J| > 0). For unmagnetized Heisenberg chains, transport is expected to fall into the
KPZ universality class with a superdiffusive exponent z = 3/2. Inset: By measuring polarization transfer
P(t) across a domain wall, we directly observe these transport regimes: superdiffusion in the unmagnetized
case (green), ballistic transport at finite net magnetization (blue), and diffusion in 2D (orange). Exponents
are extracted by fitting P(f) « t1/2; for the ballistic case we additionally fit a vertical intercept to account for
transient initial-time dynamics. Error bars denote the standard deviation (s.d.) of the fit. (b) In each experimental
run, we measure the spin states of a Heisenberg chain (top) by removing one spin species (center) and imaging
the atomic site occupation (bottom). (c) The Heisenberg chains are realized in a 2D atomic Mott insulator
(analysis region depicted) with controllable inter-chain coupling. Our setup allows us to prepare domain walls
with high purity # (left, center column) and low purity # (right). We measure the time evolution of both |1)
(top) and M) (center, bottom row) atoms to extract the polarization transfer.

2.5.2 [Experimental system

In our experiment, we probed the transport dynamics of bosonic 8Rb atoms trapped in an
optical lattice; the atoms occupy the two hyperfine ground states |1) = |F =1,mp = —1) and
|{) = |F =2, mp = —2) and their dynamics are captured by a two-species Bose-Hubbard model
with on-site interaction U and tunnel coupling f. At unit filling and in the limit of strong interactions,
the direct tunneling between lattice sites is suppressed and spin dynamics occur via second-order
spin-exchange. The system can be mapped to the spin-1/2 XXZ model for |1) and |{) [541}[542], and,

in one dimension (1D), is described by the Hamiltonian
A A A sy &y A A
A=—JY (8181 + 880, +855.,), (2.26)
]

where A quantifies the interaction anisotropy and | = 4 2/ U characterizes the spin-exchange coupling.

In our system, the atomic scattering properties yield A &~ 1 and the system maps to the isotropic
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ferromagnetic Heisenberg model.

We began our experiment by loading a spin-polarized 2D degenerate gas of approximately 2000
atoms into a square optical lattice with a spacing of 2 = 532 nm. We realized a homogeneous box
potential over 50 x 22 sites by additionally projecting light at a wavelength of 670 nm with a digital
micromirror device (DMD), preparing a Mott insulator with a filling of 79 = 0.93(1) in this box.
Local spin control was realized using light at a wavelength of 787 nm on the DMD [543]] to apply a
site-resolved differential light shift between |1) and |]); subsequent microwave driving allowed for

local flips of the spatially addressed spins.
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Figure 2.25: (a) The polarization transfer for a domain-wall initial state with a contrast of # = 0.22(2) grows
as a power law (P(t) o< t1/7) with a fitted exponent z = 1.54(7) (solid line), indicating superdiffusive transport.
The experimental data agrees well with numerical Heisenberg-model simulations (dashed line). The insets show
the averaged spin profiles 2S/Z.(t) at times /7 = 0, 10, 26, which are compared to simulations (dashed lines).
(b) Polarization transfer in a double-logarithmic plot. The solid lines are power-law fits with fixed exponents,
where a distinction between z = 3/2 (green) and both z = 2 (brown) and z = 1 (blue) is visible. (¢) When
rescaling time by the inverse dynamical exponent, the spatial spin profiles at times ¢ /T = 5 to 35 (light to dark
green) collapse to a characteristic shape consistent with the integrated KPZ function. Error bars denote the
standard error of the mean (s.e.m).

Such quantum control enabled us to prepare spin domain walls [353] 1397, 1427, |544] by spatially
addressing half the system. Subsequently, we prepared high-entropy states by globally rotating the
spins away from the S*-axis using a resonant microwave pulse and then locally dephasing them
by projecting a site-to-site random spin-dependent potential, which we modified from shot to shot
(Fig.[2.24[C). More precisely, our experiments focused on tracking spin dynamics starting from a class
of initial states comprising a spin domain wall with magnetization difference 27 in the middle of

the spin chain: i.e., one half of the system has magnetization # and the other half of the system has
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magnetization —7. In the infinite-temperature limit, 7 — 0, the relaxation of such states yields linear
response transport coefficients, as the derivative of the spin profile is precisely the dynamical spin
structure factor [353),1427]].

In order to probe 1D spin dynamics in our system, we rapidly quenched the lattice depth along
1D tubes comprising 50 sites, which suddenly increased the spin-exchange coupling from zero to
J/h = 64(1)s~!. After tracking the spin dynamics for up to ~ 45 spin-exchange times T = 71/],

we removed one spin component and measured the remaining occupation via fluorescence imaging

(Fig.[2.24B).

2.5.3 Superdiffusive spin transport
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Figure 2.26: Fitted power-law exponent z for the spin polarization transfer at different coupling strengths
between individual 1D chains with initial domain walls with # ~ 0.9. Starting from superdiffusive transport in
the purely 1D case, z = 1.45(5), increased inter-chain coupling breaks the integrability of the system and leads
to a crossover towards diffusive transport, reaching z = 2.08(4) in the 2D case, as generically expected for
non-integrable systems. The inset depicts the normalized polarization transfer P(t)/# for J, /] = 0,0.40(1)
and 1.00(5) (green to orange). Error bars denote s.d. of the fit.

To explore the nature of anomalous spin transport in the 1D Heisenberg model, we initialize the
spins in a high-entropy domain-wall state with 7 = 0.22(2). We characterize the subsequent spin

transport by measuring the polarization transfer, P(t), defined as the average total number of spins
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that have crossed the domain wall by time ¢. The emergence of hydrodynamics is characterized by the
power-law scaling of P(t) ~ t1/2 and immediately enables us to extract the underlying dynamical
exponent z. As depicted in Fig. , the data exhibit a superdiffusive exponent, z = 1.54(7),
consistent with KPZ scaling. By comparison, neither a diffusive (z = 2) nor ballistic (z = 1) exponent
accurately capture the observed dynamics (Fig. [2.25B). Somewhat surprisingly, we also observe a
superdiffusive exponent of z = 1.45(5) upon changing the initial state to a near-pure domain wall
with 7 = 0.95(2) (Fig. S8) [318] 397,536} 543].

To further explore the superdiffusive dynamics, we investigate the spatially resolved spin profiles
at 7 = 0.22(2). Our experimental observations are in quantitative agreement with simulations based
upon tensor-network numerical techniques [317, 318] and conform to KPZ dynamics (Fig. 2.25A).
Crucially, when appropriately rescaled by the dynamical exponent, all of the observed spatio-temporal

profiles collapse onto a scaling form consistent with the KPZ scaling function (Fig. [2.25(C).

2.5.4 Microscopic origins of superdiffusion

To understand why the combination of integrability and a non-abelian symmetry leads to emergent
superdiffusive transport, it is instructive to first consider the transport dynamics on top of a small net
magnetization background [171} 172,492, 532]]. In our experiments, this corresponds to preparing
domain walls with a finite overall magnetization &, i.e. one half of the system has a magnetization
17 + 0 and the other half —# + 4. Stable quasiparticles then render spin transport ballistic (Fig.[2.24A),
leading to a characteristic polarization-transfer rate that scales linearly with net magnetization ¢ [172].
Even when 6 = 0 on average, random local fluctuations of the magnetization will be present; thus,
the net magnetization in a typical region of size ¢ will scale as 1/ V0. Therefore, the average spin
transport rate across a region of size ¢ also scales as 1/ Ve, implying that the transport time across the
region scales as £/(1/+/1) ~ £3/2, precisely yielding the KPZ exponent z = 3/2 (Appendix .

This intuitive analysis suggests two key requirements for superdiffusive transport: (i) integra-
bility ensures the presence of stable quasiparticles that move ballistically, and (ii) the presence of a
non-abelian SU(2) symmetry makes the characteristic velocity of the ballistic contribution to spin

transport vanish. We can experimentally probe these requirements by individually breaking either the
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Figure 2.27: (a) Averaged experimental (top) and numerical (bottom) spin profiles S]Z(t), from which the

initial profile S]z»’O is subtracted. (Left) Unmagnetized low-purity domain wall, § = 0,7 = 0.22(2) (from

Fig.[2.25). Spin transport results from the increase of the spin profile width, which scales with the superdiffusive
dynamical exponent. The black lines indicate the position j where the spin profile crosses [25%(t) — 6| /7 = 0.4;

because the profiles themselves are scale-invariant, the position of any S* value follows the z = 3/2 scaling.
(Right) Magnetized domain wall, § = 0.80(1),77 = 0.12(1). At the outer edge the contribution of magnons
is visible, transporting spin with the speed of the spin “light cone” (dashed line), which was measured with a
quantum walk. The majority of the spin is carried by quasiparticles within the light cone, leading to the width
of the profile (solid line) growing faster than in the unmagnetized case. The numerical simulation shows a
qualitatively similar behavior. At t/T =~ 25 the magnons reach the system edge and are reflected. (b) To extract
the ballistic polarization-transfer velocity, we linearly fit the normalized polarization transfer after a crossover
time, t/7T > 16 (left). We observe a growth of the transfer velocity when increasing the initial domain-wall
magnetization ¢ (right, light to dark blue). Error bars denote s.d. of the fit.

integrability or the SU(2) symmetry of the system.

To break integrability, we turn on a finite inter-chain coupling [, by lowering the lattice depth
orthogonal to the 1D spin chains, which effectively causes the system to become 2D [546, [547].
We measure the dependence of the polarization transfer on the inter-chain coupling, starting from
an unmagnetized domain wall (7 =~ 0.9, 6 = 0). As shown in Fig. the extracted dynamical
exponents exhibit a clear flow from superdiffusive transport when [, = 0 to diffusive transport,
z = 2.08(4), when J, = J. Interestingly, for |, /] < 0.1 integrability is strictly broken but the
transport dynamics remain consistent with superdiffusion within experimentally accessible timescales.

This observation bolsters recent theoretical expectations, which suggest that superdiffusion can be
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particularly robust to perturbations that do not break the non-abelian symmetry [429].

Next, let us explore the effect of breaking the underlying SU(2) symmetry using initial states with
finite net magnetization 6. Working with an imbalanced domain-wall initial state (7 = 0.12(1), 6 =
0.80(1)), we observe two main differences compared to the unmagnetized (6 = 0) case (Fig. ).
First, the polarization profile exhibits a fast ballistic component that follows the spin “light cone” of
the dynamics (with a speed of 1/, dashed line in Fig.[2.27]A). This contribution arises from the fastest
quasiparticles, which transport spin above the magnetized background (Appendix [548]. Second,
within this light cone, polarization spreads substantially faster compared to the unmagnetized case; this
comprises the bulk of the spin transport and is mediated by slower-moving, net-magnetization-carrying
quasiparticles.

At early times, the polarization-transfer dynamics exhibit a superdiffusive power law, before
crossing over to linear ballistic transport at later times. In particular, by fitting a power law to the
late-time data, t/T > 16, we extract a dynamical exponent z = 0.9(3), consistent with ballistic
spin transport (Fig.[2.27B). Although our results agree qualitatively with numerical simulations of
the Heisenberg model, the magnitude of the measured polarization transfer is smaller; this can be
understood as resulting from the presence of hole defects in the initial state [549]. In addition to
verifying the ballistic nature of the spin dynamics, we can also directly extract the velocity of the
underlying quasiparticles; by controlling the overall magnetization of the initial state, we observe the
expected increase of the velocity with ¢ (Fig.[2.27B), an essential component for understanding the

presence of KPZ superdiffusion in spin chains [172].

2.5.5 Observing KPZ hydrodynamics

Our previous observations have focused on characterizing superdiffusive spin transport; however,
from the perspective of observing KPZ universality, this is insufficient, as multiple different classes of
hydrodynamics can exhibit the same dynamical exponent of z = 3/2. To distinguish these classes, we
go beyond measurements of the average polarization transfer and analyze the full distribution function
of the polarization transfer Pr(P; t) across snapshots [540]. This distribution function can distinguish

KPZ from potential alternatives such as Lévy flights: for all linear processes (such as Lévy flights or
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Figure 2.28: (a) The probability distribution asymmetry of the polarization transfer expected for KPZ transport
is quantified by the skewness. We compare the pure domain-wall dynamics in the 1D case (green) with the non-
integrable 2D case at [ | /] = 0.25(1) (orange). Whereas the 2D case becomes symmetric at late times, the 1D
distribution remains asymmetric with a skewness of 0.33(8). Gray lines indicate the skewness of the Gaussian-
orthogonal-ensemble (GOE) and Gaussian-unitary-ensemble (GUE) Tracy-Widom (TW) distributions [550].
Colored lines serve as guides to the eye. (Insets) Probability distributions of the polarization transfer on a
logarithmic scale. The vertical line marks the mean of the distribution. (b) The mean (circles) of the polarization
transfer is consistent with the data shown in Fig. [2.26 and scales with the power-law (solid lines) exponent
1/z =0.67(1) in 1D; 1/z = 0.60(2) in 2D. The standard deviation (triangles) features another characteristic
transport exponent (the growth exponent [S51]]) which agrees with the extracted power-law (dashed lines)
exponent, = 0.31(1) in 1D; B = 0.24(1) in 2D. Error bars denote the s.d. obtained from a bootstrap analysis.

time-rescaled diffusion) the fluctuations of P at late times are necessarily symmetric about the mean;
for KPZ, the limiting distribution Pr(P;t — o0) is the Tracy-Widom distribution (Appendix ,
which is strongly asymmetric [550,552].

Measuring the statistics of the polarization-transfer distribution therefore gives us a direct ex-
perimental observable to discern the underlying hydrodynamical transport equations; this analysis
fundamentally relies on the single-shot nature and the single-spin sensitivity of our quantum-gas
microscope. As we measure the occupation of a single spin species per snapshot, we approxi-
mate the polarization-transfer statistics by the statistics for the single-species atom-number transfer,
N;(U ~ P/2, where N} is the number of |1) atoms on the side of the domain wall initialized with
the opposite spin |/.). We quantify the asymmetry of the distribution about its mean P by its skewness
(u3(t) — 13(0))/ (na(t) — u2(0))3/2, where p(t) = Yp(P — P)kPr(P;t) denotes the k-th central

moment of the distribution (Appendix [A-§).
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To begin, we characterize the skewness of the polarization transfer starting from a high-purity
domain wall (7 = 0.89(1), 6 = 0) for a 2D geometry with an inter-chain coupling strength || /] =
0.25(1). The skewness of the polarization transfer distribution is overall small and is most consistent
with a decay toward zero (Fig. which corresponds to a fully symmetric distribution and which is
expected for linear diffusive processes exhibited by the non-integrable 2D Heisenberg model.

If the 1D Heisenberg model is actually governed by non-linear KPZ hydrodynamics, one expects a
markedly distinct behavior for the skewness as a function of time. In particular, the non-linearity of the
KPZ equation would lead to a finite skewness, which is constant over time. We indeed observe that the
skewness saturates to a finite value of 0.33(8) when starting from an initial state with 7 = 0.91(2) and
0 = 0 (Fig.[2.28). In agreement with numerical simulations, this value is consistent with the skewness
of the Gaussian-orthogonal-ensemble Tracy-Widom distribution, 0.294 [550]. Directly ruling out
linear transport processes, our experiment thus provides a strong indication that transport in the 1D

quantum Heisenberg chain is indeed governed by KPZ hydrodynamics.
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Figure 2.29: As the purity # increases, the dynamical exponent z = 3/2 as the diagnostic of superdiffusion
persists, while the superdiffusion constant decreases. Gray dashes are guidelines for power-law growth with
z=23/2.

2.5.6 Discussion and Conclusion

Effect of purity 3 in the superdiffusive transport— The required SU(2) symmetry for the KPZ
superdiffusion is only strictly present 7 = 0, where analytical results are best understood. However, we

observe that even for quite large # of the initial state, the subsequent dynamics does not significantly
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deviate from superdiffusion. A possible understanding may be that as the domain wall melts, the
magnetization approaches zero and the SU(2) symmetry is restored in the middle of the chain. More
importantly, the superdiffusive polarization transport is bottlenecked by such unmagnetized region,
since finite net magnetization will lead to ballistic transport, which is faster than superdiffusion.
Therefore, even for large (but non-unity) purity, it is natural to expect the superdiffusion behavior to
still persist. In Fig.[2.29, we numerically study the effect of purity 7 in the measured polarization
transfer. We see that, while the overall magnitude of polarization transferred varies with 7, the
associated dynamical exponent z remains consistent with KPZ superdiffusion (z = 3/2) up until the
pure initial state, 7 < 1. This is consistent both with theoretical expectation and with the experimental
observations of superdiffusion at finite and large 7. Curiously, precisely at 7 = 1, the behavior
is known to be diffusive with logarithmic corrections. However, distinguishing this behavior from
superdiffusion, requires following the dynamical evolution to very late time in large system sizes
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Figure 2.30: Decay rate <y of the g(i) correlator visibility of spin spirals with wave number g at a lattice depth
of 10 E, (green) and 8 E, (orange). Both measurements give an exponent consistent with diffusive transport of
z = 1.9(2) and 2.0(1), respectively. Error bars denote s.d. of the fits.

Transport measurement with spin spiral—Our work builds and expands upon recent experimental
explorations of Heisenberg-model spin dynamics. These experiments include neutron scattering studies
of the quantum material KCuFj3 [479], as well as experiments probing the relaxation of spin-spiral
initial states in ultracold gases [537H539]]. In the 1D Heisenberg model, the relaxation of such spin-

spiral states is non-generic because they are approximate eigenstates in the long-wavelength limit [536]].
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Empirically, spin spirals relax with a diffusive exponent z /2 2. By considering a more generic family
of domain-wall initial states, we are able to directly probe (and controllably move away from) the high-
temperature linear-response limit where KPZ transport is conjectured to occur. For a direct comparison
with the domain-wall initial state, we also studied the decay dynamics of longitudinal spin spirals.
Analogous to the previous experiment in this setup [537]], we prepared the spiral state via a Ramsey
sequence, where a linear magnetic gradient imprinted a spiral pattern during the time between the
pulses. We obtained the decay rates - by fitting an exponential function to the visibility, V () o e~ 7,
of the second-order correlation function <ﬁj(t) ﬁitr d(t)> — <ﬁlT(t)> <ﬁZT+ d(t)>. Performing this
measurement for varying spin spiral wave numbers g allows us to fit the transport power law 7y o< g*.
We can indeed reproduce the diffusive behavior observed in prior work [537] for both lattice depths of
10 E, and 8 E, (Fig.[2.30), which deviates significantly from the superdiffusive exponents extracted
from the direct polarization transport measurements. This highlights that the dynamics of high-purity
spin spiral states can be very distinct from the underlying (high-temperature) universal transport
exhibited by the Heisenberg model. We would expect that, using this method, universal behavior can
only be observed within a high-temperature background, where linear-response transport is valid.

To summarize, our results support the theoretical conjecture that spin transport in the 1D Heisenberg
model belongs to the KPZ universality class, with a superdiffusive transport exponent z = 3/2. We
have experimentally demonstrated that both integrability and a non-abelian symmetry are essential for
stabilizing superdiffusive transport. Moreover, we exploit the single-spin sensitivity of our setup to
extract the full distribution function of the polarization transfer. This distribution function exhibits a
large skewness that does not decay in time, demonstrating that spin transport in this system belongs to
a strongly coupled, non-linear dynamical universality class.

Our results open the door to a number of intriguing directions. First, the discrepancy between the
relaxation of domain walls and spin spirals (away from linear response) indicates that relaxation in
integrable systems is generally strongly state dependent; we lack a theory of this non-linear regime.
Second, the robustness of our results along the crossover from the Heisenberg to the (non-integrable)
Bose-Hubbard regime remains to be fully understood [429]. In this context, a comparison between

the non-integrable Bose-Hubbard model and the integrable Fermi-Hubbard model [549]] could be of
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particular interest. Finally, the observable we introduced to capture fluctuation effects—namely, the
statistics of single shots of the polarization transfer—promises to be a powerful diagnostic tool for new
phases of interacting quantum systems. Fortuitously, a theory of this quantity already exists for the
KPZ universality class; developing a more general theory of such transport fluctuations is an important

task for future theoretical work.
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2.6 Emergent ergodicity at the transition between many-body localized

phases

2.6.1 Introduction

Traditionally, the classification of phases of matter has focused on systems at or near thermal
equilibrium. Many-body localization (MBL) offers an alternative to this paradigm [95. 97, 106} 149,
553,1554]. In particular, owing to the presence of strong disorder, MBL phases are characterized by
their failure to thermalize [89, 190, 140} 555]]. This dynamical property imposes strong constraints on
the structure of eigenstates; namely, that they exhibit area-law entanglement and can be described
as the ground state of quasi-local Hamiltonians [[129} [556]]. Perhaps the most striking consequence
is that such systems can exhibit order — previously restricted to the ground state — throughout their
entire many-body spectrum. In particular, the interplay between strong disorder, symmetry, and
topology has led to the characterization of a broad landscape of MBL phases ranging from spin
glasses and time crystals to symmetry protected topological phases [131,1556-560]. This offers a
particularly tantalizing prospect for near-term quantum simulators: The ability to observe phenomena,
such as coherent topological edge modes, without the need to cool to the many-body ground state
[2211 2241238}, 15611 [562].

The presence of eigenstate order in the many-body localized phase also raises a more fundamental
question: What is the nature of phase transitions between different types of MBL order? This question
highlights a delicate balance between the properties of localization and phase transitions. On the one
hand, the stability of MBL is contingent upon the existence of an extensive number of quasi-local
conserved quantities (“£-bits”) [129,[130]. On the other hand, the correlation length at a second-order
phase transition diverges [563]]. Understanding and characterizing this interplay remains an outstanding
challenge. Indeed, while certain studies suggest the presence of a direct transition between distinct
MBL phases [131}, 1224, 560, 5641566, others have found signatures of delocalization at the transition
[2221 567, 568]].

In this section, we conjecture that any transition between distinct MBL phases is invariably

forbidden and that an intervening ergodic phase always emerges (Fig. 2.3Th). This conjecture is
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Figure 2.31: (a) Phase diagram of the symmetry breaking model, Eqn. as a function of W;/Wj, and
interaction strength Wy,. For all numerically accessible Wy, (outside the shaded region), we observe a finite width
ergodic region between the two different MBL phases (PM and SG). At Wy = 0, the system is non-interacting
and exhibits a critical point at Wy /W), = 1 (red point). (b) Phase diagram as a function of a symmetry breaking
field I' and W; /W), for Wy, = 0.3. With increasing I', the size of the ergodic region decreases until the system
remain localized for all W;/Wj,. (inset) Schematic of the full phase diagram as a function of W;/W,,, Wy, and
I.

motivated by an extensive numerical study of three classes of MBL transitions: (i) a symmetry-
breaking transition, (ii) a symmetry-protected topological (SPT) transition, and (iii) a discrete time
crystalline transition (in a Floquet system). By systematically constructing the various phase diagrams,
we show that an intervening ergodic region emerges for all numerically-accessible interaction strengths.
Moreover, we demonstrate that this emergent ergodicity is intimately tied to the presence of a phase
transition; a disorder-less, symmetry-breaking field suppresses the intervening ergodic phase. In
addition to numerics, we analyze two instabilities which could induce thermalization near the putative
transition: (i) the proliferation of two-body resonances [553) 569, [570] and (ii) the run-away of
avalanches [105, 571]]. We find that the latter is marginal. Finally, we propose and analyze an
experimental platform capable of directly exploring the emergence of ergodicity at the transition
between MBL phases. Our proposal is motivated by recent advances in Rydberg-dressed, neutral-atom
quantum simulators [S72H579]]; we demonstrate that the phase diagram depicted in Fig. can be

directly probed via quench dynamics of local observables within experimental decoherence time-scales.
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2.6.2 Intervening ergodic phase between MBL paramagnet and MBL spin glass

Let us start by considering the paradigmatic example of a disordered one dimensional spin chain,

which hosts two distinct MBL phases:
H =) Jio;oiy + ) hio + ) Vi(oioiy + 07 0f,), (2.27)
i i i

where ¢ are Pauli operators and all coupling strengths are disordered, with J; € [—W;, Wi, h; €
[—Wy, Wi, and V; € [-Wy, Wy] || We choose to work with the normalization /W;Wj, = 1 and
perform extensive exact diagonalization studies up to system size L = 16. In the absence of V, the
system reduces to the non-interacting, Anderson localized limit and for sufficiently strong disorder (in
Ji and h;), this localization persists in the presence of interactions.

The Hamiltonian (Eqn. 1) exhibits a Z, symmetry corresponding to a global spin-flip, G = []; 77"
In the many-body localized regime, two distinct forms of eigenstate order emerge with respect to the
breaking of this symmetry. For W, > Wj, Wy, the transverse field dominates and the system is in
the MBL paramagnetic (PM) phase. The conserved /-bits simply correspond to dressed versions of
the physical ;" operators. For W; > W,,, Wy, the Ising interaction dominates and the eigenstates
correspond to “cat states” of spin configurations in the Z direction. Physical states break the associated

Z, symmetry, the {-bits are dressed versions of o707

1> and the system is in the so-called MBL

spin-glass (SG) phase [557, 560].

These two types of eigenstate order can be distinguished via the Edwards-Anderson order
parameter which probes the presence of long-range Ising correlations in eigenstates |n), x =
<<L_1 Y (n| o7 0% \n)z» where (- - -)) denotes averaging over disorder realizations [560, 566]. In the
SG phase, this order parameter scales extensively with system size, x o« L, while in the PM phase, it
approaches a constant O(1) value. Fixing Wy = 0.7, x exhibits a clear transition from PM to SG as
one tunes the ratio of W;/Wj, (Fig. 2a). The finite-size flow of x is consistent with the presence of a
single critical point at W; = 3.2, W), = 0.32 (W; /W), =~ 10).

However, thermalization diagnostics tell a different story. In particular, we compute the (r)-ratio, a

15We remark that up to edge effects, the model is dual under the Kramers-Wannier map ensuring that any direct transition
between the MBL SG and MBL PM phases must occur at Wy /W, = 1.
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Figure 2.32: Characterization of the symmetry breaking model, Eqn. for Wy = 0.7. (a) For Wy /W), 2 10,
X increases with system size evincing the SG nature of the phase. In the PM phase, x approaches a finite
constant, albeit exhibiting two distinct behaviors (inset). (b) (r)-ratio as a function of W]/ W, reveals an
intervening ergodic phase surrounded by two localized phases. The dash-dotted [dashed] line corresponds to
the GOE [Poisson] expectation. (c) The half-chain entanglement entropy S /, increases with system size for
intermediate W; /W, in agreement with the expected thermal volume-law. In the two localized phases, Sy />
saturates to different values, highlighting the distinct nature of the underlying eigenstate order. (d) The variance
of S; /» exhibits two distinct peaks in agreement with the presence of two distinct transitions. Each data point
corresponds to averaging over at least 102 disorder realizations.

measure of the rigidity of the many-body spectrum: (r) = (min{d,, d,+1}/max{dy, é,+1})), where
0y = Eni1 — En, Ey is the n'™ eigenenergy and averaging is also done across the entire many-body
spectrum [99] [100]. In the MBL phase, energy levels exhibit Poisson statistics with (r) ~ 0.39,
while in the ergodic phase, level repulsion leads to the GOE expectation (r) =~ 0.53 [90, 93, [106].
Unlike yx, which exhibits a single transition, the <r>—rati0 exhibits two distinct critical points, each
characterized by its own finite-size flow (Fig.[2.32p). This demarcates three distinct phases: two
many-body localized phases (for W;/W;, < 0.1 and W;/W,, 2 10) separated by an intervening
ergodic phase. Interestingly, the location of the ergodic-MBL transition at Wy /W), ~ 10 matches the

location of the spin-glass transition observed via x. The fact that an additional ergodic-MBL transition
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is observed in the (r)-ratio, but not in x, suggests that the PM regime has slightly more structure.

In order to further probe this structure, we turn to the half-chain entanglement entropy, Sy, =
—Tr[pslog(ps)], where ps = Tri<y s2[|n) (n|] [95 129, 560, 580H587]]. The behavior of Sy /,, illus-
trated in Fig. [2.32k, allows us to clearly distinguish three phases: the MBL paramagnet, the ergodic
paramagnet, and the MBL spin-glass. For W; /W), < 0.1, the eigenstates are close to product states
and the entanglement entropy S; /; is independent of L, consistent with a localized paramagnet. Near
W; /Wy, = 1, S, increases with system size, approaching (Llog2 — 1)/2, consistent with an
ergodic paramagnet [588]]. Finally, for W; /W), > 10, the half-chain entanglement again becomes
independent of L and, for very large Wj/Wj,, approaches log 2, consistent with the cat-state-nature of
eigenstates in the MBL SG phase.

A few remarks are in order. First, the variance of Sy /, across the ensemble of disorder realizations
provides a complementary diagnostic to confirm the presence of two distinct ergodic-MBL transitions
(Fig. ) (560, 581-584 [5841587]. Indeed, one observes two well-separated peaks in var(Sy /2),
whose locations are consistent with the transitions found in the (r)-ratio. Second, although x only
scales with system size in the SG phase, one expects its behavior to be qualitatively different in the
MBL versus ergodic paramagnet. In particular, in the MBL paramagnet, the ¢-bits have a small overlap
with (Tf(Tf and one expects ¥ > 1; meanwhile, in the ergodic paramagnet, for a state chosen at the
center of the many-body spectrum, one expects that Y — 1 rapidly with increasing system size (owing
to the eigenstate thermalization hypothesis) [89-91,196]]. This is indeed borne out by the numerics, as
shown in the inset of Fig. [2.3%.

Diagnostics in hand, we now construct the full phase diagram as a function of Wy and W;/W,,
(Fig. ). Even for the smallest interaction strengths accessible Wy ~ 0.07 (i.e. where the minimum
interaction coupling remains larger than the mean level spacing) one observes a finite width region
where the (r)-ratio increases with system size [580, 589-592]].

To verify that the presence of a phase transition is indeed responsible for the intervening ergodic
region, one can explicitly break the Z; symmetry in Eqn. We do so by adding a disorder-less,
on-site longitudinal field, I'}_; 07. Despite the fact that the field is uniform, it causes the (r)-ratio

to systematically decrease (Figs.[2.33p,b), and for a sufficiently large symmetry breaking field, all
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Figure 2.33: (a) (r)-ratio as a function of W;/Wj, at Wy = 0.3 in the presence of an explicit symmetry
breaking field I' = 2. The dash-dotted [dashed] line corresponds to the GOE [Poisson] expectation. Unlike the
symmetry respecting case (I' = 0, inset), the system remains localized for all values of W;/W,. (b) Within
the ergodic region (here with Wy /W), = 1), an increasing symmetry-breaking field drives the system towards
localization. Each data point corresponds to averaging over at least 3 - 10 disorder realizations.

finite-size flow tends toward localization. This allows us to construct the phase diagram in the presence

of finite I', as depicted in Fig.[2.31p.
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Figure 2.34: Phase diagrams of the SPT (left panel) and DTC (right panel) models. For all interaction strengths,
we find an intervening ergodic phase separating the two MBL phases. The red point on the x-axis of either
diagram indicates the location of the non-interacting critical point.

2.6.3 Generality of intervening ergodic phase

To understand the generality of an emergent ergodic region between many-body localized phases,

we now consider two additional types of MBL transitions: a symmetry-protected topological (SPT)
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Figure 2.35: The SPT [DTC] model of Eqn. [Eqn. also exhibits an intervening ergodic phase.
Upper row: The order parameter O, the (r)-value, the half-chain entanglement Sy /», and the variance of the
entanglement var(Sy /) for interaction strengths Wy, = 0.5 for the SPT model. For panels depicting the
(r)-value, the dash-dotted [dashed] line corresponds to the GOE [Poisson] value. At least 9 - 10% disorder
averages were performed for each system size. Lower row: The order parameter A, the (r)-value, the half-chain
entanglement S; /,, and the variance of the entanglement var(Sy /,) for interaction strengths /1, = 0.5 for the
DTC model. For panels depicting the (r)-value, the dash-dotted [dashed] line corresponds to the GOE [Poisson]
value. Each data point corresponds to averaging over at least 3 - 102 disorder realizations.

transition and a discrete time-crystalline (DTC) transition. The Hamiltonian of the SPT model is given

R:

Hspr = ) Ji07 107071 + ) hic
! : (2.28)
+ ZVz‘(Uf@% +0740707,10705)
1
with J; € [-Wj, W), hj € [-Wy, W,,], and V; € [—Wy, Wy|. Hspr exhibits a Z, x Z, symmetry,
which gives rise to an MBL SPT (Haldane) phase for W; > W, Wy and a topologically-trivial
MBL phase for Wy < Wy, Wy [539,1561,1593]). For the DTC model, we consider the Floquet unitary

evolution Ur = T exp <—i fOT Hr (t)dt) generated by the stroboscopic Hamiltonian:

Y. Jiotor  +hiot +Vier t€0,T/2)
Hp(t)y=¢ 7000t (2.29)

—Zy,oF te[T/2,T)

16We chose the form of our interaction such that, in the thermodynamic limit, the MBL SPT and MBL PM are dual to

H 3 Z Z X X Z X +Z
one another under the duality transformation 07 — o707, | and 07" — 07 10707, ;.
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where J; € [05,1.5], T = 2, h; € [0,h] and V; € [0,2V]. When h < 1, the Floquet system
spontaneously breaks time-translation symmetry and is in the so-called DTC phase, while for 1 > 1,
the system is in a Floquet paramagnetic phase [200} 221}, [222), 224 |594]595]]. We analyze each of
these models using the four diagnostics previously described: (i) the order parameter, (ii) the (r)-ratio,
(iii) the half-chain entanglement, and (iv) the variance, var(Sy /). We observe the same qualitative
behavior for both transitions across all diagnostics: An intervening ergodic phase emerges which
terminates at the non-interacting critical point (Fig.[2.34). This is illustrated by the same diagnostics
(the order parameter, half-system entanglement entropy Sy /», the (r)-value, and the variance of the
entanglement var (S /,)) for both the SPT model (for an eigenstate of Hgpr at zero energy density)
and the DTC model (for an eigenstate of Ur at 7t quasi-energy) (Fig. 2.35). We further analyze
the finite-size effects arising from small couplings, which we believe underlie previous numerical

observations of apparent direct transitions [224,[564-566|].

2.6.4 Experimental Realization

Motivated by recent advances in the characterization and control of Rydberg states, we propose
an experimental protocol to directly explore the emergence of ergodicity between MBL phases.
Our protocol is most naturally implemented in one dimensional chains of either alkali or alkaline-
earth atoms [572H579]. To be specific, we consider Rb with an effective spin-1/2 encoded in
hyperfine states: ||) = |[F = 1,mp = —1) and |1) = |F = 2,mp = —2). Recent experiments have
demonstrated the ability to generate strong interactions via either Rydberg-dressing in an optical lattice
(where atoms are typically spaced by ~ 0.5 ym) or via Rydberg-blockade in a tweezer array (where
atoms are typically spaced by ~ 3 um) [572-579]. Focusing on the optical lattice setup, dressing
enables the generation of tunable, long-range soft-core Ising interactions, Hzz = Zi,]- ]ijaz-z(TjZ , with
a spatial profile that interpolates between a constant at short distances (determined by the blockade
radius) and a 1/7° van der Waals tail.

A particularly simple implementation of a PM-SG Hamiltonian (closely related to Eqn. is
to alternate time evolution under Hzz and Hyx = }_; h;c", with the latter being implemented via a

two-photon Raman transition (Fig.[2.36p). In the high frequency limit, the dynamics are governed by
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an effective Hamiltonian:

T T
H.c = h.o* or o , 2.30
eff n+n Ei, i0; + T +1 Eij,]zjgl U] ( )

where Hy is applied for time 1, Hzz is applied for time T, and the Floquet frequency w =
2/ (t + ) > h, Jij. This latter inequality ensures that both Floquet heating and higher-order
corrections to Heg can be safely neglected on experimentally relevant time-scales [[181] [391]]. Note
that unlike the DTC model (Eqn. 2.29)), here Floquet engineering is being used to emulate a static
MBL PM-SG Hamiltonian [210, [238]].

Although our prior analysis has focused on eigenstate properties, we will now demonstrate, that
the phase diagram can also be characterized via the dynamics of local observables. To investigate
this behavior, we use Krylov subspace methods to numerically simulate the dynamics of Heg with
1 =n=1Jii €[-1-3], Jiit2 = 0.6];;+1 and h; € [h,3h]. We note that the ratio of the
nearest- to next-nearest-neighbor coupling strength is chosen based upon the experimentally measured
Rydberg-dressing-interaction profile and a 1D zig-zag chain geometry (Fig. ) 41, ST4].

For system sizes up to L = 20, we compute the dynamics of initial states |ip,) and |¢,)
both states are easily preparable in experiment, close to zero energy density, and chosen such that
(x| 0f )5 [$px) = 1 and (¢zz| 07 ;107 )5 |1h2z) = 1. Starting with [ipx) as our initial state and large
h, we observe that (07 ,(t)) plateaus to a finite value at late-times, indicating the system is in the
MBL PM phase (Fig. ). Analogously, for [ip,;) and small h, we observe that (07 ,,_; ()07 /(1))
plateaus to a finite value at late-times, indicating the system is in the MBL SG phase (Fig.[2.36¢). For
h ~ 1, both observables decay to zero, indicating the system is the ergodic phase (Fig.[2.36{). The
plateau value of the two observables as a function of / clearly identifies the intervening ergodic region

(Fig. [2.36).

To ensure that one can observe the intervening ergodic phase within experimental coherence times,

17 An analogous behavior can be found in a linear geometry where the ration between nearest and next-nearest neighbor
interactions is J; ;1o = 0.2];;11.

l8|1/J,(> is polarized along +1 except at sites L /2, L /2 + 1 where it is polarized in the +# and —# direction respectively.

Analogously |1, ) is polarized along +1 except at sites L/2 — 1 through L/2 + 2 where the spins are polarized in the 2
direction with the pattern T1].J..
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Figure 2.36: (a) Schematic of the proposed experimental protocol. Within an optical lattice, neutral atoms are
prepared along two adjacent diagonals (i.e. with a gas microscope), defining a zig-zag spin chain configuration.
Dressing with a Rydberg state |r) leads to Hzz with an additional onsite field Hz o« }; 07, while a two-photon
Raman transition mediated by an excited state |e) leads to Hx. (b) By combining rapid spin echo pulses
with Floquet evolution under Hy and Hz7 + Hy, one can engineer Hqg (Eqn. . (c-e) Dynamics of o7 P
(blue) and 07 ,, ;07 ,, (red) under Hegr starting with initial states |ipx) and [¢--), respectively. Different panels
correspond to representative behaviors for the three distinct phases (tuned via k). (f) The height of the late-time
plateau distinguishes between the three phases. Each data point corresponds to averaging over at least 10
disorder realizations.

we now estimate the time-scales necessary to carry out our protocol. Previous experiments using
Rydberg dressing have demonstrated coherence times T, ~ 1 ms, with nearest neighbor couplings
Jiiv1 ~ (271) x 13 kHz and a microwave-induced 7t-pulse duration ~ 25 us [574]. Taken together,
this leads to an estimate of ~ 55 yus for the Floquet period (Fig. @) Crucially, within T (i.e.~ 20

Floquet cycles), all observables approach their late-time plateaus.
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2.6.5 Analytic Discussion

We conclude by discussing previous analytical results and how they may shed light on the origins
of the intervening ergodic phase. In the absence of interactions, the Hamiltonian transitions we
consider all fall into infinite-randomness universality classes characterized by both a divergent single-
particle density of states (DOS, D(¢g) ~ |e log3 e| ! near zero single-particle energy ¢) and single-
particle orbitals with diverging mean and typical localization lengths (mean ~ | log2 e[ and Geyp ~
| log €| respectively) [596H601]]. These divergences suggest that two-body resonances might directly
destabilize MBL upon the introduction of interactions; however, a simple counting of resonances in
typical blocks does not produce such an instability: In a block of length I, there are IN(e) “active”
single particle orbitals with Ziyp(¢) > I, where N(e) = [“de’ D(¢') is the integrated DOS [4211570].
These orbitals overlap in real space and are thus susceptible to participating in perturbative two-body
resonances. A perturbative instability of the localized state arises if [N diverges as ¢ — 0; even for
arbitrarily small interactions, a large network of resonant pairs can be found at low enough energy.
Using the DOS and localization lengths of the infinite-randomness transition, we find IN ~ 1/|log |
which vanishes slowly as ¢ — 0 (Appendix [A.9.1).

Alternatively, one might consider the susceptibility to ‘avalanches’ due to rare thermal bubbles
induced by the interactions [[105} 1602, 603]]. For a system with a distribution of localization lengths,
it has recently been shown that the average localization length controls this instability [571]: for
E > 2/ log 2, thermal bubbles avalanche. However, this is within a model where the orbitals have a
single localization center. Near the infinite-randomness transition, the orbitals have two centers whose
separation is controlled by mean but whose overlap onto a putative thermal bubble is controlled by Giyp.
Thus, while ¢mean diverges logarithmically, the more appropriate % remains finite and this criterion
does not produce an absolute instability ((Appendix [A.9.2))).

Finally, let us note that the direct numerical observation of avalanche instabilities remains extremely
challenging [105} 604]]; the presence of a robust intervening ergodic region in our study suggests that

an alternate mechanism might be at the heart of our observations.
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Chapter 3

Prethermalization and prethermal phases

in periodically driven systems

Floquet (periodic) driving has recently emerged as a powerful technique for manipulating quantum
systems and realizing intrinsically non-equilibrium phases of matter [[140, 177, 195,196} 201} 204~
206, 210l 2201222 224229, 233 238, 238, 240, 242]]. In particular, the interplay of symmetry,
topology and the driving field has been utilized to realize discrete time crystals as well as Floquet
symmetry-protected topological matters [221} 222} 224,232, [235] 238l 1605, 1606]. Despite its promise,
a critical challenge in harnessing Floquet driving lies in mitigating Floquet heating. In essence, when a
generic isolated many-body interacting system is periodically driven, it consistently absorbs energy
from the driving field and eventually approaches a featureless state [[177,[387H390]]. So far, various
strategies have been developed to address this challenge. One approach involves introducing strong
disorder and interactions, inducing a many-body localized phase that prevents Floquet heating; the
system can then persist in an out-of-equilibrium state for arbitrarily extended times [95} (199,389, 390].
Alternatively, one can leverage prethermalization, where the high frequency of the drive delays
heating to exceptionally late times [[178} 1814184191193, 1195, 1227, 318} 1607-609]. The underlying
intuition is simple: directly absorption of energy from the drive is highly off-resonant, and heating
occurs only via higher-order processes that involve multiple, correlated local rearrangements. In

the prethermal regime, it is generally expected that the dynamics can be approximately generated
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by an effective Hamiltonian [178} [191} (192, [391]]; integrating different symmetries or non-trivial
topology into such prethermal Hamiltonian enables diverse prethermal phases of Floquet systems.
While such expectation has been demonstrated in systems meeting specific conditions, the universality
of prethermal phenomena remains an open question, dependent on nuanced system details such as
the interaction range [[182) [185) [186 [195]]. This chapter explores the broader landscape of Floquet
dynamics, extending present some generalization to much broader classes of Floquet dynamics, along
a few different directions: classical Floquet systems, systems with long-range interaction, and systems

under quasi-periodic (quasi-Floquet) drive.
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3.1 Floquet phases of matter via classical prethermalization

3.1.1 Introduction

The most striking examples of many-body Floquet phases are known within quantum settings;
by contrast, progress has not been so swift in classical Floquet systems. To overcome the central
challenge—Floquet heating—in stabilizing such phases 17713871390, strong disorder can be utilized
to induce many-body localization (MBL) in quantum systems, which further enables the system
to remain in a non-equilibrium steady state until arbitrarily late times [95] (199, [389, 390]]. Since
localization relies upon the discreteness of energy levels, this specific approach is intrinsically quantum
mechanical and naturally begs the following question: To what extent do Floquet non-equilibrium
phases require either quantum mechanics or disorder [230} 610-H617(]?

An elegant, but partial, answer to this question is provided within the framework of Floquet
prethermalization in disorder-free systems [[178, [181H184, 191419311195, 1227, 318, 1607-609]. While
the simple underlying intuition—directly absorbing energy from a fast drive being highly off-resonant
process—holds for both quantum and classical systems, Floquet prethermalization has an additional
feature in the quantum setting: There exists an effective Hamiltonian that accurately captures the
dynamics of the system in the prethermal regime. Whenever the periodic drive induces an emergent
symmetry in this effective Hamiltonian, novel non-equilibrium prethermal phases of matter, such
as discrete time crystals or Floquet symmetry-protected topological phases, can emerge [[194], (195,
205) 221H224], 2271, [232] 2351238, 241] 1605, 1606, 618, [619]. Whether analogous phases are also
possible in classical many-body systems is significantly more subtle; in particular, although classical
prethermalization features slow Floquet heating, there is no effective Hamiltonian that accurately
captures the prethermal dynamics [183]].

In this section, we show that the lack of an effective Hamiltonian does not preclude the existence of
novel, non-equilibrium phases in classical Floquet systems; we highlight this by explicitly constructing
a classical prethermal discrete time crystal (CPDTC). Our main results are three fold. First, we
demonstrate that the inability of an effective Hamiltonian to generate the Floquet dynamics is a direct

consequence of classical chaos—small errors at early times lead to exponentially diverging single
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trajectories. This connection to chaos suggests that one should forgo the focus on individual trajectories
and rather ask whether there is an effective Hamiltonian that captures the prethermal dynamics of an
ensemble of trajectories (Fig.[3.1). We show that this is indeed the case. Second, we prove that, much
like the quantum case, the effective Hamiltonian can host an emergent symmetry which is protected by
the discrete time translation symmetry of the periodic drive. Finally, the spontaneous breaking of such
an emergent symmetry leads to a sub-harmonic response, characteristic of time crystalline order, that
survives to exponentially late times in the frequency of the drive. To this end, we propose, analyze and
numerically simulate a variety of different classical prethermal time crystals with different dimensions

and ranges of interaction, including higher order and fractional time crystals.

3.1.2 Prethermalization in classical dynamics

Consider a classical Floquet Hamiltonian, Hr(t) = Hp(t + T), with period T = 27t/w. For
W > [local, ONE can construct a perturbative expansion of the Floquet dynamics in powers of [joca /@ ﬂ
In general, this Floquet-Magnus expansion diverges, reflecting the many-body system’s late-time
approach to infinite temperature (via energy absorption from the drive). However, when truncated at
an appropriate order, n* ~ w/ Jjocal, the expansion defines a static Hamiltonian, D, which remains

quasi-conserved for exponentially long times (under the full Floquet dynamics) [181H183]]:
[D(t =mT) = D(t = 0)] < Mjigca - O (e ex), (3.1

where N is the system size and m € IN is the number of Floquet cycles. To this end, Eqn. [3.1
precisely formalizes the existence of an intermediate, prethermal regime. In particular, for times
t < Theat ~ O(e“’/ Jocal ), the energy density of the system (measured with respect to D), remains
constant up to ~ O(Jipcal)-

Nevertheless, the question remains: Is D also the effective prethermal Hamiltonian, which gener-

More precisely, we note that the classical Floquet dynamics are generated by the superoperator L(t)[-] = {-, Hr(t)}.

T
The time evolution operator over a single period is then given by Ur = Telo LBt = oL T where L is a time-independent
superoperator. The static Hamiltonian, M, corresponding to L is then given by Lr = {-, H}. The Floquet-Magnus

n
expansion constructs Hr order-by-order in %, ie. HF =Y 0 (%) D™ where D) is the n'™ order term of the

* n
expansion. Note that the effective static Hamiltonian, D, is then defined as D = Y|, (%) D,
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ates the dynamics before Ty ? In the quantum setting, the answer is yes, assuming that the system
is extensive and power-law light-cones exist as defined via Lieb-Robinson bounds [[191] (192} [195]].
However, in classical systems, D is only proven to faithfully reproduce the Floquet evolution over a
single driving period [[183]:

O(T) = O'(T)| < O(e~ /e, (32)

Here, O is a generic local observable and O(T) represents its evolution under the full Floquet
Hamiltonian [i.e. Hp(t)], while O'(T) represents its evolution under D. Note that hereon out,
observables with a prime, will always correspond to evolution under D.

Naively, one might expect the single period errors in Eqn. [3.2]to accumulate additively as one
evolves to later times. However, this does not account for compounding effects, where early-time
errors propagate through the many-body system and induce additional deviations. In the quantum
case, the existence of Lieb-Robinson bounds constrains the propagation of errors and enables one
to prove that deviations grow algebraically in the number of Floquet cycles: |O(mT) — O'(mT)| <
mP O (e~“/Jocal ); this immediately indicates that D is indeed the effective prethermal Hamiltonian [178]
19141931 [193]]. In contrast, classical systems exhibit no such bounds—chaos causes the exponential
divergence of nearby trajectories, suggesting that errors can in principle accumulate exponentially
quickly.

To sharpen this intuition, we numerically explore the Floquet dynamics of a generic classical spin
model 2
Y, SS + nihS 0<t<]

He(t) = q ¥, hyS! (3.3)

S

<t<

w3

Y SIS + LSt T <t<

)ﬂ

where §Z- is a three-dimensional unit vector. Spin dynamics are generated by Hamilton’s equations

1

of motion S!' = {S!, H(t)}, using the Poisson bracket relation {S!', SHES 5;€"0S!. The classical

dynamics of an observable O, are then given by O(f) = TeloLt) at [O], where the superoperator

2We choose the following generic set of parameters { Jz, Jx, hy, hy,h;} = {-1.0,0.79,0.17,0.23,0.13}.
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L[] is defined by L[] = {-,Hr}[| At lowest order in the Floquet-Magnus expansion, the static
Hamiltonian is given by:
D=1 Y JUSiSE 4 JYSESY 415 | + O <1> . (3.4)
3\5 J J w

To investigate the accumulation of errors, we compare the dynamics of local observables evolving
under Hp(t) and D in a one dimensional spin chain (N = 10*) with nearest neighbor interactions
Deviations from the exact Floquet dynamics are measured by computing the magnetization difference
between the two trajectories: SM(t) = 1 — & Y Si(t) - Si(t). As depicted in Fig. b) [top panel],
OM(t) quickly increases to a plateau value consistent with the spins in the two trajectories being
completely uncorrelated; thus, D cannot be thought of as the effective prethermal Hamiltonian for
Hp(t). By contrast, the energy density remains conserved throughout the time evolution [bottom panel,
Fig.[3.1(b)], demonstrating slow Floquet heating.

In order to pinpoint the role of chaos in the dynamics of §M(t), we consider a slightly modified
trajectory; in particular, starting with the same initial state, we first evolve under D for a few Floquet
cycles and then under Hp(t) for all subsequent times. Comparing to the exact Floquet dynamics (i.e.
evolution under Hp(t) for all times), this protocol only differs at very early times. Indeed, beyond
an initial, exponentially-small difference in the trajectories [arising from Eqn. [3.2]], any additional
deviation solely arises from the chaotic compounding of errors. As depicted in Fig. [3.1[(b) [dashed
curves], the magnetization difference between the modified trajectory and that of the exact Floquet
dynamics, tracks 0 M (t) for all times. Crucially, this agreement demonstrates that chaos dominates the

growth of M(t) and prevents D from being the effective prethermal Hamiltonian.

3We note that the multiplication of the superoperators (functions of observables) should be understood as function
composition. In particular, (Lj o Ly)[-] = L1[La[-]]. The n'" power of L is then defined inductively by L" = Lo L"~1,

T m
Therefore, evolving under the Floquet Hamiltonian for m periods, an observable becomes O(mT) = (Tefo L(t)at ) [O].
In a similar fashion, let us define X 1 as the inverse of the map X.
“4In general, the chaotic nature of D means that numerically integrating the equations of motion to later times requires
exponentially better precision, making the numerical treatment very difficult. By contrast, each term of H(#) corresponds

to a precession of the spins along one of three axis, which can be straightforwardly analytically calculated without resorting
to numerical integration methods.
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Figure 3.1: (a) Schematic depicting trajectories in a classical phase space. The exact Floquet trajectory
(blue) diverges from the approximate trajectory under the effective Hamiltonian (green). However, the exact
evolution of a finite region in phase space is well-captured by the effective Hamiltonian. (b) The dynamics of the
magnetization difference, § M(t), and the energy density, D/ N, for a single initial state with N = 10%. Solid
lines depict approximate evolution under D for all times. Dashed lines indicate approximate evolution under D
for short times (t < 1/]), followed by exact Floquet evolution. Agreement between solid and dashed curves
highlights the role of classical chaos in the growth of errors. While errors in local observables [i.e. SM(f)]
accumulate rapidly, the energy density remains conserved throughout the dynamics. (c) The prethermal dynamics
of an ensemble of initial states quickly converge with increasing frequency. Before Floquet heating brings
the system to infinite temperature, the magnetization approaches the value associated with the corresponding
prethermal ensemble of D [(]Jblue dashed line, computed via Monte Carlo (Fig. ].

3.1.3 Prethermal dynamics of trajectory ensembles

While the evolution of a single trajectory cannot be captured by an effective Hamiltonian, we
conjecture that D captures the dynamics of ensembles of trajectories [Fig. [3.1[a)]; by considering
an initial state composed of a region of phase space (as opposed to a single point), the details of
individual chaotic trajectories become “averaged out”. This conjecture is made up of two separate
components: (i) during the prethermal plateau, the system approaches the canonical ensemble of
D, and (ii) D accurately captures the dynamics of observables as the system evolves from local
to global equilibrium. This last component highlights the two stage approach to the prethermal

canonical ensemble. First, observables on nearby sites approach the same value and the system locally
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equilibrates (this occurs at time Tjyca1). Afterwards, the system becomes globally homogeneous as it
approaches global equilibrium at time Tgjopa]-

To investigate these components, we implement the following numerical experiment: Starting from
an N = 100 spin chain, we construct an ensemble of initial states with a domain wall in the energy
density at the center of the chain and study the Floquet dynamics of the local magnetization S7 and
energy density D/ N [Fig. c)] E} The presence of a domain wall in the energy density enables us to
distinguish between local and global equilibration.

Focusing on the late time regime (but before Floquet heating), we find that the magnetization
on opposite sides of the domain wall approaches the same prethermal plateau [Fig. 3.1[c)]; this
precisely corresponds to the global equilibration of our spin chain. Crucially, the value of this plateau
quantitatively agrees with the mean magnetization of the corresponding canonical ensemble of D
calculated at the same energy density via Monte Carlo [Fig. [3.1]c) and Fig. [3.2[a)]. Notably, we find
agreement not only with the average value, but also with the entire distribution [Fig. [3.2J(b)(c)], thus
verifying the first component of the conjecture.

To compare the Floquet prethermal plateau with the thermal ensemble of D, we compute the
average magnetization ngg at a function of the energy density D/ N (Fig. a)). Crucially, we also
plot the observed prethermal plateau value in Fig. [3.2(a), and observe great agreement with the thermal
ensemble value.

Beyond the mean value, the complete description of an ensemble also includes its fluctuations.
Therefore, to fully verify that the system approaches the thermal ensemble of D in the prethermal
regime, we further study the full distribution of the local observables. In Fig.[3.2(b), for the distributions
of both the single-site and the two-site observables (i.e. local magnetization and its correlation), we
observe excellent agreement between the Floquet prethermal state and the thermal (canonical) ensemble
of D. In Fig.[3.2{c), the local energy also exhibit the same great agreement. Such agreement highlights

that the Floquet prethermal state is indeed well approximated by the thermal canonical state of D.

SWe initialize each spin along either +2 or —2 direction. By tuning the number of domain walls, we can control the
local energy density of the system. While the spins on the right half of the chain are initialized in a completely ferromagnetic
state, the spins on the left half repeat the following pattern: | 1. Therefore, the energy density across the chain exhibits a
domain wall at the center of the chain. To bring out the ensemble effect, we add small random noise to the azimuthal angle
and perform an average of the subsequent dynamics over these slightly different initial states.
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Figure 3.2: (a) The average magnetization ngg as a function of the energy density D/N. To calculate $*

and D/ N of a thermal ensemble with respect to D, we perform classical Monte Carlo simulations at different
temperatures. The prethermal plateau value is obtained by directly compute the observables of the fast-driving
Floquet system in the prethermal regime. Crucially, the prethermal plateau precisely agrees with the thermal
ensemble of D. Probability distribution of (b) local observables and (c) energies corresponding to a Floquet
prethermal state and a canonical ensemble. The 2-site and the 3-site energy refers to the energy measured on 2
and 3 consecutive sites, respectively. The canonical ensemble is obtained via Monte Carlo simulation. For both
the local observables and the energy, the distributions of the Floquet prethermal state correponding to Hp ()
perfectly agree with that of the true thermal state corresponding to D.

To investigate the second component, we time evolve the same ensemble of initial states for
different frequencies of the drive ﬂ So long as Theat > Tglobal, We find that the dynamics of local
observables rapidly converge as a function of increasing frequency [Fig.[3.I[(c)]. Since the w — co
limit of Hp(t) precisely corresponds to Trotterized evolution under D, the convergence observed in
Fig. [3.1]c) indicates that D is indeed the prethermal Hamiltonian for trajectory ensembles. This is
in stark contrast to the dynamics of a single trajectory, where local observables fail to converge with
increasing frequency.

Interestingly, however, even for a single trajectory, the Floquet dynamics of either spatially or
temporally averaged quantities are well captured by D. The intuition is simple: by averaging over
different times or different spatial regions, a single trajectory effectively samples over an ensemble of
different configurations [Fig. [3.1[(a)]. This insight yields a particularly useful consequence, namely,
that the dynamics of a single trajectory already encode the prethermal properties of the many-body

system.

The local equilibration time Tiocal CoOrresponds to the time when nearby spins approach the same value. To identify
Tiocal» W measure the time when 53, and S7;, initially pointing in opposite directions, exhibit the same magnetization.

124



3.1.4 Prethermal dynamics with symmetry breaking

Throughout our previous discussions, energy conservation is the only constraint that restricts
the many-body dynamics within phase space. However, symmetry-breaking can lead to additional
constraints; for example, if D exhibits a discrete symmetry and this symmetry is broken at low energy
densities, then phase space is naturally split into multiple disjoint regions corresponding to different
values of the order parameter. As a result, the many-body dynamics under D are restricted to one such
region.

Floquet evolution complicates this story. In particular, one might worry that the micro-motion of
the Floquet dynamics could move the system between different symmetry-broken regions of phase
space. If this were the case, prethermal symmetry-breaking phases would not be stable. Fortunately,
the ability of D to approximate the dynamics over a single period (i.e. Eqn. [3.2), is sufficient to
constrain the Floquet evolution to a specific symmetry-broken region.

To see this, consider, for example, a system where D exhibits a discrete Z, symmetry and hosts a
ferromagnetic phase whose order parameter is given by the average magnetization. When the energy
density is below the critical value, the magnetization of the system can either be 57, or —57,,. Given
energy conservation, under a single period of evolution, the magnetization must remain the same or
change sign. However, Eqn. guarantees that the time evolved magnetization density can change, at
most, by an exponentially small value in frequency. This ensures that for sufficiently large driving
frequencies, the magnetization cannot change sign (i.e. move to the other symmetry-broken region)
and the prethermal ferromagnet remains stable.

Crucially, symmetries of D can have two different origins: they can be directly inherited from
HE(t), or they can emerge as a consequence of the time translation symmetry of the drive [194} [193].
In the latter case, this can give rise to intrinsically non-equilibrium phases of matter. To date, the study
of such non-equilibrium prethermal phases has been restricted to quantum systems [[188), [189] 227,
240, 2411, 1620-623|], where one can explicitly prove their stability [194,[195]. Here, we generalize and
extend this analysis to classical many-body spin systems, by taking the large-S limit of the quantum
dynamics (Appendix [B.T)) [183].

Consider a Floquet Hamiltonian which is the sum of two terms, Hr () = Hx(t) + Hy(t). During
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a single driving period, Hx (t) generates a global rotation X[-] = TejﬁT{"HX(t)}dt, such that the system
returns to itself after M periods (i.e. XM[-] = I[-], where I is the identity map). Ho(t) captures the
remaining interactions in the system ﬂ For sufficiently large frequencies, the single period dynamics
(in a slightly rotated frame) are accurately captured by X o eT1P}, where D is obtained via a Magnus
expansion in the toggling frame; this expansion guarantees that the dynamics generated by D commute
with X and thus, X generates a discrete Z; symmetry of the effective Hamiltonian [[194,[195]]. Indeed,
at lowest order, D is simply given by the time-independent terms of H(#) that are invariant under the
global rotation.

The resulting prethermal Floquet dynamics are most transparent when analyzed at stroboscopic
times t = mT in the toggling frame of the X rotations, wherein an observable O becomes 5(mT) =
X~™[O(mT)]. In this context, the dynamics of O are simply generated by D, i.e. O(mT) =
e"TUDYO(+ = 0)]. Thus, if the emergent Z); symmetry of D becomes spontaneously broken,
the system will equilibrate to a thermal ensemble of D with a non-zero order parameter.

In the lab frame, the dynamics of O are richer: The global rotation changes the order parameter
every period, only returning to its original value after M periods. As a result, the system exhibits
a sub-harmonic response at frequencies 1/(MT) [194, 193]. This is precisely the definition of a

classical prethermal discrete time crystal.

3.1.5 Building a CPDTC

Let us now turn to a numerical investigation of the classical prethermal discrete time crystal.
Consider the Floquet Hamiltonian in Eqn. with an additional global 7t rotation around the £-axis

at the end of each driving period ﬂ At leading order, X corresponds to the global 7t rotation, while

"We note that the multiplication of the superoperators (functions of observables) should be understood as function
composition. In particular, (Lj o Ly)[-] = L1[La[-]]. The n'" power of L is then defined inductively by L" = Lo L"~1,

T m
Therefore, evolving under the Floquet Hamiltonian for m periods, an observable becomes O(mT) = (Tefo L(t)at ) [O].

In a similar fashion, let us define X 1 as the inverse of the map X

8The 7 rotation can be generated by a magnetic field along the £ direction for time T, with strength 77/27,. Since the
dynamics are independent of T chosen, we consider it to be an instantaneous rotation, 7, — 0.
In order to better highlight the role of D throughout the prethermal regime, we consider instead a symmetrized version of
HE(t) such that its first-order contribution in inverse frequency is zero and thus the dynamics are better captured by the
zero-th order terms. We note that this does not change the results qualitatively.
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Figure 3.3: (a) Dynamics of a classical prethermal time crystal in a one-dimensional long-range interacting spin
chain. At Tgjopa), different sites exhibit the same magnetization, indicating equilibration. For an exponentially
long intermediate time window, Tgigbal < t < Tmelt, the system oscillates between positive and negative
magnetization values for even (solid line) and odd periods (dotted line). This subharmonic response remains
stable until the energy density crosses €. ~ —0.53 and the CPDTC melts. (b) The ferromagnetic order parameter
(ngg)2 and the energy density D/ N as a function of the temperature, calculated by Monte Carlo simulation.
As the system size N increases, the transition of the order parameter from zero to non-zero becomes sharper.
We identify the critical temperature as the crossing point of the curves with different system sizes. The energy
density as a function of temperature then allows us to obtain the critical energy density ¢, ~ —0.53, which we
use to compare against the melting point of the CPDTC.

D is given by the time averaged terms of Hp(t) that remain invariant under X (i.e. Eqn. with
hy = h; = 0). To this end, we will utilize the energy density, D/ N, and the average magnetization,
SZ

avg?

to diagnose the prethermal dynamics and the CPDTC phase.

Let us begin by considering a one-dimensional system with long-range interactions ];’j = J.li—
]']*"‘; when o < 2, D exhibits ferromagnetic order below a critical temperature (or, equivalently,
a critical energy density ¢, which can be determined via Monte Carlo calculations) [624]. Taking
« = 1.8 and N = 320, we compute the Floquet dynamics starting from an ensemble with energy below
e [Fig. a)]ﬂ After the initial equilibration to the prethermal state (f 2> Tglobal)’ the magnetization
becomes homogeneous across the entire chain, signaling equilibration with respect to D m Crucially,
as depicted in Fig. [3.3|a), throughout this prethermal regime, the magnetization exhibits robust period
doubling, taking on positive values at even periods and negative values at odd periods. This behavior

remains stable until the CPDTC eventually “melts” at an exponentially late time T,,e; When the energy

density crosses the critical value ¢, of the ferromagnetic transition of D [Fig. a)(b)].

9To prepare the initial state ensemble, we first start with the fully polarized system, flip every tenth spin, and then add a
small amount of noise to the azimuthal angle. The energy density of the resulting ensemble is ¢ = —1.10.

10We note that the fluctuations of S% are local thermal fluctuations, and they decrease as we average over more realizations.
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Three remarks are in order. First, because Tjeq 1s significantly longer than the interaction timescale,
the system evolves between different thermal states of D as it absorbs energy from the drive. Second,
the lifetime of the CPDTC is controlled by the Floquet heating rate and thus the frequency of the
drive. Indeed, by increasing w, the lifetime of the CPDTC is exponentially enhanced, while the global
equilibration time remains constant [Fig. sza)]. Third, we emphasize that the observed CPDTC is
fundamentally distinct from period-doubling bifurcations in classical dynamical maps (e.g. the logistic
map) or the subharmonic response of a parametrically-driven non-linear oscillator [230,1625-641]. In

particular, it occurs in an isolated many-body classical system with conservative dynamics.
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Figure 3.4: (a),(b) Prethermal dynamics of the spin chain for different frequencies w with either long-range [a]
or short-range [b] interactions. For long-range interactions, the lifetime of the CPDTC is exponentially enhanced
by increasing the frequency of the drive. For short-range interactions, transient period doubling decays at a
frequency independent timescale, which is significantly shorter than the Floquet heating time (bottom panel).
(c),(d) Prethermal dynamics of a nearest-neighbor interacting classical spin model on the square lattice, from
a low-energy-density [c] or [d] high-energy-density initial state. For a low-energy-density initial state, the
system exhibits robust period doubling until exponentially late times. For a high-energy-density initial state, the
magnetization decays to zero rapidly, well before the Floquet heating time. This highlights the presence of a
critical energy density and the importance of symmetry-breaking for the existence of a CPDTC.
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Let us conclude by highlighting the central role of spontaneous symmetry breaking in observing the
CPDTC. We do so by controlling the range of interactions, the dimensionality, and the energy density of
the initial ensemble. To start, we consider the short-ranged version (i.e. nearest neighbor interactions)
of the 1D classical spin chain discussed above. Without long-range interactions, ferromagnetic order is
unstable at any finite temperature [642], and this immediately precludes the existence of a CPDTC.
This is indeed borne out by the numerics [Fig. [3.4(b)]: We observe a fast, frequency-independent decay
of the magnetization to its infinite-temperature value.

While nearest-neighbor interactions cannot stabilize ferromagnetism in 1D, they do so in higher
dimension. To this end, we explore the same Floquet model (i.e. Eqn.[3.3) on a two dimensional square
lattice. For sufficiently low energy densities, the system equilibrates to a CPDTC phase [Fig. [3.4(c)],

while above the critical temperature, the system equilibrates to a trivial phase [Fig. [3.4(d)].

3.1.6 Different Classes of Prethermal Time Crystals

Our framework is not restricted to the period-doubled (M = 2) CPDTC and it immediately ports
over to more general notions of time crystalline order, including both higher-order (M > 2) and
fractional CPDTCs [616]. By tuning the symmetry operation X, one can obtain D with different
emergent symmetries, and further realize CPDTC with different periods. Here, we provide two such
examples: 1) a 3-DTC with a period of 3T and 2) a fractional DTC with a period of %T.

In particular, we focus on the 1D long-range interacting spin chains, which allows a spontaneously
broken symmetry phase at low temperatures. However, if the effective Hamiltonian only includes
two-body interactions, then the existence of any Zj; symmetry with M > 2 will actually imply that
the system has a U(1) symmetry. Therefore, in order to introduce a Z; symmetry while avoiding
the continuous U(1) symmetry, we add a nearest-neighbor three-body term ( J22S7_1SiS7 1) in the
Hamiltonian, and keep other two-body terms the same as Eqn. 4 in the main text. Another important

modification to the Floquet Hamiltonian is that instead of having a 7r-rotation around the £-axis, we

evolve the system with a 2m”—rotation at the end of each driving period. More specifically, the Floquet
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Hamiltonian is written as:

Lo SISt 4 D STy SiSE, A DiheS? 0<t< DT <o
Ha(t) = YiJySi S 1 + KihyS] Tl Myt s
X JxS7SE 1 + LihaST Toped
(82057 T<t<T+T
2r

where ¢T' = 7.

Following exactly the same recipe for the 2-DTC, we now choose M = 3 and thus the effective
Hamiltonian will have an emergent Z3 symmetry. Initializing the system with a low-energy state
(with respect to the effective Hamiltonian), we observe a local equilibration process followed by a

subharmonic response with a period of 3T, which can be diagnosed by the magnetization, Fig.[3.5(a).
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Figure 3.5: Dynamics of higher-order CPDTC in a long-range interacting spin chain. Lower panels:
the magnetization exhibits an oscillation with a period of 3T [(a)] or gT [(b)] in the prethermal regime
(shaded regions) until the exponentially late the Floquet heating times. Upper panels: zoom-in of mag-
netization over a few driving cycles in the prethermal regime. The parameters chosen in the simula-
tions are {a, I, J2z, Jx, Jy, hx, hy, bz, T, w} = {1.5,—0.383,0.53,0.28,0.225,0.13,0.09,0.06, 277 /3,4.0}
and {«, [, J2z, Jx, Jy, hx, iy, Bz, §T, w} = {1.5,—0.383,0.58,0.13,0.225,0.03,0.03,0.06,477/5,8.0} for the
3-DTC and the %—DTC, respectively.
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When M is chosen to be a fraction, the dynamics are slightly different from the integer case.
Previous work studied a similar situation in a nearly all-to-all interacting system, and observed
signatures of robust subharmonic response at fractional frequencies [616]. These results can be framed
within the CPDTC construction presented: namely, by choosing M = 5/2, the effective Hamiltonian
satisfies a Zs symmetry, however, the rotation under Hx (t) performs a 47t-rotation every 5 driving
cycles instead of a single 27t-rotation as considered in the previous examples. Crucially, this results
is a fractional time translational symmetry breaking with a new period of 5T /2 (Fig.[3.5p). This
is in stark contrast to the case when M = 5: while in both cases, the energy shell of the effective
Hamiltonian breaks into 5 disjoint regions, the symmetry operation brings the system between these
regions in different orders. As a result, the observation of a different Fourier spectrum for each of two
phases relied on the fact that the magnetization is treated as a continuous variable which imbues the

visited symmetry sectors with a particular order.

3.1.7 Outlook

Our work opens the door to a number of intriguing directions. First, it would be interesting to
explore the generalization of classical prethermal time crystals to quasi-periodic driving [185]]. Second,
although we have presented extensive numerical and analytic evidence for the presence of an effective
Hamiltonian (for trajectory ensembles), sharpening our analysis into a proof would provide additional

insights in the nature of many-body classical Floquet systems.
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3.2 Quasi-floquet prethermalization in a disordered dipolar spin ensem-

ble in diamond

3.2.1 Introduction

Floquet theory describes the dynamics of a system whose Hamiltonian exhibits a single time-
translation symmetry. Often used as a tool to control quantum systems, Floquet engineering has
enabled the study of novel quantum dynamical phenomena [2105212) 216, 219 1643| 644]]. Even
richer non-equilibrium behaviors can arise in “quasi-Floquet" systems, where a single time-translation
symmetry is replaced by multiple time-translation symmetries [[185, 201}, (6451648]]. For instance,
the spontaneous breaking of the latter can result in time quasi-crystalline order, which features a
subharmonic response that is fundamentally distinct from conventional time crystals [185} 201]].

A critical obstacle to stabilizing and observing such phenomena is to prevent the Floquet heating
effect. In the fast driving regime where the driving frequency w is much larger than the local energy
scale |, to absorb a single photon from the drive requires ~ w/ | off-resonant rearrangements of
local degrees of freedom, leading to the Floquet prethermalization effect with an exponentially slow
heating rate ~ (’)(e*w/ J). Given this underlying intuition, it is natural to notice two scenarios where
prethermalization can break down: (i) systems with long-range, power-law interactions where a single
local rearrangement may significantly change the energy of the system [[182,[195] and (ii) quasi-Floquet
systems where multi-photon processes can enable resonant energy absorption [[185]].

In this section, we present the experimental observation of Floquet prethermalization in a long-
range interacting quantum system under quasi-periodic driving. The experimental platform consists
of a dense ensemble of dipolar interacting nitrogen-vacancy (NV) centers in diamond (Fig. [3.6p)
[6, 210} 211} 226, 1364, 1649]]. Our main results are three fold. With single-frequency modulation, we
observe a heating time, T*, that scales exponentially with the driving frequency (Fig.[3.7c). In contrast,
by driving quasi-periodically with two different frequencies, we find that Floquet heating exhibits a
stretched exponential profile consistent with T* ~ O(e“’% ) [185]]. Interestingly, in the quasi-periodic
case, the heating is extremely sensitive to the smoothness of the drive; indeed, when the system is

driven via rectangular pulses (as opposed to sinusoidal pulses), we observe a significant enhancement
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in the heating rate (Fig. 3.7c) [185]. Our results open the door to stabilizing and characterizing

non-equilibrium phenomena in quasi-periodically driven systems.
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Figure 3.6: (a) Quasi-periodic driving of a strongly interacting ensemble of NV centers in diamond with two
incommensurate frequencies w and @w, where @ is the golden ratio. Typical thermalization dynamics of the
average spin polarization (S*(#)) exhibit an initial fast decay followed by a late-time slow relaxation. Top:
Spin level structure of NV center. In the absence of an external field, the |ms; = £1) sublevels are degenerate
and sit Dgs = (271) x 2.87 GHz above |ms = 0) state. A magnetic field B ~ 350 G along the NV axis splits
|ms = £1) via Zeeman effect, enabling the isolation of a two-level system |ms; = 0, —1) for each spin. (b)
Pulse sequence for the experiment. After laser pumping, a 7-pulse along ¥ axis rotates the spin ensemble to
X. The dynamical decoupling sequence eliminates the on-site random fields induced by NV environmental
bath spins. The sequence includes a series of fast 7t-pulses with alternating phases along £ and —X axes to
compensate the pulse errors. The inter-pulse spacing is fixed at T = 0.1 us, much smaller than the interaction
timescale between NV centers. A static microwave () ) ; S together with dipolar interaction serves as the static
Hamiltonian Hy, and a time-dependent microwave Q) f () }_; S} serves as the Floquet and quasi-Floquet drives.
A final 7-pulse along 7 axis rotates the spin polarization back to £ axis for optical detection.

3.2.2 Experimental system

We choose to work with a diamond sample containing a dense ensemble of spin-1 NV centers
with concentration, p ~ 4.5 ppm [6]. The NV centers can be optically initialized (to |ms = 0), where
ms is the spin quantum number) and read out using green laser excitation. In the presence of an
external magnetic field ~ 350 G, the |m; = +1) sublevels are Zeeman split, allowing us to isolate
and manipulate an effective two-level system, {|ms; = 0), |ms = —1)} (Fig.[3.6p). By applying a
resonant microwave field with Rabi frequency (), the effective Hamiltonian governing the NV centers

(in the rotating frame) is given by [210, 226, [364]:

JoAi
Mo =) —52(SiSi—SiSt —s!s!) + QY st (3.6)
i<j i,j i
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where Jo = (271) x 52 MHz-nm?, A, j characterizes the angular dependence of the long-range dipolar
interaction, 7; ; is the distance between the i'" and jth NV centers, and § is the NV spin operator.

We note that Hg contains only the energy-conserving terms of the dipolar interaction under the
rotating-wave approximation. The approximation holds because the microwave drive is resonant with
the NV transition |m; = 0) <> |ms; = —1) at A = (271) x 1.892 GHz, which is more than three
orders of magnitude larger than any other terms in the interacting Hamiltonian. The presence of other
paramagnetic spin defects in the diamond lattice (e.g. '3C nuclear spins and substitutional nitrogen
impurities) leads to additional on-site random fields, /;S7, at each NV center; in our experiments, we
eliminate these static fields via dynamical decoupling (Fig.[3.6pb).

Let us begin by characterizing the dynamics of the NV ensemble under the static Hamiltonian 7.
We set (O = (277) x 0.05 MHz, comparable to the average dipolar interaction strength. After optically
initializing the NV spins to |ms; = 0), we then prepare a product state, ®i|O>L\‘f2_l>", by applying a
global 7t /2-pulse around the  axis. We let the system evolve under H for a time ¢, before measuring
the final NV polarization, (S*(t)), along the £ direction.

The polarization dynamics proceed in two steps. At early times, t S 100 ps, the polarization
exhibits rapid decay toward a plateau value, reflecting local equilibration under Ho (Fig. 3.7p).
Following these initial dynamics, the system exhibits a slow exponential decay ~ Agef%o with
Ap = (043 £0.01) and a time-scale Tp = (0.82 4 0.03) ms that is consistent with spin-phonon
relaxation [416]. To ensure that the observed spin dynamics does not come from the incorporated
dynamical decoupling pulses, we also investigate the corresponding spin dynamics at () = 0. The
measured NV polarization quickly decays to zero, in agreement with the expectation of thermalization
behavior (Fig. inset). Moreover, such behavior is independent of the inter-pulse spacing T we

choose in the experiment.

3.2.3 Floquet prethermalization

To probe the nature and existence of Floquet prethermalization in our system, we modulate the
Rabi frequency as Q(t) = Q[1 + f(t)], where f(t) = sin(wt) (Fig.[3.6b). We note that Q(¢)

contains two fundamentally different components: the constant field, (2} ; S¥, is a part of the previous
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undriven Hamiltonian #o, while the time-dependent component Q f (t) }_; S} acts as the Floquet drive.

Starting with a driving frequency w = (271) x 0.07 MHz, which is comparable to energy scales
within Hg, we perform the same spin polarization measurement (light blue curve in Fig. [3.7a). The
measured spin dynamics at stroboscopic times, t = 27t N /w (where N is an integer), exhibit an initial
relaxation, which is qualitatively similar to the undriven case (red curve). However, the late-time
dynamics exhibit a significantly faster polarization decay, arising from Floquet heating. To obtain
the heating timescale T, we fit the experimental data to ~ Ae_(TLﬁ—%), where Ty is the previously
extracted spin-phonon lifetime. As shown in Fig.[3.7p, by increasing the driving frequency, one can
extract the frequency dependence of the amplitude, A(w), and the heating time-scale, T*(w); both are
crucial for understanding the nature of Floquet prethermalization.

Focusing first on the heating time-scale, we find that T* increases exponentially with cw for more
than an order of magnitude, demonstrating the existence of a parametrically long-lived prethermal
regime (Fig. ). In fact, at the largest frequencies, w ~ (271) x 0.185 MHz (dark blue curve in
Fig.[3.7p), the polarization dynamics approach that of the undriven case. The observed exponential
scaling also allows us to extract a phenomenological local energy scale of the NV many-body system,
Jexp = (277) x (0.032 £ 0.006) MHz.

Intuitively, this Jexp extracted from Floquet heating process is expected to agree with the local
energy scale of the system. However, for systems with power-law interaction as ours (~ 1/72 in
3D), a naive estimation of the local energy scale | ~ f l—gpd% is divergent, and thus, one should
expect the prethermalization to not exist. Nevertheless, an important missing piece to this puzzle is the
angular dependence of the dipolar interaction, .Ai,]- [182]]. Crucially, the combination of this angular
dependence and the NV’s random positioning in the diamond lattice ensures that the average, Zi,j =0,
which helps to mitigate the divergence of the above integral El

A more careful analysis reveals that the relevant local energy scale is the variance of the interaction,
]~ N (hr—fl"j)zpdf‘r]% = 116—5” Jop, which is convergent (Appendix . As long as the driving

frequency w > T one should expect the presence of prethermalization in our long-range interacting

Even if the NV centers are located on a three-dimensional regular lattice, we expect the angular dependence should
also average to zero over a large lenthscale, so the positional disorder is not necessary here.
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Figure 3.7: (a) The measured spin polarization dynamics (S*(¢)) under Floquet drive. After an initial fast
decay (gray shaded area), a long-lived prethremal regime persists for a timescale T* depending on the driving
frequency w. Dashed lines are fits of the late-time dynamics using single exponential decay. Inset: A zoom-in
of the measured initial spin polarization dynamics for the undriven case (red) and (2 = 0 (gray). After the
initial fast relaxation, the undriven polarization decays to an equilibration plateau, due to the finite static field,
Q) ); S7; while the measured polarization with only the dynamical decoupling pulses ((2 = 0) quickly decays
to zero, in agreement with the expectation of thermalization behavior. The dash line indicates the equilibrium
plateau value. (b) Measured prethermal equilibrium value, A(w), as a function of w™1. Dashed line is a linear
fit with the gray shaded area representing the 95% confidence interval. The red diamond marks the measured
amplitude, A, for the undriven case. (c) Heating timescale T* as a function of the driving frequency w. For
both smooth and rectangular single-frequency drives (blue and red), T* ~ (’)(e“’/ J). For smooth quasi-periodic

drive (purple), T* ~ O (e“?); while for rectangular quasi-periodic drive (yellow), T* ~ O (w% ), indicating the
breakdown of prethermalization. Error bars represent 1 s.d. from the fitting. (d) Measured spin dynamics with
two incommensurate driving frequencies [w = (271) x 0.103 MHz]. After the initial fast decay, we observe
that on top of a slow spin relaxation, there exists an additional small time-quasiperiodic micromotion. Left
inset: a zoom-in of the micromotion. Right inset: relative amplitude of the micromotion, W, scales quadratically
with the inverse of driving frequency, w 2. (e) Using rolling-average to remove the micromotion, we observe
a quasi-Floquet prethermal regime, whose lifetime T* increases with w. Dashed lines are fits of the late-time
dynamics using single exponential decay. Error bars represent 1 s.d. accounting statistical uncertainties.

spin ensemble, in agreement with previous theoretical studies [[182]]. Using the independently calibrated
NV density, p, in the sample, we estimate the local energy scale ]~ ~ (271) x 0.02 MHz, which is
indeed comparable with Jexp extracted from Floquet heating.

Next, let us turn to analyzing the frequency dependence of the amplitude, A(w). Having estab-

lished a long-lived prethermal regime, one can think of A(w) as the value of the prethermal plateau.
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condition exponentially slow heating effective prethermal Hamiltonian

a<D/2 X X
J(r) #0 X X
<
D/2<as<D T(r) =0 analytical proof [182] lack analytical proof
- experimental evidence [this work]| experimental evidence [this work]

analytical proof [178] [[91} [192] lack of analytical proof

D <a<2D . . numerical evidence [391]]
lack experimental evidence . .
lack of experimental evidence
x >2D analytical proof [178][191.[192]] | analytical proof [178|[191],[192]
short-range experimental evidence [188, [189]] | experimental evidence [[188,[189]

Table 3.1: Summary of the results on prethermalization in the literature.

In general, for short-range interactions, it is expected that A(w) is determined by a time-independent
effective Hamiltonian, Heg(w) = Ho + O(%), which can be calculated order-by-order via a Mag-
nus expansion [178]]. In this case, A(w) = Tr[y; Sfe PHer(@)] = Ag + (’)(%) where the inverse
temperature f3, is set by the energy density of the initial state.

For sufficiently long-range interactions (such as dipolar interactions in 3D), the existence of H g
is unproven [[178, 191} [192, 194, [195]. However, by probing the functional form of A(w) and its
extrapolated value as w — oo, one can provide experimental evidence for the existence of an effective
Hamiltonian. As depicted in Fig. , we find that the frequency dependence of A(w) is linear in w1,
allowing us to extrapolate A(w — oo0) = (0.47 4 0.06). This is consistent with the measured value
in the undriven case, Ag = (0.43 £ 0.01), suggesting that despite the presence of strong long-range

interactions, the effective Hamiltonian exists and can be well-approximated by H at leading order.

3.2.4 Quasi-Floquet prethermalization

Having established the existence of Floquet prethermalization in three-dimensional dipolar spin
ensembles for single-frequency driving, we now turn to the quasi-Floquet setting. Specifically, we
choose f(t) = %[sin(wt) + sin(pwt)], where ¢ = (v/5—1)/2 ~ 0.618 is the golden ratio, so
that the system is driven by two incommensurate frequencies (Fig. [3.6h). From the perspective

of Floquet heating, the situation is significantly more complex. In particular, recall that within
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Fermi’s golden rule, the heating rate can be estimated from the overlap between the Fourier spectrum
of the drive, F(v) = [ f(t)e’!dt, and the local spectral function of the spin ensemble, S(v) =
¥, 0(E: — Ej —v)|(ils*]) P[]

This picture immediately provides a more formal intuition for the exponentially slow heating
observed in the context of single-frequency driving (Fig. [3.8k). In particular, for f(t) = sin(wt),
F(v) exhibits a cut-off at frequency w. Meanwhile, as aforementioned, S(v) exhibits an exponentially
small tail for frequencies v > T In combination, this implies that for a single driving frequency,
w > T, energy absorption is strongly suppressed leading to T* ~ %’/ I,

For driving with two incommensurate frequencies, even when w > T, there are multi-photon
processes that are effectively resonant within the local energy scale; these processes correspond, for
example, to the absorption of 771 photons of energy w and the emission of 71, photons of energy ¢w.
This intuition is better illustrated in the two-dimensional Fourier spectrum of the quasi-periodic drive:
we can express f(f) using a two-dimensional Fourier space,

f(t)y= Y Eypeltmetneat (3.7)
ny,1my=0,%1,...
where Fy, , characterizes the Fourier component of the driving field at frequency v = (n1w + napw);

projecting the two-dimensional F;, ,,, onto a one-dimensional line with slope ¢ leads to the Fourier

1,12
spectrum F(v) of the quasi-periodic drive (Fig. 3.8t). Clearly, there is no strict cut-off for F(v),
and the drive spectrum exhibits a non-zero amplitude for all frequencies v = |[njw — nypw| < T.
Interestingly, despite this, for sufficiently large driving frequencies, seminal results have proven
that the quasi-Floquet heating timescale remains extremely slow, exhibiting a stretched exponential
lower-bound, O(ec(“’/ ) )% ); here, m is the number of incommensurate driving frequencies and C is a
dimensionless factor [[185].

In our experiments, in contrast to the Floquet case, we measure the dynamics at evenly spaced

time points, since there does not exist a stroboscopic time which is an integer multiple of both drives.

2where E; and |i) are the eigenenergy and eigenstate of the spin system.

Bthis is specifically for our case where we need the dipolar interaction to average to zero, in general this is true for the
local energy scale |.
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Much like the single-frequency drive, after an early-time transient, the spin polarization exhibits a
slow decay. However, we observe small oscillations scaling as ~ w2 on top of the decay (Fig. ),
corresponding to the micromotion of the quasi-Floquet system [[176, 650, 651]). We note that for
a single-frequency drive, similar micromotion will also emerge if one does not measure the spin
dynamics at stroboscopic times. Intuitively, such micromotion arises from the time-dependent portion
of the Hamiltonian which only averages to zero for each complete Floquet cycle. To reliably extract a
heating timescale T* from our quasi-Floquet measurements, we perform a rolling average to obtain the
overall decay profile (Fig.[3.7¢). By varying the driving frequency, we extract a heating time-scale,

1
™ ~ e“? (Fig. ), which is consistent with the theoretically predicted stretched exponential form.
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Figure 3.8: (a) A representative late-time dynamics of the spin ensemble under single-frequency (Floquet)
drive with w = (271) x 0.151 MHz. Here the plotted spin dynamics is normalized by the intrinsic decay
timescale, Tp, measured without the driving field, i.e. normalized (S*(t)) ~ e~!/T". We observe that the
relaxation profile does not depend on the smoothness of the driving field. (b) Under quasi-periodic drive
[w = (271) x 0.143 MHz], the corresponding spin dynamics is extremely sensitive to the smoothness of the
drive. The spin polarization displays a significantly faster decay under a rectangular drive. Error bars represent
1 s.d. accounting statistical uncertainties. (c) Two-dimensional Fourier spectrum F;, ,, of the quasi-periodic
driving field f(¢) El In particular, the horizontal (vertical) axis corresponds to the absorption of 711 (115) photons
with energy w (@w) from the drive, where 11,1 = 0, £1, 42, .... The color of each green dot characterizes
the amplitude of Fy, ;,, at frequency v = njw + ny@w (darker color represents larger amplitude). The Fourier
spectrum F(v) can be thought of as a projection of green dots onto a one-dimensional line with slope ¢, the
ratio between the two driving frequencies. Top inset: Fourier spectrum F(v) of quasi-periodic drive f(t) with
smooth sinusoidal (purple) and non-smooth rectangular (yellow) amplitude in time. Crucially, the spectrum with
rectangular drive exhibits many resonances at the small frequency range, which overlaps with the system’s local
spectral function S(v) (black) and leads to energy absorption from the drive. Bottom inset: Fourier spectrum of
a single-frequency drive (effectively project the green dots onto 77 axis). A rectangular drive does not lead to
resonances at the low frequency range.

14The quasi-Floquet drive f(t) can be decomposed in a two-dimensional Fourier space,

fhy= Y Eymemetmeat (3.8)
nl,n2=0,:t1,.‘.
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3.2.5 Robustness of quasi-Floquet prethermalization

Interestingly, the stability of slow prethermal heating is quite different depending on whether one
considers the Floquet or quasi-Floquet setting. For the Floquet setting, the exponential behavior of T*
is robust to the functional form of the drive amplitude f(t). However, in the quasi-Floquet setting, the
stretched exponential behavior of T* is only predicted to hold when f () is smooth. In particular, when
f(t) is smooth, even though F(v) does not exhibit a cut-off for small v, its amplitude is exponentially
small in this regime (Fig.[3.6f) [185] [I86]. This behavior can be understood within the picture of the
two-dimensional Frourier spectrum: for any given driving frequency w, only when 11,1y 2 w/ T, one

can find v = mw + nypw < T Therefore, as long as F,, ,, is sufficiently small with increasing 7

1,12
and ny [equivalently, f(t) is sufficiently smooth in time], the energy absorption from the multi-photon
processes is suppressed.

These expectations are indeed borne out by the data (Fig. [3.7c, Fig.[3.§). Using a rectangular
wave f(t) = Sgn[3sin(wt) + 1sin(pwt)], we observe (in the quasi-Floquet case) that the heating
timescale is significantly shortened and scales as a power-law with increasing driving frequency ~ w%,
as opposed to a stretched exponential. In contrast, for a single-frequency drive, the smoothness of
the driving field is not critical: the Floquet heating time-scale exhibits an exponential scaling for
both sinusoidal and rectangular forms of f (). The above distinction highlights that realizing long-

lived prethermal dynamics under a quasi-periodic drive requires more stringent conditions than in

conventional Floquet systems.

3.2.6 Outlook

Looking forward, our work opens the door to a number of intriguing future directions. First, it
is interesting to ask whether the restriction on Zi,j = 0 (which arises from averaging the angular
dependence of the dipolar interaction) is essential for realizing prethermalization in long-range
interacting systems [[182,[195,1391]]. As an example, for high temperature systems, the local interactions

can still average to almost zero owing to randomness of the spin configurations; this could be explored

where Fy, 5, characterizes the Fourier component of the driving field at frequency v = (11w + np@w). By projecting the
two-dimensional Fy, , onto a one-dimensional line with slope ¢, we obtain the Fourier spectrum F(v) of the quasi-periodic
drive.
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in systems exhibiting tunable long-range interactions such as trapped ions [[16} 227]]. Second, the
observed long-lived quasi-Floquet prethermal regime can enable the experimental realization of novel
non-equilibrium phases of matter, including discrete time quasicrystals and quasi-Floquet topological
states [232, 1233238}, 1242, 243, 1652H656]. Finally, our experiments suggest the presence of power-law-
slow-heating in the case of a quasi-Floquet, rectangular-wave drive; however, the precise frequency
dependence of the heating rate remains unknown and a more systematic investigation of the relationship

between the functional form of the driving and the scaling of T* would be extremely valuable.
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Chapter 4

Generating metrologically useful states

via quench dynamics

The standard quantum limit bounds the precision of measurements that can be achieved by
ensembles of uncorrelated or only classically correlated particles. Fundamentally, this limit arises from
the non-commuting nature of quantum mechanics, leading to the presence of fluctuations often referred
to as quantum projection noise. Quantum metrology relies on the use of non-classical (entangled)
states of quantum many-body systems in order to enhance the precision of measurements beyond
the standard quantum limit [84H86. 657-H659]. Identifying states suitable for quantum metrology is
a delicate challenge: nearly all states in Hilbert space are highly entangled, but only a few of them
exhibit the structured entanglement required for enhanced sensing, e.g., GHZ states and Dicke states
(86l 1660-H668]. An even more relevant and demanding task is to design implementable protocols to
prepare such states. One natural and prominent idea is to reshape the quantum projection noise (usually
via quench dynamics)—a strategy known as squeezing [262, 264,297, 1669-672]]. Compared to other
metrological protocols, squeezing has a few unique advantages: It only requires measurement of global
quantities and does not consist of any backward evolution.

In the context of many-body spin systems, recent studies have shifted interest from the very
originally proposed one-axis twisting (all-to-all interacting) spin model [264], to more generic systems

with local interactions. On the experimental front, squeezing within locally interacting systems are
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more relevant since it can be directly implemented in a number of AMO platforms for quantum
simulation and quantum sensing, including for example atom tweezer arrays, solid-state spin defects,
and ultra-cold polar molecules. From theoretical perspective, it is intriguing to identify the minimum
requirements for a system to develop squeezing. Specifically, one may wonder whether squeezing is
intrinsically related to other more fundamental dynamical or equilibrium properties of a many-body
quantum system. This chapter will present theoretical results answering the above question, as well as

experimental results demonstrating spin squeezing in locally interacting systems.
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4.1 Scalable spin squeezing as finite temperature easy-plane magnetism

4.1.1 Introduction

At the core of quantum enhanced metrology, identifying universal principles for finding and
preparing metrologically useful states, especially from un-entangled product states, has long been an
important challenge. One such principle, which is particularly powerful, stems from the observation
that the quantum Fisher information (QFI) for pure states is fundamentally connected to spontaneous
symmetry breaking [Fig. d.1]l. On the one hand, the QFI characterizes the maximum sensitivity of a
given quantum state, |¢), to a specific perturbation, O = Y O; and simply reduces to the variance
of O [251]. On the other hand, spontaneous symmetry breaking (SSB) leads to the existence of
long-range connected correlations of the order parameter O (provided that O does not commute
with the Hamiltonian) and thus a variance which scales quadratically in system size (Appendix [C.T).
Thus, any pure quantum state exhibiting long-range connected correlations can be utilized to perform
Heisenberg-limited sensing. Combining these considerations with the eigenstate thermalization
hypothesis—which asserts that generic quantum dynamics cause few-body observables to reach thermal
equilibrium [89, 190} 96]—suggests a broad and simple guiding principle for preparing metrologically
useful states from product states: Identify a Hamiltonian, H, exhibiting finite temperature order.
Then, find an unentangled state |¢p) whose effective temperature is below T, and time evolve.
The effective temperature, T, of the initial state |¢) is defined by its energy density, such that

—H/T

Tr[o H] = (o] H [¢po), where p = —— is a thermal density matrix.

’ Asymptotic Correlation Function ‘ QFI Scaling ‘ Sensitivity Scaling ‘

~ e lX=Yl/ N ﬁ
1
1 p>d N —=
[x—yl’ 7=p/d ‘/F
O<p<d N NS
y) 1
~ const. N N

Table 4.1: Relation between order, QFI and sensitivity in the case of short range, quasi long-range order, and
true long-range order. See also [673]].

The above strategy for generating metrologically useful states may seem surprising. Indeed,

seminal work exploring the relationship between the QFI and equilibrium phases of matter has come
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to the opposite conclusion: Thermal density matrices cannot be used to perform metrology beyond the
standard quantum limit [674}675]]. This limitation applies even for thermal states below the critical
temperature, T, for spontaneous symmetry breaking. The key ingredient which allows one to escape
this thermal bind is that the non-equilibrium quench can generate coherences which are not present in
the thermal state. Thus, despite having the same energy density, the quenched state and the thermal
density matrix can exhibit extremely different metrological properties.

The efficiency of our proposed strategy depends crucially on the nature of the symmetry being
broken. For discrete symmetries, it takes an exponentially long time (in system size) to develop a
large QFI. For continuous symmetries however, a large QFI can develop significantly faster (i.e. in
polynomial time) [676),677]]. To this end, we apply the above principle to the case of U(1) symmetry
breaking and provide extensive numerical and analytic evidence for the following remarkable con-
jecture: Finite-temperature easy-plane ferromagnetism (i.e. XY magnets) enables the preparation of
states with large QFI, specifically in the form of scalable spin squeezing.

The main results presented in this section are three fold. First, we establish a phase diagram for
spin squeezing (Fig.[4.T)), with a sharp transition distinguishing scalable squeezing from non-squeezing.
Second, we argue that this transition occurs precisely when the effective temperature of the initial state
|tho) equals the critical temperature for continuous symmetry breaking (CSB). Finally, we show that
the squeezing manifests a novel scaling with system size—whose origin is extremely subtle—that
leads to a phase sensitivity ~ N 7%, between the standard quantum limit (~ N 7%) and the Heisenberg
limit (~ N~1). Intriguingly, for parametrically long time-scales in the inverse temperature of the

initial state, we observe a sensitivity scaling as ~ N

Ny

, matching that achieved in all-to-all coupled
easy-plane spin models, i.e., so-called one-axis twisting (OAT) models [264]]. A corollary of our
conjecture is that short-ranged (i.e. not all-to-all connected) generalizations of the two-axis twisting
model cannot yield scalable metrological gain, a fact which we numerically verify.

Our results are based on the principle that after a short initial period of time, the long-wavelength,
low-frequency properties of the system can be described by hydrodynamic equations involving the
conserved z-component of the spin-density and the orientation of the magnetization in the x-y plane

[678]]. While the form of these hydrodynamical equations is fixed, their parameters depend on the
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microscopic Hamiltonian; to this end, we utilize a variety of approximate numerical methods to
investigate both the squeezing dynamics as well as the equilibrium phase diagram of a broad class of

easy-plane spin models.
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Figure 4.1: (a) Illustration of the connection between spin squeezing and XY ferromagnetic order. The central
panel shows an initial product state polarized in the equatorial plane, with a schematic of its quantum projection
noise (i.e. spin Husimi-Q distribution) indicated in red. When the effective temperature of the initial state
is below the critical temperature for U(1) symmetry breaking (right panel), the system equilibrates to an
XY ferromagnet and exhibits scalable squeezing. When the initial state is above the critical temperature, the
system equilibrates to a paramagnet, where the total spin length vanishes, precluding spin squeezing (left panel).
(b,c) Phase diagrams for scalable spin squeezing as a function of the XXZ anisotropy, [, and the interaction
power-law, &, in dimensions d = 1, 2. The location of the squeezing phase transition is computed via DTWA
(purple markers). In 1D, the location of the XY ordering transition is computed via imaginary time evolution on
matrix product operators (blue markers, dashed line guide to the eye), while in 2D, the transition is computed via
finite temperature quantum Monte Carlo (blue markers, dashed line guide to the eye). In both cases, the phase
boundaries are in close agreement. The gold dashed line in (b) corresponds to the phase boundary computed
analytically from spin-wave theory (Appendix [C.4). (d) Phase diagram for scalable squeezing as a function J,
for a nearest-neighbor interacting system in dimension d = 3. For |J;| > 1, there is Néel or Ising order (rather
than CSB), so squeezing does not occur.
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4.1.2 Connecting squeezing to XY magnetism

To investigate our conjecture, let us consider the paradigmatic family of U (1)-symmetric spin

Hamiltonians: the long-range S = 1/2 XXZ model

Ji(ofof +oi'of) + Lofo;
Hxxz = — Z Y

i<j ij

, 4.1

where || /], characterizes the easy-plane anisotropy and a is the long-range power law. This class of
Hamiltonians is the most natural and widely studied generalization of one-axis twisting [679-H685] and
is also realized in a number of quantum simulation platforms ranging from solid-state spins and optical-
lattice Hubbard models to ultracold polar molecules and Rydberg atom arrays [41} 1649, 1676 1686-H689].
While our conjecture applies in all dimensions,we note that in d = 1, 2 [Fig. b,c)] finite-temperature
continuous symmetry breaking is only possible for sufficiently long-range power laws whereas in
d = 3 [Fig. d)] it is possible even with nearest-neighbor interaction 690, 691]]. To establish the
connection between squeezing and order we utilize a variety of numerical tools: the discrete truncated
Wigner approximation (DTWA) for spin-squeezing dynamics, imaginary time evolution of matrix
product operators for diagnosing finite-temperature U(1) symmetry breaking order in d = 1, and
finite-temperature path integral quantum Monte Carlo for diagnosing order in d = 2,3 [326]. In
addition, whenever possible, our numerical results are carefully benchmarked with a combination of
time-dependent variational Monte Carlo, Krylov subspace methods, and exact diagonalization.

Let us begin in d = 1 with ferromagnetic XY interactions (hereafter, we set || = 1). For
J. > 1, the Hamiltonian lies in the easy-axis regime and can only exhibit discrete (Ising) symmetry
breaking; this immediately rules out the possibility of quantum-enhanced sensing at accessible time
scales [Fig. 4.1[b)]. For J; < 1, the system can exhibit continuous symmetry breaking at finite
temperatures provided that « < 2. Consider the parameter space with weak power laws and strong
antiferromagnetic Ising interactions [pink, Fig. [#.I|(b)]. Taking our initial state as the fully polarized

coherent spin state in the x direction, |x) = | — --- —), we evolve under Hxxz and measure

IFor « > d, we can choose ]| = 1 and let the N go to infinity and maintain finite energy density. For & < d, to have a
finite energy density we need to let | | go to 0 as N goes to infinity. The all-to-all model is realized when we take « — 0 and
J1 = 1/N. Our analysis is restricted to & > d.
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Figure 4.2: (a,b) Depicts the dynamics (d = 1) of the squeezing parameter Cz (blue) and the XY order, 1y
(red), as a function of time, upon quenching from an initial product state polarized in the £ direction. Opacity
increases with system size (from N = 102 — 10%). In the paramagnetic phase (a), Myy decays to zero, while
the squeezing parameter does not improve with system size. In the ferromagnetic phase (b), 71y plateaus to a
finite value, and the squeezing parameter scales with system size. (d,e) and (g,h) Depict the analogous dynamics
ford = 2 and d = 3, with system sizes N = 10?> — 10* and N = 10? — 10°. (c) Fixinga = 1.5ind = 1, the
optimal squeezing parameter (blue) and the plateau value of the XY order (red) are shown as a function of J.
Darker color shades correspond to larger system sizes (with N = 5 - 103 — 5 - 10%). In the paramagnetic phase
(large |, magnitude), the XY order decays with increasing system size, while in the ferromagnetic phase the XY
order is independent of system size, indicating a phase transition at |, ~# —2.4. The behavior of the optimal
squeezing exhibits a separatrix at the same value of J., where it transitions from being system-size independent
to scaling with N. (f) and (i) Depict analogous J,-cuts in the phase diagrams for d = 2 fixing « = 3.0 (with
N =5-103-5-10% and d = 3 (with N = 2 - 10 — 10°). Calculations were performed using the DTWA
approximation.
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both the average XY magnetization, niyy = [<X2 + Y2> / Nz]l/ 2 and the squeezing parameter &> =
N miny ¢ Var[l - §] / <X>2 (which entails a phase sensitivity of A¢ = \/%7); here, X = %Zi o
(with Y and Z defined analogously) and S = (X,Y,Z). As a function of increasing system size, the
magnetization decays to zero, indicating thermalization to a disordered state [Fig.[4.2(a)]. Meanwhile,
the squeezing parameter, which quantifies the enhancement in sensitivity over the initial coherent state,
exhibits marginal improvement at short times. However, this improvement does not scale with system
size and at late times, &2 steadily worsens [Fig. a)].

The dynamics in the opposite parameter space [blue, Fig. @.1(b)], with strong power laws and
weak antiferromagnetic Ising interactions is markedly distinct. Here, the XY magnetization rapidly
equilibrates to a system-size-independent value, providing a signature of robust continuous symmetry
breaking [Fig.[#.2(b)]. Accompanying the presence of order is the existence of scalable spin squeezing,
where the optimal squeezing value improves with system size (i.e. Cgpt ~ N7V with v > 0) and
occurs at later and later times [Fig. 4.2[b)]. This is precisely reminiscent of the behavior in the
one-axis-twisting model, where ggpt ~ N 7%.

The essence of our conjecture is already captured by the above dichotomy: thermalizing to a
disordered state correlates with non-squeezing, while thermalizing to an ordered state correlates with
scalable squeezing. But our conjecture is stronger than claiming an association between squeezing
and finite-temperature order; rather, we argue that they are two facets of the same phase. To more
quantitatively investigate this, for each point in parameter space, {a, J.}, we extract the optimal
squeezing and the late-time XY magnetization as a function of system size. Depicted in Figure
4.2(c), is a cut across parameter space, fixing « = 1.5 and varying J,. For large, negative J,, the XY
magnetization plateau vanishes with increasing system size. As [, becomes weaker and enters the
ferromagnetic regime, there is a clear separatrix — indicative of a symmetry-breaking phase transition
— where the value of the magnetization plateau becomes system-size independent. Remarkably, the
scaling behavior of the optimal squeezing is in perfect correspondence with the magnetization. In the
region where the magnetization vanishes, the squeezing does not scale. In the opposite regime, the
optimal squeezing exhibits its own separatrix and shows a pronounced scaling with system size.

This change in scaling provides a simple method to determine the location of the squeezing
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transition: for each value of [, we fit égpt ~ N7" and associate the critical point, J., with the onset of
v 2 0. Repeating this procedure as a function of & leads to the squeezing phase boundary demarcated
by the purple data points in Figure b). Similarly, one can also define a U(1) symmetry-breaking
phase boundary, which occurs when the effective temperature of the initial state, |x), crosses the
critical temperature for XY order. To identify this phase boundary, we cool an infinite temperature
matrix product operator (representing the density matrix) to the energy density of the |x)-state using
imaginary time evolution under Hxxz. A finite-size scaling analysis then yields the X Y-ordering phase
boundary demarcated by the blue data points in Figure d.T(b). That the squeezing and ordering phase
boundaries coincide within error bars not only provides evidence for our conjecture but also shows
that the DTWA is remarkably accurate in the region of the transition ﬂ

A few additional remarks are in order. First, we notice that the system always undergoes some
non-scalable squeezing at early times [692]]. In a regime of modest easy-axis coupling and small
system sizes, this early time minimum can actually be quantitatively better than the late time minimum
that scales with system size. To mitigate the influence of such early-time squeezing in the analysis
and properly evaluate the squeezing transition, we isolate the late-time, scalable squeezing, by iden-
tifying (fgpt as the smallest value of &2(#) at a local minima in the derivative % &2(t) after the local
thermalization time. In the squeezing phase, this definition coincides with the true minimum of &2(t).
Second, one can analytically estimate the CSB phase boundary within spin-wave theory [dashed gold
line, Fig. d.1[(b)]. A particularly nice feature of this analysis is that it predicts the observed behavior,
where ], approaches the Heisenberg point as & — 2 (beyond which there is no finite temperature
order). Third, we demonstrate precisely the same correspondence between squeezing and order in
d = 2 [Fig.[4.2[d-f)] and in d = 3 [Fig. 4.2(g-1)], by determining the squeezing critical point from
DTWA simulation and obtaining the thermal critical point via quantum Monte Carlo with worm-type
updates [[693]]. Interestingly, the topology of the squeezing phase diagram in d = 2 is slightly dis-

tinct — in particular, even as &« — 4 (beyond which there is no finite temperature order), J. does

ZWe note that DTWA dynamics cannot accurately capture the short-range spin fluctuations (after local equilibration)
deep in the quantum regime, i.e. where the effective temperature of the initial state T < || . However, this is of little
consequence: for T < |, finite temperature effects are important only for very long time-scales at systems sizes beyond
our power to investigate. Close to the phase transition, where T is of order || , our results suggest that the semiclassical
description is more accurate.

150



not approach the Heisenberg point, so there remains a finite interval —1 < ], < 1 where scalable
squeezing occurs. Moreover, in d = 1,2, scalable squeezing disappears as |, decreases because the
temperature of the initial |x)-state becomes higher than the critical temperature; however, in d = 3,
at least for the nearest-neighbor model we consider, the squeezing disappears for [, < —1, because
the continuous-symmetry-breaking XY ferromagnet is replaced by discrete-symmetry-breaking Néel
order.

Finally, a semiclassical view of the dynamics provides the essential intuition for the connection
between squeezing and order. In this framework, the initial state |x) is viewed as a quasi-probability
distribution on the total-spin phase space, represented by a sphere of radius |S| = N/2 [middle,
Fig.[.1[@)]. In the all-to-all coupled case (x — 0), one-axis twisting dynamics yield squeezing by
causing slices from this distribution to rotate about the Z-axis with an angular velocity proportional
to total Z = % Y;07. Our key insight is that even in the power-law coupled case with & > d, or
the short-ranged case with d > 3, a similar picture should hold as long as the state remains ordered.
Specifically, if the effective temperature of |x) is below the equilibrium CSB critical temperature,
then miy > 0 [Fig b,e,h)] and the initial quasi-probability distribution will simply relax, on a
microscopic timescale independent of N, to a slightly distorted distribution on a smaller phase space
of radius myy N [Fig a), right]. This “dressed" distribution will then evolve qualitatively similarly

to the all-to-all coupled case.

4.1.3 Scalable squeezing in the XY magnet

Based upon the semi-classical intuition from above, one might naively expect that squeezing in the
finite-temperature XY magnet should exhibit the same scaling as in one-axis twisting. However, this is
oversimplified. Perhaps the easiest way to see this is to consider the conditional variance of Y given
Z, denoted as Var[Y|Z], within the semi-classical approximation. As illustrated in Fig. a), for
one-axis twisting, Var[Y|Z] is a constant of motion: each Z-slice of the probability distribution rotates
rigidly about the sphere. But in a system that does not conserve total spin, e.g. Hxxz, the conditional
variance will increase as a function of time [Fig.[4.3(a)]; indeed, the hydrodynamic model suggests

that Y'|Z evolves diffusively, so Var[Y|Z] grows linearly in time with a slope that depends strongly on
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Figure 4.3: (a) Schematic illustrating the dynamics of the conditional variance in the OAT model (green) and
the XXZ model (purple) at finite temperature. In the OAT model, Var[Y|Z] remains constant, while in the XXZ
model, the conditional variance exhibits an additional linear growth in time. (b) Time-dependent matrix elements
of Si, S‘lf/ot, computed via Krylov subspace method. Semiclassically, x determines the angular velocity at which
m-sectors rotate. Quantum mechanically, this corresponds to rate of relative phase accumulation between two
adjacent m-sectors: (m + 1|X|m) ~ cos(AE - t) and (m + 1|Y|m) ~ sin(AE - t), where AE = (2m + 1)y.
Fit to sinusoid oscillations is used to determine AE, from which y is further extracted. Note that these oscillations
are damped in principle (reflecting the linear growth of Varg [Y|Z]), but this is neglible in our fits. (c) In the
squeezing phase, both semi-classical DTWA simulations (for N = 1000, 2000, 4000 with Z = 0) and exact
quantum dynamics (N = 18) show the conditional variance growing linearly in time. Their quantitative
agreement lends support to the quantum-mechanical origin of the variance growth. (d) Diamonds depict the
spectrum of a d = 1 Hyxyz model for N = 24. The eigenstates in different m-sectors are connected by total-spin
raising and lowering operators. The ground state manifold exhibits a so-called “Anderson tower” structure where
the energies scale as E ~ m2 /N [694]]. At finite temperatures, this manifold becomes a distribution with an
approximate “Anderson tower” structure: The set of states that are connected to a given initial finite-energy state
upon successive applications of the total-spin raising or lowering operator will have a distribution of energies,
which is illustrated here for three initial states with m = 0 but differing energies Eg. The dashed lines, which
indicate the mean values of the distributions, exhibit the same scaling, E — Eg ~ m2/N , but the variance
(shaded region) increases with Eg . In all (b-f), x = 1.5ford =1, & =3.0ford =2 and |, = 0.

temperature (Appendix [C.3)). To understand the impact of this variance growth, we note that (within a
semi-classical picture) :
g2(t> ~ Var[Y|Z]/N (Xt)4
dmi (xt)?  24m2 N2’

(4.2)
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where x is the effective one-axis twisting strength, related to the z-axis spin susceptibility (Ap-
pendix [C.3) [264] 677]. When the conditional variance remains constant (i.e. one-axis twisting),
optimizing over ¢ yields &> ~ N E (leading to a phase sensitivity ~ N K ). However, linear growth of
the conditional variance predicts instead that &> ~ N B (leading to a phase sensitivity ~ N o ).

At low temperatures, the slope of the variance growth is small, suggesting that the asymptotic
scaling behavior will only be observed at extremely large system sizes. To control the temperature
(without changing the local energy scale of H), we introduce an additional tuning parameter: the
polarization of the initial state. For polarization p, we initialize a product state, where each spin points
along +x with probability (1 + p)/2 and along —x with probability (1 — p)/2. This polarization
tunes the effective temperature of the initial state. At low temperatures (p ~ 1), the squeezing appears
to scale as ~ N 3 (Fig. e ,b). At intermediate temperatures near the transition, the squeezing scales
as ~ N - over multiple decades in system size (Fig. = ,b). As soon as the polarization tunes the
temperature above T, a “gap” emerges in the scaling behavior and &2 becomes independent of system
size (Fig. e ,b). We note that the low-temperature scaling of N -3 is not expected to hold as N — oo;
rather, the scaling will eventually cross over to the asymptotic behavior of N B (Fig. ).

One might naturally wonder whether the above analysis for partially polarized product states could
also apply to partially polarized mixed initial states? To be specific, let us consider a density matrix
of the form, p = [(1+p)/2|—=) (—=|+ (1 —p)/2]<) (+]]*N, which is particularly relevant
to experiments [676]. From a computational perspective, calculating the squeezing parameter for
pure states and mixed states is nearly identical, with the only difference being an order of averages
(Appendix [C.2)). In principle, since squeezing is a nonlinear function of expectation values, this
averaging can matter. However, we find that the results for pure and mixed states converge together
extremely rapidly with system size, and are essentially identical for N > 10%. This leads us to the
intriguing conclusion that XY magnetism enables scalable squeezing even of certain mixed initial
states. Most optimistically, one might hope that this applies to any mixed initial state with finite
polarization—exploring this tantalizing possibility remains a direction for future research.

Let us return now to the task of understanding the distinction between squeezing in all-to-all

and finite-range interacting systems. Although our semi-classical analysis provides a coarse-grained
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explanation for the difference between the scaling of the squeezing in these systems, the microscopic
dynamics are fundamentally quantum mechanical. This raises the question: is the asymptotic squeezing
scaling also modified in the true quantum dynamics?

To answer this, we begin by developing a quantum interpretation of Var[Y'|Z]. Intuitively, Var[Y|Z]
can also be computed as the remaining variance of Y after one has counter-rotated each Z-slice of
the probability distribution back to its original mean. Crucially, both semi-classically and quantum
mechanically, this counter-rotation can be realized by evolving the system under one-axis twisting
(Fig. ). From this perspective, the quantum analog of Var[Y|Z] is closely connected to a Loschmidt
echo of the form:

Varg[Y|Z] = (x| ol =25 ] 72 it -1 7] |x) . 4.3)

Since the thermalization induced by the XXZ-dynamics cannot be perfectly undone by one-axis
twisting, Varg[Y'|Z] will grow in time until saturating at its equilibrium value of mz, N?/2. Indeed, we
compute the variance growth for a 1D system at « = 1.5, J; = 0 and find that (at least in this parameter
regime), Varq[Y|Z] for N = 18 indeed agrees extremely well with the semi-classical conditional

variance in the thermodynamic limit (Fig. @.3k).
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Figure 4.4: (a) DTWA simulations depicting the optimal squeezing as a function of system size. The polarization
of the initial state decreases from p = 1.0 (blue) to p = 0.7 (red); this tunes the effective temperature of the
initial state across the critical temperature for XY order. As the polarization decreases, the scaling changes
sharply from N~2/3 to NO. At lower effective temperatures (p =~ 1), the asymptotic N ~2/5 gcaling emerges
only for larger system sizes. (b) Depicts the analogous results for d = 2, where the polarization ranges from
p = 1.0 (blue) to p = 0.6 (red). (c) Shows a crossover in the scaling behavior for 4 = 1 with polarization
p = 0.9. At small system sizes, the squeezing scales as N ~2/3 consistent with OAT. However, at larger system
sizes, the scaling crosses over to the asymptotic prediction of N —2/5,

Interestingly, a complementary picture for the behavior of Vary[Y|Z] emerges from the spectral

structure of Hxxz. The ground states of adjacent magnetization sectors of Hxxz are connected by
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the total spin raising and lower operator. Taken together, they form a so-called “Anderson tower”
with energies scaling as E ~ m?/N (Fig. ). In the one-axis-twisting model, squeezing arises
from the fact that the entire spectrum exhibits this “Anderson tower” structure. By contrast, at finite
energy densities, the spectrum of Hxxyz features only approximate “Anderson towers": the raising
and lowering operator connect a given eigenstate in an m-sector to several others in adjacent sectors,
leading to a distribution of energies (Fig.[4.3[d). It is precisely the variance of this distribution which

drives thermalization in the XXZ model, and thus the growth of Vary[Y|Z].

4.1.4 Outlook

Our work provides fundamental insight into the landscape of Hamiltonians that can be used to
generate metrologically useful quantum states and in the meanwhile opens the door to a number of
intriguing directions. First, while we have established the presence of a phase transition between
scalable squeezing and non-squeezing, the nature of this transition remains an open question. In
particular, it would be interesting to derive whether the critical properties of the optimal squeezing
solely from the universal properties of the CSB transition. Second, our framework connecting the
quantum Fisher information of pure states to spontaneous symmetry breaking suggests a new strategy
for preparing metrologically useful states. However, the ability to prepare a state with large QFI does
not immediately imply that one can straightforwardly utilize it for sensing; indeed, in the most general
case, it is necessary to time-reverse the dynamics, in order to extract the metrological signal [287,
290, 293]. In the case of U(1) symmetry breaking, the emergence of squeezing does guarantee a
simple way to harness the metrological gain [669]]. Thus, generalizing our results to finite-temperature
non-abelian continuous symmetry breaking raises the question: is there any higher-symmetry analogue
of spin-squeezing, which might enable sensitivity to perturbations beyond scalar fields? Finally, our
work implies that scalable squeezing can be realized in a variety of quantum simulation platforms with
resonant dipolar interactions [649, 676,687,688, 1695, 1696]. For example, ultracold polar molecules in
an optical lattice as well as Rydberg atoms in a tweezer array can both implement the two-dimensional
XY model with 1/73 interactions, which is deep in the scalable squeezing phase. The discovery of

optically-active spin defects in 2D quantum materials [689, 697, [698] as well as advances in delta-

155



doped crystal growth [699,[7/00] also suggest a route toward spin squeezing in the solid state; in this
setting, the robustness of easy-plane ferromagnetism to the positional disorder of the underlying spin

defects is crucial.
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4.2 Scalable spin squeezing in a dipolar Rydberg atom array

4.2.1 Introduction

The past decade has witnessed the use of squeezed states of light and spin ensembles to improve
upon a multitude of applications, ranging from gravitational wave detectors [701] and atom interferom-
eters [297]] to optical atomic clocks [[702,[703]]. The realization of spin squeezing via global interactions
has been demonstrated using a variety of platforms, including atomic vapors coupled to light, trapped
ions, ultracold gases and cavity QED [86]. Whether short-range interaction (decaying as a power of the
distance larger than the dimensionality) can yield scalable spin squeezing has remained an essential
open question [[679, [/04, [705]. The previous section, as well as other recent theoretical advances,
points to an affirmative answer [[677, 1679 1680, [706-708]], proposing a deep connection between spin
squeezing and continuous symmetry breaking (CSB) [677, 1680, 708 [709]]. This connection to CSB
order broadens the landscape of systems expected to exhibit scalable spin squeezing, and suggests that
both power-law interactions, and even nearest-neighbour couplings, can lead to sensitivity beyond the
standard quantum limit [677, [708]]. Of particular relevance is the ferromagnetic, dipolar XY model;
indeed, this model is naturally realized in a number of quantum simulation platforms ranging from
ultracold molecules [695, [710H712]] and solid-state spin defects [9] to Rydberg atom arrays 676, (696]].

In this section, we demonstrate the generation of spin-squeezed states using a square lattice of up
to N = 100 Rydberg atoms. Our main results are three-fold. First, we explore the quench dynamics of
an initially polarized spin-state evolving under the dipolar XY model, using a procedure analogous
to the one introduced for the case of all-to-all interactions [264]. We show that the resulting state
exhibits spin squeezing and characterize the generation of multipartite entanglement as a function
of time. Moreover, the squeezing improves with increasing system size, providing evidence for the
existence of scalable spin squeezing. Second, we introduce a multi-step approach to squeezing, where
the quench dynamics are interspersed with microwave rotations. We demonstrate that this technique
leads to an improvement in the amount of spin squeezing and also enables the squeezing to persist
to longer time-scales. Finally, motivated by metrological applications, we show that it is possible to

freeze the squeezing dynamics (e.g. when accumulating a signal) by performing Floquet engineering.
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In particular, we transform the dipolar XY model into a dipolar Heisenberg model [206, [713]], so that

the squeezing remains constant in time.

4.2.2 Experimental setup

Our experimental setup [[714] consists of a two-dimensional square array of 8Rb atoms trapped
in optical tweezers (see Fig. i.5h). To implement the dipolar XY model [715]], we rely on resonant
dipole-dipole interactions between two Rydberg states of opposite parities. In particular, we encode
an effective spin-1/2 degree of freedom as 1) = [60S1 /5, m; = +1/2) and ||) = |60P5 /5, m; =

-1/ 2), leading to an interaction Hamiltonian:

[« @
Hyy = —3 Z j(afa]?c + Uiyajy), (4.4)
i<j 'ij
where (Tix Y% are Pauli matrices, rij is the distance between spins i and j, | /h = 0.25 MHz is the dipolar

interaction strength, and a = 15 um is the lattice spacing. A magnetic field perpendicular to the lattice
plane defines the quantization axis and ensures that the dipolar interactions are isotropic.

We begin by investigating the squeezing dynamics generated by Hxy. The atoms are initially
excited from the ground state to the Rydberg state | 1), using stimulated Raman adiabatic passage
(Fig[d.3). Using a microwave 7t/2-pulse tuned to the transition between the spin states, we prepare an
initial coherent spin state along the y-axis, [(0)) = |— - - - —) (see Fig.[4.5p). Next, we allow the

system to evolve under Hyxy and measure the squeezing as a function of time.

4.2.3 Observing scalable squeezing

Since squeezing manifests as a change in the shape of the noise distribution, one must measure the
variance of the collective spin operator in the plane perpendicular to the mean spin direction; to this
end, we define Jy = cos(0)]; + sin(6) ]y, where [y, = % Y Uix’y * are collective spin operators. We

characterize the amount of spin squeezing via the parameter [262,669]],

_ Nminy (Var (Jp))
(y)*

Zx(t) , (4.5)
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Figure 4.5: (a), Fluorescence image of a fully assembled 10 x 10 87Rb array. (b), Spin fluctuations represented
via the Husimi Q-distributions (colored area) [86] of the initial coherent spin state |— - - - —) (left panel) and
of a squeezed state obtained during the dynamics (right panel), depicted on a generalized Bloch sphere. The
angle 0*(t) corresponds to the direction of the narrowest noise distribution. The squeezed state is schematically
depicted by a superposition of coherent states (red arrows). (c), Schematics of the atomic levels relevant for the
experiment. (d), Sequence of optical and microwave pulses (not to scale) used for the spin squeezing protocol.
After randomly loading atoms into 1-mK deep optical tweezers (with a typical filling fraction of 60%), the
array is assembled one atom at a time [[716]]. The atoms are then cooled to a temperature of 10 #K using Raman
sideband cooling and optically pumped to |g) = |5S1,5, F = 2,mp = 2). Following this, the power of the
trapping light is adiabatically ramped down reducing the tweezer depth by a factor ~ 50 and is then switched off.
By applying a two-photon stimulated Raman adiabatic passage (STIRAP) with 421-nm and 1013-nm lasers, the
atoms are excited to the Rydberg state |1). To generate the initial coherent spin state along 7, a global resonant
microwave 77/2 pulse around X is applied, with a Rabi frequency () = 271 x 22.2 MHz. After an interaction
time ¢, an analysis microwave pulse is applied to change the measurement basis: a 6 pulse around 7 is applied to
measure the variance Var(Jy) along any direction 0; a 77/2 pulse around £ is applied to measure the spin length
|(Jy)|. When measuring Var(Jp), the Rabi frequency of the analysis pulse is reduced down to 27t x 4.1 MHz in
order to perform rotations with a higher angular resolution. The detection procedure comprises three steps. In
the first step, a 7.5 GHz microwave “freezing pulse” pulse is used to transfer the spin population from ||) to the
n = 58 hydrogenic states (labelled by |4;)) via a three-photon transition, in order to avoid detrimental effects of
interactions with those remaining in |1) during the remainder of the read-out sequence. In the second step, a
de-excitation pulse is performed by applying a 2.5 s laser pulse on resonance with the transition between |71)
and the short-lived intermediate state 6P/, from which the atoms decay back to 551 5. The final step consists
of switching the tweezers back on to recapture and image (via fluorescence) only the atoms in 557 /» (while the
others are lost).

which quantifies the metrological gain in a Ramsey interferometry experiment. To measure |(],)],
we simply rotate the state |(t)) back to the z-axis using a second 77/2-pulse around x. To measure
Var (Jp), we instead perform a microwave rotation around the y-axis, where the angle 6 is tuned via

the duration of the pulse. Finally, we read out the state of each atom with a detection efficiency of
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97.5% for |1) and 99% for ||.). Operationally, each experimental sequence is repeated ~ 200 times,
and from this series of snapshots, we calculate the average and variance of all collective spin operators.
For a given interaction time, f, the noise distribution has a specific direction of smallest uncertainty,
corresponding to the angle 6* () that minimizes the variance of J, (see Fig. ). Beginning with a
6% 6 array, we measure Var (Jp) as a function of 6 for t = 0.3 us. As shown in Fig. , the variance
exhibits a sinusoidal shape that reveals the underlying elliptical distribution of the spin fluctuations
and allows us to determine 6*. We then investigate the time evolution of both | (], )| and Var (Jo-). As
the system evolves, the initial coherent spin state expands into a superposition of states (fan of red
arrows, Fig. ), which causes the mean spin length, |(J,)| (red circles, Fig. ), to decay toward
zero [206] [713]]. At the same time, the variance of Jy (blue circles, Fig. @b) initially decreases below
its t = 0 value, reaches a minimum, and then increases, exceeding its f = 0 value at late times [677]].

Taken together, |(J,)| and Var (J-) allow us to reconstruct the squeezing parameter ¢% (or
10log;,, ((;‘12{) when expressed in dB) as a function of time. As illustrated in Fig. , the dynamics of
the squeezing parameter are qualitatively similar to those of the variance: @% initially decreases below
the standard quantum limit (SQL), reaches an optimum %{* at time t*, and then increases, exceeding
the SQL at late times. The system remains in a squeezed state (i.e. (;‘12{ < 1) for approximately
0.5 ps and exhibits an optimal squeezing parameter of —2.7 = 0.3 dB. The optimal squeezing is
highly sensitive to detections errors, and analytically correcting for these errors (diamond markers,
Fig.|.6] Appendix[C.5) leads to a minimum squeezing parameter of —3.9 & 0.3 dB. However, even
this corrected value does not reach the optimum (approximately —6.7 dB) predicted for the dipolar
XY model. We attribute this to two other types of experimental imperfections, which also degrade
the squeezing parameter: errors in the initial state preparation and imperfections in our microwave
pulses. In contrast to detection errors, these imperfections directly affect the many-body squeezing
dynamics; accounting for these additional errors leads to significantly better agreement between theory
and experiment (Fig. [4.6).

At a fundamental level, a squeezing parameter C%{ < 1 necessarily implies the presence of
entanglement in our system [268,[717]]. We quantify the entanglement depth as a function of time;

an entanglement depth of k means that the many-body state cannot be written as a statistical mixture
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Figure 4.6: (a), Determination of the angle 6* that minimizes the spin fluctuations for a fixed interaction time,
t = 0.3 us. The inset shows 0* () determined for different times, t. The dashed line in a and b corresponds
to the uncorrelated case 4Var(Jp) /N = 1. (b), Measurements of the spin length |(],)| (red circles) and of
the minimum variance Var(Jy«) (blue circles). The diamond markers are the data corrected for the detection
errors (Appendix [C.3). The shaded regions represent the results of the unitary spin dynamics, without any free
parameter, including 97.5 % 1% (99 & 1%) detection efficiency for [1) (|1)). (c), Squeezing parameter &% (t) as
a function of time. The solid curves are parabolic fits used to determine the optimal squeezing parameter @’12{
and the optimal squeezing time £*. As in (c), the shaded area shows simulations including +1% uncertainty in
the detection efficiencies. (d), Parametric plot of the variance as a function of the spin length. The colored area,
delimited by the black solid curve 6%2 = 1, depicts the region where entanglement exists in the system. The grey
dashed curves correspond to entanglement depths of k and the dashed black curve to a maximal entanglement
depth of k = 36. The black arrow shows the direction of increasing interaction time.

of states factorized into clusters containing up to (k — 1) particles — that is, at least one k-particle

{Jy)

variance of the quantum state gives a lower bound on the entanglement depth [268]]. Fixed contours of

, the minimum attainable

subsystem is entangled [268}1301}1670]. For a particular spin length,

this bound for different values of k are shown in Fig.|4.6(d: if a data point falls below the line labelled

by k, the entanglement depth is thus at least k + 1. The many-body dynamics of our system leads to a
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state whose entanglement depth increases rapidly at early times. Near the optimal squeezing time, t*,
the entanglement depth reaches a maximum of k = 3 (for the measurement-corrected data, we find
k = 5) for our 36-atom system.

One of the distinguishing features of spin squeezing in all-to-all interacting models is that it is
scalable—the optimal squeezing parameter, CIZ{, scales non-trivially with system size as N~ with
v = 2/3 [264]. Whether this is the case for power-law interacting, or more general systems is
significantly more subtle. In particular, scalable spin squeezing has been recently conjectured to be
closely related to continuous symmetry breaking (ferromagnetic XY) order 677,679,680, [708]]. The
mean-spin direction is the order parameter of such a system, and thus, in the ordered phase, it should
equilibrate to some nonzero value; this is clearly a pre-requisite for scalable squeezing, since the
denominator of the squeezing parameter, C%{, is precisely the square of the mean-spin length, <]y>2
(Eq.H.3). More subtly, the low-energy spectrum associated with ferromagnetic XY order is expected to
consist of so-called “Anderson towers”, wherein the energy is proportional to J2 [[718,[719]]. Crucially,
this leads to the emergence and persistence of OAT-like dynamics even until late times, t ~ O(Nh/]);
these dynamics “twist” the initial quantum fluctuations, shrinking the minimum variance in the y-z
plane (Eq.[4.3)), thus leading to scalable spin squeezing. Finally, let us emphasize that even this picture
is only approximate: The eventual thermalization of the dipolar XY model implies that its dynamics
(even at low energies) cannot be perfectly captured by one-axis twisting [[708]].

For the dipolar XY interactions that we investigate here, continuous symmetry breaking, and thus
scalable squeezing, is expected in d = 2 [677, 1679} (680, [708]], but not in d = 1 [680, [708]]. To this
end, we measure the squeezing dynamics in systems ranging from N = 2 x 2 to 10 x 10 atoms. In
principle, determining the minimum squeezing parameter requires optimizing over both time and 6 for
each system size; as N increases, the optimal time, t*, is expected to increase while the optimal 6* is
expected to decrease. Analogous to our previous procedure, we begin by extracting 8* at a fixed time £,
and measuring the time evolution of |(],)| and Var(Jy-); the time at which the variance is minimized
provides a self-consistent way to experimentally verify that we are working near the two-parameter
optimum.

At short times (t < 0.25 us), the dynamics of |(],)| collapse (i.e. exhibit a size-independent
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decay) for all N owing to rapid local relaxation of the magnetization (Fig. ), At later times, |(],)|
decreases more slowly for increasing system size, indicative of continuous symmetry breaking order.
The dynamics of the variance also depend on N (see Fig.[d.7p): the minimum variance improves and
occurs at later times as the system size increases. From these measurements, for each system size,
we compute the squeezing dynamics, and extract both the optimal squeezing parameter, CIZ{, and the

corresponding optimal interaction time, £*.
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Figure 4.7: (a), (b), Measurement of the spin length |(],)| and of Var(Jy+) as a function of time for various
system sizes. The dashed lines correspond to the results from Krylov methods (for system sizes 2 X 2,3 x 3
and 4 x 4) using Dynamite[720] or exponential of matrix product operators (for system sizes 6 X 6 and 8 x 8)
as implemented in TenPy [336]]. Both methods faithfully capture the dynamics over the time scales relevant to
the experiment, so the numerical error associated with this method is negligible. (c), (d), Minimum squeezing
parameter C%{* and associated optimal interaction time £*, as a function of N. The circles and diamonds
correspond to the raw and detection-error corrected data, respectively. The solid lines are power-law fits. The
shaded regions are the results of the simulations for values of the detection efficiency of |1) (|1)), 97.5 + 1%
(99 £ 1%), between their lower and upper limit.

As previously mentioned, in the all-to-all interacting case, both optima are expected to scale with
system size [256, 264]]. Recent theoretical work predicts that scalable squeezing can also arise in our
2D dipolar XY model 677,708, 709]]. This expectation is indeed borne out by our data. As shown
in Fig. c,d), we find that ¢%* ~ N~V and #* ~ N¥ with v = 0.18(2) and # = 0.32(3); when
correcting for detection errors, we find that v = 0.25(5), while i does not change. Interestingly,
the exponent that we observe for the optimal squeezing time is in agreement with that observed in

the all-to-all coupled case, where t* ~ N e [264]]. However, the scaling of the optimal squeezing
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parameter is significantly weaker than that predicted for both all-to-all interactions, as well as the
dipolar XY model [[677,[708]]. Again, we attribute this to a combination of experimental imperfections,
which, when accounted for, leads to a relatively good agreement between theory and experiment
(Fig. ,c) ﬂ We note that this difference in agreement for t* and (;"122* is perhaps not unexpected; for
example, measurement errors decrease the amount of achievable spin squeezing but do not change the

optimal squeezing time.

4.2.4 Multi-step spin squeezing

The fact that squeezing exhibits an optimum in time arises from a competition between the
generation of entanglement and the curvature of the Bloch sphere (Fig. [#.5b). Microscopically, the
squeezing dynamics causes the coherent superposition of states to wrap around the Bloch sphere, but
squeezing (Eq.[4.5)) is measured via the variance projected in the plane perpendicular to the mean spin
direction. Thus, the curvature of the Bloch sphere leads to a noise distribution which deviates from
an elliptical shape [86] and manifests as additional variance. This suggests that one can improve the
optimum squeezing by utilizing a time-dependent protocol. In particular, by continuously rotating the
elliptical noise distribution toward the equator, one can minimize the impact of the projection on the
measured variance [[721}1722].

To this end, working with a 6 X 6 array, we implement a discretized, single-step version of this

protocol. We initialize the system in the same initial state,

P(0)) = |— --- —), and let the squeezing
dynamics proceed for t = 0.13 us. Then, we perform a 25° rotation around the y-axis in order to
nearly align the noise distribution’s major axis parallel to the equator. The subsequent dynamics of the
squeezing parameter are shown in Fig. [4.8] (green data). Three effects are observed. First, the optimal
squeezing occurs at a later time, t* ~ 0.45 ps. Second, consistent with the intuition above, the system

remains near its optimal squeezing value for approximately twice as long. Third, the value of the

3The simulation takes into account all the known experimental imperfections as follows [676]]. 1) Missing atoms: On
average, a fraction § = 2% of the atoms remains in the state |g) after excitation and hence do not participate in the dynamics
and are finally imaged as a spin |1). 2) Finite-duration pulses, reducing the initial polarization by 1%. 3) Measurement
errors: An atom in |1) (|{)) has a probability ~ 2.5% (~ 1.0%) to be detected in the opposite state due to the efficiency of
the de-excitation pulse and collisions with the background gas. 4) Positional disorder, which is negligible. 5) Van der Waals
interaction, which is also negligible. Simulating missing atoms and positional disorder requires significant sampling, which
we find converges after ~ 100 samples.
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Figure 4.8: Multi-step spin squeezing protocol. (a), Schematic depicting the multi-step squeezing protocol. i)
In a semi-classical description, the y-polarized initial state |((0)) can be treated as a Gaussian distribution with
the same variance ~ v/N along the z and x axes (i.e. a disc in the x — z plane). ii), In normal spin squeezing
dynamics, each point rotates around the z-axis with an angular velocity proportional to its z polarization.
Consequently, the disc approximately deforms into an ellipse. iii) Due to the curvature of the Bloch sphere, the
distribution deviates from a perfect ellipse (which happens at earlier times for larger z). Optimal squeezing is
achieved when such deviation becomes larger than the minor-axis of the ellipse. iv), In multi-step squeezing
protocol, before the deviation becomes the bottleneck, the major axis of the ellipse is rotated towards x-axis. v)
As the typical z value of the distribution becomes smaller, the impact of non-elliptical deviation gets delayed to
later times. (b), Measurements of the squeezing parameter obtained with two different spin squeezing protocols
for a 6 x 6 array. The first one (purple dots) is the original sequence (Fig.[#.3k). The second one (dark green
dots) is a multi-step sequence depicted in the inset, where an additional 25° rotation pulse is used to rotate the
elliptical noise distribution toward the equator. The solid curves are parabolic fits to guide the eye. The shaded
regions show the simulations including 97.5 + 1% (resp. 99 £ 1%) detection efficiency of |1) (resp. |{)).

optimal squeezing parameter is improved by approximately 1 dB, reaching a value of —3.6 &= 0.3 dB.

4.2.5 Freezing spin squeezed states

In order to perform sensing, it is desirable to freeze the squeezing dynamics while acquiring the
signal of interest. The simplest way to do so is to turn off the Hamiltonian. However, it is challenging
to directly turn off the dipolar exchange interaction between the Rydberg atoms.

To this end, we utilize an alternate approach, where Floquet driving [206, [713]] engineers an
effective dipolar Heisenberg interaction, Hyjeis = —% Yo j %33]_(7‘1. . (‘f’j, from our original XY model.
Crucially, the Heisenberg interaction commutes with all collective spin operators, ensuring that: (i) it
does not change the spin squeezing and (ii) it does not affect the sensing signal associated, for example,

to the presence of a uniform external ﬁeldlﬂ

4The Floquet sequence that generates the Heisenberg interaction leads to a rescaling of the strength an external field by a
factor of 1/3.
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Figure 4.9: Floquet engineering to freeze spin squeezing. (a), Experimental WAHUHA sequence using
Floquet engineering to realize an effective dipolar Heisenberg interaction in a N = 6 X 6 array. The system
is periodically driven using n Floquet cycles, each composed of four 71/2 Gaussian microwave pulses (of
half-width 6.5 ns at 1/+/¢), whose phases are chosen to realize rotations around the (x, Y, =Y, —x) axes. (b),
(c), and (d), Spin length | (], )|, minimal variance Var( ]y~ ), and squeezing parameter ¢% as a function of the total
interaction time ¢ for different numbers, n, of applied Floquet cycles. The grey dashed line in b is a guide to the
eye to highlight the spin length measured immediately after each Floquet cycle.

To explore this behavior, we let our system evolve to the optimal squeezing time and then attempt
to freeze the dynamics via the Floquet WAHUHA sequence (Fig.[d.9p) [219]. A full Floquet cycle
lasts tg = 0.36 us and for rapid driving, [tp < 277, the time-averaged Hamiltonian is approximately
Hreis [713]. We repeat this experiment for different numbers of Floquet cycles ranging from n = 0-3.
The Floquet dynamics of |(],)| and Var(Je-) are illustrated in Fig. ,c. For perfectly frozen
dynamics, each set of curves (with different 1) would simply be off-set in time from one another. This
expectation is in good agreement with the data. Indeed, we observe that the dynamics of |(],)| are

translated in time, except for a small downward drift (indicated by the grey dashed line in Fig.[4.9b). We
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note that this downward drift is significantly weaker than the intrinsic dynamics of |(J,)|. Comparable
behaviour is observed for Var(Jy+) [Fig. ]. Finally, as illustrated by the squeezing parameter in
Fig. 4.9, the Floquet sequence prolongs the time-scale over which squeezing remains below the SQL

by nearly a factor three.

4.2.6 Conclusion and outlook

To conclude, our work represents the first observation of scalable spin squeezing in a many-body
system with short-range, power-law interactions. It is complementary to the recent results obtained
with Rydberg-dressed atoms [[723],[724]] and long-range interactions in an ion string [[725]]. Our findings
and methods are applicable to any quantum systems implementing the dipolar XY Hamiltonian, such
as molecules [695, [710-712]] or solid-state spin defects [9]. Within the context of tweezer arrays,
our work lays the foundation for several research directions. First, by generalizing our approach to
alkaline-earth Rydberg tweezer arrays [576, (726, [727]], it may be possible to map the spin squeezing
from the Rydberg manifold to the so-called clock transition, in order to improve tweezer-based atomic
clocks [[728],[729]]. Second, by investigating squeezing as a function of the initial polarization, e.g. by
introducing disorder in the initial state preparation, it may be possible to test theoretical predictions
that spin squeezing in short-range interacting systems is fundamentally distinct from that achieved
in all-to-all coupled systems [708]]. Finally, by implementing a continuous version of the multi-step
squeezing protocol, it may be possible to improve the scaling of the observed spin squeezing toward

the Heisenberg limit.
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Chapter 5

Characterizing interacting spin defects in

solids by dynamical properties

Strongly interacting spin defects in solids, as a platform to study many-body quantum dynamics,
sits at the interface between condensed matter, material and AMO physics [6-9, [51]. On the one
hand, like other AMO systems, more detailed properties of the microscopic quantum degrees of
freedom are known in the spin defect ensembles than in those typical systems studied in traditional
condensed matter physics, such as high-temperature superconductors. On the other hand, the synthesis
and fabrication procedure of the solid-state spin defects is under much less control than other AMO
systems, such as optical lattice and optical tweezer arrays. Therefore, it is sometimes still challenging
to fully characterize such systems before utilizing them in quantum sensing or simulation. While the
most direct approach for characterizing a strongly-interacting system is to measure the time-evolution
of its full many-body state, it is generally impractical as one usually only have limited control and
access to a certain subset of the system’s observables. Nevertheless, it turns out that some simple
dynamical properties, even decoherence process (often referred to as T> decay) can reveal considerable
amount of knowledge of the system, such as dimensionality, interaction range, and relative importance
of different defects. This chapter, combining theory with experiment, will present how decoherence

dynamics can be used to characterize spin defect systems.

168



5.1 Probing many-body dynamics in a two-dimensional dipolar spin

ensemble

5.1.1 Introduction

Understanding and controlling the interactions between a single quantum degree of freedom and
its environment represents a fundamental challenge within the quantum sciences [216, [730-737]].
Typically, one views this challenge through the lens of mitigating decoherence—enabling one to
engineer a highly coherent qubit by decoupling it from the environment [216, [731-733| [738-740].
However, the environment itself may consist of a strongly-interacting many-body system, which
naturally leads to an alternate perspective; namely, using the decoherence dynamics of the qubit to
probe the fundamental properties of the many-body system [734} /35| [741-746].

The complementary goals of probing and eliminating many-body noise have motivated progress
in magnetic resonance spectroscopy for decades [[734, 735, (7414744, [747]], and more recently have
re-emerged in the study of solid-state spin ensembles containing optically-polarizable color centers.
The ability to prepare spin-polarized pure states enables fundamentally new prospects in quantum
science, from the exploration of novel phases of matter [226] to the development of new sensing
protocols [[748]]. Prospects for optically-polarizable spin ensembles in quantum sensing and simulation
could be further enhanced by moving to two-dimensional systems, which represents a long-standing
engineering challenge for the color-center community [699), 749, [750]. Despite continued advances
in fabrication, the stochastic nature of defect generation strongly constrains the systems one can
create. The potential rewards are substantial enough to merit repeated engineering efforts: Two-
dimensional, long-range interacting spin systems are known to host interesting ground state phases
such as spin liquids [688, [751} [7/52]. Moreover, two-dimensional spin ensembles enable improved
sensing capabilities owing to increased coherence times and uniform distance from the target.

In this section, we investigate many-body noise generated by a thin layer of paramagnetic defects in
diamond. Specifically, we combine nitrogen delta-doping during growth with local electron irradiation
to fabricate a diamond sample (S1) where paramagnetic defects are confined to a layer whose width

is, in principle, much smaller than the average spin-defect spacing [Fig. @a, b)] [699, 749, [750].
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This layer contains a hybrid spin system consisting of two types of defects: spin-1 nitrogen-vacancy
(NV) centers and spin-1/2 substitutional nitrogen (P1) centers. The dilute NV centers can be optically
initialized and read-out, making them a natural probe of the many-body noise generated by the strongly-
interacting P1 centers. In addition, we demonstrate a complementary role for the NV centers, as a
source of spin polarization for the optically-dark P1 centers; in particular, by using a Hartmann-Hahn
protocol, we directly transfer polarization between the two spin ensembles.

We characterize the P1’s many-body noise via the decoherence dynamics of NV probe spins. To
elucidate our results, we first present a theoretical framework that unifies and generalizes existing
work, predicting a non-trivial temporal profile that exhibits a crossover between two distinct stretched
exponential decays (for the average coherence of the probe spins) [Fig. (734, 741744, 747, [753]].
Beyond solid-state spin systems, the framework naturally extends to a broader class of quantum
simulation platforms, including trapped ions, Rydberg atoms, and ultracold polar molecules [72]].
Crucially, we demonstrate that the associated stretch powers contain a wealth of information about
both the static and dynamical properties of the many-body spin system.

We focus on three such properties. First, the stretch power contains a direct signature revealing
the dimensionality of the disordered many-body system. Unlike previous work on lower-dimensional
ordered systems in magnetic resonance spectroscopy [[754H756], we cannot leverage conventional
methods such as X-ray diffraction to characterize our disordered spin ensemble. To the best of our
knowledge, studying the decoherence dynamics provides the only robust method to determine the
effective dimensionality seen by the spins.

Second, the stretch power of the NV centers’ decoherence can also distinguish between different
forms of spectral diffusion, shedding light on the nature of local spin fluctuations. In particular,
we demonstrate that the P1 spin-flip dynamics are inconsistent with the conventional expectation
of telegraph noise, but rather follow that of a Gauss-Markov process (Table [5.1)). Understanding
the statistical properties of the many-body noise and the precise physical settings where such noise
emerges remains the subject of active debate [[732| 734, [744, [757H763|].

Finally, the crossover in time between different stretch powers allows one to extract the many-body

system’s correlation time. We demonstrate this behavior by actively controlling the correlation time of
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the P1 system via polychromatic driving, building upon techniques previously utilized in broadband

decoupling schemes [[764].
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Figure 5.1: Experimental platform and theoretical framework (a) A delta-doped layer of S\ (green)
is grown on a diamond substrate. NV centers are created via local electron irradiation (orange beam) and
subsequent high-temperature annealing. (b) Schematic depiction of a two-dimensional layer of NV (red) and P1
(blue) centers. Dilute NV centers function as probe spins of the dense, disordered P1 system. The P1s exhibit
spin-flip dynamics driven by magnetic dipole-dipole interactions (zoom). Ising interactions with the P1 system
cause the NV to accumulate phase, ¢, during noise spectroscopy (Bloch sphere). (c) NV and P1 level structure
in the presence of a magnetic field, B, applied along the NV axis. We work within an effective spin-1/2 subspace
of the NV center, {|0),|—1)}, with level splitting, wny. The corresponding P1 splitting, wp1, is strongly
off-resonant from the NV transition. (d) Secondary ion mass spectrometry (SIMS) measurement of the density
of N as a function of depth for sample S1. The presence of a 2D layer is indicated by a sharp Nitrogen peak
with a SIMS-resolution-limited 8 nm width. (e) The overlap between the many-body spectral function (blue)
and the power spectrum of the filter function |f(w;t)|? determines the variance of the phase ~ x(t) [Eqn. .
|f(w;t) |2 for both a Ramsey/DEER pulse sequence (purple) and a spin echo pulse sequence (orange) are shown.
(f) Schematic depiction of the variance of the phase, (¢?) = —2log C(t), as a function of the measurement
duration ¢, for both Ramsey/DEER (purple) and spin echo (orange). The labeled slopes indicate the predicted
stretch powers in both the early-time ballistic regime and the late-time random-walk regime [Table[5.1]); the
crossover occurs at the correlation time, T,.

5.1.2 Theoretical framework for decoherence dynamics induced by many-body noise

We first outline a framework, building upon classic results in NMR spectroscopy, for understanding
the decoherence dynamics of probe spins coupled to an interacting many-body system; this will
enable us to present a unified theoretical background for understanding the experimental results
in subsequent sections [765H767)]. The dynamics of a single probe spin

generically depend on three properties: (i) the nature of the system-probe coupling, (ii) the system’s
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many-body Hamiltonian Hjy, and (iii) the measurement sequence itself. Crucially, by averaging
across the dynamics of many such probe spins, one can extract global features of the many-body
system (Fig.[5.1b). We distinguish between two types of ensemble averaging which give rise to distinct
signatures in the decoherence: (i) an average over many-body trajectories (i.e. both spin configurations
and dynamics) yields information about the microscopic spin fluctuations (for simplicity, we focus our
discussion on the infinite-temperature limit, and the analysis can be extended to finite temperature), (ii)
an average over positional randomness (i.e random locations of the system spins) yields information
about both dimensionality and disorder.

To be specific, let us consider a single spin-1/2 probe coupled to a many-body ensemble via

long-range, 1/r* Ising interactions:
Jz 4
Z 7 5.1
i 1

where 7; is the distance between the probe spin §, and the i-th system spin §;, and Ising coupling
strength [, implicitly includes any angular dependence. Such power-law interactions are ubiquitous
in solid-state, atomic and molecular quantum platforms (e.g. RKKY interactions, electric/magnetic
dipolar interactions, van der Waals interactions, etc.).

Physically, the system spins generate an effective magnetic field at the location of the probe (via
Ising interactions), which can be measured with Ramsey spectroscopy [inset, Fig. [5.1[(e)] [735]. In
particular, we envision initially preparing the probe in an eigenstate of SA‘; and subsequently rotating it
with a 77/2-pulse such that the initial normalized coherence is unity, C = 2(3 ;, 1. The magnetic
field, which fluctuates due to many-body interactions, causes the probe to Larmor precess (inset, Fig.
[5.1b)). The phase associated with this Larmor precession can be read out via a population imbalance,
after a second 7/2 pulse.

Average over many-body trajectories—For a many-body system at infinite temperature, C(t) =
2Tr[p(t)$};], where p(t) is the full density matrix that includes both the system and the probe. The
spin fluctuations are determined by the microscopic details of the many-body dynamics whose full
analysis is intractable. To make progress, we approximate each spin as a stochastic classical variable
az

S*

Z(t) — s7(t). The statistical properties of such variables, and their resulting ability to capture

the experimental observations, provide important insights into the nature of fluctuations in strongly-
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interacting spin systems.

The phase of the Larmor precession is given by ¢(t) = fot dt’ J. Y s7 () /r¥. Assuming that ¢(t)
is Gaussian-distributed, one finds that the average probe coherence decays exponentially as C(t) =
(Re[e D]y = e=@*/2) where (p2) ~ ¥, J2x(t)/r* (Appendix ) (732} [7411 1763\, [768]]. Here,
X (f) encodes the response of the probe spins to the noise spectral density, S(w), of the many-body

system:

x(t) = [ do |fwi) PS(w), 52)
where f(w;t) is the filter function associated with a particular pulse sequence (e.g. Ramsey spec-
troscopy or spin echo) of total duration ¢ (Fig.[5.Tg).

Intuitively, S(w) quantifies the noise power density of spin flips in the many-body system; it is
the Fourier transform of the autocorrelation function, &(t) = 4(s7(f)s7(0)), and captures the spin
dynamics at the level of two-point correlations [769]. For Markovian dynamics, ¢(t) = e Itl/%,
where 7, defines the correlation time after which a spin, on average, retains no memory of its
initial orientation. In this case, S(w) is Lorentzian and one can derive an analytic expression for
(Appendix [D.1.1) [743. 747, [761., [765].

A few remarks are in order. First, the premise that many-body Hamiltonian dynamics produce
Gaussian-distributed phases ¢(t)—while oft-assumed—is challenging to analytically justify [734]
743,744,757, [770]. Indeed, a well-known counterexample of non-Gaussian spectral diffusion occurs
when the spin dynamics can be modeled as telegraph noise — i.e. stochastic jumps between discrete
values s = =s; [744,[758]); the precise physical settings where such noise emerges remains the subject
of active debate [732, (734, (744 [757H763]]. Second, we note that our Markovian assumption is not
necessarily valid for a many-body system at early times or for certain forms of interactions, which can
also affect the decoherence dynamics.

Average over positional randomness—The probe’s decoherence depends crucially on the spatial
distribution of the spins in the many-body system. For disordered spin ensembles, explicitly averaging
over their random positions yields a decoherence profile (Appendix [D.T.1):

N dD . _ 712
- oo B3

— a7 (5.3)
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where a is a dimensionless constant, N is the number of system spins in a D-dimensional volume V at
adensity n = N/V [747]]. By contrast, for spins on a lattice or for a single probe spin, the exponent
of the coherence scales as ~ J2x(t).

A resonance-counting argument underlies the appearance of both the dimensionality and the
interaction power-law in Eqn. (5.3). Roughly, a probe spin is only coupled to system spins that induce a
phase variance larger than some cutoff €. This constraint on the minimum variance defines a volume of

radius 7max ~ (J2x(t)/€)'/?* containing Ny ~ nrD

max Spins, implying that the total variance accrued

at any given time is €Ns ~ [J2x(t)]P/?*. Thus, the positional average simply serves to count the
number of spins to which the probe is coupled.

Decoherence profile—The functional form of the probe’s decoherence, C(t), encodes a number of
features of the many-body system. We begin by elucidating them in the context of Ramsey spectroscopy.
First, one expects a somewhat sharp cross-over in the behavior of C(t) at the correlation time 7. For
early times, t < T, the phase variance accumulates as in a ballistic trajectory with x ~ t2, while
for late times, t > T, the variance accumulates as in a random walk with x ~ t [743] 753} [765l].
This leads to a simple prediction: namely, that the stretch-power, 3, of the probe’s exponential decay

li.e. —log C(t) ~ tP] changes from D/« to D /2 at the correlation time [Fig. f)].

Early-time Late-time
noli\/slgrll)};;)l;(:zes MEZZEZZT:M (ballistic regime) | (random walk regime)
stretch power stretch power
(iauss — Markov Noise DEER/Ramsey D/« D /2«
% FWW—W . Spin Echo 3D /2« D /2«
R Telegraph Noise DEER/Ramsey D/« D/2x
%mt Spin Echo 1+D/a D/2ua

Table 5.1: Predicted early and late-time stretch powers of the probe spin decoherence profile when coupled
to a D—dimensional system via power-law Ising interactions ~ 1/7%. We distinguish between Gaussian and
telegraph spin-flip noise in the many-body system, which gives rise to different predictions for the early-time
spin echo stretch power.

Second, moving beyond Ramsey measurements by changing the filter function, one can probe
more subtle properties of the many-body noise. In particular, a spin-echo sequence filters out the
leading order DC contribution from the many-body noise spectrum, allowing one to investigate higher-

frequency correlations of the spin-flip dynamics. Different types of spin-flip dynamics naturally lead
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to different phase distributions. For the case of Gaussian noise, one finds that (at early times) x ~ t3;
however, in the case of telegraph noise the analysis is more subtle, since higher-order moments of ¢ ()
must be taken into account. This leads to markedly different early-time predictions for f—dependent
on both the measurement sequence as well as the many-body noise [Table[5.1]].

At late times, however, one expects the probe’s coherence to agree across different pulse se-
quences and spin-flip dynamics. For example, in the case of spin-echo, the decoupling 7r-pulse [inset,
Fig.[5.1[(e)] is ineffective on timescales larger than the correlation time, since the spin configurations
during the two halves of the free evolution are completely uncorrelated. Moreover, this same loss
of correlation implies that the phase accumulation is characterized by incoherent Gaussian diffusion
regardless of the specific nature of the spin dynamics (e.g. Markovian versus non-Markovian, or

continuous versus telegraph).

5.1.3 Experimentally probing many-body noise in strongly-interacting spin ensembles

Our experimental samples contain a high density of spin-1/2 P1 centers (blue spins, Fig.[5.1b),

which form a strongly-interacting many-body system coupled via magnetic dipole-dipole interactions

Hiy = zrfg (8787 +5787) + esist], (5.4)
i<j ij

where Jo = 271 x 52 MHz-nm?, rij is the distance between P1 spins i and j, and ¢, € capture the angular

dependence of the dipolar interaction.

The probes in our system are spin-1 NV centers, which can be optically initialized to |m; = 0)
using 532 nm laser light. An applied magnetic field B along the NV axis splits the |m; = £1) states,
allowing us to work within the effective spin-1/2 manifold {|0) , |—1) }.Microwave pulses at frequency
wny are used to perform coherent spin rotations (i.e. for Ramsey spectroscopy or spin echo) within
this manifold (Fig.[5.1k).

Physically, the NV and P1 centers are also coupled via dipolar interactions. However, for a generic
magnetic field strength, they are highly detuned, i.e. |wny — wpi| ~ GHz, owing to the zero-field

splitting of the NV center (Ag = 27t x 2.87 GHz) [Fig. c)]. Since typical interaction strengths

"'We note that Hj,, contains only the energy-conserving terms of the dipolar interaction
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in our system are on the order of ~ MHz, direct polarization exchange between an NV and P1 is
strongly off-resonant. The strong suppression of spin-exchange interactions between NV and P1
centers simplifies the full magnetic dipole-dipole Hamiltonian to a system-probe Ising coupling of
precisely the form given by Eqn. [5.1|with & = 3.

Delta-doped sample fabrication—Sample S1 was grown via homoepitaxial plasma-enhanced
chemical vapor deposition (PECVD) using isotopically purified methane (99.999% '2C) [749]. The
delta-doped layer was formed by introducing natural-abundance nitrogen gas during growth (5 sccm,
10 minutes) in between nitrogen-free buffer and capping layers. To create the vacancies necessary for
generating NV centers, the sample was electron-irradiated with a transmission electron microscope set
to 145 keV [750] and subsequently annealed at 850° C for 6 hours.

Two-dimensional spin dynamics—We begin by performing double electron-electron resonance
(DEER) measurements on sample S1. While largely analogous to Ramsey spectroscopy (Table[5.1)),
DEER has the technical advantage that it filters out undesired quasi-static fields (e.g. from hyperfine
interactions between the NV and host nitrogen nucleus) [699, [735]. As shown in Fig.[5.2(a) [blue data,
inset], the NV’s coherence decays on a time scale ~ 5 ps.

To explore the functional form of the probe NV’s decoherence, we plot the negative logarithm
of the coherence, —log C(t), on a log-log scale, such that the stretch power, B, is simply given by
the slope of the data. At early times, the data exhibit B = 2/3 for over a decade in time [blue data,
Fig. a)]. At a timescale ~ 3 us (vertical dashed line), the data crosses over to a stretch power of
B = 1/3 for another decade in time. This behavior is in excellent agreement with that expected for
two-dimensional spin dynamics driven by dipolar interactions [Fig. [5.1(f), Table[5.1]I.

For comparison, we perform DEER spectroscopy on a conventional three-dimensional NV-P1
system (sample S2 EI) As shown in Fig. a) (orange), the data exhibit B = 1 for a decade in time,

consistent with the prediction for three-dimensional dipolar interactions [Table [5.1]|. However, the

The three-dimensional sample S2 was grown by depositing a 32 nm diamond buffer layer, followed by a 500 nm
nitrogen-doped layer (99% °N), and finished with a 50 nm undoped diamond capping layer [699] (sample C041). Vacancies
were created by irradiating with 145 keV electrons at a dosage of 102! cm™2, and vacancy diffusion was activated by
annealing at 850°C for 48 hours in an Ar/Cl atmosphere. The resulting NV density is ~ 0.4 ppm, obtained through
instantaneous diffusion measurements. The P1 density is measured to be ~ 20 ppm through a modified DEER sequence.
The average spacing between P1 centers (~ 4 nm) is much smaller than the thickness of the nitrogen doped layer, ensuring
three-dimensional behavior of the spin ensemble (Table@.
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crossover to the late-time “random walk” regime is difficult to experimentally access because the larger

early-time stretch power causes a faster decay to the noise floor.
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Figure 5.2: Spin decoherence dynamics from many-body noise in different dimensions (a) Depicts the
normalized coherence for a DEER measurement on sample S1 (blue) and sample S2 (yellow) as a function of
the free evolution time f. Dashed blue lines indicate the predicted early- and late-time stretch powers of 2/3
and 1/3, respectively, for a dipolar spin system in two dimensions. Dashed yellow line depicts the predicted
early-time stretch power of 1 for a dipolar spin system in three dimensions [Table[5.1]]. Together, these data
demonstrate the two- and three-dimensional nature of samples S1 and S2, respectively. Lower right insets show
the same data on a linear scale. Top left inset shows the DEER pulse sequence. (b) Spin echo measurements on
three-dimensional dipolar spin ensembles in samples S3 (teal) and S4 (pink) clearly exhibit a stretch power of
3/2 (dotted lines) over nearly two decades in time. This is consistent with the presence of Gaussian noise and
allows one to explicitly rule out telegraph noise. Lower right inset shows the same data on a linear scale. Top
left inset shows the spin echo pulse sequence. All data are presented as mean values == SEM.

Parameter | S1 | s2 | s3 | s4
P1 Density 85(10) ppm - nm | 20(1) ppm | ~100 ppm | ~100 ppm
NV Density 242) ppm - nm | 0.43(1) ppm | ~0.5 ppm | ~0.5 ppm
Diamond cut [100] [100] [111] [100]
Nitrogen isotope 14 15 14 14
Isotopically purified Yes Yes No No
Additional Comments CVD grown CVD grown Type Ib Type Ib

Table 5.2: Summary of sample parameters for the spin decoherence experiment.

Characterizing microscopic spin-flip dynamics—To probe the nature of the microscopic spin-flip

dynamics in our system, we perform spin-echo measurements on three dimensional samples [S3, S4
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(Type 1B)], which exhibit a significantly higher P1-to-NV density ratidﬂ For lower relative densities
(i.e. samples S1 and S2), the spin echo measurement contains a confounding signal from interactions
between the NVs themselves.

In both samples (S3, S4), we find that the coherence exhibits a stretched exponential decay with
B = 3/2 for well over a decade in time [Fig. b)]. Curiously, this is consistent with Gaussian
spectral diffusion where p = 3D /2a = 3/2 and patently inconsistent with the telegraph noise
prediction of B = 1+ D/a = 2. While in agreement with prior measurements on similar samples
[762], this observation is actually rather puzzling and related to a question in the context of dipolar
spin noise [[732, (734} [735] 741744\ (747, [753), 757763\, [771H773]]. In particular, one naively expects
that spins in a strongly interacting system should be treated as stochastic binary variables, thereby
generating telegraph noise; for the specific case of dipolar spin ensembles, this expectation dates back
to seminal work from Klauder and Anderson [734]. The intuition behind this noise model is most
easily seen in the language of the master equation—each individual spin “sees” the remaining system
as a Markovian bath. The resulting local spin dynamics are then characterized by a series of stochastic
quantum jumps that flip the spin orientation and give rise to telegraph noise. Alternatively, in the
Heisenberg picture, the same intuition can be understood from the spreading of the operator §7; this
spreading hides local coherences in many-body correlations, leading to an ensemble of telegraph-like,
classical trajectories (Appendix [D.1.T].

We conjecture that the observation of Gaussian spectral diffusion in our system is related to the
presence of disorder, which strongly suppresses operator spreading [774]]. To illustrate this point,
consider the limiting case where the operator dynamics are constrained to a single spin. In this situation,
the dynamics of §7(t) follow a particular coherent trajectory around the Bloch sphere, and the rate at
which the probe accumulates phase is continuous. Averaging over different trajectories of the coherent
dynamics naturally leads to Gaussian noise (Appendix [D.1.1).

Controlling the P1 spectral function—Next, we demonstrate the ability to directly control the P1

3Samples S3 and S4 used are synthetic type-Ib single crystal diamonds (Element Six) with intrinsic substitutional 14N
concentration ~ 100 ppm (calibrated with an NV linewidth measurement [364]]). To create NV centers, the samples were
first irradiated with electrons (2 MeV energy and 1 x 1018 cm—2 dosage) to generate vacancies, and then annealed in vacuum
(~ 10~° Torr) with temperature > 800°C. The NV densities for both samples were measured to be ~ 0.5 ppm using a
spin-locking measurement (Table @
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noise spectrum for both two- and three-dimensional dipolar spin ensembles (i.e. samples S1, S2). In
particular, we engineer the shape and linewidth of S(w) by driving the P1 system with a polychromatic
microwave tone [[764]. This drive is generated by adding phase noise to the resonant microwave signal
at wp; in order to produce a Lorentzian drive spectrum with linewidth dw [Fig. c)]. While such
techniques originated in the context of broadband noise decoupling [764], here, we directly tune the
correlation time of the P1 system and measure a corresponding change in the crossover timescale
between coherent and incoherent spin dynamics [743,[773]].

Microscopically, the polychromatic drive leads to a number of physical effects. First, tuning the
Rabi frequency, (), of the drive provides a direct knob for controlling the correlation time, ., of
the P1 system. Second, since the many-body system inherits the noise spectrum of the drive, one
has provably Gaussian statistics for the spin variables s?. Third, our earlier Markovian assumption
is explicitly enforced by the presence of a Lorentzian noise spectrum. Taking these last two points
together allows one to analytically predict the precise form of the NV probe’s decoherence profile,
—1log C(t) ~ x(t)P/?*, for either DEER or spin-echo spectroscopy:

XPEER (1) — 2.t — 272 (1 - e*%) ,
5.9
XSE(t) = 27t — 272 (3 tew — 4e—ﬁ> .

We perform both DEER and spin-echo measurements as a function of the power (~ Q?) of the
polychromatic drive for our two-dimensional sample (S1) [Fig.[5.3[(a)]. As expected, for weak driving
[top, Fig.[5.3]@)], the DEER signal (blue) is analogous to the undriven case, exhibiting a cross-over
from a stretch power of § = 2/3 at early times to a stretch power of § = 1/3 at late times. For the
same drive strength, the spin echo data (red) also exhibit a cross over between two distinct stretch
powers, with the key difference being that B = 3D/2x = 1 at early times. This represents an
independent (spin-echo-based) confirmation of the two-dimensional nature of our delta-doped sample.

Recall that at late times (i.e. t = T.), one expects the NV’s coherence C(t) to agree across different
pulses sequences [Fig.[5.1(f)]. This is indeed borne out by the data [Fig.[5.3]l. In fact, the location of
this late-time overlap provides a proxy for estimating the correlation time and is shown as the dashed

grey lines in Fig.[5.3(a). As one increases the power of the drive [Fig.[5.3(a)], the noise spectrum,
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Figure 5.3: Tuning the correlation time of the bath (a,b) Measurements of DEER (blue, orange) and spin
echo (red, teal) on two- and three-dimensional samples (S1, S2) for different powers of the polychromatic
(i.e. incoherent) drive at fixed linewidth dw = 27t x (18,20) MHz, respectively. The time at which the two
signals overlap (vertical dashed lines) functions as a proxy for the correlation time and decreases as the power
of the incoherent driving increases (top to bottom panels). The data is well-fit by analytic expressions for
[x(t)]P/?* [Eqn. (dashed curves). Data are presented as mean values = SEM. (c) An incoherent drive field
(light blue) with power ~ (2 and linewidth dw is applied to the P1 spins during the free evolution time ¢ of both
DEER and spin echo sequences in order to tune the correlation time of the many-body system. In this case, s7 (1)
evolves as a Gaussian random process schematic for short and long correlation time 7). (d,e) The correlation
times, T, extracted from fitting the data to Eqn. [5.5] for samples S1 (purple) and S2 (green) are plotted as a
function of (), and agree well with a simple theoretical model (dashed grey curves). Data are presented as best
fit values =+ fitting error.

S (w), naturally broadens. In the data, this manifests as a shortened correlation time, with the location
of the DEER/echo overlap shifting to earlier time-scales [Fig.[5.3a)].

Analogous measurements on a three-dimensional spin ensemble (sample S2), reveal much the
same physics [Fig. [5.3|(b)], with stretch powers again consistent with a Gauss-Markov prediction

[Table [5.1]. For weak driving, C(t) is consistent with the early-time ballistic regime for over a
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decade in time [Fig. [5.3p, top panel]; however, it is difficult to access late enough time-scales to
observe an overlap between DEER and spin echo. Crucially, by using the drive to push to shorter
correlation times, we can directly observe the late-time random-walk regime in three dimensions,
where B = 1/2 [Fig.[5.3p, middle and bottom panels].

Remarkably, as evidenced by the dashed curves in Fig. [5.3(a,b), our data exhibit excellent
agreement—across different dimensionalities, drive strengths, and pulse sequences—with the an-

alytic predictions presented in Eqn. Moreover, by fitting xP/2

simultaneously across spin echo
and DEER datasets for each (), we quantitatively extract the correlation time, 7.. Up to an O(1)
scaling factor, we find that the extracted 7. agrees well with the DEER/echo overlap time. In addition,
the behavior of 7, as a function of () also exhibits quantitative agreement with an analytic model that
predicts T, ~ dw/O? in the limit of strong driving (Fig. ,e).

We emphasize that although one observes B = 3D /2« in both the driven [Fig. a,b)] and
undriven [Fig.[5.2(b)] spin echo measurements, the underlying physics is extremely different. In the

latter case, Gaussian spectral diffusion emerges from isolated, disordered, many-body dynamics, while

in the former case, it is imposed by the external drive.

5.1.4 A two-dimensional solid-state platform for quantum simulation and sensing

Our platform offers two distinct paths toward quantum simulation and sensing using strongly-
interacting, two-dimensional, spin-polarized ensembles. First, treating the NV centers themselves as
the many-body system directly leverages their optical polarizability. However, given their relative
diluteness, it is natural to ask whether one can access regimes where the NV-NV interactions dominate
over other energy scales. Conversely, treating the P1 centers as the many-body system takes advantage
of their higher densities and interaction strengths, with the key challenge being that these dark spins
cannot be optically pumped. Here, we demonstrate that both of these paths are viable for sample S1:
(i) we show that the dipolar interactions among NV centers can dominate their decoherence dynamics,
using advanced dynamical decoupling sequences; (ii) we demonstrate direct polarization exchange
between NV and P1 centers, providing a mechanism to spin-polarize the P1 system.

Interacting NV ensemble—To demonstrate NV-NV-interaction-dominated dynamics, we com-
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pare the decoherence timescales between spin echo, XY-8, and DROID dynamical decoupling se-
quences [211]]. The spin echo effectively decouples static disorder, while the XY-8 sequence further
decouples NV-P1 interactions. As depicted in Fig. [5.4(a), XY-8 pulses extend the spin-echo decay
time (defined as the 1/e-time) by approximately a factor of two. With NV-P1 interactions decoupled,
our hypothesis is that the dynamics are now driven by dipolar interactions between the NV centers. To
test this, we perform a DROID decoupling sequence, which eliminates the dipolar dynamics between
NV centers [211] (Fig. [5.4b). Remarkably, this extends the coherence time by nearly an order of
magnitude, demonstrating that NV-NV interactions are, by far, the dominant source of many-body
dynamics in this regime. Moreover, the X Y-8 decoherence thus provides an estimate of an average NV
spin-spin spacing of 15 nm.

Interacting P1 ensemble—The polarization of the optically-dark P1 ensemble can be realized by
either (i) working at low temperatures and large magnetic fields [414]], or (ii) using NV centers to
transfer polarization to the P1 centers. Here, we focus on the latter. While NV-P1 polarization transfer
has previously been demonstrated [775. [776l], it has not been measured in a two-dimensional system;
indeed, conjectures about localization in such systems indicate that polarization transfer could be
highly suppressed [421, [777].

To investigate, we employ a Hartmann-Hahn sequence designed to transfer polarization between
NV and P1 spins in the rotating frame [775, [776]. In particular, we drive the NV and P1 spins
independently, with Rabi frequencies (ny and ()p;. When only the NV centers are driven, we are
effectively performing a so-called spin-locking measurement [[778]; for Qxy = 271 X 5 MHz, we
find that the NV centers depolarize on a timescale Ty, = 1.05(3) ms [Fig. , orange]. The data
are cleanly fit by a simple exponential and consistent with phonon-limited decay [Fig. 5.4, inset].
By contrast, when the driving satisfies the Hartmann-Hahn condition, OQny = Qpg, the NV and
P1 spins can resonantly exchange polarization. To characterize this, we fix Qxy = 271 X 5 MHz
and choose a spin-locking duration t; = 200 us. By sweeping the P1 Rabi frequency, we indeed
observe a resonant polarization-exchange feature centered at ()p; = 27t X 5 MHz with a linewidth
~ 27t x 1.2 MHz [Fig. d)], consistent with the intrinsic P1 linewidth. As illustrated in Figure c),

on resonance, the NV depolarization is significantly enhanced via polarization transfer to the P1 centers
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Figure 5.4: Hybrid two-dimensional spin system for simulation and sensing (a) We measure T, with spin
echo (blue), XY-8 (orange) and DROID (red) pulse sequences with interpulse spacing 7, = 100 ns. The spin
echo and XY-8 decoherence profiles are fitted by Eqn. [5.5] while DROID is fitted by a stretched exponential
~ e~ (/T2 The 1 /e lifetimes (gray line) for spin echo, XY-8 and DROID are 22 s, 47 s and 302 ps,
respectively. Inset: schematic of dynamical decoupling sequence with interpulse spacing Tp. (b) The measured
decoherence profiles of variations on DROID-60 [210]]. Due to imperfections in our composite microwave
pulses, pulse error accumulates coherently in the DROID-60 sequence and a pronounced oscillation is observed
(purple points). To avoid such oscillations, we implement sequences that do not require composite pulses, see
e.g. Segs. A, H, G in Fig. 9 of Ref. [210] The data exhibiting the longest coherence time (Seq. H, 7, = 100 ns,
red points) are also shown in Figure 4(a) of the main text. (c) Spin-locked NV depolarization profile. Only NV
centers (orange) or both NV and P1 centers (green) are driven at a Rabi frequency of 27t X 5 MHz. The resonant
spin-exchange interactions reduce the spin-locking relaxation time T7, by a factor of ~ 3. Top inset shows the
same data plotted on a log-log scale to elucidate stretch powers. Bottom inset: spin-locking pulse sequence.
(d) Hartmann-Hahn polarization exchange resonance. The NV Rabi frequency Qv is fixed at 27t X 5 MHz.
When the P1 Rabi frequency Qp; matches Qnv, a reduction in contrast is induced by the resonant polarization
exchange between NV and P1 centers. The data is fitted by a Lorentzian (dashed curve) with a linewidth of
27t x 1.2 MHz. Inset: Hartmann-Hahn pulse sequence, with fixed spin-locking duration t; = 200 us. All data
are presented as mean values + SEM.
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and the data exhibit a three-fold decrease in the decay time. Moreover, the data are well-fit with a

stretch power B = 1/3 [Fig. , inset], which is also indicative of interaction-dominated decay [771].

5.1.5 Conclusion and Outlook

Our results demonstrate the diversity of information that can be accessed via the decoherence
dynamics of a probe spin ensemble. For example, we shed light on a long-standing debate about the
nature of spin-flip noise in a strongly-interacting dipolar system [732, (734, 744} 757763\ [772, [773]].
Moreover, we directly measure the correlation time of the many-body system and introduce a technique
to probe its dimensionality. This technique is particularly useful for disordered spin ensembles
embedded in solids [779} [780]], where a direct, non-destructive measurement of nanoscale spatial
properties is challenging with conventional toolsets.

One can imagine generalizing our work in a number of promising directions. First, the ability
to fabricate and characterize strongly-interacting, two-dimensional dipolar spin ensembles opens the
door to a number of intriguing questions within the landscape of quantum simulation. Indeed, dipolar
interactions in 2D are quite special from the perspective of localization, allowing one to experimentally
probe the role of many-body resonances [421) [777]. In the context of ground state physics, the
long-range, anisotropic nature of the dipolar interaction has also been predicted to stabilize a number
of exotic phases, ranging from supersolids to spin liquids [688,[751]. Connecting this latter point back
to noise spectroscopy, one could imagine tailoring the probe’s filter function to distinguish between
different types of ground-state order.

Second, dense ensembles of two dimensional spins also promise a number of unique advantages
with respect to quantum sensing [699), (748, [749]. For example, a 2D layer of NVs fabricated near the
diamond surface would exhibit a significant enhancement in spatial resolution (set by the depth of the
layer) compared to a three-dimensional ensemble at the same density, p [[749, [781]]. In addition, for
samples where the coherence time is limited by spin-spin interactions, a lower dimensionality reduces
the coordination number and leads to an enhanced T, scaling as n~%/D.

Third, one can probe the relationship between operator spreading and Gauss-Markov noise by

exploring samples with different relaxation rates, interaction power-laws, disorder strengths and spin
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densities [[/57,[773]. One could also utilize alternate pulse sequences, such as stimulated echo, to
provide a more fine-grained characterization of the many-body noise (e.g. the entire spectral diffusion
kernel) [[753L1757]].

Finally, our framework can also be applied to long-range-interacting systems of Rydberg atoms,
trapped ions, and polar molecules. In such systems, the ability to perform imaging and quantum control
at the single-particle level allows for greater freedom in designing methods to probe many-body noise.
As a particularly intriguing example, one could imagine a non-destructive, time-resolved generalization
of many-body noise spectroscopy, where one repeatedly interrogates the probe without projecting the

many-body system.
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5.2 Coherent dynamics of strongly interacting electronic spin defects in

hexagonal boron nitride

5.2.1 Introduction

Solid-state point defects with optically addressable electronic spin states have become a fertile
playground for new quantum technologies [6} 7, 9] 51}, 185} 228}, 364} [782H792]]. Significant progress
has recently been made in creation, control and application of such spin-active quantum emitters in
atomic-thin van der Waals materials [[/93796]. From a wide range of contestant spin defects in these
materials, the negatively charged boron vacancy center, V , in hexagonal boron nitride (hBN) has
particularly attracted substantial research interest in the past few years [697}797H804]. Importantly, it
has been demonstrated that the spin degree of freedom of V5 can be optically initialized and readout,
as well as coherently manipulated at room temperature. Compared to conventional spin qubits in
three-dimensional materials, such as nitrogen-vacancy (NV) center in diamond, Vy features several
unique advantages in quantum sensing and simulation. From the perspective of quantum sensing, the
atomically-thin structure of hBN and the wide use of hBN as the encapusulation material allow the V
sensor to be easily positioned in close proximity with the target materials to achieve unprecedented
spatial resolution and sensitivity [[798| [805H812]. On the quantum simulation front, the ability to
prepare and control strongly interacting, 2D spin ensembles opens the door to exploring a number of
intriguing many-body quantum phenomena [95) (182, 1421115731649, |813-816]].

Vg in hBN, like solid-state spin defects in general, suffers from decoherence. To this end, research
effort has been devoted to characterizing the coherence process of Vi . However, the measured spin
echo timescale, T;Cho, in several studies varies from tens of nanoseconds to a few microseconds
[797,1817-819]. This immediately begs the question that where does such discrepancy originate from,
and what are the different decoherence mechanisms in dense ensemble of Vi ?

In this section, we present three main results. First, we introduce a robust differential measurement
scheme to reliably characterize the spin coherent dynamics of Vi ensemble (Fig. and Fig. .
We observe spin-echo Tf"ho ~ 70 ns across three hBN samples with distinct V; densities (created

via ion implantation with dosages spanning two orders of magnitude), consistent with the expectation
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that the spin-echo coherence time is dominated by the Ising coupling to the nearby nuclear spin and
dark electronic spin bath [817, [820]. Second, by applying a more advanced dynamical decoupling
sequence, XY-8, to better isolate Vi from the bath spin environment [732, 1821} 1822]], we observe
substantial extensions in the measured coherent timescales, TfYB. Interestingly, the extracted Té(YS
decreases with increasing Vg density, indicating that the dipolar interaction within the V; ensemble
is critical for understanding the coherent dynamics and can be further utilized to directly estimate the
concentration of Vg . To further corroborate this, we apply the DROID pulse sequence to decouple
the Vg —Vjg dipolar interaction [210,1823], and achieve an additional ~ 2-fold improvement in the
measured coherence time, T? . Finally, by comparing the experimentally measured TZXY8 and T? to
Krylov numerical simulations, we directly estimate the spin density of V across three hBN samples.

We find that the ratio of negatively charged V to total created boron vacancy defects (Vg) decreases

significantly with increasing ion implantation dosage (Fig.[5.7).

5.2.2 [Experimental system

To investigate the coherent spin dynamics of Vi ensemble at various defect densities, we prepare
three hBN samples with different implantation dosages. Specifically, we irradiate hBN flakes (thickness
~ 100 nm) using 3 keV He™ ion beams with dose densities, 0.30 £ 0.03 nm 2 (sample S1), 1.1 £
0.1 nm—2 (sample S2), and 10 == 1 nm—2 (sample S3), respectively, to create Vg defects [800, 813].
Here error bars on the implantation dosages account for the current fluctuations during the implantation
process. We remark that, given an ion implantation dosage, the total created Vg concentration can
be estimated via SRIM simulation [824]], yet the actual density of the negatively-charged Vg has
remained unknown.

The V§ center has a spin triplet ground state (|, = 0,41)), which can be initialized and read out
via optical excitation and coherently manipulated using microwave fields 697, [803]]. In the absence
of any external perturbations, the |m; = 4-1) states are degenerate and separated from |m; = 0) by
Dgs ~ 3.48 GHz (Fig. ). In the experiment, we apply an external magnetic field B ~ 250 G along
the c-axis of the hBN lattice to separate the |m; = +1) states via the Zeeman effect and isolate an

effective two-level system |m; = 0, —1). A microwave field is used to coherently manipulate the spin
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Figure 5.5: Spin dynamics of V; ensemble (a) Schematic of V; spin ensemble (red spins) inside hBN crystal
lattice (Nitrogen—blue; Boron—white); Z is defined along the c-axis (perpendicular to the lattice plane). £ and
7 lie in the lattice plane, with £ oriented along one of the three V; Nitrogen bonds. Here we only include
two layers for the purpose of demonstration, but all our samples have a thickness ~ 100 nm. Two types of
decoherence sources are presented here for V5 spin ensemble: the Ising coupling (grey wavy lines) to the bath
spins (grey), and the dipolar interaction within Vi themselves (red wavy lines). (b) Energy level diagram of the
defect spin ground-state. In the absence of any external perturbation, the |ms = +1) states are degenerate and
separated by Dgs ~ 3.48 GHz from the |ms = 0) state. Under an external magnetic field B along the c-axis
of hBN, the degeneracy between |ms = £1) states are lifted via the Zeeman effect, with a splitting &< 2B. We
choose |ms = 0) and |ms; = —1) states as our two-level system. (c) Experimental pulse sequences for XY-8
(top) and DROID (bottom). The rotations along the positive £ and i axes are plotted above the line, while the
rotations along the negative axes are plotted below the line. (d) Differential measurement sequence for spin echo.
I: 20 ps wait time to reach charge state equilibration. IT: 10 ys laser pulse to initialize the Vg spin to [ms = 0),
with the reference signal, Sg (), collected at the end of the laser pulse. III: microwave wave pulses for spin echo
measurement; for the bright signal, a final % pulse along the —7 axis is applied; while for the dark signal, a final
Z pulse along the 47 axis is applied to rotate the spin to an orthogonal state. IV: laser pulse to detect the spin
state. (e) Spin echo measurement on sample S3 at two different laser powers. Without differential measurement,
the measured signal, Sg/Sg exhibits a laser power dependence which comes from charge relaxation dynamics
(inset). Using differential measurement, the measured contrast, C(t), is independent of the laser power. Error
bars represent 1 s.d. accounting statistical uncertainties.

ensemble with a Rabi frequency () /= 83 MHz (7t-pulse length T, = 6 ns). We note that such a strong
Rabi drive is crucial for the high fidelity control of V , as the spin transition is largely broadened by

the hyperfine interaction to the nearby nuclear spin bath.
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5.2.3 Robust measurement scheme

To reliably probe the spin dynamics of a dense ensemble of V , we introduce a robust differential
measurement scheme illustrated in Figure[5.5d [7711[825]]. Specifically, after letting the spin system
reach charge state equilibration for 20 s without any laser illumination (I), we apply a 10 us laser
pulse (532 nm) to initialize the spin state of Vi (II), followed by the measurement pulse sequences (III).
Taking spin echo coherent measurement as an example, we first apply a 7-pulse along the 7 axis to
prepare the system in a superposition state ®i|O>L\gl>", and then let it evolve for time ¢. A refocusing
7t-pulse along the % axis at time ¢/2 is used to decouple the spin ensemble from static magnetic
noise. A final 7-pulse along the —7 direction rotates the spin back to the Z axis for fluorescence
detection (IV), and the measured photon count is designated as the bright signal, Sg(t). By repeating
the same sequence but with a final 7-pulse along the positive +7 axis before readout, we measure the
fluorescence of an orthogonal spin state to be the dark signal, Sp(f). The difference between the two
measurements, C(¢) = [Sg(t) — Sp(t)]/Sr(t), can faithfully represent the measured spin coherent
dynamics of Vi , where Sg(t) is a reference signal we measure at the end of the initialization laser
pulse (II).

Figure[5.5k shows the measured spin echo dynamics of the highest dosage hBN sample S3. We
find that the measured fluorescence contrast, Sg(t) /Sr () [Sp(f) /Sr(t)], changes dramatically with
different laser powers (inset), originating from the charge state relaxation dynamics after the laser
pumping. This is particularly prominent at high laser power, where the optical ionization of the defect
charge state is enhanced. This effect can lead to an artifact in the extracted spin echo timescales, which
may explain the previous discrepancy in the measured T;Cho. However, the obtained fluorescence
contrast from differential measurement, C(t), is consistent across different laser powers, enabling an
accurate extraction of the spin coherent timescales.

A few remarks are in order. First, this differential measurement scheme has been widely employed
in the studies of the dense ensemble of NV centers in diamond to counter the ionization process [364,
412,649, [771},1826]]. Secondly, previous theoretical studies predict that the ionization of V5 requires
significantly higher energy (~ 4.46 eV) than the ionization of NV centers (~ 2.7 eV) [826-828]].

This may explain why our experimental observation that the two-photon ionization process for Vg
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only becomes evident under strong laser power (~ 10 mW); while the ionization of NV centers
happens at ~ 10 — 20 y'W laser [771}[826]. Third, we note that unlike neutral NV0 centers which emit
fluorescence starting at 575 nm, neutral boron-vacancy V]g has not been directly observed from photo-
luminescence signals. Therefore the proposed ionization process only offers a potential explanation of

the experiment.
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Figure 5.6: Spin coherent and relaxation dynamics. a) Sequence schematic for laser and microwave. The
duration between polarization and detection, Ty, is fixed around 3500 ns to account for the effect of Ty
relaxation on the T, measurement. In spin echo sequence, 7t-pulse duration, Ty, is fixed at 6 ns with adjusted
microwave power referencing to the Rabi oscillation recorded. In both XY-8 and DROID sequences, the pulse
interval Ty is fixed at 4 ns, and the coherent timescales are measured by varying N. To increase the total number
of data points, Mmeasurement is taken every 4 pulses in XY-8, and the DROID sequence is a truncated version
of the original DROID sequence to increase the total number of data points [210]]. (b) The spin coherent and
relaxation timescales measured on sample S3 with the highest ion implantation dosage. Dashed lines are data
fitting with single exponential decays. (c) The extracted coherence timescales T, and relaxation timescales T;
for the three hBN samples.

5.2.4 Coherent dynamics

Equipped with the robust differential measurement scheme, we now turn to the investigation of

coherent dynamics of Vi ensemble at various defect densities. The decoherence mechanism of Vi
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consists of two major contributions: (1) the Ising coupling to the bath spins in the environment; (2)
the dipolar interaction between Vg ensemble themselves (Figure ) [210]]. To isolate the effect of
each component, we measure the coherent dynamics of V using three different dynamical decoupling
pulse sequences (Fig. [5.6p).

We start with the spin echo pulse sequence, which is commonly used to characterize the coherent
properties of a quantum system. Spin echo can decouple the static components of the Ising coupling
between Vg and the spin bath. By fitting the measured dynamics to a single exponential decay,
~ e~ /Ty Cho), we extract ch}‘o ~ 70 ns across all three hBN samples (Figure ). This observation
indicates that the spin echo decoherence of Vg is predominantly limited by the spin fluctuation within
the environmental spin bath, which does not depend on the V5 concentration. Indeed, a previous study
has shown that the Ising coupling to the local nuclear spin bath (nitrogen-14, boron-10, and boron-11),
as well as the dark electronic spins, can accurately account for the measured spin echo timescales
[817]].

Next, we apply a more advanced dynamical decoupling pulse sequence, XY-8, to better decouple
the V5 ensemble from the environment. Instead of a single refocusing 77-pulse, XY-8 employs a series
of rt-pulses with alternating phases (Fig.[5.5k). We fix the time intervals between pulses, Tp = 4 ns,
sufficiently smaller than the correlation timescale of the local spin bath (estimated from the spin echo
timescale) [573)1649]. As a result, XY-8 is expected to further suppress the fluctuations within the
local spin noise and improve the measured spin coherent timescales. This is indeed borne out by
our data. As shown in Figure the extracted coherence times, T2XY8, are significantly extended in
all three samples. In contrast to the previous spin echo measurement where T;Cho does not depend
on V5 density, here we observe that T}YS = [250 + 35] ns of sample S1 is longer than sample S3,
TQ(YS = [167 £ 10] ns. This suggests that V; —V interaction plays a key role in the measured XY-8
coherent timescales. Indeed, in XY-8 measurement, since the refocusing 7t-pulses flip all V' spins
together, there is no suppression of the dipolar interaction between Vg .

To this end, we introduce DROID pulse sequence to further decouple the dipolar interaction within
Vg themselves (Fig. ) [210]. By applying a series of 77/2 rotations along different spin axes

to change the frames of interaction (also known as toggling frames), DROID modifies the dipolar
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Hamiltonian to an isotropic Heisenberg interaction, where the initial state, ®i|O>L\/|§1>", constitutes an

eigenstate of the Heisenberg interaction, and consequently does not dephase. As shown in Figure 5.6
the measured coherent timescales, TP, indeed exhibit an approximate two-fold increase compared
to T%WB across all three samples, agreeing with the cancellation of dipolar-induced decoherence.
Interestingly, we also observe that the spin relaxation time, T7, and spin-locking time, Tf , both
decrease with increasing ion implantation dosages (Figure[5.6p). In principle, the dipolar interaction
between V5 will not lead to a decrease of T; due to the conservation of total spin polarization during
the flip-flop process. This T; related trend may be attributed to the presence of lattice damage during
the implantation process or local charge state fluctuations [[771]]. We note that the spin relaxation
process will introduce an additional decay to the coherent dynamics. However, the measured T and
Tf are much longer than T; across all three samples at room temperature (Figure . Nevertheless,
we fix the duration between the polarization (II) and the read-out (IV) laser pulses to account for the
effect of T; relaxation on the T, measurement.
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Figure 5.7: Characterizing V; density (a) Comparison between the experimentally measured and numerically
simulated coherent timescales, T, for DROID and XY-8 pulse sequences. The solid lines show the timescales
extracted from simulations with error bars plotted as semi-transparent colored areas. To determine V densities
for the three hBN samples, we minimize the relative squared residuals of TZXY8 and T? between simulations and
experiments. Inset: fluorescence counts versus extracted densities after contrast adjustment. (b) The sum of
squared relative residuals of XY-8 and DROID between the experimental values and the fitted T, plotted against
Vg densities used in simulations. From bottom to top are residuals for sample S, S», and S respectively, and
the blue shaded regions are the 5% error ranges from the minimum residuals. (c) The measured V charge state
ratio 77 = vy / pvy for three hBN samples with different ion implantation dosages.
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5.2.5 Extracting V; density

The difference between TE(YS and T? originates from the Vg —Vy dipolar interaction, which can
be used to estimate the density of Vy directly. In particular, by randomly positioning 12 electronic
spins at different sampling concentrations, we construct the dipolar interacting Hamiltonian of the
system,

A..
Haip = Z_]O (8357 — s¥st - §ls)), (5.6)

i<j  Tij

where Jo = 52 MHz-nm?, Ai,]’ and r; j represent the angular dependence and the distance between the
it" and jth V5 spins, and {S7, Siy , S7} are the spin-1/2 operators for ith Vg center. By evolving the
many-body system under different pulse sequences and averaging the spin coherent signals across
random spin positional configurations, we obtain the simulated results of the corresponding XY-8 and
DROID coherent timescales (Fig. [5.7p) [364, 771, [829]. We observe from our simulation that both
T;YS and T? indeed decrease with increasing V density, while T? exhibits a longer timescale than
T§(Y8 across the density range surveyed. By minimizing the relative squared residuals of Tﬁ(YS and
T? between simulation and experiment, we estimate the Vi concentration to be p%}g R 1231“2 ppm,
p%zg ~ 149733 ppm, and p%% ~ 23613 ppm (Fig. = ,b). The discrepancy between the measured
and simulated timescales may stem from imperfect spin rotations in the experiment, as well as finite-

size effects from the simulations. To further validate our V density estimation, we measure the

fluorescence count rates for the three hBN samples and find them to be proportional to the estimated

Vg densities py, (Fig. inset Table .

Sample S1 S2 S3
Py Extracted from Experiment (ppm) 12378 1497% 23673;
Counts N (x10° photons/s) 0.64+0.03 0.844+0.03 1.444+0.04
Contrast C (%) 474+0.27 3.89+0.19 4.004+0.17
Adjusted Counts N4 (a.u.) 1.004+£0.06 1.07+£0.06 1.9040.11

Table 5.3: Summary of the estimated Vg concentration from coherent measurement, fluorescence counts, and
contrasts for the three hBN samples

We highlight that although the ion implantation dosage spans nearly two orders of magnitude

across three hBN samples, the estimated V density only differs approximately by a factor of 2. This
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indicates that with larger implantation dosage, one may create more Vg defects, but most of them
remain charge neutral [826] [830-832]]. Using SRIM (Stopping and Range of Ions in Matter) program,
we estimate the created Vg defect density in the experiment to be p%lB ~ (5.4 +0.5) x 10? ppm,
p%,zB ~ (20+£0.2) x 10°> ppm and p%,i ~ (1.8 £0.2) x 10* ppm, increasing linearly with the
implantation dosage. Figure shows the negatively charged Vg ratio, 71 = v, / pv,, which
exhibits a substantial drop with increasing implantation dosages. This suggests that one may need to
seek alternative solutions other than simply cranking up the irradiation dosage to achieve higher Vg
concentration for future applications in quantum information. We note that if one directly uses py,
from SRIM to represent the negatively charged Vi density, the simulated coherent timescales Tg(YS

and TZD will be significantly shorter than the experimental results.

5.2.6 Outlook

Looking forward, our work opens the door to a number of intriguing directions. First, the
characterization and control of coherent dipolar interaction in dense ensembles of spin defects in 2D
materials represent the first step to using such platforms for exploring exotic many-body quantum
dynamics. One particularly interesting example is to investigate the stability of phenomena such as
many-body localization and Floquet thermalization in two and three dimensions. In fact, in long-
range interacting systems, the precise criteria for delocalization remain an open question; whereas in
Floquet systems, the thermalization dynamics involve a complex interplay between interaction and
dimensionality [95, 182,190, 421]. Secondly, the measured low negatively charged V ratio at high ion
implantation dosage suggests that one may be able to use external electric gating to substantially tune
and enhance the portion of Vi concentration. Indeed, electric gating has been recently demonstrated
as a powerful tool to engineer the charge state of optical spin defects in solid-state materials [833H836].
Finally, the estimated transverse electric field susceptibility highlights the potential use of V; as an

embedded electric field sensor for in-situ characterization of heterogeneous materials [831} I837H839]].
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A.1 Hamiltonian in interaction frame

In this section, we derive the secular Hamiltonian in an NV-P1 spin-defect system. The Hamiltonian
of the entire system is separated into two parts, the on-site energy of each defect (NV and P1) and the
interaction between the different defects, given by the dipole-dipole interaction. We first consider the

NV-P1 interaction in the laboratory frame,

A

Hyp = —22[3(5 - a)(P-4) — §- D) (A1)

where Jo = (27r) 52 MHz-nm?>, S and P are the spin operators of the two defects. In our case we will
label the NV center by spin 1 operators S and the P1 centers by spin 1/2 operators P. Moreover our

dynamics only focuses on m; = 0, —1 of the NV, so we restrict the Hilbert space to those two levels.

In extent:
0 0 S 1 [0 1 S 1 [0 —1
z = s x — T = ’ y = =
0 —1 V211 0 V21i o
(A.2)
111 0 110 1 110 —i
Pz :E ’ Px = E ’ Py == 5
0 —1 10 i 0
We can also define the raising and lowering operators for both spin systems:
01 ) 00 )
Py = =P +iPy , P-= = Py —iPy
0 0 10
- - - (A.3)
so= " Y 2 Lsetisy , s =0 = Lis—is,)
+ = = — —|— 1 , = = — — 1
oo v2 7 1 of vz
Now we write the interaction in terms of the raising and lowering operators as:
Se= (S, 4+S) , Sy=—(S,—5)
= 7=+ -) = =0+ T o
Cov2 Tiva (A.4)

1 1
Px=5(P+P) , PBy=(P—P)
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and expand the dipole interaction as:

Hgip =

J (S++S) ., (5+-5) (P, +P.)  (P,—P)
—r—gx{3 {Sznz—knx NG +ny G ][Pznz—i—nx +2 +ny 5
_gp (5445 )PP ) (54 -5) (P+—P—>}

= V2 2 iv?2 2i

(AS)

Having written down the Hamiltonian in the laboratory frame we now go into the rotating frame of
the NV and resonant P1 centers, and only keep the energy conserving terms of the dipolar interaction
(rotating-wave approximation).

In the laboratory frame, each defect has a splitting A separating the two levels of interest. Since the
splitting is in the z direction (N'V-axis), we are interested in the evolution of 1) = e~"%5:|¢), where

s, can either represent the NV or the P1 spin operator:
9~ |§) = (85 + Haip)e | )
S5z~ 0% ) + ie %19y |p) = (Jsz + Haip)e " |p) (A.0)
i0:|9) = ¢ Hyipe ') = Haip|gp)

Now we need to write the spin operators in the rotation frame:

gz — elAsztSZe—lAszt —_ §z
5, = ezAszts+e—zAszt’0> — e_l(A)t§+ (A.7)
[ ezAsztsieszszt’U — e+z(A)t§7

In the case of the NV and P1 center we have:

(A.8)

P,=pP, D, =¢?nip,. P_ = Antp_
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Now we can compute the dipolar interaction in the rotational frame:

(S+efl.ANvt + S,eiANvt) (S+efl'ANvt _ S,eiANvt)
n
V2 Y iv2

P iApit P —iApit P iAPlt—P, —iApit
(Pre'®mt 4+ P_e ) n ny( +€ e )

2 2i
<S+e*l’ANvf _|_ S_eiANvt) (P_"_eiAp]t _|_ P_e*iAplt)

V2 2
(SJre*l'AN\/t _ S,eiANvt) (P+eiAp]t _ Pﬁel'Aplt) }

2 2

X [PznZ + 1y
(A9)

—S,P, —

_|_
which simplifies to:

T ]0 2 3S+P+ —i(ANv—Apl)t 2 2 :
Hgjp = 3 X {(311Z 1)SZPZ+WE [nx ny, meny}

S_P_
4 Lgl(ANV_Apl) |:n2 Tl; + 2inxny]

272 *

: P_ - P.S_
+ (eZ(ANV+APl) 2\5% 4 ol (Anv+Ap1) ZJ:‘/SE ) (3;1)2( i 3;1; _ 2) (A.10)

(P+eiAp1t + P_e—iAplf) + " (P+eiAp1t _ P_e—iAplf):|
2 Y 2i

(S_A,_eiiANvt + S_eiANvt) + , (S_"_e*iANVt _ S_eiANvt):| }
V2 ! iv2

In the rotation frame we can drop the last three lines because they always have a time dependence

+ 3n,S, [nx

+ 3lePZ |:nx

that is much faster than the average interaction strength between spins (rotating-wave approximation).
There are two other possibilities, either for resonant P1 group Ay = Apj on which flip-flip interac-
tions are meaningful because they conserve energy so all of the first line matters, or Ayy # Api, on
which only the Ising term matters.

Summarizing for the interaction between NV and resonant P1 groups:

3S_P_
2V/2

~ 35, P .
HNV—Pl = —@ {(31’1% — 1)SZPZ + L(1”lx — Zi’ly)z —+

3 22 (1 +iny)2} (A.11)

For off-resonant P1 groups:

Hyv_p1 = —% x (3n2 —1)S,P, (A.12)

The previous result corresponds to the interaction between NV and P1. In the case of the P1-P1

interaction, the interaction should be spin conserving. This corresponds to taking ANV = —AP1 in
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the previous computation, which leaves us with the Ising term as well as the spin conserving terms.
Moreover we need to exchange the v/2 — 2 from the different definitions of the raising and lowering
operator between the spin 1/2 and spin 1 systems. The result is then:

2)

(1) p (1) p(2)
) pWp@  plp
HApy_pp = _% x {(3715—1)132(1)132(2) + ( T ) (1—3n§)} (A.13)

while the off-resonant interaction is the same as NV-P1 interaction.
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A.2 Rate equation model

In this section we derive our semi-classical diffusion model for the NV-P1 system using two

different formalisms: the master equation and Fermi’s golden rule [375} [840-842]].

A.2.1 Master equation approach

In developing a master equation approach to the polarization transfer rate in our spin system, we
begin by isolating a single pair of spins whose polarization dynamics we wish to study. Let us denote
them by S and P (here we restrict our analysis of the NV center to the two lowest levels of interest in

the polarization transfer dynamics dynamics) The two-spin Hamiltonian can be written as:
S P,
H=(A+ 55)7 +(A+ 5P)E + J22S:P. + L (S4P- +S_Py) (A.14)

where we already focus on the approximate energy conserving terms J, J | ,6%,67 < A. The only

two states that can exhibit dynamics due to the interactions live in the zero magnetization subspace

{ITsdp) =|A),[{sTp) = |B)} with Hamiltonian:
Hsup = 0 |A) (A[ + ] [|A) (B| + |B) (A]] , (A.15)

where § accounts for the energy mismatch between the two levels. In isolation, the population of the
two states would coherently oscillate with a well-defined frequency; the presence of a bath of Pls
and optical pumping leads to additional decoherence dynamics that modify the dynamics strikingly.
These can be self-consistently included within the density matrix formalism, by adding a off-diagonal
decoherence decay rate and optical pumping to an additional level.

Optical pumping to another state—In simulating the dynamics of the experiment, one important
feature is the polarization of the NV via its internal structure. Briefly, the full structure of the NV
includes two excited spin-1 manifolds, as well as a singlet level, Fig. The various decay rates
between the different states (independently studied in Refs. [843][844]) leads to a preferential polar-
ization of the |m; = 0) state in the ground state manifold, under spin-conserving optical polarization
from the ground state to the excited states—let the rate of this process be I', and the natural decay rate

to be I'gec-
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Figure A.1: Diagram of the NV internal structure with |ms; = 0) = |lg) and |m; = f%> = |ts) levels

highlighted. The NV level structure is composed of a spin-1 ground state and excited manifold as well as a
single level. Rates between the different NV levels (table) as measured in Refs. [843]844]).

To study this effect, let us consider optical pumping of the ground state levels |1s) and |]g) to

the corresponding excited states ‘T§> and Hg> In the full Hilbert space, these induce transition

|A) = |Tslp) <> [14lp) = |C) and |B) = [lsTp) <> |[14Tp) = |D). The corresponding

Linbladian quantum jump term for both pumping and decay are given by:
popt—i-dec =
T
— - [[A){Alp +p|A)(A] = [C)(Clpaa + [B) (Blo + o |B) (B| — 2| D)(D|pss] (A.16)

‘% [IC) (Clp + pIC)(C| — 2| A)(Alocc + D) (D] p + p|D)(D| — 2|B) (Blopp] ,

which becomes a bit more insightful in matrix form:

Popt-+dec =
| —I'ppaa + Tgecocc —I'ppaB —YpAc —YPAD ]
—TppBa —T'p0BB + T'decPDD —YPBC —9YPBD (A.17)
—YPca —Y0cs Ippan — Tgecpcc —T'gecocD
—7PDA —7PDB —TqecoDC I'pppB — L'decPDD |

where 7 = (T'p + Tgec) /2.
Immediately, we observe that the off-diagonal corrections with the |C) and | D) states are simply

decaying. Since they start at zero, they remain zero and do not affect the dynamics of the system. The
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pumping only affects the dynamics between |A) and | B) by inducing an additional decoherence of
off-diagonal p 45 term. The remaining dynamics affect only the diagonal component, which correspond
to the populations in each of the levels.

This highlights that the presence of the complex structure of the NV center can be accounted by
the diagonal components of the density matrix, up to an additional decoherence rate causes by the
pumping to the excited manifold.

Extrinsic decoherence—By contrast, adding the extrinsic decoherence rate arising from other spins
in the system is much simpler and corresponds to an additional decay of the off-diagonal terms with
rate 7.

Putting everything together, the equations of motion are given by:

paa = —iJ1(oBa —paB) — Ippaa + Tdecpcc
ppg = —i]1(paB — PBA) — TpPBB + TdecPDD
pcc  =Tppaa —Tdecpcc , (A.18)

ppp = I'peBB — TdecPDD

pap = (i6 =7 —Texc)pan — iJL(0BB — Paa) = [0BA]"

\
while the remaining terms are zero. Adiabatically eliminating the coherence between |A) and |B), we

get a modified set of equations for p44 and ppp:

. _ 2 _ ot

PAaA 2|11 (paa — poe) Gar,Fre — TpPas + Taecpec : (A.19)
. T

pes = ~2|J.*(ss — pa4) G e — Tposs + TaecPpD

Finally, we assume that the density matrix remains diagonal, p44 ~ p%pf , and ppp ~ pi ipITDT'

In a similar way we assume p 44 captures the polarization transfer rate so p44 ~ p% = —pf E

A.2.2 Fermi’s golden rule

A different way to derive our semi-classical model is through Fermi’s golden rule; polarization
exchange corresponds to decay of a single spin to a bath composed of all other spin in the system.

Owing to the presence of strong disorder (both on on-site fields and position), the spectrum of the bath
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modes should exbhibit important structure—peaked around the energy difference of each spin and
with some broadening 7y induced by interactions.

A more precise analysis of the decay closely follows the analysis of decay of an atom in electro-
magnetic field. Focusing on a two level spin |s) =& {|1),|]) } and a set of bath modes |k), the Hilbert
space of the system undergoing decay can be written as {|1,0) = |e), ||, k) = |gk)}. interacting via

the Hamiltonian:

H=(A+6)le |+Z€k!gk gk|+21[ (gl + |gx) (a] ] (A.20)

where A + 4 corresponds to the splitting of the spin of interest and € the energy of the mode k of the

bath. Moving into the the interaction picture of |e) and |g):

Hipe = T Ji o707 [e) (gy] 430040 ) (e]] (A2
k

In the case when either of the spins is being pumped (like the NV must be during polarization),
there will be an additional decoherence channel proportional to the strength of the pumping I'p.
Including this contribution is most straightforwardly done via the density matrix p, where it emerges

as a decay of the off-diagonal component.

fee iy, T e [ (A+8)—ex )t D — ei((A+§)—ek)tpegk]

((A+0)—

(A.22)

Pegr = —ife”! &)t (nggk — Pee) — I'pPeg;

Formally integrating the second equation assuming zero coherence at t = 0, P, (t = 0) = 0

yields:

t ; ! !
Peg, = _1]/ ar' (nggk(tl) _ pee(t/))e—l((A+5)—ek)t e—Fp(t—t) (A.23)
0
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Inserting into the Eqn. and focusing on the first term, we have:
t
efi((AjLé)fek)t/ dt' [nggk(t,> _ pee(t/)]ei((A+§)fek)t/€71‘p(t7t/)
0

szgkgk Pee /dt/ ((A+6)—er)—Tp](t—t")

1 — pl-i((a+6) )Tt

~ Jim (P () ~ D) R 13—y 1 T, (A24)
1
~ LlPas(h) = P a5 — ey 5T,
p(e)

s (onn " de-
(pBB PAA)LOO 61((A—|—5)—€k)+rp

where, we have have taken pg o, to be slowly varying across different modes g around the center
frequency of the bath modes and thus the average pg, o, . Physically, this corresponds to coupling to a
single other spin, where the bath modes correspond to a broadening of the spin energy levels and their
occupation is determined by the state of the spin (either in |1) or |/)). Considering the interaction of
multiple such modes corresponds to summing over many independent channels as described above.
p(€) is the density of states of the bath modes, allowing us to transform the sum into an integral,
which is a necessary input in our theory. Motivated by the usual broadening in atomic physics, we take
p(€) to a Lorentzian, that in the rotating frame, is centered around A, with FWHM 2-y:
ple) = iw : (A.25)
As such 4 alone captures the energy mismatch between the spin and the center of the bath. Solving for
the integral in Eqn. [A.24]and including the second term (which is the complex conjugate of the first),

we arrive at the formula for polarization transfer:

. . 1 v+T -
Pee = |]|2(nggk — pee)2Re [WM] = —2|I!2( £ (Pee — Pgrge) - (A26)
P

Analogous to the master equation case, we assume that the density matrix is separable between the
two spins involved analyzed and thus p,, = p%) pﬁ) while pg o = pﬁ) pﬁ) and P, ~ p%) = —pﬁ).
Generalizing to many different spins corresponds to summing over the different bath spins that

the first spin can decay to—each spin gives rise to a decay channel with slightly broadened levels

and interacting with different couplings J. Labelling the bath spins with j, we arrive at the total
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depolarization of the initial spin as:

(1) _ » vty WG (1))
P11 —;—Zlm m(!)ﬁ&] —py/ 1) (A.27)

under pumping of spin (1) of strength T'p.
The polarization-transfer rate, I';;, between any pair of P1 spins via Fermi’s golden rule (Fig. @F):

N
JoAi 2y
I = : : (A.28)
ij ( r?j 2+ (5 —5,)?

Each of the relevant parameters can be independently measured: 7y represents the interaction-induced
linewidth and is characterized by the spin-echo decoherence time of the NV center; J; represents the
strength of the on-site random fields and is drawn from a distribution with width W, characterized by
the NV linewidth. The analogous polarization transfer rate between NV and P1 spins is obtained by

replacing Ai,]- with A;.

A.2.3 Computing the diffusion coefficient from the semi-classical model

Armed with the rate of polarization transfer, we numerically study the polarization dynamics of the
system by reducing the exponentially large quantum state of the system (2N coefficients for N spins),
into 2N coefficients that capture the individual populations p; , of each of the levels ¢ of each spin 7 of
the system. For the P1 0 € {—%, —|—%}, while for NV ¢ € {0, —1}. One then obtains a differential

equation for the populations:
O0ie = Y Tij(pis0jc — PioPjc)s (A.29)
j

where ¢ corresponds to the other level of the spin 7 and ¢’ corresponds to the level of spin j such that
interactions lead to a transition oo’ < o’

To simulate the spin polarization process, we further extend the differential equations to include
the remaining ground and excited states of the NV center. Focusing our analysis on the dynamics of

the P1 centers, we can disregard the details of the NV and transform our semi-classical model into a

205



v=1/3 Sample S2, T=25 K

2000 T 2000 T T 1.12 T T T
(a) == D2 =1.09 £0.02 111n2//1s (b) ® =060 pus (C)
N=10* ® =120 us a
1500 N—16° 1500 . © o t=180s4 _ 110F °
—~ — N=22 —~ S e o t=240ps [ & °)
g ) g ° N £
£ 1000k — I\V:jii 4 E 1000 N R K o T8
o= g B e, e 1 £ pag
Y -+ N BN - RN =~ g
L e .. = 1.08f ", 152
5001 B 500 e H\H H
““““““ ®-0--o-___q N R
1.04F *‘H—HM 110
0 | | 0 I I | | |
0 100 200 300 0.00 0.05 0.10 100 200 300
Time (us) N3 o 1/L Tonax (115)
v=1/4 Sample S$1, T~ 300 K v=1/4 Sample S1, T~ 300 K
(d) v=1/3 Sample S1, T~ 300 K Quyive = (27) x 0 MHz Quyve = (27) x 11.7 MHz v=1/12 Sample $1, T~ 300 K
) 0,98 £ 0.08 /s ./'3 — Dy ~0.66 £ 0.04 rn?/s N 500l D) ~094 £ 0.02 /s K T 0214008 Inmz/'us//:
15001 ook K ‘,y" 300k o]
—~ [ a P ’ ...
k: & o e st
£1000f ’./ — o 10001~ ‘/ 7 200k e _
T 7 5001 o . 7 P
~ 500f (_4’ B ,l’ 500 (," 4 100} J” ]
4 ' o J,
vl d '
0 “ 1 1 0 ” 1 1 0 o 1 1 0 > 1 1
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Time (us) Time (ps) Time (ps) Time (ps)

Figure A.2: Summary of extraction of diffusion coefficient. (a-c) Extraction of diffusion coefficient of Sample
S2 at low temperature. (a) Growth of (r?) for different system sizes N and the infinite system scaling (black
line). (b) Finite size scaling of <1’2> to N — co assuming a linearin L™! ~ N —1/3 ¢orrection for representative
values of t. (c) Fitting the early-time growth of (r?) up to different times Tax € [30,300] leads to slightly
different values of the diffusion coefficient, whether including a constant offset (light blue) or not (dark blue).
Considering the fit without an offset, the final diffusion coefficient is taken to be the average with an uncertainty
given by half the range of diffusion coefficients. (d) For the different experimental conditions, we extract the
diffusion coefficient from the growth of <r2>, which is in great agreement with the experimentally extracted
values after correcting for the non-Gaussian polarization profile (Table .

set of linear differential equations on the polarization of the P1 centers P; = p;4+ — p; I

b = Zl"z-]-(P]- - P) (A.30)
]

Crucially, this linearity condition enables us to map this set of differential equations into a continuous
time random walk of the polarization through the positions of the defects. Such approach enables us
to consider the polarization dynamics of much larger system sizes (up to N ~ 4 x 10* P1s) because
we no longer need to build the dense transition rate matrix I';; and solve for the associated eigenvalue
problem.

One feature of our semi-classical model is the ability to access the spatial profile of the polarization,
enabling an independent characterization of the diffusive dynamics via the direct study of the spread

of the entire polarization profile. In particular, we leverage our semi-classical model to compute the
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mean-squared displacement of the polarization and observe the characteristic linear growth with time
(Fig.[A.2). From this linear growth, we can directly extract the diffusion coefficient of the dynamics

via
(r*) = 6Dt (A31)

where the coefficient 6 = 24 includes the information about the dimensionality d of our system.

Our simulation protocol is then as follows. We first generate an ensemble of P1 spins with random
positions r; and onsite energies J; surrounding a P1 spin at position 9 = (0,0,0). Starting with
the polarization at rg at t = 0, we compute its dynamics through the system as follows: When the
polarization is on spin 7 (at position #;), the hopping rate away from spin i is given by ['io = 2]» Lijs
thus the polarization remains in spin i for time 6t which is a Poisson random variable with mean Ft_O%.
The probability of hopping to spin j is given by the branching ratio f; = I';j/Tot. We repeat this
process until a time fmax ~ 1000 ps has elapsed.

Computing the mean-square displacement— For each random walk, we record the displacement

squared of the polarization from its original position 7 as a function of time f. Averaging over many

random walks immediately yields the mean squared displacement of the polarization profile.
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A.3 Continuous diffusive model

A.3.1 Simple diffusion model

In this subsection, we present a detailed derivation of the solution of the diffusion equation for
the NV-P1 system, which we use as the fitting functional form to analyze the experimental data and
extract the diffusion coefficient.

In the simplest case, the diffusion equation is written as

o:P(t,r) = DV?P(t, r) — P(th r) +Q(t, 1), (A.32)
1

where P(t,r) is the polarization depending on both position 7 and time ¢, D is the diffusion coefficient,
Ty is the intrinsic depolarization time scale of our system, and Q(t, #) corresponds to the polarization

source (the NV). Considering our experimental geometry and polarization protocol, we assume:

r —r?/(2b?
e /P - <t <0

Q(t,r) = , (A.33)
0 t>0
where I is the polarization rate, and b reflects the range of the polarization transfer process from the
NV and also guarantees that the polarization does not diverge at short times.
To solve this partial differential equation (PDE), we follow the Green’s function approach. In

particular the corresponding impulse response problem is

P(t,r) = DV?P(t,r) — X, a0

P(t =ty r) =6(r—n),

in real space, or

i Pi(t) = —DR2Py () — 1, a3

in Fourier space. With the solution of the above equation (Green’s function) denoted as G(t, to, 7, 9),
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we can obtain the survival probability given our polarization scheme:

0
P(t,r = 0) :/ di’()/droG(t,to,r,ro)Q(to,ro). (A.36)

-7

In the undriven case, we can simply get

. i 1 (1’ — 1’0)2 r— t()
G(t, to;r,70) = arD(t = to)]g/zexp [_ZD(t—to)] exp [— T, } . (A.37)

Correspondingly, the survival probability is

»2
TePh b2\ 1 b2\ 1

where

— —erfc(v/x). (A.39)

In the driven case, we have a different diffusion coefficient (denoted as DY) and a different decay time

(denoted as Tldr) in Egs. , for t > 0. With these modifications, the Green’s function then

reads
G(t, to;r,10) = ! ex B Ul Vi exp |- [ = -+ (A.40)
T = (DI — D) P2 [T 2(DFE—Dhe) | TP |\ T8 T T ‘
Similarly, using Eqn.[A.36] we obtain the survival probability as
B+ (= )y & g2
Te ! nee D b7\ 1
Pt:r=0)= e4 D3/2\/1T> {FK D t+D> T]
T

! ! (A41)

dr
(= pd) i . [ (DT b\ 1
—e T F[( D t+TP+D> Tl] '

Up until now, we have been considering the dynamics of a single NV center surrounded by an
ensemble of P1 spins. However, the finite NV defect density in our sample leads to the polarization
overlap between different NV-P1 systems. Owing to the randomness in the NV center positions, this
effect can be captured by a simple constant background. In particular, since each NV is randomly
placed in the system and we measure all NVs, the above overlap effect is spatially averaged and can be

treated as a homogeneous background whose dynamics is governed only by depolarization. Given the
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volume of each NV-P1 system, V = 1/pnv, the background polarization is simply written as:

1 0
Pog(t) = [ Te 00/ Tty = pyyTTy (e*f/ G Tl) . (A42)
—'r

Combining the background Py, with the survival probability P(t,7 = 0) (i.e., Eqn.
yields the experimental signal, from where we extract the diffusion coefficient D and the range of
polarization b. To be more specific, the data measured under the same conditions and parameters
(sample, temperature, peak v) except T, should be fitted with the same global value of D and b,
while I' changes across different 7. In addition, T; and Tflr are independently extracted from the
polarization decay at a substantially late time. We also remark that pyny (which is independently
measured) provides the necessary length scale that connects the measured decay timescales to the

diffusion coefficient.

A.3.2 Long-range modifications to diffusion

In building a description that goes beyond the leading order term, we consider the problem in

Fourier space

aPu(1) = —F(R)Pu() — B,

Pe(t = to) = 1.

(A.43)

where f(k) can be thought of as the decay rate of the Fourier mode with a wavevector k. To the
leading order, the diffusive nature of the dynamics arises as a term Dk? in f(k), and we recover the
simple diffusion equation (Eqn.[A.33).

Denoting the polarization transfer rate as i(r), we can obtain the decay rate of Fourier modes in a

d-dimensional system as

F(k) = / 1 — cos(k - £)]h(r) d'r. (A44)

To be more concrete, we consider a transfer rate where beyond some short-range cutoff rg the transfer

decays simply decays as a power-law ~ 1/r%. Focusing only on the long-range part (since any
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non-singular short-range contribution just leads to even-order terms in fi,(k)), we have:

1—cos(k-r)

R
d ;o .
_ n; / 1— cos(krcosf) 41 dcos§ dr — 2”;/ [1 B sm(kr)] a1y,
I'(3) r r(4) Jry kr
d
= 277: {r(d —x — 1) sin (DH-l_dn-> fa—d
r(j) 2
0" - T (A.45)
+ "o [—1-1—11:2 <M;3,1+d a;_kro)]}
d—uo 2 /9 ) 1
d
= 271"; {r(d - — 1)sin <Dé—|—1—d7r> kacfd
r(j) 2

rd—a—O—Z d—oa+4
0

2 "o 4 6
T 6w—d=2" T1@—agak T >] }

d
272
r($)

generalized hypergeometric function, which can be expanded as a power series of the variable x. The

where

is the surface area of a d-dimensional ball with unit radius, and 1F,(ay; by, bp; x) is the

interpretation is simple: while the last term only contains terms with even power of k (similar to
diffusion in short-range systems), the first term (~ k%) captures the long-range nature, making the
dynamics qualitatively different from short-range interacting systems. Therefore, with the presence of

long-range interaction, f (k) in general can be written as:
f(k) = DI* + C,k* ™4 + Ck* + - - - (A.46)

where D, Cj, and C are model-dependent coefficients. This result immediately highlights three import

regimes.

* Ford long-range interacting systems with d + 4 < « (and also short-range interacting systems),
neither the leading nor the sub-leading term arises from the long-range transfer rate and the

dynamics do not deviate significantly from the short-range case:

f(k) =Dk*+Ck*+-- - ; (A47)

* For long-range interacting systems d + 2 < a < d + 4, the leading order term remains the
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diffusive term but the sub-leading correction that control the approach to diffusion is set by a

k=4 term:

f(k) =DK*+C,k* 4 + -+ ;

(A.48)

« For long-range interacting systems d < & < d + 2, the leading power is no longer the k? term

and instead a k%~ term becomes the leading contribution—the system is no longer diffusive

and enters the Lévy-flight regime [419) 505]]:
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Figure A.3: Long-range modification to conventional diffusion. The presence of a long-range k3-term
parametrically modifies the approach, A, (t) = S,(t) — (4wDt) ~3/2, to the late-time Gaussian fixed point, as
high-lighted in a three-dimensional, disorder-less numerical simulation, with lattice constant a and diffusion

coefficient D).

With the functional form of f(k),

we can obtain the survival probability as

_t=f

e
G(to, t;r = 1) = ((327_[;1 /ddke_f(k)(t—to).

(A.50)

At late times, k? term in Eqns. dominates the dynamics, while the subleading correction
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can be evaluated by expanding the exponential in Eqn. as follows ﬂ

e Whend =3anda > 7,

t—tg

T-
G(to, Er=1)) = e2 13 /d3ke*Dk2(t,to){1 + D'kt —to)}
(27) (A51)
B ef% 1 n 15C
N [ArtD(t —t)]3/2 ~ 32m3/2D7/2(t — ty)3/2 |
* When d = 3 and & = 6 (our experimental setup),
_tty
e 37.,—DK2(t—tg) 3
Glto, tir = 1) ~ 3/d ke {1+ Gk (t — b))}
(277) (A.52)

_th
= e Ty

1 . Cir
[4nD(t — t0)]32 ' 2m2D3(t—tg)2 |

We emphasize that the subleading correction ~ (t — to) ~2 distinguishes our long-range interacting
system from the normal diffusion whose subleading correction ~ (t — to)~5/2. We also remark that,
similar to the calculation assuming only the simple diffusion, we can also convolve the above survival

probability with the polarization process to obtain the correct form for our experimental signal.

A.3.3 Dynamical correction to diffusion

The experiments average over both NV centers within the sample and shot-to-shot fluctuations in
the environment. Thus, the quantity of interest is the disorder-averaged diffusion kernel, or Green’s

function. In frequency and momentum space, this is given by:

1

Gl w) = = DR 5k, @)

(A.53)

where —iw + Dk? describes the eventual diffusive dynamics at asymptotically late times and long
wavelengths while the self-energy X.(k, w) captures the corrections due to disorder averaging. Focusing
on the leading corrections in this limit, the small w and k expansion of X(k, w) can be constrained by

noting that it is (1) analytic, (2) isotropic, and (3) probability conserving:

Y(k,w)=DK+Ck*+... + (—iw)(PRE+ 0+ )+ ..., (A.54)

Here, we only show the case with d = 3, and results for other dimensions can be derived in a similar way.
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where (% = Cayn in the main text.

A few remarks are in order. First, the D’k? term simply corrects the bare diffusion coefficient,
D — D + D', and can be absorbed into a new definition of D. Second, the Ck* and ¢?(—iw)k? terms
have the same scaling dimension near the diffusive fixed point (where z = 2); they are accordingly the
leading irrelevant corrections in the renormalization group sense. Third, the dynamical corrections
(involving powers of w) do not appear in translationally invariant classical hopping systems, where the
only corrections in X arise due to the spatial Fourier transform of the hopping kernel. This picture is
modified in disordered systems, where a diagrammatic analysis of the disorder average generically
yields the dynamical corrections.

While Eqn. [A.54]follows on very general symmetry grounds, for completeness we include a short
derivation of the one-loop self-energy in a continuum model with a spatially random local diffusion
coefficient in order to indicate how it is generated. The actual coefficient £ produced in this calculation
depends on the UV-cutoff (as expected) and thus its detailed numerical form is of limited utility. We

assume that the diffusivity is D(x) = D 4 6D(x) is Gaussian with
dD(x)6D(x') = Apé(x — x') (A.55)

The Martin-Siggia-Rose (MSR) [843]] action generating the Green’s function of the polarization P(x, )

in a fixed diffusion environment D(x) is given by
Sp=i / td'x P(x,£)(9 — DV)P(x,t) + 1. / dtd?x (VP(x, 1)) - (VP(x,))6D(x)  (A.56)
where P(x, t) is the MSR conjugate response field to P(x, t). Here,
(P(x,t)P(x','))p = —iGp(x',t; x, 1) (A.57)

provides the fixed environment Green’s function of the polarization. The action generating the disorder
averaged Green’s function can be obtained by integrating over the fluctuations in 6D (x). Technically,
this is straightforward because in the MSR approach, the normalization Zp = f DPDPeSr =1 is

independent of the realization of D(x); see Ref. [846] for more discussion. We obtain the effective
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action
S5=5+5 (A.58)
So =i / dtd?x D(x, £)(3; — DV2)P(x, 1) (A.59)
S, = —Azl / dtdt d'x [(w(x,t)) : (ﬁp(x,t))] [(w(x,ﬂ)) : (vp(x,t/))] (A.60)

We now compute —iG(x,t) = (P(0,0)P(x,t)) using perturbation theory to leading loop order.

The bare propagator, —iGo(k, w), can be taken as an arrow pointing from P to P:

kw —1i
T~ —iw+Dk2 (A-61)
The interaction vertex (S7) is
q,w q+kw
1 AD
'k == (q-(g+Kk)(q (4 - k) (A.62)
-ty

We note that causality implies that any diagrams with closed P-loops are identically zero, since Gg is
retarded. As usual, we can organize the perturbative expansion for the full propagator —iG in terms of

a self-energy G = Gy lyy,

k(w k,w

k,w //’\\\
= + L 0y L

y (A.63)

To one loop, the only diagram contributing to X is

k—q d ~ 7\2
2(1)(’(,&)) e _@ d q (q k)
e 2 J (2n)? —iw + Dg?

(A.64)

This is clearly isotropic and quadratic in k. Itis straightforward to evaluate > as an expansion in
—iw (in 3d):

ApA3 ,  ApA

> = — k
362D | 120D

(—iw)k* + - (A.65)

where A is a UV momentum cutoff. As expected we find a correction to the long-wavelength diffusion

constant D’k? and a dynamical correction % (—icw)k>.
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We now tease out the phenomenological role of the dynamical correction term for the observed

diffusion. Focusing on the short-range case (without k¥~ correction):

1 o~ DIt/ (1+07K2)
Che) = aremore - W)= "TrEe (A.66)
In the + — 0 limit, the polarization profile approaches the Yukawa potential form G(k, t = 0) = 1+}W
[847]. Returning to real space in three dimensions,
e/t
G(r,t =0) = P (A.67)

We note that this form should be interpreted as the shape to be expected of G at early times in the
crossover to Gaussian behavior. It does not reduce to a delta function because we have neglected the
higher order k and w corrections which govern the short-distance, early-time dynamics.

However, the presence of this dynamical correction has important late time effects as well. From
Eqn. (A.66), one observes that the large k modes now decay with a constant rate. This implies that the
short-distance singularity of the Yukawa-potential decays only after the timescale /2 /D.

We end this section with a few remarks. First, at even later times, the weight of the singularity
decays exponentially while the diffusive behavior of the survival probability decays as a power-law
in time, S, (t) ~ t~4/2 dominating the late-time physics. This is in agreement with the presence of
the late-time diffusive fixed point. Second, such a singularity cannot be experimentally observable
owing to the short-range cutoff of our system: we measure the polarization of the NV centers which
must remain finite. One can understand this singularity as being regularized by the short-range details
arising from the discrete nature of our randomly positioned spin system. Finally, while the D'k* term
has the same scaling dimension as (—iw)ﬁzkz, its inclusion in the analysis above does not change the
qualitative statements, nor does it alter the nature of the early time behavior (it only appears in the
exponent of Eqn. (A.66) and does not change the t — 0 behavior).

Following the analytical derivation of the disorder-induced dynamical correction, we now present
numerical evidence that highlights the role of disorder in the resulting long-lived exponential polariza-
tion profile, whether it arises from positional disorder or random onsite fields. To this end, we consider

two different models where we include the two effects separately: first, we consider positional disorder
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Figure A.4: Diffusive dynamics of a long-range system « = 6 for two types of disorder. In the top row we
consider positional disorder without onsite fields, in the bottom row we consider random onsite fields with spins
placed within a cubic lattice. In either case of disorder we observe, an early time linear growth of the mean
square displacement (left column) that highlights the diffusive nature of the dynamics, but the polarization profile
remains non-Gaussian (middle column) throughout the evolution considered. This latter point is highlighted
by rescaling the polarization profile P(r, t) according to the diffusive dynamical exponent (right column), and
observing that the collapse of different time traces agree with a simple exponential profile (Gaussian profile
plotted for comparison).

of P1 centers with same density as sample S2 in the manuscript, but without onsite random fields;
second, we consider no positional disorder by placing the P1 defects in a cubic lattice (with matching
density as that considered in sample S2) and include the same strength of onsite random fields.

Our results are summarized in Fig. where for both models (albeit with different timescales
owing to the different average hopping rates) we observe that the polarization profile remains non-
Gaussian throughout the time considered (fact made clearer when considering the rescaled polarization
profile in the right column). These results agree with the field theoretical calculation of the source
of the dynamical correction, as this term arises from the presence of a spatially varying diffusion

coefficient which arises from either positional disorder or a onsite random fields in the sample.
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A.4 Details about random state creation and detection

A

Hdipv te

Haip, ten H(%) i

1 2 3 4 5 6 7 8 7' 6 5 4 3! 2' 1

Figure A.5: Detailed sequence of the creation and detection of random Zeeman state (a) and double quantum
state (b). Phase cycling is mark by brackets above the sequence, with the number under the bracket labels
number of experiments with that phase cycling. For easier reference, we label different part of the sequence by
numbers listed in the bottom.

The sequences we use to study transport contains 3 parts — state engineering, transport Hamiltonian
engineering and observable engineering. The total unitary propagator Uy, is thus a product of 3
unitaries, Uy = U,UyUp and the NMR signal is then Tr(Ujor 00 uf,0o). Figure shows the
sequences we use to create, evolve, and detect random states. In the following we explain the sequence
step by step.

Engineering random Zeeman states

1: The state is initially the high-temperature equilibrium state, p < 1+ €py, with-p1 = Z =} ; S];.
Since the identity does not evolve nor give rise to signal, in the following we only report the

dynamics of the deviation py.
2: pp = X thanks to a 77/2 pulse along the y axis.

3: The disorder Hamiltonian is engineered with two concatenated WAHUHA sequences (eight
7t/ 2 pulses along X, v, -y, -X, -X, -, ¥, X, named WAHUHAR) [219]. The WAHUHAS sequence
cancels the '°F couplings, yielding the average Hamiltonian Y w]'S]Z', with w; = (1/ 3)wj. The
total sequence length is 60ys. All the disorder Hamiltonians in Fig.[A.5]are engineered by this

sequence. The state becomes p3 = }_; cos (wjT) SL + sin (wjT) SL.

4: To cancel the Sy component, we apply a 2-fold phase cycle over the 7t/2 pulse between 3

and 4. That is, we implement the sequence shown in Fig. twice, one with (77/2),
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1

2/

3"

yielding pil) = Y [cos(w;T) s+ sin (w;T) S.), the other with (77/2)_, yielding pf) =

Y [cos (wjr) SZC — sin (wjr) S]Z] Then we take the difference of the signals from the two
experiments as the final signal S = %[Tr(pfll)(t)O) — Tr(pflz)(t)O)] = Tr(p4(t)O), with
Py = %(pil) - pf)) = Y ;sin(w;T) S.. We further implement a 4-fold phase cycle over all
pulses before step 4, by a 4-fold rotation along z. This amounts to implementing each of the two
repetitions discussed above 4 times, with 90° phase increments of all pulses before step 4 each
time, and average over the results. Ideally the rotation along z axis should not affect p4, but due

to experimental imperfections p4 also contains some unwanted terms that can be averaged out

under this 4-fold phase cycling. There are 8 repetitions in total.

Engineering random Zeeman observables

Creating the random observable can be best analyzed by describing the steps from later to earlier

times. The final observable is O = X.

Evolution under the disorder Hamiltonian (obtained with a WAHUHAS sequence) yields Oy =

3_j[cos(w;T) S\ —sin (wjT) S]y]

Oy = Y [cos (a)jT) S{C + sin (a)j'r) SJZ] If the transport Hamiltonian does not contain a disor-
dered field, then the first term has zero overlap with the density matrix p4 and can be neglected,
leading to O = ), sin (ij) S]Z'. If the transport Hamiltonian contains the disordered field, then
another 2-fold phase cycling over the 71/2 pulse between step 3’ and 2’ is needed to engineer

the same observable, similar to step 4 above.

Signal: The final signal after all phase cycling is S = Tr(p(t)O), with p(0) = O =
);sin (wj’c) Sé. This already looks like the autocorrelation of random Zeeman state with

random coefficient ; = sin (w]-T). It is easy to show sin (a)]-T) has zero mean. We will show

E[sin (w;T) sin(wiT)] o & later (Appendix |A.5).

Variations: If we want to measure autocorrelation of random Zeeman state along y axis, we
can simply move the transport step after the 7t/2 pulse between 3’ and 2’. That 71/2 pulse

is then considered part of initial state engineering, and the final effective initial state density
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matrix is p = Y; sin(w;T) S}, and observable is O = ¥; sin(w;T) S}, Random Zeeman state
along x axis can be engineered with 90° rotation of all pulses (except the transport Hamiltonian
engineering pulses) along z axis. Random Zeeman state along any other axis can be decomposed

in to correlations of random Zeeman states along X, y, z axes.

Engineering random double-quantum states

2

4.

5

7:

D p1=Z.

t o2 =X

;03 = X — i[Haip, X]te + O(12) = X — 3T ¢ Jic(SLSk + S} SE)te + X witeS) + O(£2).
ps =Y Sk + 3 ik Jjr(SLsk — 5955)1‘@ +2 wite(S) — SL)/V2+ O(82).

: The evolution time between step 4 and 5 is very long |Hdiptth| > 1 such that state p4 thermal-
izes to e PHai / Tr(e_ﬁHdiP) [89,96]. The inverse temperature f is determined by the energy
conservation Tr[Hgip (1 — €p4)] = Tr(Hdipe_ﬁHdiP)/ Tr(e PHair). The state after thermaliza-
tion is still a high temperature state with § = O(€), therefore we have e PHaip / Tr(efﬁHdiP) ~
(I — BHgip) / Tr(1) and the non-identity part is p5 & Hgjp. The sequence to create dipolar state

was first demonstrated in Ref. [436]).

@

; péo) =-1iD, + ﬁ Zj<k(S§S§ + SéS’;) +) ﬁ(SZC + Sé), the superscript (0) indicates
this is the density matrix before phase cycling. The last term can be cancelled by 2-fold phase
cycling of the 7t/2 pulse between step 5 and 6, i.e. averaging two experiments one with
(71/2)x—y the other with (71/2), . The first term can be cancelled by 4-fold phase cycling of

all previous pulses, i.e.

06 = %[Péo) _ efi(n/z)ZpéO)ei(n/Z)Z + efinzpéo)einz _ efi(3n/2)ZpéO)ei(37r/2)Z]
3 . . (A.68)
= aff g S SS),
j<k

notice the minus sign in first and third line.
7 = g Lj<k(SxSy + SySY) cos (wjT + wi) + (8)Sy — SiSY) sin(w;T + wyeT).
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8: A 2-fold phase cycling over 71/2 pulse between step 7 and 8 cancels the first term in py.

P8 = ﬁ Zj<k(S£Slz< — 8L.85) sin(w;T + wiT).

Engineering random double-quantum observables

1

2/

3

4’

5’

6

7'

Oy = —X

Oy = —X +i[Haip, —X]te + O(£7) = —X — X1 J(SLSy + SySE)te + L witeSy, +
O(t2). Notice for observable engineering we consider backward evolution so that the effective

Hamiltonian is —Hy;y,.
Oy = =X — 3 ik J(SLSE — S, S8)te + ¥ wjte (S} + SL) /2 + O(£2).
Thermalization, Oy &« —Hgjp

% (SQ + S]y) The last term can be can-

celled by 2-fold phase cycling of the 71/2 pulse between step 5’ and 4. Oy = %DZ —
7 Lj<k(ShSy +5y8%) / [k — jI°.

O = 1D, — 37, ((ShSk +8)s5) / [k — jP — ©

Oy =

1 . o
2|k — ’3 ZSJ sk — SJ sky+d Sk) cos(wjT — wyT) — E(SQS; — §},S5) sin(w;T — wyT)

4“( k=P 2 S] SS + SéSﬁ‘c) cos (w;T + wiT) + (S{,SS — sisﬁ) sin(w;T + wT).

j<k
Oy —
! ZS]S" - 1(5] Sk + 5155 cos (wiT — wyT) — 1(S] Sk — 515K) sin (wjT — wT)
20k —jP ]|3 2 J ) j k
4|k =P Y —(SLSk + SLSK) cos (wjT + wiT) + (SLSK — 8LSK) sin(w;T + wyT).

i<k

When the transport Hamiltonian does not contain a disorder field, only the term

Z S] Sk — sl S5) sin (w;T + wyT)
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in Oz has nonzero overlap with the initial state, therefore

3 | o
O = J 5 L(SL85 — SiS¥) sin(wyT + wir)
k=P =
3 i citl i a1y o
~ 1 Z(SZSZ - stx ) Sln(wj’r + (Uk’l')

j

e Signal: The final signal after phase cycling is S = Tr(p(¢)O), with both p and O of the form

rDQ,. The random coefficient a; = sin(w;T + wiT).

e Variations: Random double quantum state in xy place can be engineered with rotation of all
pulses (except the transport Hamiltonian engineering pulses) along z axis. Autocorrelation of
random double quantum state along z axis can be measure by moving the transport step after the

71/2 pulse between step 7’ and 6'.
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A.5 Multiple quantum coherence
A general Hermitian observable can be expanded in Pauli string basis
Op = Zaso's/ (A.69)
S

where s is a tuple s = (aq,ap,- -+ ,ar) and aj = 0,x,Y,z; as is a scalar coefficient (may be random);
O, = ®]L:10aj is Pauli string with 0y = 1. Here we use Pauli operators (7[{; = 28{;4 so that the
normalization factors is a constant for all s, Tr(c2?) = 2. As we are interested in autocorrelation
functions, it is sufficient to evaluate the correlation Csy = [E(asay ). In particular, by diagonalizing

the correlation matrix C,y, we can get the principal components of the random state
Op =) duTy, (A.70)
M

where d,, are independent random variables ]E(dydy) = Aydyy, with A being the eigenvalues
of Csy in decreasing order; 7, are orthonormal operators that we name as principal components,
Tr(’ﬁﬂf) = 2L5W. As we do not have universal control, we cannot run a state tomography to
determine C,y. Instead, we diagnose the state by global rotations, as different Pauli strings respond
differently to global rotations. With some reasonable assumptions, we can then derive Csy .

Global rotations are commonly used in solid-state NMR to analyze spin states, a technique known
as multiple quantum coherence (MQC) [848] [849]. MQC characterizes the state by its response to
global rotations, therefore it is useful to write the state in the basis of irreducible spherical tensor

operators (ISTOs) instead of Pauli strings

_ (A)(A)
Op =Y a),) T, (A1)
ImA
where =1,2,--- . m=—1I,—-1+1,---,1, al(;;) are scalar coefficients. A is an additional index that

labels different ISTOs in the spin chain with the same values [ and . The ISTOs form an orthonormal

basis, Tr[Tl(n/:) (T()‘l) )] = 2L63:611:6 . The ISTOs are defined by the following rotational property

I'm’

U(e,6, 7 )TVU ($,6,7) = ¥ Dipeur (6,6, 7) T, (A.72)
ml
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where U(¢,0,7) = e 9L EPR R TR VES Dyt (4,0, 7) = e~ Pdy,,,.0 ()™ is the Wigner

D-matrix [850]. We list ISTOs for the ]'th nearest-neighbor spin pair, withA =j=1,2,--- ,L

T =1

1) =l

) =l

T = %(ZUZ ol —alol™ —alo)™) (A.73)
TZ({) = \}E(Uzgf_l +U+ ]+1)

Tz(é') _ (Tiafl.

ISTOs with m < 0 can be obtained via Y; _,,, = (—1)’”Yltn. We consider periodic boundary condition
here. These ISTOs have the shortest correlation length (distance between furthest non-trivial Pauli
operators). ISTOs with longer correlation length and same [, m can be formed by (i) multiplying by
(UL‘U}C + 0'50’; + U;‘Ué) (ii) inserting identities between nontrivial Pauli operators. Similarly, ISTO
with larger [, m but shortest correlation lengths can be written in terms of triplets, and multiplets of
contiguous spins.

In experiments, we rotate the state O, along the z axis by an angle 7, then along y axis by an angle
6, then along y axis by ¢ and finally we measure the overlap of the rotated density matrix with the

original one. The signal is

I(¢,0,7) = Tr [LI(cp, 0,7)0,U" (¢, e,y)op] . (A.74)

From experiments involving global rotation only, such as MQC experiment, one can distinguish
between ISTOs with different [ and/or m [851]], but it is fundamentally impossible to distinguish those
with same [ and m but different A. Therefore we make the following assumptions. First, for given /
and m, we consider only ISTOs with the smallest correlation length. Indeed, during the random-state
preparation only rotations and disorder field are applied, which do not create many-body correlation.
Operators with longer correlation length can be created only due to higher order effects of the Floquet

engineering sequence or experimental imperfections. Therefore, if we detect a spherical component
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with a given [, m, it is most likely to be from the ISTOs with shortest correlation length. With the
above assumption, we can consideronly A =1,2,--- , L,

Sy )

OP ~ Z Z Z ; A1 Tlm : (A75)
=1

j=11=0m=—

For given [ and m, the terms Tl(r]n) are related by spatial translation. The second assumption is that

(7)

the state is statistically translational invariant, meaning although the coefficient 4,

depends on j,
its statistics is independent of j. This is reasonable because we use a macroscopic crystal, and the
chains are only interrupted by rare defects. For our purpose, we only use the translation invariance of
correlation, lE(al(Q ‘11(;]2') = - Using Eq. we can then get Cgy from ¢y
Next we discuss how to extract ¢y, from experimental signal I(¢, 6, y). Plugging the simplified
density matrix in Eq.[A.75]into the signal in Eq.[A.74] we obtain
) l !
I(¢,0,v) =LY 3. Y CiwwDinnr (9,0,7), (A.76)
1=0 m=—1Im'=—1
where we used the fact that O, is hermitian. To extract c;,,,,, we Fourier transform over ¢ and 7,

Ly (9) =L Z Clmm' mm' (9>/ (A.77)
1=0

where I,/ (0) = fozn d¢ f027r dye™P1(¢,0,)e™ / (277)2. Clyme can be obtained by fitting to the

experimentally measure I°' 7 (6),

2
Clmm = arg min ) _ (sf;nl}(e) -LY clmm/dlmm/(9)> ) (A.78)
Comm! 0 1=0
Crmm = IE (”1(2‘11(2’) form a correlation matrix, which should be positive semi-definite. However, due

to experimental errors, the fitted cy,,,,,, may not be positive semi-definite so we replace the negative
eigenvalues by zeros.

In experiments, we vary ¢, 6, -y independently from 0 to 345 degree with a step of 45 degree, so we
can evaluate 7, m’ from -3 to 4. To evaluate Eq. we assume the maximum correlation length in
the prepared states is L4y, i.€. a5, = 0 for I > I,;,,,. For the random Zeeman state (random DQ state),

the residual of the fitting to I(¢, 6, v) stays stable for Lzy > 1 (e > 2) (Fig. ). Therefore in
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the experiment we use I, = 3 for both states (Fig. [2.15]). Here, we show the largest eigenvalue of
correlation matrix Cgg as a function of /,,,,, and confirm that the largest principal component remains

dominant regardless of /.y (Fig.[A.6B).
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Figure A.6: (a) Relative difference the measured (¢, 8, y) and fitted I (¢,0,7) as a function of Lyy. Al = 1 — I
and | - | denotes Frobenius norm. (b) Largest eigenvalue of the correlation matrix as a function of Ly,x. The
correlation matrix are normalized such that the positive eigenvalues sum to 1.

Finally, we note that for conventional states without randomness, fixing v = 0 and varying ¢ and 0
(7)

I Are deterministic thus

is sufficient to determine the coefficients al(ﬁ (848, 1849]. The reason is that a
Crmmy are dependent, Cyn = \/ClmmCimm - However, the above equation does not hold for random
states and ¢y, contains more degrees of freedom, so independently varying ¢, 6 and 7y is required

here.
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A.6 Polarization transfer in the GHD framework

In what follows we briefly explain how to compute polarization transfer P () within the Generalized
Hydrodynamics (GHD) framework, in the limit of weak quenches, 7 < 1. In this limit, one can
express P(f) in terms of linear-response correlation functions. As we will see, this quantity is related
to (but subtly different from) the transport coefficients that have previously been calculated in the
literature.

In the 7 < 1 limit, it is known [353] that the magnetization profile p(x,t) = (5% (t)) is related to

the linear-response dynamical correlation function C(x, t) = (SZ(t)S3(0)) via the expression
C(x,t) = oxp(x, 1) (A.79)

where we used the continuum notation for derivatives, for simplicity, although in a lattice model they

should strictly be expressed in terms of discrete differences. We can invert this relation to read:
X
p(x,t) = p(—o0) +/ dx'C(x',t). (A.80)
—0o0

The polarization transfer is (up to time-independent constants) given by

0 x
P(t) = /m Lwdxdx’C(x',t). (A.81)

In the hydrodynamic limit, C(x, t) will take the scaling form ¢t ~1/2C(x? /t), where z is the dynamical
exponent. By dimensional analysis of the expression for P(#) one can see that this in general implies
P(t) ~ t'/2,

We now discuss the scaling of this quantity within GHD in the Heisenberg model, working at
6 # 0. In the Heisenberg model, there are infinitely many quasiparticle species, labeled by the “string
index” s. Each quasiparticle species propagates ballistically (z = 1); the velocity of a quasiparticle
(and the density of such quasiparticles ps(6)) depends on both s and the quasimomentum 6. In terms

of these, C(x, t) can be written as [852]

Clx,t) = ¥ [ d6p,(6) me ()25 (x — ot (6)1). (A82)

This expression can be interpreted as follows: each quasiparticle propagates ballistically with some
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velocity Ugff(Q) that depends on the nature of the background state, and carries some effective spin

(which, again, depends on the background state via dynamical screening). Correlations between
the spacetime points (0,0) and (x,#) come from all quasiparticles whose trajectories pass through
both spacetime points. The thermodynamic Bethe ansatz provides a framework within which all
the quantities appearing in Eq. (A.82)) can straightforwardly be computed. In the high temperature
limit, closed-form expressions exist [477] for all the quasiparticle data in Eq. (A.82). After some

coarse-graining the correlator can be written as [[172]
1 -
Clx,t) =Y aps(mglr)z@(x — Gt) (A.83)
S S

where ¥ is some characteristic velocity for quasiparticles of species s, and @ is the Heaviside step

function. Plugging this form into Eq. (A.8T) we find that
P(t) =t} ps(mi")?s,. (A.84)
S

In the Heisenberg model at nonzero J, one has the following scaling forms. For s§ < 1, we have
ps ~ 1/s% and m%" ~ §s%, while for s6 > 1, we have ps ~ exp(—ds) and m?" = s. For all s we have
the scaling v; ~ 1/s. Thus the sum over species gets cut off at s ~ 1/, yielding the expression
P(t) ~6* Y O(1) ~ ét. (A.85)
s<1/d
Superdiffusion can be recovered within this framework by noting that even when é = 0, fluctuations
of J cause quasiparticles to move in a time-dependent apparent magnetic field.
It is interesting to contrast the expression (A.84) with that for the Drude weight D (i.e., singular

part of the zero-frequency conductivity) of the Heisenberg model:
D =Y ps(md)?|o|*. (A.86)
S

Because of the extra factor of velocity in Eq. relative to Eq. (A.84), the contribution of slow

quasiparticles to the polarization transfer is much larger than their contribution to the Drude weight.
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A.7 Integrable models with non-Abelian symmetries and supersymme-

tries

In this section, we explicitly list the matrix form of all the Hamiltonians we have studied to
explore the KPZ superdiffusion, including those with each of the four classes of simple non-Abelian
symmetries, those with super-symmetries, the symmetry-breaking model, and the integrability-breaking
model. To simplify the notation, we use S*P to denote the matrix with all elements being 0 except the

th

o' row and the B column which takes value 1: S*f = |a)(B|. It is easy to notice

[SYP, 1] = 6,8 — 6y, SHP. (A.87)

We note that one can use any sets of operators satisfying this commutation relation to replace S*# in

the following Hamiltonians, and obtain integrable models with the same symmetries.

A.7.1 Non-Abelian symmetry

We focus on models with the non-Abelian symmetries that can be described by simple Lie algebras.
The simple Lie algebras fall into four classical series Ax [SU(N)], By [SO2N + 1)], Cn [SP(2N)]
and Dy [SO(2N)], and five exceptional cases G, Fy, Eg, E7, and Eg. Here, we only focus on the
classical series.

Let us define two operators acting on site i and j as
I; = ZSf’ﬁ ® Sf’“
a,B
=SO __ u,B N—a,N—-fB
B = Zﬁ;si ®S; (A.88)
a,
=SP _ B N—a,N-p

ap

where N is the dimension of the local Hilbert space, and 6, = ;- N~ é N i1<a<N: We can then
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write down the two-site Hamiltonian for different symmetries as

SU
2
H? =1 — 8 (A.89)
2
HSP Hl] 4= N SE SP

with appropriate N [[1731 1499 500, 502].

The integrable static model then has the Hamiltonian H = Y ; H where “sym" can be SU,

i 1+1 ’
SO or SP. For the integrable Floquet model, we further define: Heyen = Y ; H;?’g; 41 and Hogq =
Y syml ;- The Floquet evolution is generated by alternately evolving the system with Heven and

Hqq for time T /2, where T is the Floquet period.

A.7.2 Supersymmetry

Similar to the fact that the non-Abelian symmetries are characterized by Lie algebras, super-
symmetries are characterized by Lie super-algebra, which is a generalization of Lie algebra with a
Z;-grading. Moreover, the simple Lie super-algebras also fall into two classical series (i.e. superunitary
and orthosymplectic) plus several exceptional cases. Here, we focus on the superunitary series denoted
as SU(M|N), as a generalization of the unitary series of Lie algebra with a Z,-grading. A Z,-grading
can be understood as follows: Lie algebras describe the commutation relation between the generators
of symmetry groups; with Z;-grading, the generators are divided into two sets; while the generators
from the same set are still defined according to commutation relation, those from different groups are
defined by an anti-commutation relation.

In particular with the SU(M|N) supersymmetry, the (M + N )-dimensional local Hilbert space
is spanned by two sets of states, each of which includes M and N states respectively. The transition
operators S“f between any two states are then classified according to whether the two states are from
the same set or not. Based on this intuition, it is natural to expect that an SU(M|N) Hamiltonian has
a similar form of an SU(M + N) Hamiltonian with some additional minus sign for certain terms in

Eq. Indeed, the two-site Hamiltonian of an integrable system with supersymmetry SU(m|n) can
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be written as:

H'P = TP = Y (—1)P@PE) 1P o s, (A.90)
wp

where P(«) = 0if « < M, otherwise P(a) = 1. Similar to the symmetric case, the static Hamiltonian
is the sum of all two-site operators, while the Floquet dynamics is generarted by alternately applying

two-site Hamiltonians on even and odd bonds.

A.7.3 Symmetry breaking

To break the SU(3) symmetry while still keeping the model integrable, we considered the Izergin-
Korepin model, whose Hamiltonian only consists of nearest-neighbor interaction, i.e., HI "X =

Y Hllljfl, where the two-body interaction is written as [494-496]:

I-K 1
I-K _ X
bl cosh 3A cosh 2A

{ cosh5A (5}"5]" + 757?) 4 cosh A (557" + 52'517)

+2sinh A sinh 24 (72451577 4 e2257°5))
+sinh 24 (sinh3A — cosh3A)(S;'S7% + 57257°) (A91)
+sinh 24 (sinh3A + cosh3A) (725" + 57°572)
+ cosh 3A (53,25]2,1 4 512,15]1,2 n Slg,zs]g,z n 512,35]3,2 4 S?’ZS?’?’)
— e ?Asinh 24 (572537 + 571537 + *A sinh 24 (57753 + 57257 }
It is easy to notice that the Izergin-Korepin Hamiltonian always has a U(1) conserved charge ) ; (S}’1 —

S?’3), and the SU(3) symmetry recovers when A = 0.

A.7.4 Integrability breaking

To break the integrability of the SU(3) model while keeping the symmetry, we add next-nearest-
neighbor interaction to the system. This modification is in general also valid for models with other

symmetries. To be specific, the non-integrable symmetric Hamiltonian can be written as:

H=)Y Hiii1+ JunnHiio, (A.92)
i

231



where [, is the strength of the next-nearest-neighbor interaction.

The intuition for why the integrability is broken is simple. The integrability of the nearest-neighbor-
interacting models results from a special property that any multi-body scattering process in the system is
reducible to a series of two-body scattering. This is further guaranteed by a combination of Yang-Baxter
equation and the fact that all scattering processes follow a certain order. To be specific, imagine three
particles placed on different sites undergo a scattering process. With only nearest-neighbor interaction,
the leftmost particle and the rightmost one can interact only after either of them scatters with the
middle one, which sets the order of the scattering process. However, the next-nearest-interacting term

can break such order, and thus break the reducibility of the multi-body scattering.
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A.8 Fluctuations in KPZ dynamics

One of the key features that distinguishes KPZ dynamics from other z = 3 /2 dynamical processes
(such as rescaled diffusion and Lévy flights) is the non-linearity of the underlying dynamical process.
This non-linearity has an important consequence: fluctuations of the polarization transfer are not
symmetric around the mean.

In the case of KPZ dynamics in the 1D Heisenberg model, the magnetization profile S*(x, )
is mapped to the spatial derivative of the height field h(x, t) of the KPZ equation, S*(x,f) ~
dxh(x,t) [427]. The initial state studied in our work, i.e. the domain wall in magnetization
S*(x,0) ~ 20(x) — 1 (with Heaviside function @), then maps to a wedge initial state of the height
field h(x,0) ~ —|x|. The polarization transfer P(t), being the spatially integrated magnetization
profile P(t) ~ ff)oo S*(x,t) dx, thus maps to the height field at the peak of the wedge /(0, t). The
dynamical fluctuations of precisely this quantity, 1(0, f), were numerically studied in Ref. [540] for
a classical lattice model known to be in the KPZ universality class. At late times, these fluctuations
showed an approach to the GUE Tracy-Widom (TW) distribution, which (owing to universality) also
describes the distribution of largest eigenvalue of random matrices from the Gaussian unitary ensemble
(GUE).

This feature provides a path to directly observing the underlying KPZ dynamics. Leveraging
the access to single experimental snapshots in quantum-gas microscopes, as well as the single-site
resolution, we can immediately build the distribution of the polarization transfer and measure the

aforementioned asymmetry via the skewness of the distribution.

A.8.1 Polarization transfer fluctuations near pure state

In order to better highlight the fluctuations of magnetization, we begin by considering the pure
domain wall dynamics. While at the Heisenberg point, the late-time dynamics approaches a logarith-
mically corrected diffusion [545]], the approach to this universal behavior is very slow and the system
exhibits superdiffusion with KPZ characteristics for intermediate timescales.

We then study the dynamics of the pure domain wall under three different Hamiltonians: the

Heisenberg Hamiltonian (Eq. [2.26), the easy-plane XXZ model, and a next-nearest neighbor interacting
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Figure A.7: Magnetization dynamics in different transport regimes. Ballistic (A,D,G), KPZ superdiffusive
(B.E,H), diffusive (C,F.L, simulated up to ¢ /T = 20) transport for different models initialized in a pure domain
wall (7 = 1). (A-C) Polarization-profile dynamics for the entire chain as a function of time. (D-F) Distribution
of the polarization transfer P with respect to the initial state measured by projecting the quantum state into the
measurement basis according to the Born rule (akin to the single-shot measurement procedure performed in the
experiments). (G-I) Rescaled probability distribution P according to the average P and standard deviation op of
the transferred polarization.

Heisenberg model with Hamiltonian:

Annn/] = ng 5F1 + 8757 +1.05575%,
i (A.93)

!+ 1058757,

—0.764) 58}y, + 55!

1
These models allow us to display the three universality classes of the dynamics: KPZ, ballistic and
diffusive dynamics, respectively. Using an MPS representation of the quantum state, we perform time

evolution of a chain of 150 spins; using a TEBD algorithm with step size 6t = 0.1 and large enough

bond dimension to observe convergence. Leveraging the MPS representation, average quantities can
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be directly computed via the expectation value of the corresponding observables (Figs.[A.7A-C). At
the same time, the single-shot experimental measurement can be simulated by sampling the quantum
state over the measurement basis (according to the Born rule). By computing the number of spins that
crossed the initially pure domain wall, we can directly obtain, not only the average polarization profile,
but its entire distribution (Figs.[A.7D-F).

Crucially, the resulting distributions in these three cases look very different. In both ballistic and
diffusive cases (Figs.[A.7D.F), the distributions remain symmetric, while in the superdiffusive case
(Figs.[A.TE), the distribution develops a tail towards large polarization transfer. Such behavior is easier
to observe upon subtracting the average P and rescaling with the standard deviation (Figs.[A.7[G-D).

These differences can be quantified by looking at the evolution of the different moments of the
distribution: average, standard deviation and (normalized) skewness Fig.[A.8] We note that the average
and standard deviation scale differently with time, highlighting the different dynamical exponents.
More importantly, we observe that the skewness for both ballistic and diffusive regimes decays to
zero (signifying that the distribution is symmetric), while, in the superdiffusive case, the skewness
remains non-zero and approaches a finite value. While this value approaches the skewness of a Tracy-
Widom distribution (green line, Fig.[A.8[C), it corresponds to the Gaussian-orthogonal-ensemble (GOE)
TW distribution (with skewness ~ 0.294), which is expected for a different set of initial conditions.
Namely, for the wedge initial configuration we expect the fluctuation distribution to approach the
GUE Tracy-Widom distribution whose skewness is ~ 0.225 (red dashed line, Fig.[A.8[C) [550]. At
present, the origin of this deviation remains unclear. These numerics highlight two important facts:
first, that the skewness can identify the underlying nature of the transport dynamics, and second, that

this distinction occurs within the experimentally accessible time.

A.8.2 Polarization transfer fluctuations for imperfect initial states

We can also obtain the statistics of the polarization transport for # < 1 using DMT, which is
beyond the scope of the TEBD simulation and allows us to simulate the evolution of the skewness for
mixed states. However, due to the nature of the DMT method, the distribution of the total polarization

transfer converges more slowly; for a bond dimension of y = 512 we find convergence up to time
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Figure A.8: Statistical moments of polarization-transfer distribution in different transport regimes.
Average (A), standard deviation (B) and skewness (C) of the distribution of transferred polarization P for the
different models exhibiting ballistic (blue), KPZ superdiffusive (green), diffusive (orange) transport. Dashed
lines indicate expected scaling behavior. In C, the constant lines mark the late-time expectation for KPZ (red
dashed for our initial state, green for different one), and for both diffusive and ballistic (black).

From the experimental data, we obtain the skewness by subtracting the initial variance and the third
moment due to the finite-7 initial-state fluctuations. Here, we justify this data processing procedure
using DMT simulation results (Fig. [A29).

In particular, we observe that after the subtraction procedure the skewness is consistent with that
of the pure domain wall with # = 1 (Fig. ). In contrast, the unsubtracted data exhibit much larger
deviations and approaches the late-time skewness from above. This behavior matches our experimental
data (Figs. [2.28), where both the unsubtracted data approaches the asymptotic skewness from above
while the subtracted data approaches it from below.

Moreover, we study how the experimental imperfections of domain-wall preparation can affect the
resulting skewness (Fig.[A.9B). In the experiment, with 20% probability, the prepared domain wall is
one site off the targeted position. Numerically reproducing this behavior shows that the subtraction

procedure is also robust to this uncertainty.

A.8.3 Decay of skewness in linear transport

In this section we describe why, in linear transport, the skewness of the polarization transfer
distribution always decays. Leveraging the linearity of the transport equations, we can compute

the magnetization distribution F(x,#) via a convolution of the initial domain, with the Green’s
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function of equation f(x,t) (i.e. the magnetization profile dynamics starting from a delta-function of
magnetization at time ¢ = 0):

0

F(xo,t) oc/ dx f(x —xo,t) = /x:o dx f(x,t). (A.94)

If the linear transport has dynamical exponent z, f(x, t) (for large enough x and t) is given by a

scaling function:

fx,t) =t (tfiz) , (A.95)

which implies that F(xo,t) = G(xo/t'/?). This exactly corresponds to the rescaling one should
perform to collapse the magnetization profile at different times.

This means that all moments of the distribution, which are integrals of powers of F(xg, t), at fixed
time, will scale with #!/2. Since the skewness is given by the ratio of the third moment and the second

t~1/22 and thus become zero at

moment to the 3/2 power, we have that the skewness will decay as
late enough times. This holds for all higher moments, ensuring that the rescaled distribution of the

polarization transfers approaches the normal distribution.
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Figure A.9: DMT-simulated skewness of polarization-transfer distribution using subtracted statistics. (A)
The skewness of the 7 = 1 domain wall (green) grows towards the asymptotic value and agrees with the TEBD
simulation shown in Fig. For 17 < 1 domain walls, the skewness decreases towards the asymptotic value
due to thermal fluctuations of the initial state (black dotted). When using subtracted statistics for the calculation
of the skewness (black dashed), the initial-state artefacts are reduced and the skewness evolves similarly to the
7 = 1 case. (B) The skewness using subtracted statistics is also robust to imperfections in the domain-wall
position: Assuming that the domain wall was prepared on the wrong site (one site left/right of the targeted site,
black dotted/dashed) with 20% probability (corresponding to the experimental uncertainty), the skewness agrees
with the ideal case (green). Green and red horizontal lines indicate the skewness of the GOE and GUE TW
distributions, respectively.
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A.9 Two-Body Resonance Counting and Avalanche Instabilities

at Infinite-Randomness

In the absence of interactions, the transitions we consider fall into an infinite-randomness univer-
sality class characterized by a divergent single-particle density of states and divergent mean and typical
orbital localization lengths (diverging as D(e) ~ |elog® €] !, Emean ~ |log? €|, and Ctyp ~ |loge|
respectively in single particle energy ¢). In this section, we investigate how such divergences may
potentially trigger delocalization via the accumulation of two-body resonances or via avalanche

instabilities.

A.9.1 Two-body Resonance Counting

To begin, we expand on the resonance counting criterion for the stability of localization of a
non-interacting chain at infinite randomness against perturbative interactions. We consider a non-
interacting Anderson-localized chain characterized by its density of single-particle states (DOS) D(¢)
and the localization length ¢(€) of single-particle orbitals (with energy €). At the infinite randomness
fixed point, the localization length and DOS both diverge as |¢| — 0 and it is the interplay of such
overlapping orbitals that could lead to two-body resonance proliferation. We assume each orbital has
a “center” at position « and an exponentially scaling envelope ¥ ~ L__p—lx—al/¢(ea) determined

vV 6(€a)
by its energy ¢,. The presence of multiple centers (e.g. two in a typical state produced by the strong

disorder renormalization group treatment of the Ising model) does not parametrically modify the
estimates below. Similarly, the presence of ‘pairing’ terms in the fermionization of the Ising model is
not parameterically important.
We consider a generic local interaction, which we schematically model by a density-density
operator ~ V [ dx 7 (x)7(x). Writing it in terms of the non-interacting orbitals, we have
Vigrs =V [ dx 9 ()(x) 95, ()5 ()

(A.96)
—(lx—al/atlx=Pl/Ep+]x=71/Ey+[x=0|/C5)

~ V/ dxe
vV gtxgﬁgwgd

Two-body resonances occur when Vg,s > |(ea — €5) — (1 — €p)|. In general, any small finite
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strength of interactions produces some density of resonances, but this need not modify the ergodic
properties of the system; instead it can “dress” the local conserved quantities to be many-particle
operators—this is at the heart of MBL. However, if the number of resonances in a localization volume
becomes sufficiently large, then the local character of the conserved quantity is lost and we expect
delocalization. Counting the number of perturbative resonances, induced by interactions, can then
identify instabilities to thermalization.

Owing to the localized nature of the single-particle orbitals, the matrix element will only be
large whenever all four orbitals overlap. Without loss of generality, we can take a to be the orbital
with smallest localization length ¢, < §g, Gy, Cs. For ease of notation let ¢ = ¢,. This suggests the
following organization of our counting: given such an orbital, first we compute how many other orbitals
(labeled orbital &) exist within a block of size ¢ = ¢, around « and with energy d¢ around ¢; second,
given the energy difference between orbital « and J, what is the number of pairs of orbitals B and -y that
have an energy difference within Vg, of the initial pair. Under this organization, one must have that
both estimates diverge: the first ensures that there is always an initial pair that can transition, while the
second ensures that, given a particular pair of orbitals, additional pairs can resonantly transition. While
the former can be simply estimated as deD(¢)/, the latter requires a more careful analysis. Fixing
the pair of resonances « and 6, we must find the number of pairs of orbitals B and <y that satisfy three
conditions: (1) the within ¢ distance from orbital «, (2) their localization length is larger than ¢, and
(3) their energy difference close to the energy difference between « and <y (where close is given by the
strength of the matrix element). The number R of such pairs can be estimated as follows: given an
orbital  within the block ¢, we need to find another orbital § whose energy is in a window of size
Vapys around e, — de. At some energy &, < &, the number of such orbitals -y is ~ £D (e, )de, and
the number of corresponding orbitals B is ~ £D(eg)Vyp,s, Where eg = €, — (d¢). Integrating yields

the total number of resonances:

Ve

vV gaé’ﬁg’ygd '

We make progress under the following approximation: take d¢ = Ce with a small C. Physically, this

€ &
R= / de (D (e,) 0D (5) Vs ~ / de. (D (e,)(D(ep) (A.97)
0 0

means that the initial orbitals have similar energies, and thus similar localization lengths, {5 ~ &, = .
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We can check that this counting argument reproduces previous work on interaction instabilities of
localized systems [570]. There, D(¢e) remains a constant, while the localization length diverges as a
power-law, ¢ (&) ~ ¢". The two conditions are then:

CeD(e)&(e) ~ el
e (A.98)
R ~ wz/o de’ [¢ + Ce|/2[¢/["/2 ~ 2[e]"/?)e|1T/2 ~ g1
Both quantities diverge when 1 — v < 0, which agrees with previous estimates, v > 1/d where d = 1,
using a diagramatic approach.

We can turn to the infinite randomness fixed point, which is characterized by a Dyson singularity
with D(e) ~ [elog’e]~" and &(e) ~ loge. We note that the &(¢) corresponds to the typical
localization length. Owing to the bi-locality of the free fermion wave functions [596, 597], the
average localization length captures the distance between the two localization centers while the typical
localization length captures the spread around each center—the latter is responsible for the mixing
between orbitals and thus controls the matrix element.

In such systems we have:

Ce —0 (A.99)

loge ~
elog’e & log’ e

e ! —-3-1/2 1 |—3-1/2
R ~ ng/ dgl llog(g +C€)‘ llog(g)’
0 &' + Cel|¢/|

2 ayallogOI 1 log(e) >0
~ ER. €

log(e)|—3-1/2 L 1 B
NV€2—| 8l |)£|’ |log(e)| 2712 ~ g|log(€)| 4

While the latter condition diverges as ¢ — 0, the former does not. This means that, within a block

of size £ we are not guaranteed to find an appropriate orbital to start the resonance process.

A.9.2 Avalanche instability

We now turn our attention to the susceptibility of infinite-randomness transitions to thermalization
“avalanches” triggered by rare thermal bubbles induced by the presence of interactions. For a system

with a distribution of localization lengths, it has shown that the average localization length & controls
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this instability: for & > 2/ log 2, thermal bubbles lead to a global thermalization of the system [571]].

When relating this prediction to the physics of the infinite-randomness fixed point, it is important to

understand the different lengthscales. In particular, at the infinite-randomness fixed point, each orbital

is located around two distinct positions whose separation is given by ¢mean; around each position

the orbital decays with a length scale given by (yy,. Crucially, it is the latter lengthscale that leads

to the avalanche instability as it control the number of ¢-bits that can interact with a rare thermal
1

region. Thus, while ¢mean ~ f0£ d£@| log?(e)| diverges logarithmically, the more appropriate

Cop ~ Jo dsgl:?] log(¢)| remains finite and this criterion does not conclusively produce an ergodic
instability. We highlight that the difference between a converging or divergent average localization
length depends on a single logarithmic term; unaccounted channels or higher order corrections might
provide an additional corrections that lead to an absolute avalanche instability. We leave this analysis
to future work.

Finally, let us note that the direct numerical observation of avalanche instabilities remains extremely

challenging; the presence of a robust intervening ergodic region in our study suggests that an alternate

mechanism might be at the heart of our observations.
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Appendix to Chapter 3
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B.1 Proof for prethermalization with the presence of symmetries

In this section we prove that the prethermal effective Hamiltonian can exhibit an emergent sym-
metry (protected by the time translation symmetry), while preserving the remaining properties of the
prethermal regime, namely, exponentially slow heating (Eqn. and an approximate description of
the dynamics at the single trajectory level for a single period of the drive (Eqn. [3.1). This generalization
follows closely the quantum results presented in Refs. [194} 193] using the machinery first introduced
in Ref. [183]] to extend it to classical systems. More specifically, we treat the classical spin as the
large-S limit of the quantum spin model; for arbirtrarily large S, each spin-S degree of freedom can
be separated into multiple spin-1/2 degrees of freedom. This approach allows one to immediately
translate the quantum results to the corresponding classical system.

Let us begin by reviewing the quantum case. Without loss of generality, we consider a quantum

spin-S system with one-body and two-body terms:

. N 1 XN G s N . o
He(t) =g(H 5 + 552 ) Jw(OSISf+ K1) - S, (B.1)
— i . ij pr=xy,z i
Hx(t) Ho(t)

where g(t), J¥ () and K (t) are periodic functions of time with a period of T, and the dynamics are
generated by the Heisenberg equations of motion for SAf‘ , or equivalently the Schrédinger equation for
the quantum state. Here, we assume that the interactions are not extensive, i.e. }; }-,,, max ] ;JV (1) is
finite for all i. Crucially, we assume that g(t) satisfies M fOT g(t)dt = 2kr, where M and k are two
coprime integers. This means that, under the dynamics generated by H x (1), the system will return
to the same state every M driving cycles, i.e. XM = [Te*iﬁlT HX(t)dt} v = 1. The corresponding

maximal local energy scale is then defined as

N ~AA
Jiocal = max Z cHly (B.2)
Site 1 4:icA
where ¢4 correspond to local terms in Fly = Y~ 4 ¢4 with support on the set of spins A, and || - || is the

operator norm.
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In this particular model of Eqn. the local terms are:

oA — %Zyv:x,yfz ];,]V(t)ﬁ? A]V, for A = {i,j};

A

i(t)-8;, for A = {i}.

(B.3)

6A

I
!

Crucially, it is proven that, when the frequency of the drive is much larger than the local energy
scale, i.e:

1
]local < m/ (B-4)

there exist a prethermal Hamiltonian D and a (slightly rotated) symmetry operation X,o ~ X such

that [[194, [195]]:

XM -1, (B.5)

[D, Xeot] =0, (B.6)

SIDET) = D) < 1+ e - O/ o), ®.7)
IO(T) = X6t O'(T) Krotl| < c2- [|O] - O e« i), (B.8)

where O is any local observable and ¢, ¢, are constants independent of frequency and Jjoy. We note
that O'(T) corresponds to operator O evolved under D for time T, i.e. O'(T) = ¢2TO(0)e LT,
When the system has a polynomial Lieb-Robinson bound, the error of the operator (Eqn. [B.8) grows
algebraically with time and the dynamics remain well approximated by D for an exponentially long
time in the frequency of the drive.

Moving on to the classical case, the corresponding classical spin system can be treated using
Eqn. [B.1] by taking S — oco. Correspondingly, the classical spin variable (i.e. a unit vector) can be
viewed as § = <§ )/ S [183]. However, the results for finite S in Eqn. cannot be immediately
applied to the classical case, since the local energy scale diverges, Jiocal = ||Ho|| o S, which invali-
dates the high-frequency condition (Eqn. [B.4). Fortunately, previous work introduced a mathematical
treatment of the Hamiltonian that solved this precise problem [183]. The main idea is as follows: We

start by decomposing each spin §i into 2§ spin-1/2 operators {?i,u}:
. 25
sth=3y s (B.9)
a=1
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With this substitution, the two parts of the Floquet Hamiltonian become:

t)Zégfa
Z L Tl + L) e

za]b}ﬂl XY,z

(B.10)

From the perspective of the spin-1/2, Hy still respects its distinguishing property: after M cycles of
evolution under Hy alone, each individual spin-1/2 returns to the initial state. Meanwhile, the local
energy scale of Hy remains finite:

3 Z Z 3 il - 8Ll N5 1+ o R )] - 8Ll < 5 ZZ Tl + 5 Z B (#)]. B.11)

=1 v I3 j oW
Therefore, as this construction holds for any S, one can then safely take the S — oo limit and extend
the conclusions of quantum derivation (Eqns. to classical systems, immediately proving
Eqn. 1 and Eqn. 2 in the main text for the prethermal dynamics of classical systems with an emergent
symmetry.

Here, we remark that by splitting the large-S spins into 25 spin-1/2 degrees of freedom, one reduces
the local energy scale of each spin degrees at the expense of generating an additional dimension (where
position is labeled by the index of the spin-1/2) and all-to-all coupling along this virtual dimension.
Although these very long-range interactions do not lead to the divergence of the local energy scale, it
precludes the notion of locality and thus meaningful Lieb-Robinson—as a result, D cannot reproduce
the dynamics over multiple Floquet cycles.

Let us end this section by formalizing these results in the language of classical dynamics. In classi-
cal spin systems, the dynamics are generated by Hamilton’s equations of motion S'f.l = {SI,H()},
using the Poisson bracket relation {Sf‘, S}’} = J;;eM"? Sf. Equivalently, at any time ¢, any observable
O(t) can thought of a function of the initial values of all observables. This can be expressed by
formally integrating the equations of motion: O(t) = Telo L)t [O], where the superoperator L[-] is
defined by L[-] = {-, Hr}. We note that the multiplication of the superoperators (functions) should be
understood as function composition, i.e. (L1 o Ly)[-] = Li[L»[]]. Correspondingly, the nt" power of

L is then defined inductively by L" = L o L"~!, and the exponential function of the superoperators is
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naturally defined by its Taylor expansion.
With such notations for classical dynamics, the properties of the classical prethermalization can be

stated as the follows. Consider a classical spin system with a Hamiltonian consisting of two parts:
Hr(t) = Hx(t) + Ho(t), (B.12)

where Hx () generates a global rotation X = TefoT{"HX (O}t over a single period such that the system
returns to itself every M periods, i.e. XM[.] = I[-]. If the local energy scale of Hy(t) is sufficiently

small:
1

, B.13
MT (B.13)

Jiocal 1= max E HCAH <
site 1 4iica

where ¢4 corresponds to classical analogue of ¢4 in Eqn/B.3|(i.e. local terms with support in A), then

there exists a prethermal Hamiltonian D and a (slightly) tilted symmetry operation Xyot[-] ~ X[]

such that
Xieel] =1[], (B.14)
Xot[D] = D, (B.15)
%m(m) _D(0)] < e1. - M]igeay - O/ Juc), (B.16)
|0(T) = Xeot[O'(T)]|| < c2.+ |O] - O™/ Jioct), (B.17)

where c1, ¢y are constants independent of frequency and Jj,..;, O is any classical local observable

evolving under Hp(t), and O'(T) corresponds to the observable O evolved under D for time T,

ie. O'(T) = eTHPHO(0)].
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B.2 Estimate local energy scale in long-range interacting Floquet sys-

tems

Let us start with the physical intuition of the local energy scale in our long-range dipolar interacting
system with angular dependence. The interactions can be both positive and negative which accords a
cancellation of many terms in the response function of the system. Crucially, the angular dependence
of the dipolar interaction leads to an exact cancellation of the positive and the negative interaction
strength to the leading order. Therefore, to estimate the local energy scale in the response function,
one needs to go to at least the second order, i.e., the variance of the interaction.

To be more concrete, we also sketch the essence in the mathematical proof of the estimation of local
energy scale to ensure that the major claims of this Letter is self-contained, as a strict analytical study
of the prethermalization with the presence of disorder can be found in the previous literature [[182],
which further clarify how the lowest order of the interaction strength gets averaged out.

Let us consider a generic model with both long-range two-body interaction and single-body terms,

of which the Hamiltonian is written as:
H =Y 71;0i+ Y 1O (B.18)
ij i

where éij (Oi) are two-body (single-body) operators, and ]ij (J;) are the corresponding coupling
strengths which varies in time with a frequency of w. In the high-frequency regimes, considering
the high-order processes, the heating effect is induced by the transition rate between different energy

levels and is thus bounded by the high-order commutators [[178} 182} 1911 [192]

1 A A N A
EUMIHZ]M]M U >Tr(OH1 H[Oﬂzlo}ls]lom]/' ' ](p)), (B'19)

where the superscript (p) denotes that there are p layers of commutator in the expression, the subscript
u denotes either the two indices associated with a two-body term or the index associated with a
single-body term, and the bracket (- - - ) denotes the average over positional configurations of the spins.
In generic short-range systems, all the (J,) remains finite and non-zero, so Eqn. ~ p!(%)p ,

where ] = (];) is considered as the local energy scale. One can eventually prove an exponentially
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small heating rate by finding the optimal p ~ w [178, 182, 191, [192]. In contrast, for each two-
body interaction J,,, if (J,;) = 0, then it has to appear at least twice for non-zero ([, Ju, Jus Juy = -+ )-

Therefore, the size of Eq. S5 should be estimated as

(J2)%
~ et (B.20)

Let us note that such estimation of the local energy scale only accounts the terms in Eq. S5, in
which only two-body terms are involved. However, one should also, in principle, consider single-body
terms, with the requirement that each two-body ], term has to appear twice still being satisfied.
Nevertheless, as long as the local energy scale of the two-body terms (] ﬁﬁ is of the same order of the
single-body field, we can use their values as a typical local energy scale to estimate the heating rate.

Going back to our dipolar interaction in experiment

l6m

N|—

(2)2 = {/[12(3 cos? 0 —1)]? pr?sin 0 dr do d¢)}
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C.1 General argument for the relation between order and metrology

For pure states, there is a simple connection between SSB order and QFI (Table [.T]), since the
variance of the order parameter is nothing but a sum over the connected two-site correlation function.
In this section, we discuss how this relation enables the preparation of metrologically useful states via
a Hamiltonian quench.

In particular, we still consider the scheme, where we quench an initial product state with an
effective temperature below T and assume SSB with order parameter O = }_; O;. We further assume
O is purely off-diagonal in the symmetry sectors of the Hamiltonian. Given this assumption, (O)
must approach 0 at late times, since all phase coherence between symmetry sectors will be lost. On
the other hand, O? has some diagonal elements that act only within symmetry sectors. Since we
are assuming that the initial state has effective temperature below T, the expectation value of these
diagonal elements should be O(N?) [93,94]. This leads to the conclusion (O?) — (0)? ~ O(N?),
i.e., the late time state exhibits a large QFI with respect to O. Note that if O is diagonal in the
symmetry sectors, then () can be large at all times and this expression can be small (i.e. O(N)).

For the above argument to be physically relevant, it must further be shown that that the “late time"
at which (O) approaches 0 does not diverge too rapidly in system size. In the most general case, it is
difficult to analyze this time scale based on the symmetry of H alone. However, assuming the finite-
temperature SSB derives from zero-temperature SSB of the same kind, e.g. long-range interactions
stabilizing CSB in 1D or 2D, one can plausibly estimate this time scale from the ground-state manifold
itself. Specifically, models with discrete symmetry have exponentially small finite-size gaps between
ground-states, leading to an exponentially long dephasing time between symmetry sectors. On the
other hand, models with continuous symmetry breaking, such U(1), should exhibit ~ O(1/N) gaps
between symmetry sectors, so the dephasing time scale between sectors is only linear in system size
and QFI develops relatively quickly.

We note that the above arguments require few body operators to thermalize quickly and thus
do not apply to integrable models, to models that have anomalously slow thermalization for certain
initial states (e.g., quantum many-body scars), or to models with super-extensive energy (a < d) [67].

Assuming conventional local thermalization, the key conditions for generating large QFI from a quench
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are therefore 1) a Hamiltonian with continuous symmetry breaking and an order parameter off-diagonal
in the symmetry sectors and 2) the existence of a low-temperature symmetry breaking initial state that

is easy to prepare, e.g., a product state.

C.2 Scalable Squeezing with Mixed Initial States

Here we elaborate on the order-of-averaging distinction between calculating squeezing for partially-
polarized random pure states vs. a partially polarized mixed state. In the first case, we fix a product
state |¢(p)), where each spin is independently chosen to point in £+£ with probability (1 £ p)/2. To

determine the typical value of the squeezing given p, we average over the squeezing parameter for

each [(p)),

—.

minﬁlf Var|¢(p)> [ﬁ : S]

W) X 9(p))?
For a mixed initial state of the form p = [(1+ p)/2|=) (=] + (1 —p)/2|«) («]]*N, the

(C.1)

2
CP - ]Ew(p)

trace over 0 to compute expectation values again becomes an average over . This leads to a
P p p g g p

squeezing parameter of

—. —.

2o miny | ; Var[ - S| _ By () [ming ¢ Var gy [t - S]]
e [Tr(pX)]? Eyp (¢ (p)| X [9(p))]?

Note that squeezing is now calculated after the averaging. Due to the non linearity of the squeezing

(C2)

parameter, Cf, and (:Iznix could, in principle, be very different (and even have different scaling properties).
However, these quantities agree extremely well for even modestly sized systems N > 10%. This is
because, for large systems, mean spin direction becomes essentially a constant —itis ~ pN + O(v/N),

and decays a negligible amount before the optimal squeezing time.
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C.3 Hydrodynamic model for squeezing dynamics

Spin-squeezing dynamics are well described by a semi-classical picture that approximates the
quasi-probability distribution as a true probability distribution evolving on the global Bloch sphere. In
this section, based on a hydrodynamic description of spontaneous symmetry breaking, we analytically
derive the equations of motion for the probability distribution, which we further use to calculate the
optimal squeezing. Our main assumption is that after a relatively short time (of order 1/ ), the system
achieves local thermal equilibrium and the subsequent dynamics of coarse-grained variables can be

described by hydrodynamic equations.

C.3.1 Equations of motion for squeezing in thermal systems

The hydrodynamic description focuses on two coarse-grained variables that evolve only slowly
in time at long wavelengths, the z-component of the magnetization density, denoted m(r) (the U(1)
charge), and an angle ¢(r) describing the orientation of the magnetization in the x-y plane. The
magnitude of the in-plane component, 14y, is assumed to have relaxed rapidly to a value determined
by the temperature T, which we take to be uniform in space. The phase ¢ will vary slowly at long
wavelengths because the restoring force vanishes for long wavelength fluctuations, and m varies slowly
because it is a conserved quantity. A hydrodynamic description should apply for sufficiently long
wavelengths at any non-zero temperature, regardless of whether the underlying microscopic system
obeys classical or quantum dynamics.

Integrating the partition function over short range fluctuations in m and ¢, and over all other

variables in the problem, we may define a free energy functional, which we assume to take the form
F[m,¢]) = /ddr ()(m(r)z + ugm(r)* + ) + /ddrlddrzf(rl —17)coszp(ry) — p(rp)], (C.3)

where J(r) ~ (J./ Z)miyr_“ for large separations 7. The hydrodynamic equations of motion take the
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form

9p  OF _OF .
3 = 85m I’% +119(t,7),

om OF 9F
FT _gﬁ + V? [Aam +7Im(t,l'):| )
(e (t,7)) = (n4(t,7)) =0,

(1m (8, P) (', 7)) = 2ATS(t — t)6(F — 7)),

(C4)

where 77 and 177, originate from the thermal fluctuations. Here we define the global quantity P|Z,

where

b = M (C.5)

/m(?) dir = 7. (C.6)

The coefficient ¢ in the hydrodynamic equations is determined by the commutator of m and ¢.
In the present problem, ¢ = 1. Our hydrodynamic equations are a generalization to the case of
long-range spin interactions of the hydrodynamic equations that are commonly used for an XY
magnet with short-range interactions in two or more dimensions [[678, 853]]. It is expected that these
equations should be valid at any temperature in the broken symmetry phase at sufficiently long wave
lengths. The hydrodynamic equations are also believed to be valid in the low-temperature phase of
the two-dimensional system with short range forces, where there is no true broken symmetry but
only quasi-long-range order of the x-y magnetization. We do not have a rigorous derivation of these
equations starting from the microscopic Hamiltonian, but one can at least perform some consistency
checks. For example, one can confirm that non-linear coupling to thermally excited long-wavelength
spin fluctuations does not lead to a divergence of the coefficient I'. We note that the equations of
motion conserve the value of M, and they are consistent with a time-independent thermal distribution
of the form P[m, p] = Z~le Flml/T

For small fluctuations about the equilibrium state, where m = 0 and ¢ is independent of space,

253



one can solve the dynamics of Eq. (C.4)) by performing a Fourier transform. This leads to the following

equations of motion in momentum space

d
% = 2gxmic — TKi @i + 114k (t) (C.7)

dmk

3 = 8Kk~ K RAxm A+ ()], (C.8)

where Ky is related to ]y, the Fourier transform of [, by
Kic = 2(Jo — Ji)- (C.9)

The noise terms satisfy

(st = 200 =), (s Da(#)) = 258 =), €10

For small wave vectors, one finds K ~ Kk*? | where the coefficient K is proportional to
i Lmiy. Then, for k # 0, the equations of motion lead to propagating spin waves, with frequency
wi ~ (2¢%xKi)'/? and a damping rate proportional to T Ky + 2Axk>.

Crucially, the k = 0 mode is different from the other modes. The first term in Eq. just gives
a constant precession rate, 27/ N due to fixed total magnetization, and the second term also vanishes

for « > d. The equation of motion for & then reads

Ad  2Zx .
TN + g (1). (C.1D)

Thus the mean value of the precession angle grows linearly,

27t
d(t)|Zz = N (C.12)

Whereas the second term, which drives a random walk, leads to linear growth of the variance in a fixed

Z sector:
Var[®(t)|Z] = Var[®(0)] + %t. (C.13)

254



We note that the spin operators X, Y, Z and ® are related by:

X|Z = Nmyycos(®|Z),
(C.14)
Y|Z = Nmyysin(®|Z).

And therefore

Var[Y|Z] ~ m3,N*Var[®|Z], (C.15)

for small mean precession angle, which holds for t < I'T'N.

Two remarks are in order. First, the linear growth rate vanishes when temperature T — 0,
suggesting that such effect is very weak for the quench dynamics from a low-temperature initial state.
This explains why our proposed scaling behavior of squeezing is hard to observe at low temperature.
We note that the linear growth rate will probably vanish faster then T at low temperature, since the
noise strength I' can also depend on temperature and vanish itself when T — 0. Second, the behavior
of the non-zero momentum modes (k # 0) is qualitatively different from the zero-momentum mode:
due to the non-zero restoring force, Var[¢(t)] cannot increase to infinity and will instead saturate
to a temperature-dependent equilibrium value. This effect manifests as the evolution towards local
equilibration in the quench dynamics.

We remark that the analysis described above is restricted to the case where the z-component of
the total magnetization is confined to a small interval about Z = 0. At finite value of Z/N, the
hydrodynamic description must take into account fluctuations in energy density, which gives rise to
an additional slow mode due to energy conservation. Energy fluctuations couple linearly to the spin
modes for Z/N # 0, and this coupling can have significant effects. Because the initial state is a
superposition of states with different energies, and these energies persist to infinite times, we expect
that in the large N limit, the quantity Var[®(t)] should grow as t?/ N for large t. This reflects the fact
that systems with slightly different total energies will have slightly different values of the parameter x.
For a state where Z /N is of order N~1/2, however, the quantity Var[®(t)] should grow as t?/ N? for

large t, which is too small to affect the squeezing behavior.
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C.3.2 Derivation of the optimal squeezing parameter

With the equations of motion for the probability distribution in hand, we now present an analytical
calculation of the optimal squeezing (Eq. . The expression of the spin squeezing parameter &2

consists of the mean spin length (X) and the minimum variance miny, | ; Var|[# - S] in the y-z plane.

The latter is of course the smallest eigenvalue of Y, Z covariance matrix,
(C.16)

Therefore, to calculate the squeezing we only need to evaluate the observables (X), (Z2), (Y?) and
(ZY) = (YZ).

Since Z is a conserved quantity, we can consider the evolution of each Z-slice of the probability
distribution separately. The population within each slice is conserved and determined by the ini-
tial binomial distribution of Z, which can be well approximated by a Gaussian distribution in the
thermodynamic limit. That is,

P(Z) =] —-e ¥, (C.17)

As per Eq.[C.12]and Eq. the dynamics in each Z-slice are described by a rotation with a angular

velocity of 22X X given as the follows:

N

Zxt
X|Z = Nmyycos <X

N ) , (C.18)
. [ 2Zxt '

Y|Z = Nm,ysin N )

Therefore, all the terms in ¢2 can be evaluated as

27 xt 2
/meycos < I\?C ) P(Z)dzZ = meye—%

(7%) = /22 dz_g

(ZY) = (YZ) = / ZNmesin< ) mey)(te %, (19
(Y?) = Var[Y|Z] +/N2m sin’ (N) P(Z)dz

!

2(x1)?
N

= Var[Y|Z] + Esziy[l —e
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Plugging the above last three lines into Eq. we obtain the minimum variance in the y-z plane as

= 1 N 1 2
rﬂ?Var[ﬁ -S| = 3 {Var[Y\Z] +o Esz)z(y[l _ e W ]}
1 N 1 2 9 _2(x)? 2 2 2 9.9 _? 12
_E Var[Y’Z] —Z‘i_EN mxy[l—e N ] —‘,—N meX tce N
(C.20)

Scalable squeezing occurs at later and later times as N increases, but occurs before the quantum

fisher information reaches maximum at ~ /N [677]]. Hence we consider the following limit

Xt — oo, — 0, (C.21)

Xt
VN

and expand the minimum variance in series

: = N | Var[Y|Z]/N = (xt)* 1 Xt
min Var[# - 5] = 4{ w2, (1t +eNr TO [(xt)z] +0 [(m)‘*]}. (C.22)

We note the mean spin length is simply constant in this limit:

(X)* = N*m}, {1 +0 [(\%)2} } (C.23)

Combining the above, we obtain Eq. (2) in the main text.
Let us finally remark that the time dependence of the conditional variance Var[Y|Z] fully deter-
mines the scaling behavior of {opt and fopt as a function of N. Assuming Var[Y|Z] o< N(xt)7 (with

0 < ¢ < 2), by minimizing Eq. (2) we expect
Eopt  N“2T87, oy o N&7., (C.24)

In particular, for OAT model, Var[Y|Z] is constant in time, i.e. v = 0, leading to the scaling behavior

2 1 . .. .
Gopt ¢ N3 and topt o N3. In contrast, for the ordered phase in a thermalizing model, as shown in

Eq. and Eq. , we expect Var[Y|Z] = 2Nm§yFT -t < t,i.e. v = 1. Correspondingly, we

predict a different scaling behavior g’fopt « N~5 and topt « N 5
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C.4 Analytic calculation of finite-temperature phase diagram for long-

range XXZ model

In this section, we develop an analytic approximation for the finite-temperature symmetry breaking
transition. The key issue we wish to resolve analytically is whether order, at the effective temperature
of the coherent-spin state (CSS) |x), requires &« < 2 for ], < 1 (as opposed to persisting at « = 2). To
this end, we focus on the vicinity of & < 2d, J, < 1 where the system can be modeled as Bose gas,
based on previous work in Refs. [854] [855]], which were in turn motivated by the exact solution of the
Haldane—Shastry spin chain [856} 1857]. The key physical intution is that the ground state manifold of
the model with SU(2) symmetry contains |x), and with weak anisotropy, 0 < § =1 — ], << 1, this
state remains at a low effective temperature so the relevant equilibrium states are still well described as

Gaussian states with few excitations.

C.4.1 Holstein—Primakoff bosonization: using z-vacuum

We perform a Holstein—Primakoff bosonization of the model, assuming the fully polarized state

along z-axis as the vacuum and making a large-S approximation:

Si+ = (25— b;rbi)l/Z bi,
S” =bf (25 —bib;)'/?, (C.25)

1

S: =S —bb;,

where /25 — b;rbl- = /2§ (1 — %b;‘bi + O(l/S)). This approach may seem surprising, however
we observe that it is necessary to choose a vacuum that respects U(1) symmetry in order to capture the
ordering transition. Consequently, the vacuum has finite energy density except at the spin-isotropic
point, where it is a member of the degenerate ground state manifold. The applicability of this theory
away from this point is nontrivial: however, as we shall see, the primary effect of anisotropy is
to introduce an energy offset between symmetry sectors, and it does not affect the single-particle
dynamics at leading order.

Fourier transforming via b = ﬁ g e ™ "ib:; and defining 17(q) = ¥, |r| "€, the power-
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law XXZ Hamiltonian is represented in momentum space as

H=5*H" +sH® + H® 1 0(1/5),
H© = constant ,

= Zb,‘;bq(ww) —o1(0)), w(g) =7(0)—n(q), (C.26)

8N Z bybybyrbyr (1(q) +1(a") +1(q") +1(a") —4n(q—q")) -
q”+q”’
As g is a momentum eigenvalue, 771(q) = 17(—q) = 11(q)*; so 17(q) is real. We proceed following a
standard treatment by minimizing the free energy in the variational manifold of Gaussian states of

the form |{n,}) = I1,(ng!)~ 1/2(b+)”q |'¥vac), keeping only terms up to O(1/S). The minimization

o(H) ‘
Ig Iny .y’

depends only on the effective single particle dispersion €(g) = and quite generally obtains
the Bose-Einstein distribution [858]. In the disordered phase this results in the self-consistency

condition

1

7 e
We emphasize that Eq. only counts particles in excited modes due to the vanishing density of

states at ¢ = 0. Therefore, while the variational states have fixed particle number M we are able to
treat the problem in the grand canonical ensemble by allowing the Bose-Einstein condensate to act as
a source of particles, whose average is set by .. Above T; one can self-consistently determine p < 0,
and we identify T, as the temperature satisfying Eq. (C.27) with u = 0, where exactly M particles are
extracted from the condensate into excited modes.

To determine €(q) explicitly, we apply Wick’s theorem and Eq. to find
B 1 M(M M-1
(H) =1(0) <—2NS ]Z—5<SM—2N>> +Zn <5—2N> w(q)

— o (@) Y (@) Uzn(g —a') —1(q) - (C28)
2N

q q'#q
From Eq. (C.28)), we can gain further insight into the validity of our approximation away from

the Heisenberg point. Specifically, while the anisotropy J contributes an M-dependent offset leading

to a unique ground state sector with M = SN, it does not directly modify the quadratic terms.
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While |x) superposes particle number sectors, the fluctuations are small and we work in the sector
M = (M) = SN. This renders the leading order effect of the anisotropy irrelevant. Moreover, for
small anisotropy, which perturbs |x) away from the ground-state manifold, interactions are suppressed,
as for low temperature only very low momentum modes have significant occupation. The quartic term

is then suppressed by the width of the momentum distribution n(q).

C.4.2 Condensation and effective initial temperatures

Based on the above, as an approximation, we discard the interaction term, making H diagonal in 4.
Now there is no remaining g-dependent term involving anisotropy, so this result is the for the SU(2)
model [854), [855]].

To leading order, the estimate of the critical temperature is

_ 7S ( S(a —1) )a_l d=1
2T () cos (%) \T(:25)2(:15) ' ,

p = aT/Bta1l/ (C.29)
_2*n’s ( 27tS(a —2) ) ’ i—2
I(5)?sin(%) \I'(:%)2(:%) ' '

In d = 1 the leading behavior as « — 2 from below is T, ~ ”7252(2 — ). Ind = 2 the critical

temperature jumps discontinuously at &« = 4, from lim,_,4 T, = %2 to 0, as required by rigorous
bounds [690].

Using the same picture of the low-energy thermodynamics allows to compute the effective tem-
perature Ty of the CSS initial state. Its energy is exactly Ecss = — %17 (0), which turns out to be (as
N — o0) the lowest variational energy for M = SN = % Given the ground state energy density, we
can compute the excitation energy per site of the CSS and relate this to its temperature in the Bose gas.

To leading order

7S (e )E@ L)\ T i1
T 2T () cos (%) I(%5)0(2 ’ ’
0=
(

Z ) . (C.30)
_2lals Y2m(a—2)E(a, ]2) \ ° d=2
T(4)?sin (%) I(5)e(:%) o

where £(w, J,) is the energy density of the CSS in the thermodynamic limit.
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To determine &£ (x, J,), we extrapolate results from DMRG on periodic systems of length N =
64, 96,128 using ITensor [859]]. This provides an unbiased estimate accounting for all quantum
fluctuations, at the cost of only being able to compute T for specific points in the parameter space.
To estimate the critical J;(«) such that Ty = T, more precisely, we we use a simple polynomial fit
of £(a, J;). The resulting phase boundary is shown in gold in Fig. 1(b) of the main text, and shows
good agreement with the boundary obtained from MPS numerics, especially as [, — 1 where this

approximation should be most accurate.
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C.5 Impact of detection error on squeezing

The finite detection errors impose a lower bound on the observed minimum variance. More
specifically, the experimental magnetizations (], ¢) and variance Var(Jp) are related to the same

quantities (], 9) and Var(Jp) without detection errors by the following equations (valid to first order in
€1,1):
(Jye) = g(ﬂ —ep) +(1—e —et)(Jye)
Var (Jp) = (1 — 2e| — 2¢4) Var(Jp) (C3D)
+e,(N/2= (o)) +€1(N/2+ (Jo))-

By inverting the above equations, we calculate the mean-spin length and minimal variance free from
detection errors (experimentally, the magnetization along the 0-axis, not shown, verifies | (Jp)| < N/2,
leading to a negligible contribution to the correction). The data corrected in this way are shown as

diamond symbols in the figures of the main text.
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Appendix to Chapter
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D.1 Analytical derivation of the decoherence profile

In this section, we provide a detailed derivation for the decoherence dynamics. We will present
a strict calculation within a semi-classical description that assumes Gaussian fluctuations. This
presentation collects many ideas found in previous works [[734} [742| [743| [743., (747, (747, [753| [761,
765, 1654768l [773] I860H862]]. We aim to provide a clear, self-contained discussion and to derive
a highly general expression for the decoherence dynamics which can be applied to a range of spin
systems. Moreover, we will also provide a complementary quantum mechanical description of the
same decoherence dynamics, which enables us to frame the distinction between Gauss-Markov and
telegraph noise in terms of the delocalization of quantum information.

Throughout this section, we consider the following setup: a probe spin-1/2 §,, interacting via

long-range, 1/*, Ising interactions with system spins $;:

w Cpois
Ti

H =Y ESige (D.1)

where we have explicitly separated the overall interaction strength [, from any angular dependence
gi ~ O(1).

We are interested in the decoherence dynamics where the probe spin is initially prepared along the
X-axis of the Bloch sphere and the Ising interactions (Eqn. cause its precession in the equatorial
plane. The coherence of the spin is defined as the (normalized) projection of the spin into the £-axis at
a later time, C(t) = 2(33(t)).

During the evolution, a decoupling sequence can be applied which flips the probe spin. In the
rotating frame, the decoupling sequence can be thought of as changing the sign of the Ising interaction.
This can be straightforwardly accounted for by introducing a function, #(#'; ), which captures the
sign of H, at time ' for a pulse sequence of duration t. For example, for a Ramsey measurement
nr(t';t) = 1, while for spin echo

1 o<t <t/2

nse(t;t) = (D.2)
-1 t/2<t <t

We note that this analysis focuses only on Ising interactions and thus ignores the effects of
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depolarization on the decoherence dynamics ﬂ

D.1.1 Semi-classical approach

Average over trajectories— In the semi-classical picture, we analyze the decoherence problem by

treating the system spins as fluctuating classical variables 7 (f) — s7(t). As such, instead of analysing
the details of the dynamics of 87, we can relate the decoherence of the probe spin to the statistical
properties of the fluctuating classical variables s7(t).

Within this framework, every trajectory of s7(#') induces a precession angle ¢ (). The observed

coherence is then given by the ensemble average of the coherence over all trajectories:

ri
)

C=2(53(1)) = (Re[e 0] ), with ¢(r) =} J=8) /0 (DS, (D3)
)
where (- - - ) denotes the average over the ensemble of trajectories.

In order to proceed from Eqn. into a closed form solution for the decoherence dynamics, we
must relate the system dynamics to the statistical properties of s7(t) and ¢(t); for simplicity, and
following previous literature [732, (741, 763} 768, 1860, 861]], we assume that both ¢(¢) and s7(t) are
accurately captured by Gauss-Markov processes. We postpone a detailed discussion about the validity

of this assumption to a later section. This simplification allows us to obtain the decoherence dynamics

in terms of the variance of ¢(t):
C(t) = (Re[e #(1)]) = ¢~ (#7)/2
1 e T e ns
= eXp —E < Z

r%
B 1| Jlgilx(b)z
_UeXp 2[ 2t

2
> (D.4)

i

2

Here, we assume that each spin is independent and define x () as follows:

t 2 t t
X(t)z4<[/0 q(t/;t)sf(t')dt'} >:/0 dt’/o dt"n(t; ) (1) (4si(t)si(t")).  (D.5)

I'This is a natural assumption for NV-P1 systems where the two spin defects are far detuned (~ GHz) and inter-species
spin-exchange interactions (~ MHz) are highly off-resonant and suppressed [364].
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The assumption of Gauss-Markov noise enables us to write down the two-point correlation function in

terms of a decaying exponential with time scale T.:
£(r) = (s (D)si(t 4+ 1)) = e 1/, (D.6)

The factor of 4 ensures that the correlation function ¢(7) is normalized for spin-1/2 particles when
T = 0. Depending on the specific pulse sequence applied to the system spins, captured by 77(t';t), we
can analytically obtain the expression for x(t) in Table

A few remarks are in order. First, x(#) has an intuitive and straightforward interpretation in Fourier
space. Defining f(w;t) as the Fourier transform of #7(#';t) and S(w) as the Fourier transform of (),
x (f) can be rewritten as

x(t) = [ dw |fwit) PS(w), (D.7)
which recovers Eqn. [5.2] In this language, the role of the pulse sequence becomes clear: given
the noise spectrum S(w) of the spin dynamics s7(t), the pulse sequence acts as a filter function
f(w; t). Changing the pulse sequence modifies the sensitivity of the probe spin to different frequency
components of the noise.

Second, for a single realization, the time-dependence of the decoherence dynamics is entirely
determined by x(¢). If x(¢) only depends on T, and the pulse sequence, the decoherence dynamics is
not sensitive to the dimensionality of the spin system. The ability to probe the dimensionality of the
spin system arises from the interplay between the positional disorder and the power-law interactions,
as discussed in detail in the next section.

Average over positional randomness— Until now, we have considered only the role of dynamical

fluctuations in our analysis of the decoherence. In the next step, we compute the positional disorder

average by first considering N system spins occupying a volume V' in D dimensions, and explicitly
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Sequence n(t';t) x(t) shtor<2till-:1e lc;nitigle

Eggngg 1 27t — 272 (1 - e—%) 2L |2t 272

Spin Echo _11 t?;;f;i 2 o222 (3 e - 4e*ﬁ> & | 2nt -6t
v {1 ;—;e[m—%,mnti) 2 2 2
-1 % c [m + %,m + %) 127, 127, 127

Table D.1: Expressions of 77(#';t) and x(t) for Ramsey/DEER, spin echo, and XY-8. In XY-8, we assume the
inter-pulse spacing 7, < 7.

performing the volume integration of each spin as follows [[747]:

dP7, dPr iy &
2/ / : 2" VNHeXp

]z|gl|7C )%

ignal =
Signa 2

—_
N

N\H

_1 ar o)
_2 v P 2

11 1 M D+
T2 ! / P 2[ 27 4wy

This last equality gives us the limit definition of the exponential (limy oo (1 4+ x/N)N = ¢*) and,

IZ|81’X

o (D.8)

N

[ =

in the thermodynamic limit (N, V' — oo with fixed density n = %), is given by:

112

1 _% {hgzﬁt)z]
Signal = Eexp —n/ 1—e dPr

_ 1 —-122\ .D-1

—Zexp{—n/<1—e 2 )r drdQ}
I\ D

o ]- n ]Z?(z ' —lzz

=3P w( 2 > (=)

(D.9)

272z / |g|%dQ

D
4D
L egpd A0 [_TER)] [lglex()? ]
2 OF « 2D+ 2 ’
1 D
where we make the substitution z = %, Ap = - (gj 0 is the volume of a D-dimensional unit
7
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Jlgl?d0
[do

ball, and g = < > 7 is the averaged angular dependence over a D-dimensional solid angle.
We note that the integral converges only when 2« > D. This condition captures the physical
intuition that, for very long-range interactions (small «), the probe spin interacts strongly with an
extensive number of spins. More precisely, the number of spins at distance r from the probe increases
as ¥P~1dr, while their contribution scales as ¥ —2*. The variance of the phase ¢, at any fixed time,

D=2a=1"\which precisely diverges with increasing R when 2a¢ > D. In

is then given by fOR drr
this regime, which does not apply for our measurements, the standard deviation of ¢(f) becomes
unbounded in the thermodynamic limit, the Gaussian approximation C = e~ (#")/2 o longer applies,
and a more careful analysis is required.

Combining the results in Table[D.T|and Eqn.[D.9] we obtain the analytical form of the decoherence
signal as measured in our system. In both the short-time and the long-time limits, x(¢) has a simple
power-law dependence on time ¢. In each limit, the form of the decay profile is a simple stretched

exponential, from which we can also obtain the decay timescale as a function of the defect density. For

example, for the early-time Ramsey decay, we have:

D __ -D
Ramsey — _nDAD —r(_ﬂ) g]Zt ’
C (t < 1) = exp { o 2B+l 2
I'(—2)DAp L
=exp — (— ST 4 no gt (D.10)
D
— t '
=exp 4§ — W s
where 1
I(-2)pAp\” . "
R D Do D
T) amsey _ (_ Z%ero; ; > nbgJ, xn_D. (D.11)

Similarly, we can obtain the analytical forms for other pulse sequences and in different time regimes,
with all results summarized in Table[D.2l

Here, let us emphasize the role of positional disorder in determining the shape of the decoherence
decay profile, as highlighted by the differences between Eqns.|[D.4|and[D.9] To explain this difference, it

is important to emphasize that the main contribution to the average coherence is dominated by different
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Early-time t < T, Late-time t > T,

Stretch power | Decay timescale Stretch power | Decay timescale
D o« -1 D — & -2

Ramsey (DEER) X (Kgnﬁ ]Z> - (%) (Kgno ]Z>
. 3D 1/ aN\N—3 . N2

Spin Echo o (67:)3 (Kgnﬁ]z> ’ % (i) (Kgnﬁ]z)
D ' -2 D . a -2

xvs w CF) (kb)) o (5F) (kenb )

Table D.2: Ensemble averaged decay profiles for Ramsey/DEER, spin echo, and XY-8 pulse sequences; g is the

DAL T(-2)| P . . . .
— =2 —p*=| isadimensionless constant only depending on D

averaged angular dependence, and K = % [ o
and «.
positional configurations at different times. For example, at early times, only the configurations with
very nearby spins are able to decohere, while configurations with distant spins have yet to contribute to
the signal. Similarly, at late times, the configurations with fast decay rates have fully decohered, so the
signal is dominated by configurations where the spins are far away from the probe and decoherence is
slow. This explains why the stretch power is determined by both dimensionality (which determines
how many system spins can be close to the probe) and the exponent of the power-law interactions
(which determines how fast those configurations decohere).

By contrast, if the system spins are positioned on a regular lattice, the decay profile no longer
exhibits a distribution of time scales and thus follows the shape of the single positional realization case
(Eqn. [D.4). In particular, for a regular lattice, the spin echo always decays as a stretched exponential

with a stretch exponent of 3 (Table [D.1)), independent of both D and «.

D.1.2 Quantum description

In the semi-classical approach, we assumed that the spin dynamics can be captured by classical
Gaussian random variables. In general this need not be true, and one should treat the spin dynamics
quantum-mechanically. The main goal of such an analysis is to highlight how the distinction between

Gauss-Markov and telegraph noise can be cast as a property of the scrambling dynamics of the system
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spin operators 87 ().
The full Hamiltonian H governing the dynamics in our experiments is composed of the Ising
interaction H, between the probe spin and the systems spins, as well as H; which determines the

interactions between the system spins. Including the effect of the pulse sequence yields
Hi(t) = n(t;t)H; + Hs. (D.12)

The initial density matrix of the system immediately encodes the ensemble of possible initial states. In
particular, we consider initial state of the system to be a fully mixed state for the system’s spins, while

the probe spin is initialized in the £ direction. This corresponds to the following density matrix:

(=0 = Lo (m%m) <<¢|%<u), D13

where N is the size of the Hilbert space of the spin system.

The probe coherence then becomes:
t
C(t) =2Tr [é’;u(t)pw(t)} , where U(t) =T exp [—i/o dt’Htot(t’)] : (D.14)

Because the dynamics conserve §Z, the unitary operator U can be divided into two operators Uy,

which act only on the system spins and compute their evolution conditioned on the state of the probe:

U(t) = tp(t) @ [1) {(t]+ U () @ 1) (H, (D.15)

where

—i 3 [Hotn (¢4 ¥ 28161y —i [ [He—n(t't) ¥ 2816510y
1 .

UT(t) =Te i ’ Ui(t) =Te (D.16)
The coherence can then be written in terms of Uy, (¢) acting on the spin system:
_ 1 + ] _ 2 +
C(t) = 3T [UT(t)Ui(t) + Ui(t)uT] = ke (Tr [uT(t)ui(t)D (D.17)

The dynamics U /4(t) remain very complex because they include a contribution from both the
system’s dynamics and the probe-system coupling. To understand how the probe spin is sensitive to

the spin dynamics generated by the many-body interactions H;, we move to the interaction frame of
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H; by making the following substitution:
Uy (t) = Up(H) Uy, (1), with Up(t) =e ", (D.18)

where

o Jon(tn) 5 Z8ig (1ar
1

Uy =T , and & (t) = US(H)& (H)Uy(t). (D.19)

In this frame, the two evolution operators lose an explicit reference to H; at the expense of the spin
operators §7 becoming time-dependent. The resulting coherence remains in the same form, but with

the unitaries now referring to the interaction frame:

() = A?}SRe (1 [mwato)]) (D.20)

Note that Eqn. [D.20]is formally similar to Eqn. Especially, replacing the quantum operator
§f (t) with a classical variable immediately reduce this equation to Eqn.

While Eqn. already averages over the possible initial states of §7, one must independently
average the signal over the different spin ensembles (which arise, for example, from different positions
of the spins, coupling to a polychromatic driving field or to other classical fluctuating degrees of
freedom, etc.) While these two kinds of averages (one from different configurations of the many-
body system and the other from the randomness of Hg) can lead to the same auto-correlator & () o
(& (0% (0)

and, thus, whether a telegraph or a continuous (Gaussian) random variable is a good description of the

§(t)82(0)), they are essential for determining higher order moments of the distribution
many-body noise of 57 and thus the decoherence signal of the probe spin.

While Eqn. provides the generic expression for the decoherence dynamics of a spin coupled
to a dynamical system, it is intractable to directly compute the decoherence profile from this equation
except in specific cases. Nevertheless, such solvable points can provide important intuition for the
conditions under which Eqn. [D.20]reduces to a semi-classical description with either Gauss-Markov or
telegraph noise. As follows, we provide two instructive examples where an explicit computation can
be performed, and the relationship between the nature of the system and its noise properties is made
clear.

Probe coupled to a single spin evolving under an external drive— First, we consider the scenario
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where the noise that leads to the decoherence of the probe is generated by a single system spin, whose
dynamics are controlled by an external random drive. In this case, the interaction Hamiltonian is given
by:

Hs = Q[8} cos 0(t) + §/ sin6(t)] (D.21)

where () characterizes the strength of the drive and 6(¢) is a time-dependent phase. The presence of
such a time-dependent phase mirrors to the polychromatic drive—6(t) is chosen to follow a Gaussian
stochastic process [863|], and is randomized across different runs of the experiment. Crucially, for each
run of the experiment, the dynamics induced by Hg generate a particular trajectory around the Bloch
sphere without any loss of single-particle coherence. As a result, the continuous spin rotation leads to
a continuous change in the strength of the noise generated—this leads to the natural description of
s7(t) as a continuous classical variable.

We emphasize that, within this framework, there is a single phase accumulated due to the noise for
the particular driving 6(¢). As a result, to obtain Gaussian-distributed noise, one must additionally
average over different instances of 6(t). In the experiment this corresponds exactly to the polychromatic
drive, where the phase accumulation rate in each experimental run is random and changes continuously
in time.

Probe coupled to a system strongly interacting with a large bath— We now turn to the opposite

limit, where the noise is generated by spins coupled to a Markovian bath. The dynamics of §7(¢) can
be thought to undergo spontaneous emission and absorption of photons/phonons—starting in either
the state |1) or |J), the system undergoes quantum jumps into the opposite state at a rate given by
1/ 7. [864]. In this intuitive picture, the decoherence of the probe spin should be evaluated by averaging
over all the possible quantum jump trajectories of the system spins—this precisely corresponds to a
telegraph-like classical noise.

We can make this picture more precise, using Eqn. as well as intuition from the perspective
of operator dynamics. In particular, if the operator §f(t) spreads across a large number of degrees
of freedom much faster than the interaction time scale with the probe spin, then the probe spin
is interacting with independent, commuting operators at different times, [§(t),8.(¢')] = 0. This

immediately leads to two consequences: (i) the time-ordering operator in Eqn. [D.19]acts trivially on
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the exponential, and the eigenvalues of the exponential are simply given by the exponential of the
eigenvalues of fot 1(t')8 (¢')dt'; (ii) §%(t) can be simultaneously diagonalized for different times.
The latter fact enables a very simple analysis of the dynamics. To see this more easily, let us

simplify our problem by dividing the time evolution into M independent blocks of duration 6t =t/ M:

LNIT/L = Hexp :Fiiy(jdt;t)zlzziii§f(j5t) , (D.22)
j T <l

where §(jét) commute with one another for different i and time j6t. Because there is a single
eigenbasis |p) that diagonalizes all these operators, when computing (y| U/, |pt), the operators
can be substituted by the corresponding eigenvalues )\; (jot), and the exponent simply becomes the
sum of individual contributions. Crucially, since §2(t) = 1/4, /\; (t) can only be +1/ 2 The last
necessary ingredient is the understanding of how /\; (jot) at different times relate with one another.
In general, this depends on the details of the dynamics. But, owing to the size of the Hilbert space,
2N, one can take a statistical approach to this question. Namely, over the ensemble of eigenstates
and operators, changing the sign of the eigenstate is expected to follow a Poisson process with time
scale T, (/\;,(t))\;(t’ )) o e lt='1/% We note that this correlation decay can be exactly recast as
an exponential decay correlation function for the spin operators. The dynamics of each )LL(t) can
then be understood as either a single quantum jump trajectory (in the quantum language), or a single
classical telegraph noise realization (in the classical description). Summing over all the eigenstates | )
completes the trace operation in Eqn. and yields the final coherence of the probe spin.

Here, we hasten to emphasize that unlike the single driven spin case, one does not have to compute
an average over different trajectories of the spin dynamics, that is already incorporated within the trace
operation and the sum over the different eigenstates. This contrasts with the single spin example, where
an explicit averaging over the driving fields was necessary to obtain the distribution of accumulated
phases.

Spin coupled to a generic many-body interacting system— Taking the above two examples into

consideration, whether a generic many-body system is described by the Gauss-Markov or the Telegraph

2As long as the eigenspectrum of the original local operator is discrete, so will Au (t); as a result, we expect the same
telegraph noise description in the context of higher spin systems.
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random variable is determined by the speed of the operator spreading. If the spreading of the operator
is slow, the dynamics of §.(#) remain constrained to a few sites throughout the measurement duration
and the system appears coherent (leading to continuous Gaussian noise). If the spreading of the
operator is fast, 8% (t) quickly spreads across many spins and the rest of the system acts as an effective
Markovian bath, leading to telegraph noise.

In our disordered, strongly-interacting system, we conjecture that disorder leads to the slow spread
of §%, and the decay of the auto-correlator (§7(0)§%(t)) mostly results from the different trajectories
of local dynamics (originating from different Hs owing to different initial configurations of the bath
spins). This is consistent with our experimental observation of the spin-echo decay stretch power

B = 3D /2 for a three-dimensional dipolar ensemble, and is characteristic of the Gaussian noise

model.
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