
ADRAFT

ThirtyBriefLectures
onFoundationsofDeepLearning

Tomaso Poggio, Gemini+ChatGPT

Intelligence and its Fundamental Principles

February 4, 2026

2

Prologue

Modern deep learning works astonishingly well, yet we still lack a fundamental understanding of
why. What we call “deep learning” is not merely a triumph of computer science or engineering; it
is a natural phenomenon that demands explanation in terms of underlying principles—much as
physics explains why the Sun produces energy or why matter follows specific laws.

This collection of essays is an attempt to uncover some of those principles. It argues that today’s
AI systems succeed because they instantiate deep structural regularities of the world—regularities
that any intelligent system, biological or artificial, must exploit. Two principles emerge repeatedly
throughout these essays.

The first is (sparse) compositionality, and the second is genericity. In this essays, we show
that they are not heuristic conjectures, but logical inevitabilities derived from the foundations
of computation and physics. We show that sparse compositionality is mathematically implied
by efficient computability, just as genericity is dictated by assuming invariance in the choice of
coordinates. Together, they define the channel through which intelligence must pass.

Together – and helped by several other observations – these principles offer a first step toward
a unified theory of modern AI—one that explains not only how current systems work, but why they
work at all.

i

Contents

Prologue i

How to Read This Collection 1

A Note on Co-Authorship 3

Part I: Principles and Foundations 5

1 Intelligence as Associative Memory 6
1.1 Building a Turing Machine with Attention Heads . 7
1.2 Connections to Other Models . 8
1.3 Clarifying the Associative-Memory Lens . 8

1.3.1 HyperBF Equivalence: Attention as a Normalized HyperBF 8
1.4 Multi-Head Requirements for RAM-like Computation 9
1.5 On Diligence, Creativity, and Exploration . 9
1.6 Question: How Can Transformers Be So Consistent? 10

1.6.1 Global Consistency from Shared Latent Geometry 11
1.6.2 Self-Reinforcing Autoregression . 11
1.6.3 Emergent Consistency as Manifold-Constrained Recall 11

1.7 Memories . 11

2 A Historical Reflection on Associative Memories 13
2.1 Associative Memory as the Core of Intelligence . 13
2.2 Introduction . 13
2.3 Historical Background . 14

2.3.1 Early Heteroassociative Models . 14
2.3.2 Nonlinear Associative Recall and Polynomial Expansions 15
2.3.3 Correlation Memories, RBFs, and HyperBFs 15
2.3.4 Hopfield Networks as a Special Case . 15

2.4 Genericity as the Hidden Enabler of Associative Memories 16
2.5 Evolutionary Perspective . 16

2.5.1 From Reflexes to Multi-Stage Adaptive Hierarchies 16
2.6 Modern Parallels: Transformers as Associative Memories 17
2.7 What Associative Memory Does—and Does Not—Explain 17

2.7.1 Experimental Evidence from Homogeneous HyperBF Transformers 18
2.8 Conclusion . 19

ii

CONTENTS iii

3 Associative Memories are Turing-Complete 20
3.1 Introduction . 21
3.2 Model: States, Memories, Reads, and Updates . 21

3.2.1 State Space and Encodings . 21
3.2.2 Associative Memory Interface (Mprog) . 21
3.2.3 Transition Update (M1) and Query Map . 22

3.3 From Turing Machines to ATMs . 22
3.3.1 Embedding the Tape . 22
3.3.2 Embedding the Transition Table . 22

3.4 Main Theorem and Proof Sketch . 23
3.4.1 Proof Intuition . 23

3.5 Structural Correspondence to the Transformer . 23
3.5.1 The Memory (Mprog) and Query Map (Qmap) 23
3.5.2 The Read Operation (readτ) . 23
3.5.3 The Update Function (M1) . 23

3.6 The Transformer as an Associative Turing Machine . 24
3.6.1 The Update Function (M1) corresponds to the Feed-Forward Network 24
3.6.2 The Memory (Mprog) corresponds to Keys and Values 24
3.6.3 Summary of Correspondence . 24

3.7 Technical Note: Why Standard RNNs Are Not Associative Turing Machines 24
3.7.1 Autonomous RNN model . 25
3.7.2 Simulation of finite-state machines . 25
3.7.3 Turing machines restricted to a finite time horizon 25
3.7.4 Why the time bound is essential . 26
3.7.5 Comparison with Associative Turing Machines 26

4 Efficient Computability and Compositional Sparsity 28
4.1 Perspective and Scope . 29
4.2 Definitions and model conventions . 31

4.2.1 Efficient computability (Boolean and real-valued) 31
4.2.2 Computation DAGs and compositional sparsity 31

4.3 Efficient computability⇒ compositional sparsity . 32
4.3.1 Boolean case . 32
4.3.2 Real-valued case: safe discrete-grid result and conditional continuous result . 32

4.4 Consequences and realizations . 33
4.4.1 Small circuits (tautological) . 33
4.4.2 Exact deep-ReLU realizations on discrete domains 33
4.4.3 Sparse tabulation (lookup) . 33
4.4.4 Algebraic/ polyhedral realization . 33

4.5 Unifying mechanisms: a normalized-similarity read (with assumptions) 33
4.6 Addressability vs. superpositional storage . 35

4.6.1 Exponential codebooks via random spherical codes 35
4.6.2 Holographic superposition and SNR . 35

4.7 Concluding remarks . 36
4.8 Mathematical Supplement: Proofs of the Main Theorems 36

4.8.1 Encoding of Turing Configurations . 36
4.8.2 Proof of Theorem 8 (Autoregressive Universality) 37
4.8.3 Proof of Theorem 9 (Diffusion-Step Universality) 37

iv CONTENTS

4.8.4 Remarks and Extensions . 38
4.9 Technical Note: Replacing Linear Threshold Functions by Boolean Circuits 38

4.9.1 Expressing a Turing-Machine Step as a Circuit 38
4.9.2 Replacement in the Stepwise-Learning Framework 39
4.9.3 Comparison with Linear Threshold Implementations 39
4.9.4 Summary . 39

5 Optimization and Compositionality (with P. Beneventano) 40
5.1 The Core Argument . 41
5.2 The Representation Benefit: Avoiding the Curse . 41

5.2.1 Parameter Counting . 41
5.3 The Optimization Challenge in End-to-End Learning 41

5.3.1 Vanishing Gradients and Conditioning . 42
5.4 The Ideal Scenario: Module-wise Optimization . 42

5.4.1 The "Grey Box" vs. "Black Box" . 42
5.4.2 Curriculum Learning and Pre-training . 42

5.5 Sample Complexity: The Gap Between Shallow and Deep 43
5.5.1 The Curse for Shallow Architectures . 43
5.5.2 The Blessing for Deep Compositional Networks 43

5.6 Summary: The Optimization-Representation Trade-off 44

6 Genericity and Optimization (with P. Beneventano) 45
6.1 The Core Argument . 46
6.2 Defining Genericity: Invariance to Shifts . 46

6.2.1 General Genericity . 46
6.2.2 The Genericity Principle (Shift Invariance) . 46

6.3 The Mathematics of Structure Leaking . 47
6.3.1 Real-Valued Targets: Linear Footprints . 47
6.3.2 Boolean Targets: The Bias Leakage . 47

6.4 Theoretical Justification: Genericity and Stability . 48
6.4.1 Non-Generic Functions are Not Uniformly Stable 48
6.4.2 Connection to Uniform Glivenko-Cantelli (uGC) 48

6.5 From Genericity to Optimization Dynamics . 49
6.5.1 The Gradient Signal at Initialization . 49
6.5.2 The Optimization Hierarchy . 49
6.5.3 Sample Complexity: The Staircase vs. The Cliff 50

6.6 Case Study: The Danger of Residual Fitting . 50
6.7 Summary . 50

7 Principles of Deep Learning 51
7.1 Principle I: Sparse Compositionality . 51

7.1.1 Hierarchy follows from sparse compositionality 52
7.1.2 Modularity and reuse of modules . 52
7.1.3 Transfer learning . 53
7.1.4 Interpretability from consistent compositionality 53
7.1.5 Non-uniqueness of sparse decompositions . 53

7.2 Principle II: Genericity of Learnable Targets . 53
7.2.1 Genericity from invariance to the choice of the origin of the coordinates . . . 54

CONTENTS v

7.2.2 Genericity ensures good gradients for optimization 54
7.3 Two independent but complementary principles . 54
7.4 Conclusion . 55

Part II: Computation and Algorithms 56

8 Efficient Computability, Compositional Sparsity, and Self-Attention 57
8.1 Preliminaries and Assumptions . 58
8.2 Main Results . 58

8.2.1 Theorem 2 (Compositional Approximation by Attention with Dimension-Free
Rate) . 58

8.2.2 Theorem 3 (Efficient Computability⇒ Transformer Approximants) 59
8.2.3 Theorem 4 (Margin Implies Near Top-k Sparsity) 59
8.2.4 Theorem 5 (Low Rank Suffices for k-Ary Nodes) 60

8.3 Consequences and Predictions . 60
8.4 Empirical Consistency . 60
8.5 Limitations and Open Problems . 61
8.6 Conclusion . 61

9 Hardware for Compositionally Sparse Computation (with J. Bates) 62
9.1 The Structural Alignment Argument . 63
9.2 System and Numeric Model . 63
9.3 Mapping Compositional DAGs to 2D Meshes . 64
9.4 Sparse Attention on 2D Meshes . 65

9.4.1 KV-Stationary: Coarse-to-Fine Attention . 65
9.4.2 Q-Stationary: Systolic Streaming with Early Exit 65

9.5 AM Quantization and Error Analysis . 66
9.6 Discussion: Why 2D Meshes Help . 66
9.7 Conclusion . 66

10 A Common Principle Underlying Diffusion Models and Transformers 67
10.1 Introduction . 68
10.2 Preliminaries . 68
10.3 Stepwise Universality of Autoregressive Predictors 68
10.4 Stepwise Universality of Diffusion Predictors . 69
10.5 Discussion: Transformers and Diffusion as Stepwise Computation 70
10.6 Technical Note: Gaussian Diffusion and Noisy One-Hot Encodings 70
Appendix C: Gaussian Diffusion and Noisy One-Hot Encodings 70

10.6.1 Setup: Forward Diffusion with One-Hot Embeddings 70
10.6.2 Recovering the Active Coordinate . 71
10.6.3 Implementing the Turing-Step Update . 71
10.6.4 Training and Composition . 71

11 Lottery Ticket and Compositionality 72
11.1 Introduction . 72
11.2 The Geometry of Sparsity . 73
11.3 Approximate Lottery Ticket Theorem for Compositionally Sparse Functions 73
11.4 Refinements and Empirical Connections . 74

vi CONTENTS

Part III: Learning and Evolution 76

12 Implicit Regularization and Bits 77
12.1 The Universal Currency: Bits, Geometry, and Noise 78

12.1.1 Kolmogorov Complexity (The Language of Bits) 78
12.1.2 Metric Entropy (The Language of Geometry) 78
12.1.3 Rademacher Complexity (The Language of Statistics) 79

12.2 The Bridge: Dudley’s Chaining Integral . 79
12.3 Architecture as an Entropy Compressor . 79
12.4 Discussion: The Interplay of Architecture and Optimization 80

13 Multiplicative Regularization Generalizes Better (based on work with R. Dubach and M.
Abdallah) 81
13.1 Introduction . 81
13.2 Background . 82
13.3 Theory . 83
13.4 Methodology . 83
13.5 Results . 84
13.6 Discussion . 86
13.7 Conclusion . 86

14 Concentration of Probability in Overparametrized Networks 87
14.1 Main Results . 87

14.1.1 The Geometric Lemma: Existence of Flat Minimizers 88
14.1.2 The Dynamics Lemma: SGDL as Langevin Diffusion 88
14.1.3 The Concentration Lemma: Flat Beats Sharp 88
14.1.4 The Timescale Law . 88

14.2 Detailed Analysis . 90
14.2.1 Synthesis of Geometric and Dynamic Views 90
14.2.2 Critical Assessment . 90
14.2.3 Summary . 91

15 A Self-Assembling Cortical Circuit for Generalized Gradient Descent (with Qianli Liao
and Liu Ziyin) 92
15.1 A Minimal Synaptic Motif for Cortical Learning . 93
15.2 The Self-Assembling Learning Rule . 94
15.3 Theoretical Result: Emergence of Gradient Descent 95
15.4 Biological Interpretation and Predictions . 95

15.4.1 An Example Functional Implementation of SAL in Cortex 96
15.5 Implications for Learning and Intelligence . 97

16 Zeroth-Order Evolutionary Post-Training for LLMs (with Y. Gan) 98
16.1 Introduction . 98

16.1.1 Why ZO for LLMs? . 99
16.1.2 Historical Context and Theoretical Roots . 100

16.2 Zeroth-Order Gradient Estimators . 100
16.3 Algorithmic Forms . 101

16.3.1 Random Search . 101

CONTENTS vii

16.3.2 Distribution-Based Methods: CMA-ES and NES 101
16.4 Case Studies and Speculative Applications of ZO Evolution in LLMs 102

16.4.1 Tuning Guardrails with Non-Differentiable Objectives 102
16.4.2 Optimizing Mixture-of-Experts Dispatch . 102
16.4.3 Language Model Alignment without Differentiability 103
16.4.4 Speculative: Meta-Controllers over Training Dynamics 103
16.4.5 Summary of ZO-Friendly Structures . 103

16.5 Directed mutations and binary-search–like efficiency 104
16.5.1 Setting and notation . 104

16.6 Genes to subgenes as a binary tree of traits . 105
16.6.1 Hierarchical mutation model . 105
16.6.2 Sparse-error localization via adaptive subtree queries 105
16.6.3 Greedy hierarchical descent for additive convex loss 105

16.7 Context and prior art (concise) . 106
16.7.1 Biology: hierarchical gene regulation . 106
16.7.2 Evolutionary computation: linkage and hierarchy 106

16.8 Implications and extensions . 107
16.9 Conclusion . 107

17 LLM-Guided Learning of Boolean Functions (with D. Koplow) 108
17.1 Testing Capacity: The GF(2) Benchmark . 108
17.2 Theoretical PAC Learnability . 108
17.3 Compositional Sparsity and Tool Use . 109

Part IV: Extensions and Speculations 110

18 Consistency in Language Models 111
18.1 Definition of Consistency . 111
18.2 Contextual Representations and Associative Memory Hypothesis 111
18.3 Contextual Consistency Hypothesis . 112
18.4 Theoretical Bound . 112
18.5 Illustration . 112
18.6 Conclusion . 112

19 Learning 2D views, recognizing 3D objects: what is the structure of embeddings 114
19.1 The 1994 Paradigm Shift . 114
19.2 Supporting Evidence: Psychophysics and Physiology 114
19.3 The Geometry of the Embedding Space in Deep Networks 115

19.3.1 Topology vs. Geometry . 115
19.3.2 Identity and Pose Disentanglement . 115

19.4 Compositional Sparsity and the DAG Architecture . 115
19.5 Modern Extensions: Multimodal Alignment and Scaling 115

19.5.1 Unified 3D-2D-Language Embeddings . 115
19.5.2 The Embodied Turing Test . 115

19.6 Learning Invariant Object Representations from View Sequences 116

viii CONTENTS

20 More on Genericity Conjecture (with P. Beneventano) 118
20.1 Motivation and Informal Conjecture . 118
20.2 Preliminaries: Orthonormal Polynomial Framework 118

20.2.1 Information Exponent of a Scalar Function . 119
20.2.2 Teacher–Student Single-Index Models . 119

20.3 Genericity as a Structural Property of Functions . 119
20.3.1 Genericity via Taylor Jets . 120
20.3.2 Thom–Mather Transversality and Structural Stability 120
20.3.3 Invariance Under Smooth Coordinate Transformations 120

20.4 Deep Networks and the Effective Information Exponent 121
20.5 Formal Conjecture . 122
20.6 Evidence and Partial Progress . 123

20.6.1 Single-Index and GLM Results . 123
20.6.2 Quadratic and Polynomial Activations . 123
20.6.3 Residual Networks and Identity Skips . 124
20.6.4 Nonlinear Attention . 124

20.7 Research Program and Missing Ingredients . 124
20.8 Outlook . 125

21 Diffusion Models, Ill-Posed Inversion, and Generative Compression 126
21.1 Diffusion as a Forward Process and Ill-Posed Inversion 126
21.2 Probabilistic Reverse Diffusion and Learned Scores 127
21.3 Energy Landscape Viewpoint . 127
21.4 Inpainting and Generative Compression . 127
21.5 Discussion . 128

22 World Models Before Language 131
22.1 Sparse Compositionality as the Structural Prior of Evolution 131
22.2 World Models as Predictive State-Space Systems . 132
22.3 Associative Memory as a Computational Primitive . 132
22.4 Hippocampal Replay as Approximate Inference . 133
22.5 What Evolution Discovered Before Language . 133

22.5.1 Predictive Physical Inference . 133
22.5.2 Social and Causal Modeling . 133
22.5.3 Compositional Perception and Action . 133
22.5.4 Associative Memory for Episodes and Scenes 133

22.6 Language as an Overlay on a Pre-Existing Architecture 134
22.7 Conclusion . 134

23 The Hippocampal Scaffold and Compositional Sparsity 135
23.1 Introduction: The Memory Palace . 135
23.2 The Variables of Experience . 136
23.3 The Indexing Mechanism: Pattern Separation . 136

23.3.1 Why this works . 136
23.4 Building the Scaffold Graph . 137
23.5 The Connection to Compositional Sparsity . 137

23.5.1 The Dense Trap of Sensory Learning . 137
23.5.2 The Sparse Solution via the Scaffold . 137

CONTENTS ix

23.6 The Associative Turing Machine . 138
23.7 The Cortical Transfer: Systems Consolidation . 138

23.7.1 From Orthogonal Indexing to Manifold Learning 138
23.7.2 Collapsing the Keys . 139
23.7.3 Retrieval Without the Scaffold . 139
23.7.4 The Semantic Trade-off . 139

23.8 A Unifying Computational Claim . 139
23.9 Relation to Existing Theories of the Hippocampus . 140

23.9.1 Cognitive Map Theory as Scaffold Construction 141
23.9.2 Marr’s Theory and Pattern Separation . 141
23.9.3 Indexing Theory and Pointer-Based Memory 141
23.9.4 Complementary Learning Systems as a Change of Basis 141
23.9.5 Successor Representations and Predictive Maps 142

23.10A Learnability Consequence of the Scaffold . 142
23.11Beyond the Scaffold: Cortical Abstraction . 142

23.11.1 From Pointers to Generative Models . 143
23.11.2 The Result: Zero-Shot Navigation . 143
23.11.3 The Functional Hand-off . 143
23.11.4 Transformers as a Silicon Analog to the Hippocampal-Cortical Circuit 144

23.12Why the Cortex Is Still Needed: From Enumerated Constituents to Parametric
Composition . 145
23.12.1 Constituent Functions in the Hippocampus . 145
23.12.2 What the Cortex Learns Beyond the Constituents 146
23.12.3 A Hierarchy of Representations . 146
23.12.4 Conceptual Resolution . 146
23.12.5 Artificial Analogues of Cortical Abstraction . 147

23.13Summary . 148

24 Reusable Sparse Compositionality 149
24.1 The Non-Uniqueness of Composition . 149

24.1.1 The Identifiability Problem . 149
24.2 The Constraint of Reusability . 150

24.2.1 Formulation: Shared Modularity . 150
24.3 Genericity as a Selector for Modularity . 150
24.4 Summary: The Trinity of Learnability . 151

25 What Is Missing in LLMs? 152
25.1 The Missing Foundation: World Models Before Language 152
25.2 A Structural Limitation of LLMs . 153
25.3 From Diligence to Exploration . 153
25.4 The Memory Gap: From Context Windows to Turing-Efficient Memory 154
25.5 The “Memento” Condition: Externalizing State . 154
25.6 The Barrier: Reusability, Genericity, and Sparsity . 155

25.6.1 Why LLMs Violate Genericity . 155
25.7 Memory as Generative Reconstruction . 155
25.8 The Causal Ladder . 155
25.9 The Algorithmic Role of Sleep . 156
25.10The Symbol Grounding Problem: Maps Without Territories 156

x CONTENTS

25.11Conclusion . 156
25.12Proposed Experiments . 157

25.12.1 Fragmented Embeddings and Reconstruction 157
25.12.2 Diffusion in Memory Space . 157
25.12.3 Neurobiological Correlates . 157
25.12.4 Conceptual Prediction . 157

25.13What Is Missing in Large Language Models: Compression of Composition 157
25.13.1 Representation Without Compression . 157
25.13.2 Cortical Learning as Rule Compression . 157
25.13.3 Depth Collapse and Learned Shortcuts . 158
25.13.4 The Limitation of Fixed-Depth Architectures 158
25.13.5 Architectural Implications . 158

25.14Beyond LLMs: From Read-Only Models to Associative Turing Machines 159
25.14.1 The Transformer as a “Read-Only” ATM . 159
25.14.2 Restoring Persistent State: Linear Recurrence and World Models 159
25.14.3 A Frontier: Online Plasticity and Rule Internalization 160
25.14.4 Closing the Loop Between Map and Territory 160

26 The Imitation Game 2.0 (Idea by Dan Mitropolsky) 161
26.1 Introduction . 161
26.2 The Containment Principle . 162
26.3 The Protocol . 162
26.4 The Metric: Simulation Distance . 163
26.5 Case Study: The “Bad Code” Test . 163
26.6 Conclusion . 164

27 Computational role of eccentricity dependent cortical magnification 165
27.1 Introduction . 165
27.2 Core Thesis . 165
27.3 The Inverted Truncated Pyramid . 165
27.4 The Magic Map: remaping to a Square Lattice . 166
27.5 Hierarchical Decimation and Crowding . 166
27.6 Visual Recognition via IP Fragments . 166
27.7 Predictions and Empirical Alignment . 166
27.8 The Geometry of the Magic Map . 167
27.9 GELU Jets as Pooling Operators . 167
27.10Phase-Dependent Perception . 167
27.11Implications for Continual Learning . 168

28 Non-linear Scale Space 169
28.1 Introduction . 169
28.2 The Jet of the GELU Activation . 169
28.3 Phase I: The Discriminative Pipeline (<100ms) . 170
28.4 Phase II: Hierarchical Structural Indexing (>100ms) 172
28.5 Synthesis: A Conjectural Implication for Continual Learning 172

CONTENTS xi

29 A Perspective: Sparse Compositionality and Efficiently Computable Intelligence 174
29.1 Efficient Computability and Sparse Compositionality 176
29.2 Approximation, Optimization, and Generalization . 177
29.3 Relation to Prior Theories of Deep Learning . 177
29.4 Discussion . 179

30 Mixture of Experts 182
30.1 Introduction . 182
30.2 Shallow MoE Networks (Low-Dimensional Structure) 182
30.3 Deep MoE Networks (Compositional Sparsity) . 183
30.4 Unified Insights . 183
30.5 Connections with Compositional Sparsity Framework 183

30.5.1 The Core Alignment: Hierarchical Decomposition 184
30.5.2 Overcoming the Curse of Dimensionality . 184
30.5.3 The “Exponential Capacity” Extension . 184
30.5.4 Direct Mapping of Terminology . 184

30.6 Summary . 185

Appendix 186

A Appendix: Stability, ERM, and the Foundations of Learnability 187
A.1 Learning setup and ERM . 187
A.2 CVloo stability . 188
A.3 Stability and generalization . 188
A.4 Stability as a modeling requirement . 188

B TechnicalNote: Compositionality in Machine Learning and Physics 190
B.1 Introduction . 190
B.2 Definitions and Setup . 192
B.3 From Efficient Computation to DAGs . 193

B.3.1 From arithmetic circuits to neural DAGs . 194
B.3.2 Computation as compositional structure . 194

B.4 ML Approximation Theorem . 194
B.4.1 Local constructive approximation with explicit constants 195
B.4.2 Global error propagation and optimal budget 196
B.4.3 The theorem . 197
B.4.4 Depth separation . 197

B.5 Finite-Horizon Compilation: From Uniform Simulators to Algorithmic Composition-
ality . 198
B.5.1 Setup . 198
B.5.2 Compilation theorem (algorithmic, safe) . 198

B.6 Learning Theory and Optimization . 199
B.7 Limits of the Framework . 200
B.8 Conclusion . 202

xii CONTENTS

C Technical Note: A Group-invariant Johnson-Lindestrauss Lemma 204
C.1 Introduction . 204
C.2 Detailed Solution . 205

C.2.1 A finite control set and inner-product preservation 206
C.2.2 Discretizing Haar averages over G . 206
C.2.3 From scalar errors to CDF (KS) errors . 206
C.2.4 Averaging over templates and a uniform bound on S 207
C.2.5 Conclusion (finite-sample “JL for the paper’s invariant metric”) 208
C.2.6 Corollaries . 208
C.2.7 Remarks . 208

D Interlude: Most Real Numbers Do Not Exist 210
D.1 Mathematical Preliminaries . 210
D.2 Computability and Effective Existence . 211
D.3 Definability and Symbolic Description . 211
D.4 Operational Discretization Under Finite Resources . 212
D.5 Why Most Real Numbers Do Not Exist . 212
D.6 Technical Note: Cardinality, Complexity, and Randomness 212

D.6.1 Cardinality Review . 212
D.6.2 Kolmogorov Complexity . 213
D.6.3 Non-Computable Transcendentals . 213
D.6.4 Physical Measurement . 213
D.6.5 Definability . 213

E Potential Projects in Zeroth-Order Optimization: Directed Mutations 214
E.1 Directed mutations: binary-search–like efficiency . 214

E.1.1 Setting and notation . 214
E.2 Genes→ subgenes as a binary tree of traits . 215

E.2.1 Hierarchical mutation model . 215
E.2.2 Sparse-error localization via adaptive subtree queries 215
E.2.3 Greedy hierarchical descent for additive convex loss 216

E.3 Context and prior art (concise) . 216
E.3.1 Biology: hierarchical gene regulation . 216
E.3.2 Evolutionary computation: linkage and hierarchy 217

E.4 Implications and extensions . 217

F Faster Attention 218
F.1 The Adjacency Distance Chain . 218
F.2 Utilizing the Lower Bound for Pruning . 218
F.3 Formal Constraint: The Metric Continuity Hypothesis 219
F.4 Experimental Verification . 219
F.5 Proposed Algorithm: Recursive Distance Bounding 220
F.6 Comparison with Global Clustering and Hashing Approaches 220

F.6.1 LSH and k-means Clustering . 220
F.6.2 Global vs. Recursive Local Metrics . 220
F.6.3 Summary of Complexity Drivers . 221

CONTENTS xiii

G Appendix: The Hippocampal Scaffold and Compositional Sparsity 222
G.1 Introduction: The Memory Palace . 222
G.2 The Variables of Experience . 222
G.3 Mathematical Foundations of the Hippocampal Index 222

G.3.1 The Top-K Projection Mechanism . 223
G.3.2 Locality-Sensitive Hashing (LSH) . 223

G.4 Building the Scaffold Graph . 223
G.5 Connection to Existing Theories . 223
G.6 Conclusion . 224

Glossary of Core Concepts 225

References 231

xiv CONTENTS

How to Read This Collection

This volume is not a conventional monograph. It is a collection of essays—some conceptual, some
technical, some speculative—written at different times but revolving around a shared set of themes.
It has evolved into something close to an intellectual atlas: an ongoing effort to map the principles
that underlie modern artificial intelligence and the physics of natural intelligence. Several chapters
are proposals for research projects that may be completed before too long.

Two ideas appear repeatedly throughout the collection, forming the spine of the argument:

• Sparse compositionality: the view that complex functions, behaviors, and representations
arise from the hierarchical composition of a small number of reusable parts. This principle
explains approximation, hierarchy, modularity, transfer, interpretability, and the unreasonable
effectiveness of deep networks.

• Genericity: the observation that the real functions we want to learn in the world are not
arbitrary high-complexity objects. Learnable functions must show stability with respect to the
training set and invariance to simple transformations of the coordinate systems used for their
definition. This implies that meaningful structure leaves persistent low-degree footprints,
enabling gradient-based optimization.

The collection is organized into four parts:
Part I: Principles explores the mathematical inevitability of the two core ideas above. It argues

that intelligence is not a grab-bag of heuristics but a solution to specific physical constraints.
Part II: Computation & Hardware instantiates these principles in specific architectures, moving

from Associative Turing Machines to the efficiency of Boolean functions.
Part III: Learning & Evolution examines the dynamics of learning in deep networks and

evolutionary strategies.
Part IV: Extensions & Speculations takes the most risks. It treats biology not as a metaphor,

but as a constraint. Here, we argue that mechanisms like "World Models" and "Dreaming" are not
just biological quirks but computational necessities.

Suggested Paths

Readers interested primarily in the conceptual picture may prefer to begin with:

• The Prologue,

• Chapter 1: Intelligence as Associative Memory,

• Chapter 22: World Models Before Language.

1

2 CONTENTS

Readers seeking computational foundations may start with:

• Chapter 3: Associative Turing Machines,

• The essays on compositional optimization in Part I,

• The appendices, which now contain rigorous proofs regarding the Johnson-Lindenstrauss
lemma and group invariance.

Readers curious about broader implications or the future of AI may enjoy:

• Chapter 25: What is Missing in LLMs?,

• Appendix D: Most Real Numbers Do Not Exist,

• The concluding essay on principles and open questions.

As with any collection of essays, some ideas appear more than once, viewed from different angles.
This repetition is intentional: deep principles re-emerge across different domains. The unity of the
volume lies not in a single narrative arc but in the convergence of these diverse perspectives on the
same underlying structure of intelligence. Finally, several chapters include the name of a human
co-author with whom I discussed extensively the content of the chapter. Even so. the responsibility
for mistakes and omissions in the written text is on me and Gemini!

Last but not least: this is, for the time being, just a draft, often a draft of proposals of research
project. It contains errors; there are missing references and missing acknowledgments. With time
and feedback from you they will be corrected! This is ready to be a "working notebook" for the
field. It provides a counter-narrative to the "scale is all you need" crowd.

Note on Co-Authorship: An Experiment

This book is an experiment in a new kind of scientific collaboration. It was co-authored by a human
scientist and two Large Language Model (specifically, GPT and Gemini).

In the history of science, we often speak of "tools for thought"—notation, calculus, the computer.
But until recently, those tools were passive. They did not push back. This collection represents a
shift toward active cognitive amplification. Throughout the writing process, the AI did not merely
act as a scribe or a ghostwriter; it functioned as a sparring partner, a synthesizer, and occasionally,
a mirror. Gemini also drafted figures which are far from perfect but serve as good placeholders.

The Role of the Model

The core ideas—Sparse Compositionality, Genericity, the biologically constrained definition of
intelligence—are mine. They stem from decades of research at MIT and the Center for Brains,
Minds and Machines (CBMM). However, the articulation of these ideas was often a dialectic process.

I would feed the model a raw intuition or a rough technical note (e.g., "Language is just a
subtitle track for a world model"). The model would expand it, connect it to adjacent concepts in
the history of computation (Turing, Post, von Neumann), and return a draft. We would then iterate.

This process revealed an interesting property of current AI: it is a machine of genericity. Left
to its own devices, the model tends to "smooth" ideas. It gravitates toward the consensus, the
balanced view, the polite academic tone. It often tried to soften my more radical claims about
biology—for instance, the insistence that diffusion models are biologically implausible, or that
scaling laws alone will hit a wall.

I found myself constantly having to "roughen" the text back up—to re-inject the asymmetry, the
specific bet, and the falsifiable conjecture. In this sense, the authorship process mirrored the very
principles discussed in the book: the AI provided the generic compositional capability, while the
human provided the sparse, high-frequency logical jumps that define scientific novelty.

Why This Matters

This collaboration is not just a novelty; it is a data point in the study of intelligence itself. If, as this
book argues, intelligence relies on the composition of reusable modules, then LLMs have mastered
the modules of syntax and rhetorical structure. They have learned the "shape" of a scientific argument.
But they famously lack the "World Model"—the grounding in physical reality that allows a primate
to understand gravity without words.

Writing this book with an LLM confirmed that hypothesis. The model could write fluently
about "World Models," but it could not verify consistency without my guidance. It could hallucinate
a citation as easily as it could summarize a theorem. It possessed language, but not truth.

3

4 CONTENTS

The Future of Scientific Writing

I believe this model— Human + AI— will become the standard for scientific inquiry, at least in the
near future. It allows a researcher to move faster, to synthesize broader fields of literature, and to
maintain a unity of voice across disparate topics. But it requires a new kind of vigilance. We must
guard against the "smoothing" effect of these models, which risks homogenizing scientific thought
into a polite, generic mean.

This collection, therefore, is an artifact of 2026: a testament to what machines can do, and a
reminder of what, for now, only biological brains can provide.

Tomaso Poggio
Lake Sabrina, Needham, Massachusetts
January 2026

Part I: Principles and Foundations

5

CHAPTER 1

Intelligence as Associative Memory

What if the secret of modern AI is not a mysterious spark, but a very old idea equipped with new ma-
chinery—associative memory? Transformers and large language models (LLMs) look less like monolithic

“brains” and more like carefully organized banks of memories addressable by content [195]. This perspective
connects classical radial basis function (RBF) networks—smooth, template-based responders from the 1980s
[24]—to modern attention mechanisms. With enough attention heads working together, these systems begin
to resemble a random-access Turing machine: they can retrieve the relevant context, bind it to the current
problem, and write back improved representations—iteratively and at scale.

Figure 1.1: Intelligence as an Associative Memory

Long before deep networks, RBF networks modeled cognition as template matching: a set of
prototypes is placed in feature space, and responses grow stronger as inputs approach a proto-
type—“association by similarity.” Intelligence, in this view, is largely the ability to retrieve the right
neighbors and combine them appropriately.

Transformers generalize this idea dramatically. Each attention head behaves like a learned,
anisotropic RBF—or, in the terminology of Poggio and Girosi [154], a Hyper-RBF:

6

1.1. BUILDING A TURING MACHINE WITH ATTENTION HEADS 7

• Query ≈ the current cue or question.

• Keys ≈ stored templates.

• Values ≈ retrieved contents associated with matching templates.

• Attention weights≈ soft, learned similarity—anisotropic, content-aware, and context-dependent.

Unlike classical RBFs with fixed centers and metrics, attention templates are dynamic: they move
and recombine across layers. Individual heads specialize—some track syntax, others entities, others
long-range dependencies—yielding an associative memory system with thousands of adaptive
kernels operating in parallel.

Operational schema (informal). Modern LLM blocks iterate a simple loop:

1. Content-addressable read: form a query from the current state and retrieve values from a
key–value store (self-attention).

2. Local update: apply a pointwise transformation (residual MLP) that writes information into
the hidden state.

3. Reuse: later layers re-address the updated state, compounding small steps into complex
behavior.

A rigorous associative variant of this loop suffices to simulate classical computation; see the
Associative Turing Machine (ATM) in Chap. 3, Thm. 1.

1.1 Building a Turing Machine with Attention Heads

An attention block in a transformer consists of multiple Hyper-RBFs—one per attention head.
Each Hyper-RBF receives as input the current token representation, while its centers correspond to
representations of previous tokens. A single head can retrieve a relevant neighbor; multiple heads
can coordinate read–write cycles over a shared latent memory:

• Random access. Heads allow the model to jump to any position whose content matches the
query, not merely the next symbol in a sequence. This is the defining property of RAM-like
computation.

• Working memory. Stacks of attention layers act as recurrent “micro-programs”: read from
content-addressable memory, transform, and write results into hidden states that later layers
can re-read.

• Learned controllers. Through next-token prediction, the network learns a distributed con-
troller that selects which heads to activate, what to retrieve, and how to update internal
scratchpads—entirely from data. Over time, it discovers algorithmic patterns such as copying,
counting, bracket matching, reference tracking, and multi-step reasoning.

In short, with sufficient depth and heads, attention implements a learned, differentiable Turing
machine with RAM-like lookup. The formal counterpart is the ATM model in Chap. 3, where
attention-style reads implement memory M2 and residual MLPs implement the local update M1.
Thm. 1 proves that any deterministic Turing machine can be simulated with only polynomial
overhead in associative reads and updates.

8 CHAPTER 1. INTELLIGENCE AS ASSOCIATIVE MEMORY

Cost line. Per computational “step,” the pattern is one content-addressable read plus one local
update. In a dense transformer processing a sequence of length n, this yields O(n2) attention time
per layer (or O(n) under effective sparsity), with O(n) memory for the key–value cache; depth
counts steps.

1.2 Connections to Other Models

Diffusion models [79] and state-space models (SSMs) [67] echo the same principle: intelligence as
learned transitions over latent states.

Diffusion models learn a small denoising operator—a local transition—that, when iterated,
reconstructs structure from noise. As we will see in another chapter this is similar to autoregressive
learning in transformers: the noising step provides a training set to leanr constituent function of
the oveall composiitonal function mapping noise into a pattern.

Mamba-style SSMs learn linear-plus-gated state updates that stream efficiently through se-
quences. They trade global random access for fast, structured memory, but the motif remains the
same: a learned transition repeatedly applied builds complex behavior.

Across transformers, diffusion models, and SSMs, the unifying theme is computation via
small, reliable steps (each one corresponding to a constituent function of the overall compositional
function) composed deeply over time—intelligence as iterated associative updates. For a formal
abstraction of this read/update pattern, see the ATM interface in Chap. 3.

1.3 Clarifying the Associative-Memory Lens

To sharpen the analogy, note that a classical extension of RBFs—sometimes called Hyper-RBFs in
the work of Poggio and Girosi—computes responses of the form

ϕi(x) = exp
(
− 1

2 (x− µi)⊤Σ−1
i (x− µi)

)
,

with centers µi and (possibly anisotropic) covariances Σi. In transformers, a single attention head
computes weights

αij = softmaxj

(
q⊤

i kj√
d

)
,

which can be interpreted as an adaptive, directional similarity between a query qi and keys {kj}.
The Hyper-RBF perspective emphasizes that attention not only selects neighbors by content, but
also composes values vj via

∑
j αijvj , enabling information binding and controlled routing across

layers. Unlike fixed kernels, (qi, kj , vj) are learned and contextually modulated at each layer,
yielding a programmable associative system.

1.3.1 HyperBF Equivalence: Attention as a Normalized HyperBF

Recent work [153] shows that if ∥q∥ = ∥ki∥ = 1 (or more generally after removing constant
offsets in the exponent), then the softmax of the dot product is exactly equivalent to a Gaussian
RBF kernel. Formally, one can rewrite the attention weights as

Attn(q, ki, vi) =
∑

i

exp
(
−∥q − ki∥2/(2σ2)

)∑
j exp(−∥q − kj∥2/(2σ2)) vi. (1.1)

1.4. MULTI-HEAD REQUIREMENTS FOR RAM-LIKE COMPUTATION 9

This is exactly the “normalized HyperBF” form:

ϕ(x) =
N∑

i=1

ciK
(
∥x− ti∥2W

)∑
j K(∥x− tj∥2W)

. (1.2)

Thus, an attention head is identical to a HyperBF unit:

Attention Head = Normalized HyperBF Network.

The Transformer’s most distinctive component is therefore a kernel-based associative memory.

1.4 Multi-Head Requirements for RAM-like Computation

Simulating random-access behavior typically requires:

1. Addressing capacity: multiple heads can pursue distinct hypotheses (e.g., short-range syntax
vs. long-range co-reference), increasing parallel lookup bandwidth.

2. Inter-head coordination: later layers can fuse evidence from earlier lookups, akin to multi-
ported memory where read results influence subsequent queries.

3. Write-back via states: while the external sequence is read-only, internal hidden states act as
a scratchpad. Layer-wise transformations serve as differentiable “writes” that downstream
layers can re-read.

This architecture approximates a controller+RAM setup where the controller is distributed across
layers and heads, and the RAM is realized by content-addressable keys/values and persistent
hidden activations.

1.5 On Diligence, Creativity, and Exploration

The “Diligent Learner” perspective [173] emphasizes systematic accumulation of competencies
under a stable objective. To move beyond local optima and enable novelty, augment training with:

• Exploration bonuses (curiosity-driven objectives) to valorize informative states.

• Evolutionary search over architectures or prompts to diversify computational primitives
(e.g., heads, value pathways).

• Self-curricula that stage tasks from easy to hard, ensuring stable acquisition while retaining
headroom for innovation.

In practice, diligence (exploitation) and creativity (exploration) are complementary regimes of the
same associative engine.

10 CHAPTER 1. INTELLIGENCE AS ASSOCIATIVE MEMORY

1.6 Question: How Can Transformers Be So Consistent?

Question. It is intuitive that transformers, functioning as associative memories, can retrieve related
facts, statements, words, or sentences. What is less intuitive is that they manage to be so consistent
in what they retrieve when prompted by a given prompt. How is this possible?

Answer. Transformers are trained as next-token predictors, not as explicit associative memories
enforcing global consistency. Yet, when prompted, they often produce coherent multi-sentence
responses that remain self-consistent over long spans. This property emerges from the interaction
of three underlying principles.

Figure 1.2: Schematic of manifold-constrained generation. A prompt initializes the hidden state in
the transformer’s energy landscape. Autoregressive decoding moves downhill along the manifold
of coherent continuations, staying within an attractor basin of semantically and syntactically
consistent states. Occasional deviations (e.g., high-temperature sampling) can push the trajectory
outside the manifold, leading to incoherence or hallucination.

1.7. MEMORIES 11

1.6.1 Global Consistency from Shared Latent Geometry

Each token representation depends on all previous tokens through the self-attention mechanism.
During training, the network learns a self-consistent geometry of latent embeddings, in which facts,
syntactic relations, and semantic associations lie on low-dimensional manifolds. When a prompt
is given, the hidden state—a superposition of keys, queries, and values—is confined to a region of
this manifold. Subsequent tokens are produced within the same geometric region, preserving
coherence until a stochastic deviation moves the sequence elsewhere.

This geometric constraint explains why transformers act as associative memories: attention
performs soft retrievals over an embedding space whose structure encodes factual and syntactic
consistency.

1.6.2 Self-Reinforcing Autoregression

At each generation step, the produced token is appended to the context and re-encoded. If early
outputs are coherent with the manifold, later predictions remain constrained to that region, forming
a self-reinforcing loop:

ht+1 = fθ(ht),

where ht represents the internal state and fθ the learned dynamics. As long as fθ maps a
neighborhood of coherent states onto itself,

fθ(M) ⊆M,

the system stays near an invariant manifoldM of consistent continuations. Hallucinations occur
when noise or sampling temperature pushes the state outside this manifold.

1.6.3 Emergent Consistency as Manifold-Constrained Recall

In summary, transformers behave as massive associative memories endowed with an implicit
energy landscape over text sequences. Prompting fixes part of a pattern; decoding completes it by
descending the energy surface within a structured manifold of coherent narratives. Consistency
emerges not from an explicit rule but from the geometry of the learned embedding space and the
self-stabilizing nature of autoregressive dynamics.

Consistency, in this view, is an emergent property of manifold-constrained associative recall.

1.7 Memories

Comparison: Kanerva’s Sparse Distributed Memory and hippocampal scaffolding. Kanerva’s
Sparse Distributed Memory (SDM) [92] provides a mathematical model of an associative memory
operating in a high-dimensional binary space. Each memory location corresponds to a randomly
chosen address vector, and recall is achieved by aggregating the stored contents of those locations ly-
ing within a fixed Hamming radius of the input cue. The SDM thus implements a high-dimensional
nearest-neighbor retrieval rule followed by averaging—a linear associative mechanism capable of
pattern completion and generalization.

In contrast, the hippocampus can be viewed as an anatomical and functional realization of an
associative scaffold that interacts hierarchically with cortical areas [121, 124]. The dentate gyrus
and CA3 subfields act as sparse coding and auto-associative modules, respectively: dentate granule
cells expand and sparsify cortical inputs, while recurrent collaterals in CA3 implement attractor

12 CHAPTER 1. INTELLIGENCE AS ASSOCIATIVE MEMORY

dynamics analogous to Kanerva’s distributed retrieval [84]. However, unlike SDM, hippocampal
circuits are embedded in a multilayer system in which the retrieved pattern serves as a scaffold for
cortical consolidation and reconstruction over time. In this sense, Kanerva’s SDM formalizes the
local, static properties of associative recall in a fixed high-dimensional space, whereas hippocampal
scaffolding realizes a dynamic, hierarchical memory system that not only retrieves associations but
also builds and reorganizes compositional representations across multiple levels of abstraction.

Storage efficiency. From an information-theoretic standpoint, Kanerva’s Sparse Distributed
Memory trades efficiency for robustness: its distributed addressing and heavy overlap between
stored patterns yield roughly 0.1–0.2 bits of recoverable information per synapse, comparable to
classical Hopfield networks [84]. The hippocampal scaffold, by contrast, combines sparse coding in
dentate gyrus with structured auto-association in CA3, reducing interference between unrelated
memories and increasing efficiency to an estimated 0.5–1.0 bits per synapse. This higher storage
efficiency reflects biological mechanisms of sparsification and hierarchical consolidation, suggesting
that cortical–hippocampal memory may implement an optimized, multi-layer variant of Kanerva’s
associative architecture.

Single-layer versus multi-layer compositional memory. Kanerva’s Sparse Distributed Memory
can be viewed as a single-layer associative map: it implements direct retrieval in a fixed high-
dimensional address space, effectively performing one-step interpolation among stored patterns.
Its architecture is flat—there is no hierarchy or composition of intermediate representations—so
it supports local generalization but not the construction of new representations from previously
stored parts. In contrast, the hippocampal scaffold embodies a multi-layer compositional memory.
Inputs from entorhinal cortex are expanded and sparsified in dentate gyrus, auto-associated
through recurrent CA3 dynamics, and then compressed and remapped in CA1 before being
reinstated to cortex. Each stage transforms and recombines representations from the preceding
one, forming a deep compositional DAG analogous to the architecture of a sparse multi-layer
network. This hierarchy enables both pattern completion and the flexible recombination of episodic
components—functions beyond the scope of a single-layer associative memory such as SDM. In this
sense, the hippocampal scaffold may be viewed as a biological precursor of transformer-like multi-layer
associative systems, implementing in neural hardware the same principle of hierarchical composition
that underlies modern deep architectures.

Parallel between hippocampal memory and transformer architectures. At a computational
level, the hippocampal memory circuit and transformer architectures share three key principles.
First, both perform associative retrieval: CA3 recurrent dynamics retrieve stored patterns based
on similarity to a partial cue, analogous to the attention mechanism retrieving values by the
similarity between queries and keys. Second, both implement a multi-layer compositional pipeline.
The hippocampal pathway—entorhinal cortex→ dentate gyrus→ CA3→ CA1—forms a stack of
low-arity transformations, closely paralleling the alternating attention and feed-forward (MLP)
blocks of a transformer. Each stage refines and recombines distributed representations from
the previous one, yielding deep compositional computation. Third, both systems maintain and
update context: in transformers through autoregressive conditioning on past tokens, and in the
hippocampus through recurrent replay and entorhinal feedback that integrate episodic context over
time. In this formal sense, the hippocampus can be regarded as a biological implementation of a
transformer-like associative architecture, one that achieves hierarchical composition and contextual
sequence generation through local neural plasticity rather than backpropagation.

CHAPTER 2

A Historical Reflection on Associative
Memories

This chapter is a historical and conceptual essay that follows the thesis introduced in Chapter 1. While
Chapter 1 frames intelligence directly as an associative process, the present chapter traces the origins of that
idea across biological evolution, early theoretical neuroscience, and modern artificial intelligence. Several
later chapters revisit these themes from different technical perspectives; the repetition is intentional.

2.1 Associative Memory as the Core of Intelligence

A rarely acknowledged but deep conceptual continuity runs from the earliest associative memories
in theoretical neuroscience to the core mechanisms of modern artificial intelligence. This essay
argues that associative memory is not an obsolete concept but a central computational primitive
underlying both biological and artificial intelligence. We trace a continuous line connecting (i) early
formal models of associative memories in the 1960s and 1970s [203, 99]; (ii) the role of monosy-
naptic reflexes and episodic binding in the evolution of animal intelligence; (iii) the emergence of
metric-based radial basis function (RBF) and hyperBF networks as powerful parametric associative
memories [154]; (iv) hippocampal indexing and scaffolding models; and (v) the attention mech-
anism in modern transformers, which can be interpreted mathematically as a high-dimensional
associative memory—a normalized, learnable hyperBF network [195].

2.2 Introduction

Associative memory—the ability to bind one pattern to another and later retrieve the bound
information from a full or partial cue—is among the earliest and most fundamental ideas in neural
computation. Yet despite its centrality, it is often treated as a historical precursor to modern deep
networks rather than as a principle that continues to shape state-of-the-art AI systems and biological
intelligence.

The core claim of this essay is that associative memory may be the primitive operation from
which intelligence emerges. Many major advances in both biological evolution and artificial intelli-
gence can be understood as refinements, extensions, or compositions of associative mechanisms.

13

14 CHAPTER 2. A HISTORICAL REFLECTION ON ASSOCIATIVE MEMORIES

Figure 2.1: The lineage of associative memory.

2.3 Historical Background

The modern notion of associative memory—a system storing pairs of patterns (xµ, yµ) such that
presentation of xµ retrieves yµ—emerged in the late 1960s and early 1970s. These early models
were explicitly concerned with capacity, robustness, and biological plausibility.

2.3.1 Early Heteroassociative Models

Willshaw and Longuet-Higgins introduced sparse binary heteroassociative memories with one-shot
learning and feedforward recall [203]. Kohonen subsequently formulated associative memory in
linear algebraic terms via correlation matrices [99],

W =
∑

µ

yµ(xµ)⊤, ŷ = Wx,

a formulation that already anticipates kernel regression and modern attention when normalization
is introduced.

2.3. HISTORICAL BACKGROUND 15

2.3.2 Nonlinear Associative Recall and Polynomial Expansions

A conceptually central contribution is Poggio’s formulation of associative recall as an operator esti-
mation problem (1973–1975) [146]. Given paired data matrices X and Y , the goal is to approximate

Y ≈ Θ(X)

via a polynomial expansion

Y = L0 + L1(X) + L2(X,X) + · · ·+ Lk(X, . . . ,X),

where Lℓ are symmetric multilinear operators. The linear term L1 = Y X† recovers Kohonen’s
memory, while higher-order terms provide systematic nonlinear corrections.

Defining the residual after removing the approximation up to order k − 1 as Ek−1 = Y −∑k−1
ℓ=0 Lℓ(X, . . . ,X), the optimal kth-order correction is given by:

Lk = Ek−1C
†
k,

where Ck is the “k-way” lifted tensor of inputs defined by (Ck)α1···αk,j =
∏k

t=1Xαtj .

Implicit introduction of polynomial kernels. Viewed retrospectively, this framework implicitly
introduces polynomial feature maps and kernels. The polynomial expansion can be reinterpreted
as an explicit feature map Φk(x) containing all monomials of degree up to k. The corresponding
kernel

Kk(x, x′) = ⟨Φk(x),Φk(x′)⟩ = (1 + x⊤x′)k

appears here well before it became standard in the Support Vector Machine literature. Conceptually,
this framework unifies linear associative memories with nonlinear function approximation and lies
closer to modern attention mechanisms than later autoassociative Hopfield networks.

2.3.3 Correlation Memories, RBFs, and HyperBFs

Palm formalized correlation-based associative memories with capacity and error-correction guar-
antees [139]. Later, Poggio and Girosi introduced radial basis function networks [154],

f(x) =
∑

µ

αµϕ(∥x− xµ∥),

and their generalization to HyperBFs with learned metrics. These architectures realize smooth,
metric-based associative mappings.

2.3.4 Hopfield Networks as a Special Case

Hopfield networks introduced attractor dynamics for autoassociative recall [84]. While historically
influential, they are a relatively narrow subclass: they are purely autoassociative, rely on symmetric
weights, and lack the content-addressable key–value structure central to transformers. Transformers
trace their lineage far more directly to the heteroassociative (Willshaw, Kohonen) and metric-based
(RBF) models.

16 CHAPTER 2. A HISTORICAL REFLECTION ON ASSOCIATIVE MEMORIES

2.4 Genericity as the Hidden Enabler of Associative Memories

A striking feature of the associative memory models surveyed in this chapter is that they work
remarkably well in practice despite weak worst-case guarantees. This empirical success has a
common, often unstated explanation: the targets they operate on are generic.

In Poggio’s polynomial operator expansion, low-order terms capture most of the signal, while
higher-order corrections rapidly diminish in magnitude. Similarly, in correlation memories and
RBF networks, nearby patterns dominate recall. These facts are not architectural accidents; they
reflect a property of the world.

Genericity—the absence of exact algebraic cancellations and pathological symmetries—ensures
that meaningful associations leave stable, low-degree statistical footprints. As a result, associative
recall is driven by strong linear and quadratic components, with higher-order terms acting as small
refinements rather than essential structure.

From this perspective, associative memory is computationally viable not because it can represent
arbitrary functions, but because the functions of interest in perception, action, and cognition are
generically simple when viewed in the right coordinates. This insight anticipates modern results
on optimization cliffs and staircases: when low-degree structure is present, learning and retrieval
proceed smoothly; when it is absent, they fail catastrophically.

Thus, genericity is the silent partner of associative memory, explaining why these models have
repeatedly reappeared across biology, neuroscience, and artificial intelligence.

2.5 Evolutionary Perspective

From an evolutionary standpoint, associative memory is the simplest mechanism capable of linking
perception to action. Monosynaptic reflex arcs implement the mapping

xsensory 7→ ymotor,

the biological analog of heteroassociative memories.

Stimulus
Sensory
Neuron

(x)

Motor
Neuron

(y)
Response

Synapse (W)

Neural Circuit

Figure 2.2: The Monosynaptic Reflex Arc. In this biological model of a simple associative memory,
a sensory input signal (x) is transmitted across a synapse (W) to trigger a motor output (y).

The introduction of feedback pathways enabled refinement and optimization of intermediate
representations. Recent models such as Self-Assembling Learning (SAL) illustrate how local
plasticity can self-organize into optimization circuits [147].

2.5.1 From Reflexes to Multi-Stage Adaptive Hierarchies

The evolutionary narrative likely follows this progression:

1. Reflexes (single synapse): Hardwired sensorimotor associations appear first. They are
one-shot heteroassociations.

2.6. MODERN PARALLELS: TRANSFORMERS AS ASSOCIATIVE MEMORIES 17

2. Plastic reflex circuits: Heterosynaptic and Hebbian mechanisms allow these arcs to adapt
with experience.

3. Two-stage loops: Evolution introduces crude feedback pathways (ascending + descending),
enabling multi-step refinement.

4. Self-assembly of learning circuits: As shown by the SAL model, random upstream/downstream
pathways with plastic cross-links can self-organize into effective SGD-like optimization cir-
cuits without explicit genetic specification of backpropagation.

5. Cortical scaffolding: The hippocampus provides episodic heteroassociation and indexing,
allowing the cortex to gradually internalize stable associations.

2.6 Modern Parallels: Transformers as Associative Memories

The attention mechanism at the core of transformers [195],

Attn(q,K, V) = softmax
(
qK⊤

σ2

)
V,

is a normalized kernel-based associative memory. Under mild assumptions, it is equivalent to a
Gaussian hyperBF: ∑

i

exp
(
−∥q − ki∥2/2σ2)∑

j exp(−∥q − kj∥2/2σ2) vi.

Thus, a Transformer layer is a composition of two associative memories:

Transformer Layer = HyperBFsample→sample︸ ︷︷ ︸
Self-Attention

◦ HyperBFsample→center︸ ︷︷ ︸
Feedforward Layer

.

2.7 What Associative Memory Does—and Does Not—Explain

The historical continuity traced in this chapter establishes associative memory as a central compu-
tational primitive of intelligence. However, associative memory alone is not sufficient to explain
the full phenomenology of intelligent behavior.

Associative memories excel at binding, retrieval, and generalization from partial cues. They
provide robustness, noise tolerance, and graceful degradation—properties shared by both biological
brains and modern transformers. Yet, in isolation, they lack three essential capabilities.

First, associative memories are fundamentally atemporal. They retrieve patterns, but they do not
represent persistent latent state evolving over time. Without an explicit dynamical system layered
on top, there is no notion of trajectory, causation, or planning.

Second, associative memories do not by themselves enforce modular reuse. While they can
store many associations, nothing prevents those associations from becoming globally entangled,
inhibiting efficient composition across tasks.

Third, associative memories do not provide a mechanism for long-term accumulation of structure.
Without an external memory or consolidation process, new associations overwrite or interfere with
old ones.

18 CHAPTER 2. A HISTORICAL REFLECTION ON ASSOCIATIVE MEMORIES

Query (Q) Key (K) Value (V)

MatMul
QKT

Scale
1/
√
dk

Softmax

MatMul
×V

Output
Attention(Q,K, V)

Computes sim-
ilarity scores
(Weights)

Weighted sum
of Values

Figure 2.3: The Transformer Attention Mechanism. The Query (Q) and Key (K) interact to compute
similarity weights. These weights are then used to retrieve a specific mixture of the stored Values
(V).

Transformers inherit all three limitations. They are extraordinarily powerful associative mem-
ories, but they lack persistent state, explicit world dynamics, and long-term architectural reuse.
These missing elements are addressed in later chapters through Associative Turing Machines, Large
Embedding Models, and sparse compositional architectures.

2.7.1 Experimental Evidence from Homogeneous HyperBF Transformers

This equivalence is not merely theoretical. Recent work constructs a “homogeneous” architecture
in which all nonlinear components of a standard Vision Transformer (ViT)—both the self-attention
blocks and the MLP blocks—are replaced by explicit HyperBF modules.

Experiments on standard image classification benchmarks show that the HyperBF-only models
closely match the performance of a baseline ViT with comparable depth, width, and number of
heads. For example, on CIFAR and Tiny ImageNet:

Dataset ViT Acc. (%) HyperBF Acc. (%) Gap (%)
CIFAR10 75.61 75.12 0.49
CIFAR100 49.90 48.30 1.60
Tiny ImageNet 32.03 31.14 0.89

2.8. CONCLUSION 19

This provides concrete empirical evidence that the transformer block is, in practice as well as
theory, a composition of associative memory modules.

2.8 Conclusion

Viewed historically, evolutionarily, and computationally, associative memory is not a recurring
solution—found across decades and disciplines—to the problem of building systems that can
learn, generalize, and scale. From reflex arcs to hippocampal scaffolding to transformer attention,
associative memory appears not at the periphery of intelligence, but at its origin.

CHAPTER 3

Associative Memories are
Turing-Complete

In Chapter 2, we viewed associative memory as a biological primitive. Here, we demonstrate
its computational universality. We formalize an Associative Turing Machine (ATM)—a
computation model built entirely from content-addressable memory interactions and local
updates. We provide precise semantics, a cost model, and a Turing-equivalence theorem.
This formalism bridges the gap between classical computability and modern Deep Learning,
suggesting that Transformers are not just statistical correlators, but programmable computers
trained via gradient descent.

Figure 3.1:

20

3.1. INTRODUCTION 21

3.1 Introduction

A common criticism of Deep Learning, particularly of large language models, is that they are
merely “stochastic parrots”—statistical mimics lacking genuine reasoning capabilities. However,
from a formal perspective, the architecture underlying these models—the Transformer [195]—bears
a striking resemblance to a programmable computer.

To make this rigorous, we must define a computational model based not on logic gates or
pointers, but on continuous associative retrieval modules.

An Associative Turing Machine (ATM) factors each computational step into two primitives:

1. Content-Addressable Read (The Memory): Given a query vector q, the system reads a convex
combination of values whose keys are most similar to q in a learned metric. This replaces the
“pointer-based” lookup of RAM and relates directly to classical kernel methods (see [24, 154]).

2. Local Update (The Processor): A pointwise transformation is applied to the current state and
the retrieved value to generate the next state. This corresponds to the transition function of a
classical Turing machine.

Iterating “read→ update” realizes algorithmic programs. In this chapter, we prove that this
mechanism is sufficient to simulate any deterministic Turing machine with polynomial overhead,
providing a theoretical foundation for the algorithmic capabilities of attention-based architectures
(see [163]).

3.2 Model: States, Memories, Reads, and Updates

3.2.1 State Space and Encodings

Let Σ be a finite tape alphabet with blank symbol ⊔, Q a finite set of control states, and let classical
Turing machine configurations be triples (q, h, T) ∈ Q× Z× ΣZ.

To map this discrete structure into the continuous vector space of neural networks, we fix an
encoding:

Enc : Q× Z× ΣZ → V ⊆ Rdx , Dec : V ⊇ D → Q× Z× ΣZ, (3.1)

where V is a bounded subset (e.g., a product of simplices) and Dec is a partial inverse defined on a
decoding domain D ⊆ V . The machine state at step t is xt ∈ V .

3.2.2 Associative Memory Interface (Mprog)

The core of the ATM is the memoryMprog, which stores the “program” (transition table). It is a
finite multiset of key–value pairs

Mprog = {(ki, vi)}Ni=1 ⊂ Rdk × Rdv .

Given a query q ∈ Rdk and temperature τ > 0, define the softmax read operation:

readτ (q;Mprog) =
N∑

i=1
αi(q) vi, αi(q) =

exp
(
⟨q̂, k̂i⟩/τ

)
∑N

j=1 exp
(
⟨q̂, k̂j⟩/τ

) . (3.2)

As τ → 0, this mechanism converges to a hard nearest-neighbor lookup, connecting the model
to classical associative memories and Sparse Distributed Memory [92]. However, for finite τ , the
read operation is fully differentiable.

22 CHAPTER 3. ASSOCIATIVE MEMORIES ARE TURING-COMPLETE

State xt
Query Map

Qmap

Memory
Mprog

Softmax
Read

Update
M1

xt qt

Keys/Values

rt

xt+1

Figure 3.2: Schematic of an Associative Turing Machine (ATM). The cycle consists of generating
a query from the current state, retrieving instructions or data from the associative memory, and
updating the state via a transition function.

3.2.3 Transition Update (M1) and Query Map

The machine operates in discrete time. Let Qmap : V → Rdk be a function that forms a query from
the current state. The local update rule is:

xt+1 = M1(xt, rt), rt = readτ (Qmap(xt);Mprog). (3.3)

We assume M1 (the “CPU”) is a Lipschitz-continuous function, typically realized by a Multi-Layer
Perceptron (MLP) as in standard Transformer blocks.

3.3 From Turing Machines to ATMs

How do we simulate a discrete symbol-manipulating machine with continuous vectors? Let
T = (Q,Σ, δ, q0, qhalt) be a deterministic single-tape Turing machine.

3.3.1 Embedding the Tape

The infinite tape of a Turing machine cannot be stored in a fixed-size vector xt using a naive
encoding. Instead, we employ a fractional encoding (analogous to a two-stack simulation).

We view the tape as two stacks: one to the left of the head and one to the right. Each stack can
be encoded as a rational number S ∈ [0, 1) using a base-N representation, where N = |Σ|. Pushing
and popping symbols corresponds to affine transformations (multiplying by N or 1/N and adding
offsets). In the vector space Rdx , these operations are realized by linear maps within the update
function M1. This follows the tradition of simulating automata with dynamical systems.

3.3.2 Embedding the Transition Table

The logic of the Turing machine is stored in the associative memory. We define a binding map
B : Q× Σ→ Rdk that converts a (state, symbol) pair into a query key. We populate the memory
with:

Mprog =
{
(kq,s, vq,s) : kq,s = B(q, s), vq,s = pack(δ(q, s))

}
.

Here, vq,s encodes the action: the new state, the symbol to write, and the direction to move.

3.4. MAIN THEOREM AND PROOF SKETCH 23

3.4 Main Theorem and Proof Sketch

Theorem 1 (ATM ≡ TM, Polynomial Overhead). For every deterministic Turing machine T and input
x, there exists a uniform ATM that halts iff T halts. If T halts in t steps, the ATM halts in O(t) operations
with polynomial precision overhead.

3.4.1 Proof Intuition

The proof relies on two key properties:

1. Separability of Keys: We can choose the embedding dimension dk high enough such that all
valid query keys B(q, s) are well-separated on the sphere.

2. Concentration of Attention: For a sufficiently small temperature τ , the softmax operation
αi(q) places 1− ϵ of its mass on the single key closest to the query.

The update function M1 is designed to be robust to this ϵ-noise. Because the tape encoding is
contractive (pushing symbols moves the stack value by smaller and smaller increments), errors
do not accumulate catastrophically if the machine periodically “cleans up” its representation—a
process akin to digital logic restoration in analog circuits.

3.5 Structural Correspondence to the Transformer

To ground the ATM formalism, we explicitly map its mathematical primitives to the standard layers
of the Transformer architecture [195]. This mapping demonstrates that a Transformer block is a
physical realization of an associative computational cycle.

3.5.1 The Memory (Mprog) and Query Map (Qmap)

In the ATM, the program logic is stored in a multiset of key-value pairs. In a Transformer, this
corresponds to the Key (K) and Value (V) matrices.

• The Query Projection (WQ) acts as the Qmap, transforming the current residual state into a
search query.

• The Keys (K) represent the "addresses" or conditions in the transition table.

• The Values (V) represent the "instructions" or candidate next-states.

3.5.2 The Read Operation (readτ)

The Self-Attention mechanism, specifically the scaled dot-product followed by a softmax, is the
architectural implementation of the ATM’s readτ operation. It performs a differentiable, similarity-
based retrieval of information from the contextual memory. Notice that this frames learning
(gradient descent) as the process of "writing" a program into the K and V matrices.

3.5.3 The Update Function (M1)

The Feed-Forward Network (FFN) plays the role of the transition function M1. While attention
routes information, the FFN processes it, taking the current state and the retrieved value to compute
the next machine state. In this view, the FFN acts as the "CPU" of the machine, while the attention
layers act as the "Addressable Memory".

24 CHAPTER 3. ASSOCIATIVE MEMORIES ARE TURING-COMPLETE

ATM Primitive Transformer Layer Computational Role
Query Map Qmap Query Projection WQ State-to-Address Translation
MemoryMprog Keys (K) & Values (V) Program Logic Storage
Read readτ Self-Attention Layer Associative Data Retrieval
Update M1 Feed-Forward Net (FFN) Transition Execution

Table 3.1: Structural mapping between the Associative Turing Machine and Transformer modules.

3.6 The Transformer as an Associative Turing Machine

The theoretical ATM model aligns precisely with the standard Transformer block defined by [195].
We can now explicitly map the mathematical components of the ATM to the specific layers of the
Transformer architecture.

3.6.1 The Update Function (M1) corresponds to the Feed-Forward Network

In the ATM, the state update is given by xt+1 = M1(xt, rt). In a Transformer block, this role is
played by the Feed-Forward Network (FFN).

The FFN acts as the processing unit (or “CPU”) of the machine. It takes the information
retrieved by the attention mechanism (the context) and the current residual state, applying non-
linear transformations to compute the next representation.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (3.4)

Functionally, while the attention mechanism routes information (finding where data is), the FFN
processes it (calculating what it means).

3.6.2 The Memory (Mprog) corresponds to Keys and Values

The associative memoryMprog consists of key-value pairs used to store the transition logic. In the
Transformer, this is realized by the Key (K) and Value (V) matrices in the Self-Attention layer.

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (3.5)

Here, the Keys (K) represent the “addresses” or conditions in the transition table, while the Values
(V) represent the “instructions” or next-state candidates. The network learns these matrices via
gradient descent, effectively writing its own program into the weights WK and WV .

3.6.3 Summary of Correspondence

The following table summarizes the structural equivalence:

3.7 Technical Note: Why Standard RNNs Are Not Associative Turing
Machines

This appendix clarifies the computational power of autonomous recurrent neural networks (RNNs)
[176] and their relationship to finite-state machines and Turing machines. The results here motivate
the explicit-memory construction of Associative Turing Machines (ATMs) in this chapter.

3.7. TECHNICAL NOTE: WHY STANDARD RNNS ARE NOT ASSOCIATIVE TURING MACHINES25

ATM Component Transformer Layer Computational Role
Query Map (Qmap) Query Projection (WQ) Creates the search query from state.
Memory (Mprog) Keys (K) & Values (V) Stores the program rules/logic.
Read (readτ) Attention Mechanism Retrieves relevant instructions.
Update (M1) Feed-Forward Network Processes info and updates state.

Table 3.2: Mapping between Associative Turing Machine primitives and Transformer modules.

3.7.1 Autonomous RNN model

We consider an autonomous RNN of the form

ht+1 = ϕ(Wht + b), ht ∈ Rd, (3.6)

where W ∈ Rd×d, b ∈ Rd, and ϕ is a fixed componentwise nonlinearity (e.g. tanh, sigmoid, or
ReLU). No external input is provided; all computation is carried by the state.

Unrolling (3.6) shows that the network computes an iterated map

hT = F (T)(h0), F (h) := ϕ(Wh+ b),

so time corresponds to depth, with weight sharing across iterations.

3.7.2 Simulation of finite-state machines

Let A = (Q, δ) be a deterministic finite-state machine with |Q| = m and transition function
δ : Q→ Q.

State embedding. Embed each state qi ∈ Q as a vector ei ∈ Rm, for example as canonical basis
vectors or vertices of a simplex.

Transition realization. Since δ is a finite lookup table, there exist parameters (W, b) such that

ϕ(Wei + b) ≈ eδ(i), i = 1, . . . ,m,

with arbitrarily small approximation error.

Conclusion. For suitable initialization h0 = eq0 ,

ht ≈ eqt for all t,

and the RNN simulates the finite-state machine exactly up to a prescribed precision.

Proposition 1. Any deterministic finite-state machine can be simulated by an autonomous RNN of the
form (3.6), with arbitrary accuracy.

3.7.3 Turing machines restricted to a finite time horizon

Let T be a deterministic single-tape Turing machine, and suppose its execution is restricted to at
most T steps on a given input.

26 CHAPTER 3. ASSOCIATIVE MEMORIES ARE TURING-COMPLETE

Finite configuration space. In T steps, the machine can visit only O(T) tape cells. The set of
reachable configurations

CT = {(q, h, τ)}

(control state, head position, and tape contents) is therefore finite.
The restricted Turing machine induces a transition function

Ct+1 = ∆(Ct), Ct ∈ CT ,

which is a finite-state dynamical system.

Encoding and simulation. As in the finite-state case, encode each configuration Ci ∈ CT as a
vector vi ∈ Rd. Since CT is finite, there exist RNN parameters such that

ϕ(Wvi + b) ≈ v∆(i).

Proposition 2. For any deterministic Turing machine and any fixed time horizon T , there exists an
autonomous RNN that simulates the machine’s computation for all t ≤ T , up to arbitrary precision.

3.7.4 Why the time bound is essential

The restriction to a fixed horizon T is fundamental.

Unbounded memory growth. An unrestricted Turing machine may access arbitrarily many tape
cells. A fixed finite-dimensional state ht ∈ Rd cannot robustly encode an unbounded tape without
increasing precision requirements.

Error accumulation. Let L be a Lipschitz constant of F . Perturbations satisfy

∥ht − h̃t∥ ≤ Lt∥h0 − h̃0∥,

so stable long-term simulation requires either contraction or exponentially growing precision.

Conclusion. Autonomous RNNs can simulate Turing machines only in a time-bounded sense,
where the computation reduces to a large but finite-state transition system.

3.7.5 Comparison with Associative Turing Machines

This limitation motivates the explicit-memory construction of ATMs.

Model Memory TM simulation Robustness

Autonomous RNN implicit (weights) FSM, TM up to fixed T limited
RNN with input implicit + stream partial limited
ATM x explicit associative memory full TM polynomial overhead

ATMs avoid state compression by storing tape symbols and transition logic explicitly in asso-
ciative memory. Each computational step consists of a similarity-based read followed by a local
update, preventing unbounded growth of state dimension or precision.

3.7. TECHNICAL NOTE: WHY STANDARD RNNS ARE NOT ASSOCIATIVE TURING MACHINES27

Lemma 1 (State-dependent simulation by a fixed recurrent map). Let S be a finite set of states and let

∆ : S → S

be an arbitrary deterministic transition function. Then there exists a dimension d and a continuous map

F : Rd → Rd

(realizable, for example, by a single-layer recurrent neural network with a standard nonlinearity) together
with an injective encoding

Enc : S → Rd

such that
F (Enc(s)) = Enc(∆(s)) for all s ∈ S.

In particular, iteration of the same transition map F simulates the (possibly state-dependent) transition
system ∆ exactly on the embedded states.

Proof. Since S is finite, choose an injective encoding Enc(s) = vs ∈ Rd, for example as vertices of a
simplex or canonical basis vectors. Define a target function

G(vs) := v∆(s) for all s ∈ S.

Because G is specified only on a finite set of input points, there exists a continuous extension F :
Rd → Rd such that F (vs) = G(vs) for all s. Moreover, such an F can be realized (or approximated
arbitrarily closely) by a neural network of fixed architecture with standard nonlinearities, by
universal approximation on finite domains.

Therefore, for any initial state s0 ∈ S,

F (t)(Enc(s0)) = Enc(∆(t)(s0)) for all t ≥ 0,

where F (t) denotes t-fold composition of F . The transition rule is time-invariant; all effective state
dependence is encoded in the location of the state vector in Rd.

Takeaway. Autonomous RNNs demonstrate that iteration of a fixed nonlinear map suffices for
finite-state and time-bounded computation. Associative Turing Machines extend this idea by
introducing explicit, addressable memory, enabling robust and efficient simulation of unbounded
algorithms.

CHAPTER 4

Efficient Computability and
Compositional Sparsity

This chapter builds a precise bridge between efficient computability (polynomial-time Turing computation
under explicit precision and uniformity models) and compositional sparsity (bounded-fan-in computa-
tion DAGs). Compositional sparsity of a target function is well known to imply that there is no curse of
dimensionality when the approximation is via a multi-layer deep network [128, 157]. The far reaching
consequences include: (i) small bounded-fan-in circuits, (ii) exact deep-net realizations on discrete domains
(iii) justification of deep nets as universal parametric approximants with non-exponential number of pa-
rameters. We also formulate a conditional equivalence among several “associative-memory” mechanisms
(attention, Gaussian RBFs, modern Hopfield nets, Kanerva’s SDM) as instances of a normalized-similarity
read under stated assumptions, and we separate exponential addressability (codebook cardinality) from
linear superpositional storage limits via random spherical codes and a CRT/grid-cell example.

Figure 4.1:

28

4.1. PERSPECTIVE AND SCOPE 29

4.1 Perspective and Scope

This chapter develops a precise bridge between efficient computability and compositional sparsity.
The central structural claim is that functions which can be computed or learned in practice by
digital systems are not generic high-dimensional mappings, but belong to a highly constrained
class admitting bounded–fan-in compositional representations.

Informally, the message is:

Efficient computability on discrete grids =⇒ bounded–fan-in computation DAGs,

and, for continuous targets,

Efficient computability+computable modulus/conditioning+compositional sparsity =⇒ dimension-robust deep approximations.

This perspective provides a unified explanation for several empirical and theoretical observa-
tions that otherwise appear disconnected: why deep networks can avoid the curse of dimensionality,
why optimization remains tractable despite nonconvexity, and why generalization often exceeds
what classical capacity-based measures would predict.

Efficient computability as a structural restriction. Throughout this chapter, efficient computability
is understood in the standard Church–Turing sense: a function is efficiently computable if there
exists a deterministic Turing machine that evaluates it in polynomial time, given explicit input
precision and output tolerance [191, 177]. This notion captures what can be computed in practice
by ordinary digital computers.

A key observation—made precise in the sections that follow—is that efficient computability is
not merely a constraint on runtime. It is a strong structural restriction on the class of admissible
functions. Any efficiently computable function can be unfolded into a computation DAG of
polynomial size and bounded local fan-in. This bounded fan-in property is exactly what we call
compositional sparsity.

Thus, compositional sparsity is not an architectural preference or inductive bias introduced by
deep learning practitioners. It is an unavoidable consequence of efficient computation itself.

From Turing machines to deep networks. The formal results in this chapter show that efficiently
computable Boolean functions admit P-uniform bounded–fan-in circuits [35, 8], and that their
real-valued counterparts—when equipped with explicit precision models and mild regularity
assumptions—admit deep ReLU realizations with polynomial size and depth. On discrete grids,
these realizations are exact; on continuous domains, dimension-robust approximation rates require
bounded local arity [209].

In this sense, deep networks with sparse connectivity are not merely universal approximators.
They are the natural computational normal form of efficiently computable functions. They are also the
natural parametric form to be used to represent a function to be learned.

Consequences for learning. Compositional sparsity explains three central properties of modern
learning systems:

1. Approximation. Sparse compositional structure eliminates the exponential dependence on
ambient dimension that characterizes generic function classes, thereby avoiding the curse of
dimensionality.

30 CHAPTER 4. EFFICIENT COMPUTABILITY AND COMPOSITIONAL SPARSITY

2. Optimization. Bounded local dependencies constrain gradient flow and prevent the combi-
natorial explosion of interactions that would otherwise make optimization intractable. While
training may require overparameterization, the learned solution typically concentrates on a
sparse compositional core.

3. Generalization. The effective complexity of a compositionally sparse hypothesis class scales
with the arity and complexity of its constituents, not with the total input dimension, yielding
tighter generalization bounds when sparsity is taken into account [182].

These effects follow from structure alone and do not depend on specific choices of activation
functions or architectures.

Associative memory as a unifying mechanism. At the level of computational primitives, many
apparently distinct mechanisms— attention, Gaussian RBFs [154], modern Hopfield networks [163],
and sparse distributed memory [92]— can be viewed as instances of a normalized similarity read,
under explicit assumptions. Each such read constitutes an admissible bounded-arity node in a
compositional DAG. Stacking these primitives yields deep architectures that are simultaneously
expressive, optimizable, and compatible with efficient computability.

A key clarification made later in this chapter is the distinction between exponential addressability
(the size of a codebook of keys) and linear superpositional storage (the number of items reliably retriev-
able from a single superposition). Confusing these notions has led to persistent misinterpretations
of associative memory capacity [93].

Implications for artificial vs. biological intelligence. Because all artificial intelligence systems
are implemented on digital computers, every function they realize is efficiently computable by
construction. The theory developed here therefore applies fully to machine learning systems: any
function learned or executed by an AI model must admit a compositionally sparse representation,
even if that structure is not explicit in the trained architecture.

The situation is more subtle for biological intelligence. The physical Church–Turing thesis
asserts that biological processes are, in principle, Turing computable. It does not assert that they are
efficiently computable. Some biological processes—particularly those involving tightly coupled
continuous dynamics, affective states, or homeostatic regulation—may be computable only with
exponential resources when simulated digitally. Such processes may therefore fall outside the class
of functions that can be learned or approximated efficiently by deep networks.

This distinction suggests a non-obvious but instructive asymmetry: higher-level cognitive
functions such as language and abstraction, which exhibit strong hierarchical and compositional
structure, may be more accessible to efficient computational modeling than some evolutionarily
older processes.

A falsifiable prediction. If efficient computability implies compositional sparsity, then the con-
stituent functions implemented by modern architectures must have bounded local arity. In trans-
formers, this implies that the feed-forward (MLP) blocks implement low-arity constituents. Con-
cretely, after suitable permutations of coordinates, the linear maps in each MLP layer should admit
block-sparse or column-sparse representations, with sparsity controlled by constituent arity rather
than model width.

This yields a concrete, testable prediction: at fixed accuracy, transformer MLP weights should be
prunable to sparsity levels determined by local arity (up to logarithmic factors), with corresponding

4.2. DEFINITIONS AND MODEL CONVENTIONS 31

improvements in norm-based generalization bounds. Emerging empirical evidence of extreme but
structured prunability is consistent with this prediction.

The remainder of this chapter provides formal definitions, precise theorems, and explicit
constructions that substantiate the claims made in this perspective.

4.2 Definitions and model conventions

Base node classes. Unless otherwise stated, we use one of the following bases for internal nodes
with arity ≤ k:

• Boolean base: gates over {±1}with fan-in≤ k from a fixed finite basis (e.g., {AND,OR,NOT})
and free fan-out.

• ReLU base: affine+ReLU nodes with at most k inputs, real weights with specified precision,
and free fan-out.

We indicate explicitly when a different base is used.

4.2.1 Efficient computability (Boolean and real-valued)

Definition 1 (Efficient computability; Boolean). Let {fn : {0, 1}n→{0, 1}}n≥1. The family is effi-
ciently computable if there exists a deterministic Turing machine M and a polynomial p such that M(x)
halts within p(n) steps and outputs fn(x) for all x. Equivalently, there exists a P-uniform Boolean circuit
family {Cn} of size poly(n) computing fn.

Definition 2 (Efficient ε-computability; real-valued (bit/TTE model)). Let f : [0, 1]d→ Rm. An
input x is presented via an oracle returning b-bit dyadics, and the target tolerance is ε = 2−m′ . We say f
is efficiently computable if there is a deterministic TM M running in time poly(d, b,m′) on (x, ε) that
outputs y with ∥y − f(x)∥ ≤ ε and with output bit-length poly(d, b,m′). When needed, we assume a
computable modulus of continuity and a polynomially bounded condition number on [0, 1]d.

4.2.2 Computation DAGs and compositional sparsity

Definition 3 (Computation DAG). A computation DAG G = (V,E) has input nodes In, internal nodes
Int, and output nodes Out. Each v ∈ Int has parent set pa(v) of size at most k (the fan-in) and computes a
map ϕv on the Cartesian product of its parents’ state spaces. The size is s(G) = |Int| and the depth L(G) is
the longest input-to-output path length.

Definition 4 (Exact and approximate compositional sparsity). Fix a base node class F≤k. A function
f : [0, 1]d→Rm is exactly (k, s, L)-compositionally sparse if f = ΦG for some DAG G with fan-in
≤ k, size ≤ s, depth ≤ L, and ϕv ∈ F≤k at each internal node. Given a function norm ∥ · ∥X , f is
(k, s, L, ε)-compositionally sparse if there exists such a G with ∥f − ΦG∥X ≤ ε.

Uniformity and precision. Circuit/DAG families are assumed P-uniform. For real-valued bases,
weights/activations are quantized to poly(log(1/ε)) bits as specified in the constructions.

32 CHAPTER 4. EFFICIENT COMPUTABILITY AND COMPOSITIONAL SPARSITY

4.3 Efficient computability⇒ compositional sparsity

4.3.1 Boolean case

Theorem 2 (TM⇒ circuit; bounded fan-in with uniformity and bounds). If fn : {0, 1}n→{0, 1} is
computable in time T (n) = poly(n), then there exists a P-uniform circuit family over {AND,OR,NOT}
with fan-in ≤ 2, depth L(n) = O(T (n)), and size s(n) = O(T (n) log T (n)) that computes fn. Hence
fn ∈ CS2(s(n), L(n)).

Proof sketch. Space–time tableau unrolled in time; each cell at time t+1 depends on O(1) cells at
time t. Implement via constant-size gadgets, layer by layer. Clocking/addressing induce the
O(log T) overhead in size. The gate list and wiring are produced in time poly(T (n)).

4.3.2 Real-valued case: safe discrete-grid result and conditional continuous result

Theorem 3 (Bit-grid deep realization; safe version). Let f : [0, 1]d→ Rm be efficiently computable
in time poly(d, n, log(1/ε)) on inputs from the n-bit grid Gn := {0, 1, . . . , 2n}d/2n. Then there exists
a feedforward network Φ over the ReLU base, organized as a constant-fan-in DAG, of size and depth
poly(d, n, log(1/ε)) such that

max
x∈Gn

∥Φ(x)− f(x)∥ ≤ ε.

Moreover, the weights can be quantized to O(log(1/ε)) bits without changing the bound.

x1 x2 x3 x4

g1 g2

f

x1 x2 x3

Fgeneric

Output

(a) Compositionally Sparse
(b) Generic / Dense

Bounded
Fan-in k = 2

Exponential
complexity
in d

Figure 4.2: The Structural Consequence of Efficient Computability. (a) An efficiently computable
function unfolds into a hierarchically structured DAG with bounded local fan-in. This composi-
tional sparsity avoids the curse of dimensionality. (b) A generic function typically requires a dense,
unstructured representation where complexity scales exponentially with input dimension.

Theorem 4 (Continuous approximation; conditional on modulus/conditioning). Let f : [0, 1]d→Rm

be efficiently computable with a polynomially computable modulus of continuity and polynomially bounded
conditioning on [0, 1]d. If, in addition, f is (k, s, L)-compositionally sparse (bounded local arity k) or admits
a (k, s, L) approximation at tolerance ε/2, then there exists a ReLU network Φε with constant fan-in and

∥Φε − f∥X ≤ ε, size, depth = poly
(
d, k, L, log(1/ε)

)
.

4.4. CONSEQUENCES AND REALIZATIONS 33

Dimension-robust log(1/ε) rates require bounded local arity k (compositional sparsity); in general, the curse
remains [157].

Stability under depth. If each node is L-Lipschitz and per-node approximation error is δ, then
over depth D the end-to-end error is ≤ δ LD−1

L−1 (linear in D if L ≤ 1). We set δ = O(ε/D) to
guarantee total error ≤ ε.

4.4 Consequences and realizations

4.4.1 Small circuits (tautological)

If f ∈ CSk(s, L) then, by definition, f has a bounded-fan-in circuit of size s and depth L.

4.4.2 Exact deep-ReLU realizations on discrete domains

Lemma 2 (ReLU gadgets for Boolean gates). For any fixed Boolean gate basis and arity m ≤ k, there is a
constant-size ReLU subnetwork Ng (with O(1) weights of magnitude O(1)) that matches g on {±1}m; free
fan-out is by wire duplication.

Theorem 5 (Exact realization on {±1}n). If f ∈ CSk(s, L) over the Boolean base, there exists a ReLU
network of size O(s) and depth O(L) computing f exactly on {±1}n.

4.4.3 Sparse tabulation (lookup)

Proposition 3 (Lookup/tabulation under explicit bases). If the node class is Boolean with fan-in ≤ k,
then evaluation layer-by-layer can be realized by tabulating each distinct Boolean node via a 2k-entry table;
the total stored bits are O(Ndistinct · 2k) with Ndistinct ≤ s. For ReLU nodes, an ε-quantized lookup scheme
stores O(Ndistinct · 2k · log(1/ε)) bits under a fixed dynamic range; computing ϕv on the fly trades space for
time.

4.4.4 Algebraic/ polyhedral realization

Proposition 4 (Layered varieties and polyhedra). Boolean base: The graph of f over {±1}n is the
projection of a variety in Rn+s defined by O(s) polynomial equations of constant degree, each involving at
most k+1 variables.
ReLU base: Over compact domains, the graph of f is a union of at most poly(s) polyhedral patches; an
algebraic encoding exists with degree that can grow with depth L.

4.5 Unifying mechanisms: a normalized-similarity read (with assump-
tions)

We study the retrieval

r(q) =
N∑

i=1
αi(q) vi, αi(q) =

exp
(
s(q, ki)

)∑N
j=1 exp

(
s(q, kj)

) . (4.1)

Lemma 3 (Score-equivalence, conditional). Assume:

1. Attention: s(q, k) = ⟨q, k⟩/τ (definition).

34 CHAPTER 4. EFFICIENT COMPUTABILITY AND COMPOSITIONAL SPARSITY

2. RBFs (shared metric): centers µi share a common Mahalanobis metric Σ ≻ 0, i.e., weights ∝
exp

(
− 1

2∥q − µi∥2Σ−1
)
; then after the linear change ϕ(q) = Σ−1/2q, ψ(µi) = Σ−1/2µi and absorbing

per-key additive constants into the softmax normalization, we obtain (4.1) [154].

3. Modern Hopfield (single step): with αi(x) ∝ exp(β⟨x, xi⟩) and one read step at inverse temperature
β = 1/τ , the update equals a single-head attention read as in (4.1) [163].

4. SDM hard limit: embedding binary addresses on the sphere with a fixed cosine margin and taking
τ ↓0 recovers hard nearest-neighbor (Hamming) retrieval as the limit of (4.1) [92].

These equivalences fail without the stated assumptions (e.g., per-key covariances in RBFs or multi-step
Hopfield energy descent). NTM/DNC content reads match (4.1), but location addressing and explicit
erase/write lie outside this form [65, 66].

Normalized
Similarity Read

Eq. (4.1)

Attention
s = ⟨q, k⟩/τ

Gaussian RBF
Shared Σ

Modern Hopfield
Single Step, β = 1/τ

Kanerva SDM
Limit τ → 0

Definitional

Metric Transform

Update Rule

Hard Limit

Figure 4.3: The Normalized Similarity Read as a Unifying Mechanism. Under the assumptions
detailed in Lemma 3, various associative memory mechanisms converge to a common mathematical
form based on softmax-normalized similarity scores.

4.6. ADDRESSABILITY VS. SUPERPOSITIONAL STORAGE 35

Mechanism Score s(q, k) Eq. to (4.1) Update M1 Assumptions / Notes

Attention ⟨q, k⟩/τ Definitional Pointwise MLP Multihead factorization
Gaussian RBF −1

2∥q − µ∥
2
Σ−1 Yes (shared Σ) Pointwise MLP Per-key covariances break equivalence

Hopfield (modern) β⟨x, xi⟩ Single step Identity/MLP Multi-step descent ̸≡ single read
SDM (Kanerva) −Ham(q, k) (hard) τ ↓0 Identity/MLP Needs margin; shells differ
NTM/DNC content (+loc.) Content part Recurrent ctrl. Location & erase/write outside (4.1)

Compositional sparsity view. Each AM+update block (one read of the form (4.1) plus a pointwise
M1) is an admissible bounded-arity node. A depth-L stack realizes a (k, s, L) computation DAG
with k controlled by head fan-in and local mixing arity. With the hypotheses of Thms. 2, 3, and 4,
efficiently computable families admit (k, s, L) = poly in the appropriate parameters.

4.6 Addressability vs. superpositional storage

4.6.1 Exponential codebooks via random spherical codes

Let d be the key dimension. Standard random packing yields:

Lemma 4 (Near-orthogonality, exponential packing). For any ε∈(0, 1) there exists C > 0 such that if
N ≤ exp

(
Cε2d

)
then, with high probability, one can realize {k(x)}Nx=1 ⊂ Sd−1 with maxx̸=y |⟨k(x), k(y)⟩| ≤

ε.

CRT/grid-cell example (address space). As a constructive alternative, pick coprime moduli
(mj)J

j=1 and define module phases kj(x) = exp(2πi⟨aj , x⟩/mj); the address space is
∏

j mj by
Chinese remaindering [52]. Mapping phases to Sd−1 (e.g., real/imag parts) gives large codebooks
with controllable collisions; this is orthogonal to the superposition limit below.

4.6.2 Holographic superposition and SNR

Let ⊙ denote a unitary binding operator (e.g., Hadamard product with unit-modulus complex keys,
or circular convolution in real space, which is diagonalized by the DFT) [145]. Store M associations
as

W =
M∑

j=1
kj ⊙ wj ,

and retrieve with the unbinding k†
ℓ ⊙W (complex conjugate for phases or inverse filter for convolu-

tion), followed by a componentwise estimator of wℓ.

Proposition 5 (Crosstalk and capacity). With keys from Lemma 4 (or unit-modulus phases with small
mutual coherence), the per-coordinate crosstalk variance is O(M/d) and SNR ≍

√
d/M . Thus a single

superposition reliably stores and retrieves M = Θ(d) items at fixed error under standard estimators [196].

Takeaway. “Exponential addressability” refers to the number of distinct addresses in the codebook
(Lemma 4 or CRT/grid). The number of items reliably retrievable from a single superposition scales
only linearly with d due to crosstalk.

36 CHAPTER 4. EFFICIENT COMPUTABILITY AND COMPOSITIONAL SPARSITY

4.7 Concluding remarks

The tableau translation of Turing computation into bounded-fan-in circuits (Thm. 2) and the
safe/conditional real-valued counterparts (Thms. 3–4) show that:

• Efficient computability on discrete grids yields uniform bounded-fan-in DAGs and exact
deep-ReLU realizations on those grids (Thm. 5).

• For continuous targets, dimension-robust rates require compositional sparsity (bounded local
arity) together with computable modulus/conditioning [128].

• Tabulation and algebraic/polyhedral realizations follow once the base is fixed and precision
is explicit (Props. 3–4).

At the mechanism level, attention, Gaussian RBFs, modern Hopfield networks, and SDM can align
with a normalized-similarity read under explicit assumptions (Lemma 3); NTM/DNC extend this
with location and write/erase. Finally, random spherical codes and CRT/grid scaffolds clarify how
to enjoy exponential addressability without contradicting the linear limits of superpositional storage.
Together, these results provide a unified, compositionally sparse account of when and why deep
architectures avoid the curse of dimensionality while remaining compatible with classical notions
of algorithmic efficiency.

4.8 Mathematical Supplement: Proofs of the Main Theorems

This appendix provides full proofs for Theorems 8 and 9. Both results rely on the same construction:
unrolling a polynomial-time Turing machine into a sequence of discrete configurations and showing
that each local transition can be implemented by a linear threshold (or small Boolean) network
acting on a suitably encoded representation.

4.8.1 Encoding of Turing Configurations

Let M be a deterministic Turing machine that computes f : Σn → Σm in time T (n) = poly(n).
During its execution on an input x ∈ Σn, the machine passes through configurations

τ0, τ1, . . . , τT (n),

where each τt records the entire contents of the work tape, the head position, and the internal
control state.

Binary encoding. We represent each configuration τt by a binary vector

st ∈ {0, 1}d, d = poly(T (n)).

A convenient choice is a one-hot encoding: for every tape cell j ≤ S(n)≤ poly(T (n)) and each
alphabet symbol a∈Γ, we include a bit bj,a that is 1 iff cell j contains symbol a in τt. Additional
one-hot groups encode the head position and internal state. This encoding is injective: every
configuration corresponds to a unique st.

Locality of updates. The transition τt 7→τt+1 depends only on: (i) the symbol under the head, (ii)
the internal state, and produces updates to that same local region. Hence each bit of st+1 depends
on O(1) bits of st. This locality is crucial for realizing the transition by simple threshold rules.

4.8. MATHEMATICAL SUPPLEMENT: PROOFS OF THE MAIN THEOREMS 37

4.8.2 Proof of Theorem 8 (Autoregressive Universality)

Existence of a linear threshold realization. For each output bit b′ of st+1 there is a small finite
set of input bits of st that determines it. Because st is one-hot in each field, testing which case
applies reduces to a linear threshold test: choose a weight vector w that assigns positive weight
to the active indicator for the correct combination of state and tape symbol and negative weight
elsewhere, together with a bias b so that

hw,b(st) = 1 iff the local rule producing b′ applies.

Collecting all these units yields a multi-output linear threshold layer H satisfying H(st) = st+1 for
all valid st.

Dataset construction. Generate a dataset

D = {(s(r)
t , s

(r)
t+1) : r = 1, . . . ,M, t = 0, . . . , T (n)− 1},

where each sequence {s(r)
t } comes from unrolling M on an input x(r) sampled from the data

distribution D. The dataset size |D| = M T (n) can be chosen polynomial in T (n).

Learning argument. The hypothesis class of linear threshold functions on {0, 1}d has VC dimen-
sion O(d2), hence is PAC-learnable with m = poly(d) examples. Since d = poly(T (n)), a sample of
size |D| = poly(T (n)) suffices to fit the exact transition map on all reachable configurations with
high probability. Denote the learned map by Ĥ .

Iterative reconstruction of f(x). For a new input x,

s0
Ĥ−→ s1

Ĥ−→ · · · Ĥ−→ sT (n),

and sT (n) encodes f(x). By union-bound arguments, the probability that any intermediate step
errs is small, so the overall error rate is bounded by poly(T (n))ε. Hence Ĥ reproduces f with high
probability.

4.8.3 Proof of Theorem 9 (Diffusion-Step Universality)

Construction of the diffusion chain. Define a sequence of latent states

sT , sT −1, . . . , s0

such that st encodes the configuration τt of the same Turing computation. We regard the “forward
diffusion” as running the machine (increasing t) and the “denoising” direction as reversing it.

Local denoising map. Each reverse transition τt 7→ τt−1 is again local and hence can be imple-
mented by the same threshold construction: there exists a layer G with G(st) = st−1 for all valid
encodings. Training data consist of pairs (st, st−1) obtained by unrolling M ; the sample size is
polynomial in T (n).

38 CHAPTER 4. EFFICIENT COMPUTABILITY AND COMPOSITIONAL SPARSITY

Learning and composition. A learned approximation Ĝ to G generalizes by the same VC-
dimension argument as before. Iterating Ĝ backward T (n) steps from sT reconstructs s0 encoding
the final output f(x). Thus the diffusion-style denoiser achieves the same computational universal-
ity as the autoregressive predictor.

4.8.4 Remarks and Extensions

• The above proofs are constructive: given any polynomial-time Turing machine, one can
explicitly build the dataset and weight vectors realizing the stepwise transitions.

• The encodings are polynomial in T (n) but may be large in practice; this is a theoretical
universality statement, not an efficiency claim.

• Replacing linear thresholds with polynomial-size Boolean circuits yields identical results,
often with smaller encodings (Appendix B).

• Appendix C extends the argument to true Gaussian diffusion, where each st is a one-hot vector
corrupted by Gaussian noise and the denoiser is a linear threshold network that identifies the
active coordinate with high probability.

4.9 Technical Note: Replacing Linear Threshold Functions by Boolean
Circuits

The proofs in Appendix A use linear threshold functions (LTFs) to represent the local transition map
of a Turing machine. Exactly the same reasoning applies if we replace each LTF by a polynomial-size
Boolean circuit. This substitution makes the construction more natural from the standpoint of
classical computational complexity.

4.9.1 Expressing a Turing-Machine Step as a Circuit

Each step of a deterministic Turing machine reads:

1. the symbol a currently under the head,

2. the internal control state q, and

3. the local neighborhood of the head on the tape,

and outputs:

• a new symbol a′,

• a new internal state q′, and

• a movement direction (left, right, or stay).

This transition function is a finite lookup table

δ : Γ×Q→ Γ×Q× {⇐,⇒,·}.

Such a mapping can always be encoded by a Boolean circuit of size O(|Γ||Q|). When we embed the
machine configuration into a bit vector st, the update rule st 7→ st+1 therefore admits a polynomial-
size circuit implementation composed of AND/OR/NOT gates acting on O(1) bits per output.

4.9. TECHNICAL NOTE: REPLACING LINEAR THRESHOLD FUNCTIONS BY BOOLEAN CIRCUITS39

4.9.2 Replacement in the Stepwise-Learning Framework

In both the autoregressive and diffusion constructions, the only property required of the hypothesis
classH is that for every valid configuration st there exists h ∈ H satisfying h(st) = st+1 (or st−1).
Because a polynomial-size Boolean circuit can realize this mapping, we may takeH to be the set of
all such circuits instead of LTFs.

Training then amounts to learning the truth table of the circuit’s local rule from pairs (st, st+1) or
(st, st−1). All results in Theorems 8 and 9 remain unchanged: the learned circuit can be composed
T (n) times to reproduce the full polynomial-time computation.

4.9.3 Comparison with Linear Threshold Implementations

• Representation complexity. LTFs often require high-dimensional one-hot expansions to
simulate discrete logic. Circuits encode the same logic natively and can thus achieve the
transition rule with fewer variables.

• Expressive power. Polynomial-size Boolean circuits are universal for polynomial-time com-
putation. Using them as the stepwise predictor aligns the learning model directly with the
class P.

• Interpretation. Theorems 8–9 can therefore be rephrased as: stepwise training of polynomial-size
circuits on intermediate states suffices to learn any function in P.

4.9.4 Summary

Replacing the linear-threshold layer by a polynomial-size Boolean circuit leaves all theoretical
results intact while simplifying the connection to computational complexity. The unifying principle
remains the same: step-by-step supervision of intermediate Turing-machine configurations
enables a simple local learner—whether linear or Boolean—to reproduce any polynomial-time
computation.

CHAPTER 5

Optimization and Compositionality (with
P. Beneventano)

Does compositional structure make optimization easier? This chapter argues that the answer is nuanced.
Compositionality is the structural property that allows high-dimensional functions to be represented with
polynomially many parameters, thereby avoiding the curse of dimensionality. This is its primary contribution:
it renders the problem of learning possible (in terms of sample complexity and memory). However, it does
not automatically make the optimization landscape easy. We distinguish between the representation
benefit (which is massive) and the optimization difficulty (which remains high in end-to-end training).
We conclude that the "unreasonable effectiveness" of optimization in deep learning arises not just from the
architecture, but from the ability to decompose the problem when intermediate signals are available.

Figure 5.1:

40

5.1. THE CORE ARGUMENT 41

5.1 The Core Argument

The success of Deep Learning is often attributed to the ability of stochastic gradient descent (SGD)
to optimize deep networks. However, from a theoretical standpoint, compositional structure plays
two distinct roles, which must not be confused:

1. Representational Efficiency (The "Why it works" condition): Compositionality ensures
that the number of parameters required to approximate a function scales polynomially (e.g.,
linearly) with the input dimension d, rather than exponentially. Without this, no optimization
algorithm could succeed because the search space would be too vast to explore with finite
data [128].

2. Optimization Landscape (The "How it works" puzzle): While compositionality reduces the
number of variables, it introduces non-convexity. A deep composition of simple functions
f(g(h(x))) creates a landscape with symmetries, saddle points, and local minima. Therefore,
compositionality is a necessary condition for solvability, but it does not inherently guarantee
fast convergence.

5.2 The Representation Benefit: Avoiding the Curse

The primary contribution of compositionality to optimization is that it reduces the dimensionality
of the search space to a manageable size.

5.2.1 Parameter Counting

Consider a target function f : Rd → R.

• Generic Case: If f is a generic smooth function (e.g., in a Sobolev space), approximating it to
error ε requires O(ε−d) parameters. Optimization in this space is intractable for large d.

• Compositional Case: If f is compositionally sparse (a DAG of constituent functions with
bounded arity k), the number of parameters scales as O(d · k) [156].

Implication: The optimization algorithm operates in a space of dimension O(d) rather than
O(ed). This is the fundamental reason optimization is feasible: the "needle in the haystack" is
effectively larger because the haystack (the parameter space) is exponentially smaller.

5.3 The Optimization Challenge in End-to-End Learning

If we train a deep network end-to-end (using only input x and output y), we are solving:

min
W1,...,WL

∑
i

ℓ (fL(. . . f1(xi;W1) . . . ;WL), yi)

Even though the number of parameters W is manageable, this problem is highly non-convex.

42 CHAPTER 5. OPTIMIZATION AND COMPOSITIONALITY (WITH P. BENEVENTANO)

5.3.1 Vanishing Gradients and Conditioning

Compositionality creates deep chains of dependencies. In standard gradient descent, the gradient
at early layers is the product of Jacobians of later layers:

∂L

∂W1
= ∂L

∂fL
· ∂fL

∂fL−1
. . .

∂f2
∂f1
· ∂f1
∂W1

Unlike the "block coordinate descent" scenarios in convex optimization, these blocks are coupled
multiplicatively. This often leads to ill-conditioning, where the landscape is extremely steep in
some directions and flat in others.

Conclusion: Compositional structure alone does not imply fast convergence rates (like those
found in convex optimization). The fact that SGD finds global minima is likely due to overparame-
terization (Relaxation) rather than the raw compositional shape.

5.4 The Ideal Scenario: Module-wise Optimization

It has been pointed out that the true optimization advantage of compositionality emerges when the
decomposition is known and exploitable.

5.4.1 The "Grey Box" vs. "Black Box"

• Black Box Optimization (End-to-End): We only see x and y. We must infer the internal
representations. This is hard.

• Grey Box Optimization (Modular): We know the structure f(x) = h(g(x)) and, crucially, we
have training signals for the intermediate variable z = g(x).

Theorem 6 (Optimization with Intermediate Supervision). Let f = h ◦ g. If datasets Dg = {(x, g(x))}
and Dh = {(g(x), y)} are available, the optimization problem decouples into two independent sub-problems:

min
Wg

∑
ℓ(g(x;Wg), z) and min

Wh

∑
ℓ(h(z;Wh), y)

If the constituent functions g and h are "simple" (e.g., low dimension, convex), these sub-problems can be
solved efficiently.

5.4.2 Curriculum Learning and Pre-training

In practice, we rarely have full datasets for every intermediate module. However, modern tech-
niques approximate this "Modular Optimization" ideal:

1. Layer-wise Pre-training: Training one layer at a time (as in early Deep Belief Networks)
effectively creates local supervised problems [78].

2. Transfer Learning: Using a pre-trained "backbone" (e.g., ResNet or BERT) treats the early
layers as a solved module g(x), reducing the optimization task to just the final head h(z).

3. Chain-of-Thought: In Large Language Models, forcing the model to output intermediate
reasoning steps is a form of explicit compositional supervision [20].

5.5. SAMPLE COMPLEXITY: THE GAP BETWEEN SHALLOW AND DEEP 43

Input x
Deep Net
(Implicit

Composition)
Output y

Gradient Signal (Weak/Noisy)

Input x Module 1 Interm. z Module 2 Output y

Direct Signal Direct Signal

(a) End-to-End

(b) Modular

Figure 5.2: Two Regimes of Compositional Optimization. (a) In end-to-end learning, composi-
tionality reduces parameter count but the error signal must propagate through the entire chain,
often leading to difficult optimization landscapes. (b) When intermediate supervision is available
(Modular), the problem decomposes into simpler, easily solvable sub-problems.

5.5 Sample Complexity: The Gap Between Shallow and Deep

A critical implication of compositionality is its effect on sample complexity—the number of training
examples N required to achieve a given generalization error. This scaling depends fundamentally
on whether the network architecture matches the hierarchical structure of the target function.

5.5.1 The Curse for Shallow Architectures

Standard "shallow" methods—ranging from classical linear approximators (splines, kernel ma-
chines) to single-hidden-layer neural networks—face a fundamental limitation when approximating
high-dimensional functions.

Classical results [69] show that for a generic Lipschitz function in d dimensions, the number of
examples required to achieve error ε scales exponentially with d:

Nshallow ≈ O(ε−d).

Crucially, even if the target function has a sparse compositional structure (e.g., a hierarchy of low-
dimensional functions), a shallow network generally cannot exploit this without an exponentially
large width. It effectively attempts to "flatten" the composition, losing the structural prior and
succumbing to the curse of dimensionality.

5.5.2 The Blessing for Deep Compositional Networks

In contrast, deep neural networks can mirror the compositional graph of the target function. If
the target function f is a composition of functions with local dimensionality k ≪ d, and the
network depth matches this structure, the number of parameters W—and by extension the sample
complexity—scales linearly with d:

Ndeep ≈ O(d · ε−k).

44 CHAPTER 5. OPTIMIZATION AND COMPOSITIONALITY (WITH P. BENEVENTANO)

This gap between O(ε−d) and O(dε−k) quantifies the data efficiency of deep learning [128]. The
advantage of depth is not just about having "more" parameters, but about having the right structural
arrangement to represent the target function compactly. Optimization in deep learning is feasible
because we are searching for a solution in this structurally aligned, polynomially-sized space.

5.6 Summary: The Optimization-Representation Trade-off

Compositionality is not a direct accelerator of gradient descent dynamics in the way convexity is.
Instead, its role is foundational:

1. Existence: It guarantees that a solution exists within a polynomially sized parameter space
(Representation).

2. Feasibility: It allows the problem to be solved with realistic amounts of data (Sample
Complexity).

3. Speed: Fast optimization is not guaranteed by compositionality alone. It requires either (a)
massive overparameterization to smooth the landscape, or (b) access to intermediate signals
that allow the problem to be decomposed into its constituent parts.

Thus, we affirm the view that compositionality is primarily about avoiding the curse of dimen-
sionality in representation, and secondarily about enabling modular learning strategies when data
permits.

CHAPTER 6

Genericity and Optimization (with P.
Beneventano)

Why does local gradient descent succeed in optimizing deep networks, despite the non-convex nature of
the loss landscape? This chapter proposes that the answer lies in a property of learnable functions called
Genericity.

We argue that it makes sense to learn functions only if they are "Generic," meaning their structure is
invariant to basic transformations like shifts in the origin of the coordinates of the input x. While mathematical
pathologies (like pure parity) hide their structure at points of symmetry, Generic functions reveal "linear
footprints"—low-degree correlations—under realistic biases and noise. This structural revelation ensures
that gradient-based methods see informative directions at initialization, preventing the optimizer from stalling
on flat plateaus.

Figure 6.1: Visualizing the transition from a pathological symmetric landscape to a generic learnable
landscape.

45

46 CHAPTER 6. GENERICITY AND OPTIMIZATION (WITH P. BENEVENTANO)

6.1 The Core Argument

The success of deep learning relies on a harmony between the algorithm and the environment.
The fundamental puzzle of deep learning optimization is often stated as: "How can a local greedy
method (Gradient Descent) find a solution in a high-dimensional, non-convex landscape?"

We propose that the answer is not found in the optimizer alone, but in the nature of the target
functions that are sensible to learn.

1. The Mathematical View: In the space of all possible functions, "hard" functions exist (e.g.,
high-degree parity). These functions have landscapes that are flat almost everywhere, with
the solution hidden in a small, distinct region. Optimization is impossible without exhaustive
search.

2. The Physical View (Genericity): Real-world functions are not adversarial. They are Generic,
meaning they are not "fragile" to changes in the coordinate system. Specifically, we assume
that under small shifts of the input zero-point (biases) or small perturbations (noise), the
function exhibits visible low-degree components (linear or quadratic correlations). This aligns
with the theoretical framework of smoothed analysis [179].

The logical chain of this chapter is:

Genericity =⇒ Visible Gradients at Initialization =⇒ Tractable Optimization.

6.2 Defining Genericity: Invariance to Shifts

Mathematical intuition often fails in high dimensions because we tend to think of "pure" functions
defined in highly symmetric coordinate systems. To formalize our argument, we must define what
we mean by a "Generic" function.

6.2.1 General Genericity

We propose a generalized definition based on the invariance of local structure (jets) under low-
degree coordinate transformations.

Definition 5 (General Genericity). A target function f is Generic of order k if its learnability (and
associated stability properties) is invariant under polynomial coordinate transformations of degree at most k.
Specifically, the function retains its essential approximation properties and non-vanishing coefficients in its
k-jet when the coordinate system is perturbed by terms of order ≤ k.

6.2.2 The Genericity Principle (Shift Invariance)

In this chapter, we specialize this definition to the case of k = 0, which corresponds to invariance
under coordinate shifts (biases).

Definition 6 (Genericity Principle). A target function is Generic if its learnability is invariant to small
shifts in the coordinate origin (transformations of the form x 7→ x + b). Physically relevant functions
satisfy this property by possessing non-vanishing coefficients for low-degree terms (linear, quadratic) when
represented in a Generic (shifted) coordinate system.

6.3. THE MATHEMATICS OF STRUCTURE LEAKING 47

Conversely, a Non-Generic function lacks these dominant low-degree terms, relying instead on
high-complexity (high-frequency) terms to fit data. The prototype of a Non-Generic function is the
Parity function (or XOR) centered perfectly at zero:

f(x) =
d∏

i=1
xi, x ∼ N (0, I).

This function is orthogonal to all linear terms. A gradient-based learner initialized randomly sees
zero correlation; the loss landscape is a perfectly flat plateau. However, this hardness is an artifact
of a specific, fragile symmetry.

6.3 The Mathematics of Structure Leaking

What happens when we apply the Genericity Principle (coordinate shifts) to these "hard" functions?
We prove that the "hard" couplings do not vanish; they are simply accompanied by lower-order
shadows that guide the optimizer.

6.3.1 Real-Valued Targets: Linear Footprints

Let f : Rd → R be a smooth target. We model "generic coordinates" by assuming the input x
contains a small Gaussian jitter (or that the observer’s coordinate system is slightly noisy). Let
x ∼ N (z, σ2I).

Proposition 6 (Stein’s Identity and Linear Footprints). For any variable xi that f depends on, the
covariance between the function and the variable is proportional to the expected gradient:

Cov(f(x), xi) = σ2E
[
∂f

∂xi
(x)
]
.

Implication: Unless the expected gradient is exactly zero (which requires a precise symme-
try, i.e., non-genericity), every active variable xi leaves a **linear footprint**. A simple linear
regression—or the first layer of a neural network—can detect that xi is relevant [61].

6.3.2 Boolean Targets: The Bias Leakage

Consider Boolean inputs x ∈ {−1, 1}d. Let f(x) =
∏

i∈S xi be a parity function on a subset S. If we
shift the coordinate system by a vector µ (implying E[xi] = µi ̸= 0), the function expands:

f(x′ − µ) ≈
∏

(x′
i − µi) =⇒ Linear Terms appear.

Lemma 5 (Leakage under Bias). Under a biased product distribution, the correlation between the function
and a single relevant variable xj (j ∈ S) is:

E[f(x)xj] =
∏

i∈S\{j}
µi.

Implication: As long as the biases µi are non-zero (the Generic condition), the correlation is
non-zero. The spectral mass "leaks" down to degree 1. The "hardest" Boolean function becomes
visible to linear screens [39].

48 CHAPTER 6. GENERICITY AND OPTIMIZATION (WITH P. BENEVENTANO)

(a) Non-Generic (Centered)

x1

x2

Grad ≈ 0

Symmetric. No linear correlation.
Optimizer is blind.

(b) Generic (Shifted)

x1

x2

Grad ̸= 0

Coordinate Shift breaks symmetry.
Linear "footprint" appears.

Figure 6.2: The Genericity Principle visualized on the XOR problem. (a) In a perfectly symmetric
coordinate system (Non-Generic), the target function has zero correlation with the inputs. (b)
Under a coordinate shift or bias (Generic), the symmetry breaks, and a linear correlation emerges.

6.4 Theoretical Justification: Genericity and Stability

Before discussing practical optimization, we must establish that Non-Generic functions are funda-
mentally problematic from a learning theory perspective, independently of their nice properties wrt
descent methods. We argue that Non-Generic functions fail to satisfy standard stability conditions
in learning theory.

6.4.1 Non-Generic Functions are Not Uniformly Stable

In the framework of Bousquet and Elisseeff [23], Uniform Stability (β) requires that the maximum
change in loss over all possible training sets is bounded as O(1/m).

Proposition 7. If a learning algorithm learns a Non-Generic function using a high-capacity hypothesis
space (such as deep neural networks), it acts as an unregularized Empirical Risk Minimizer that relies on
high-order fitting. Consequently, it is not Uniformly Stable.

To achieve Uniform Stability, an algorithm must "significantly depart from an empirical risk
minimizer" [23]. It must trade off training error for stability (regularization). Since a Non-Generic
function lacks this regularization (absence of dominant low-order stability), it behaves as a pure
ERM with potential for overfitting and instability.

6.4.2 Connection to Uniform Glivenko-Cantelli (uGC)

We further argue that if a function class is sufficiently Non-Generic (possessing infinite capacity/VC
dimension), it fails the weaker condition of Leave-One-Out (LOO) Stability [132].

Theorem 7. A Non-Generic function classH (characterized by infinite complexity or infinite VC dimension)
is not a Uniform Glivenko-Cantelli (uGC) class and, consequently, is not LOO Stable.

6.5. FROM GENERICITY TO OPTIMIZATION DYNAMICS 49

To give an intuition about the theorem, recall that a polynomial of arbitrary degree has infinite
Vγ dimension and therefore is not uGC. Mukherjee et al. [159] prove that LOO Stability, Universal
Consistency, and uGC properties are equivalent for ERM. A Non-Generic class, allowing arbitrary
high-order fitting, corresponds to infinite VC dimension, which is not uGC (the Vγ dimension of a
hypothesis space is defined as the cardinality of the smallest set that cannot be γ-shattered in all
possible ways. This is a measure of the capacity or complexity of the function class). Recall that
finiteness of Vγ dimension for all γ ≥ 0 is a necessary and sufficient condition for a function class to
be a Uniform Glivenko-Cantelli (uGC) class.

Summary: The previous set of theorems justifies the principle of genericity: non-generic func-
tions do not satisfy conditions equivalent to learnability. It turns out—almost magically—that these
same stability conditions imply the function is easy to optimize!

6.5 From Genericity to Optimization Dynamics

How does this structural property explain the success of Deep Learning optimization?

6.5.1 The Gradient Signal at Initialization

Consider training a neural network F (x; θ) with gradient descent. At initialization, if f(x) is
Generic (e.g., has linear footprints due to coordinate shifts), it correlates with the simple features
computed by the random network. Consequently, the gradient is non-zero.

Loss

θ

(a) Non-Generic

Loss

θ

(b) Generic

Figure 6.3: Optimization Landscapes. (a) A non-generic function (like pure parity) creates a flat
landscape where local search fails. (b) A generic function (with linear footprints) creates a tilted
landscape.

6.5.2 The Optimization Hierarchy

Genericity suggests a hierarchical view of optimization dynamics:

1. Breaking the Symmetry (Stage 1): Because of coordinate shifts (biases), the target function
exposes linear terms. The optimizer detects these first, moving away from the initial random
plateau.

2. Focusing Attention (Stage 2): As weights grow, the effective "bias" inside the network shifts
further, amplifying the signal for higher-order interactions.

3. Solving the Core (Stage 3): Having identified the relevant subspace, the network approximates
the non-linear "pure" part.

50 CHAPTER 6. GENERICITY AND OPTIMIZATION (WITH P. BENEVENTANO)

6.5.3 Sample Complexity: The Staircase vs. The Cliff

The distinction between Generic and Non-Generic functions determines sample complexity.

• Non-Generic Cost: To find a parity of order k in dimension d without bias, one must search(d
k

)
possibilities. Sample complexity is O(dk).

• Generic Cost: With linear footprints, the learner identifies relevant variables via screening
in O(d log d), then solves the reduced problem. Genericity enables a **Staircase** learning
curriculum [39].

6.6 Case Study: The Danger of Residual Fitting

The theory of Genericity clarifies a critical difference between two modeling strategies. Consider a
target function f(x) containing both linear and high-order nonlinear components.

• Case A (End-to-End): Train a network to approximate f(x) directly.

• Case B (Residual Fitting): First, fit the best linear model L(x). Then, train a network on the
residual r(x) = f(x)− L(x).

Intuitively, Case B seems superior. However, the Genericity Principle suggests **Case A is
sample-efficient, while Case B is likely to fail.**

Why Case B Fails (Kicking Away the Ladder). In Case A, the linear footprints of f(x) guide the
optimizer. In Case B, step 1 removes these footprints. By definition, the residual r(x) is orthogonal
to the linear span of the inputs: E[r(x) · x] = 0. We have explicitly engineered a Non-Generic
target function. The residual is purely nonlinear, making the gradient signal at initialization
uninformative.

Conclusion: Fitting the residual transforms a tractable "Staircase" problem into an in-
tractable "Cliff" problem. The linear term is not just noise to be subtracted; it is the
essential guide that makes the nonlinear optimization feasible.

6.7 Summary

The "unreasonable effectiveness" of deep learning optimization is not a property of the optimizer
alone, but of the physics of the data.

1. Nature is Generic: Physical laws are invariant to coordinate shifts. This breaks symmetries
that would otherwise hide structure.

2. Stability requires Genericity: We argued that for high-capacity models like neural networks,
statistical learnability (stability) prohibits the fitting of arbitrary high-complexity terms,
effectively requiring the target function to be Generic.

3. Structure Leaks: In generic coordinates, high-order interactions cast "linear footprints."

4. Optimization Succeeds: These footprints ensure non-zero gradients at initialization, allowing
local search to succeed.

CHAPTER 7

Principles of Deep Learning

Modern deep learning works far better than classical statistical learning theory or traditional numerical
analysis would lead one to expect. In this chapter we articulate two basic principles that, taken together, offer
an explanation for the empirical success of deep architectures: (1) the sparse compositionality of efficiently
computable functions, and (2) the genericity required for stability and learnability. Sparse compositionality
explains approximation, hierarchy, modularity, and transfer. Genericity explains stability and the existence
of informative gradients during optimization. Together these principles provide a coherent framework for
understanding the remarkable capabilities of deep networks and transformers.

Figure 7.1:

7.1 Principle I: Sparse Compositionality

The property of sparse compositionality is formally implied by the property of efficient Turing com-
putability [191]. Functions that are efficiently computable necessarily decompose into bounded-fan-

51

52 CHAPTER 7. PRINCIPLES OF DEEP LEARNING

in computational graphs (DAGs). This is a structural fact: a computation composed of many small
local operations must be sparse in the sense that each intermediate value depends only on a few
others [128].

Formally, if f is efficiently computable, then it admits a representation

f = f (L) ◦ f (L−1) ◦ · · · ◦ f (1)

in which each f (ℓ) acts on a small number of variables. Deep networks mirror this structure and
thus avoid the curse of dimensionality when their architecture matches such sparse DAGs [156].

(a) Sparse Compositional Function

x1 x2 x3 x4 x5 x6 x7 x8

f

Hierarchical, Local, Bounded Fan-in

Figure 7.2: Visualizing Sparse Compositionality. An efficiently computable function naturally
decomposes into a hierarchical DAG where each node depends on a small number of inputs
(bounded fan-in). This structure allows deep networks to approximate the function without
incurring the curse of dimensionality.

In this section we describe several consequences of sparsity and compositionality.

7.1.1 Hierarchy follows from sparse compositionality

If a function admits a compositional DAG in which each node has bounded fanin, then the natural
architecture for approximating it is a hierarchical network: each layer computes simple local features,
which become inputs to features of increasing complexity.

Hierarchy is not an extra assumption; it is a direct corollary of the DAG.
Thus the empirical fact that good deep networks are deep is not surprising: depth is the natural

way to reflect the compositional structure of the target.

7.1.2 Modularity and reuse of modules

Sparse compositionality also implies modularity:

• subgraphs (subfunctions) appear repeatedly in the DAG,

• these subgraphs compute intermediate concepts,

• the same module can be used at different places in the computation.

This modularity is reflected in architectures such as convolutional networks, residual networks,
and attention blocks, where learned components are reused globally or across layers.

The existence of modules is not a property of the architecture alone; it is a property of the
underlying function.

7.2. PRINCIPLE II: GENERICITY OF LEARNABLE TARGETS 53

7.1.3 Transfer learning

If a function decomposes compositionally and modules appear in multiple places, then learning
one task provides information useful for others.

Module learned in Task A ⇒ usable immediately in Task B.

Thus transfer learning is a natural consequence of sparse compositionality: reuse across tasks
parallels reuse across positions in a single computation [20].

7.1.4 Interpretability from consistent compositionality

If the decomposition of f into modules is consistent across data, then the learned network will assign
stable semantic meaning to its internal components. This yields a form of interpretability:

same subfunction ⇒ same module/layer.

Thus interpretability is a consequence of:

• the existence of a compositional structure in the function, and

• the ability of the model to discover and consistently reuse that structure.

7.1.5 Non-uniqueness of sparse decompositions

A crucial observation is that sparse decompositions are not unique. A given function f may admit
many distinct DAG representations. In such cases, a general-purpose architecture—such as a
transformer—has no reason to choose the same decomposition across different inputs or during
training.

Consequences:

• Transformers do not consistently reuse modules: the same computation can be implemented
in many ways. the same computation can be implemented in many ways.

• Without architectural constraints enforcing modularity, reuse, or locality, the model may
realize different decompositions in different parts of the input space.

• This explains why transformers are powerful but not inherently interpretable or modular.

Transformers achieve excellent performance even without consistent module reuse because
they can realize any decomposition compatible with their large associative memory structure.

7.2 Principle II: Genericity of Learnable Targets

Sparse compositionality describes the structure of computable functions. Genericity describes a
different property: the requirement that learnable functions be invariant in their basic jet structure
under shifts of the coordinates. Genericity implies that the function cannot rely on measure-zero
cancellations or extremely fragile high-order interactions [179].

54 CHAPTER 7. PRINCIPLES OF DEEP LEARNING

7.2.1 Genericity from invariance to the choice of the origin of the coordinates

Genericity excludes “non-generic” functions in which:

• all low-order terms vanish exactly,

• small perturbations of the input distribution flip the identity of the best predictor,

Genericity is the opposite situation: under realistic noise and bias, every relevant variable leaves a
low-degree footprint, often linear, that persists across perturbations.

Thus:

Stability ⇒ Genericity (low-degree footprints, no fine-tuning).

7.2.2 Genericity ensures good gradients for optimization

Once genericity holds, gradient-based optimization is feasible:

• Linear footprints provide nonzero first-order information.

• Gradients do not vanish due to high-order cancellations.

• Different layers of a deep network receive consistent signals.

Thus genericity provides the missing piece for explaining why gradient descent can find good
solutions in nonconvex architectures.

7.3 Two independent but complementary principles

Sparse compositionality and genericity arise from two different fundamental assumptions:

• Efficient Turing computability ⇒ sparse compositionality.

• ERM-based learnability + stability ⇒ genericity.

They are independent but complementary:

• Sparse compositionality explains approximation, hierarchy, modularity, transfer, interpretabil-
ity.

• Genericity explains stability, robustness, and the existence of informative gradients.

Together they provide a unified explanation for why deep learning works.

Sparse compositionality + Genericity =⇒



Efficient approximation
Generalization (stability)
Optimizable landscapes
Hierarchy, modularity, reuse
Transfer and interpretability

7.4. CONCLUSION 55

7.4 Conclusion

The two principles articulated in this chapter—sparse compositionality and genericity—capture
complementary aspects of deep learning:

• the structure of the functions that we want to learn, and

• the regularity that makes them learnable and optimizable.

Most of the puzzles of deep learning—its scalability, generalization, modularity, transfer, and
surprising ease of optimization—follow naturally from these two principles once they are recog-
nized as the structural and regularity constraints of the real functions we want to learn.

Part II
Computation and Algorithms

56

CHAPTER 8

Efficient Computability, Compositional
Sparsity, and Self-Attention

We establish a precise mathematical bridge between the result that efficient computability implies 1) deep,
compositionally sparse approximants and 2) the structure of self-attention in Transformers.

Figure 8.1:

• Attention implements a Gaussian kernel smoother (Nadaraya–Watson estimator) with a learned
Mahalanobis metric.

• Any (k, s, L)-compositionally sparse target with node smoothness Cr can be uniformly approximated
by a stack of attention+MLP blocks using Nkeys = O(s ε−k/r) keys, achieving error ≤ ε independent
of ambient dimension.

57

58CHAPTER 8. EFFICIENT COMPUTABILITY, COMPOSITIONAL SPARSITY, AND SELF-ATTENTION

• If f is efficiently Turing-computable, there exists a Transformer of size poly(n + log(1/ε)) with
uniform error ≤ ε on n-bit inputs.

• Sparsity and low rank emerge naturally: when top-k neighbors are separated by a margin, attention
weights outside the top-k are exponentially small; rank-≤ k query/key metrics suffice for optimal rates.

8.1 Preliminaries and Assumptions

We consider functions f : [−1, 1]n → R representable as compositionally sparse DAGs: each node v
has fan-in mv ≤ k and computes gv ∈ Cr(Ωv) with bounded Cr norm ∥gv∥Cr ≤ B. Each layer map
is Lℓ-Lipschitz. This structure encompasses the class of functions approximable by deep networks
of bounded local arity [127, 149].

A self-attention head uses parameters WQ,WK ,WV ∈ Rd×d, temperature τ > 0, and computes
for query x and stored keys {xj}:

Attn(x) =
N∑

j=1
αj(x) vj , αj(x) =

exp
(
q⊤kj/τ

)
∑

ℓ exp(q⊤kℓ/τ) , q = WQx, kj = WKxj , vj = WV xj .

LayerNorm ensures ∥q∥, ∥kj∥ ≈ 1.
—

8.2 Main Results

Theorem 1 (Self-Attention as Gaussian Nadaraya–Watson Smoother)

Under approximate normalization ∥q∥, ∥kj∥ ≈ 1,

αj(x) ∝ exp
(
− 1

2τ ∥q − kj∥2
)
,

i.e. attention weights coincide with Gaussian Nadaraya–Watson kernel weights with bandwidth τ .
IfWQ = WK = B, the distance ∥q−kj∥2 = ∥B(x−xj)∥2 = (x−xj)⊤(B⊤B)(x−xj) is a Mahalanobis
metric with matrix B⊤B.

Proof. For unit vectors, q⊤kj = 1− 1
2∥q − kj∥2. Exponentiating and normalizing in the softmax

gives the stated Gaussian form. □

This formalizes earlier observations that attention is a data-dependent kernel smoother [187,
33]. For discussion of a more efficient attention see Appendix F.

8.2.1 Theorem 2 (Compositional Approximation by Attention with Dimension-Free
Rate)

Let f : [−1, 1]n → R admit a compositional DAG representation of depth L and size s with nodes
gv ∈ Cr on at most k variables. Then for any ε ∈ (0, 1) there exists a stack of attention+MLP blocks
of depth O(L) such that

sup
x∈[−1,1]n

|f(x)− f̂(x)| ≤ ε,

using a total number of keys
Nkeys ≤ C s ε−k/r,

8.2. MAIN RESULTS 59

where C depends on k, r, B and the layer Lipschitz constants, and each head’s projection B has
rank ≤ k.

Proof Sketch. Each node gv is aCr function on Rmv ,mv ≤ k. By standard Gaussian RBF/Nadaraya–Watson
approximation results [126, 44], there exist centers {x(v)

j } such that

∥gv − g̃v∥∞ ≤ δ, Nv = O((B/δ)mv/r).

Each g̃v can be realized by one attention head using keys {x(v)
j } and values vj = gv(x(v)

j) (Theorem 1).
Composing across L layers yields global error ε when δ = ε/(L

∏
ℓ Lℓ). Summing Nv gives

Nkeys = O(s ε−k/r). □

Discussion. The approximation rate depends on the local arity k, not on ambient dimension n.
This reproduces the dimension-free bounds of compositionally sparse networks [149, 112].

—

8.2.2 Theorem 3 (Efficient Computability⇒ Transformer Approximants)

Assume f is efficiently Turing-computable in time poly(n+ log(1/ε)) on n-bit inputs. Then there
exists a family of Transformers {Tn,ε} of size poly(n+ log(1/ε)) such that

∥Tn,ε(x)− f(x)∥ ≤ ε

for all n-bit inputs x ∈ [−1, 1]n.

Proof. By the CBMM Memo 072 theorem [150], any efficiently computable function admits a deep
network Φε with polynomial size and compositional sparsity (k, s, L). By Theorem 8.2.1, each node
of Φε can be replaced by an attention+MLP module of comparable size. Hence overall size/depth
remain polynomial and the uniform approximation error ε is preserved. □

Remarks. This establishes that self-attention architectures are expressive enough to realize all
efficiently computable functions with polynomial resources, matching the constructive bounds
previously shown for generic sparse deep nets.

—

8.2.3 Theorem 4 (Margin Implies Near Top-k Sparsity)

Let squared distances ∆j = ∥q − kj∥2 be ordered ∆(1) ≤ · · · ≤ ∆(N). Then for any k < N ,

1−
k∑

j=1
α(j)(q) ≤ (N − k) exp

(
−

∆(k+1) −∆(1)
2τ

)
.

If ∆(k+1) −∆(1) ≥ γ > 0, the tail mass outside top-k is ≤ (N − k)e−γ/(2τ).

Proof. Factor exp
(
−∆(1)/(2τ)

)
in numerator and denominator and bound the remaining terms.

□

60CHAPTER 8. EFFICIENT COMPUTABILITY, COMPOSITIONAL SPARSITY, AND SELF-ATTENTION

Implication. If relevant keys are separated by a finite margin, attention becomes effectively
k-sparse. This explains empirical top-k sparsity observed in trained Transformers [129, 197, 34].

—

8.2.4 Theorem 5 (Low Rank Suffices for k-Ary Nodes)

If g : Rm → R, m ≤ k, admits a Gaussian NW approximant of error δ using N = O((B/δ)m/r) cen-
ters, then there exists a rank-m projection B such that one attention head realizes this approximant.
The exponent m/r is optimal for Cr functions [44].

Proof. Let B be the embedding Rm ↪→ Rdk . The Gaussian NW approximant uses kernels
exp

(
−∥B(x− xj)∥2/(2τ)

)
of rank m. Known lower bounds for Cr functions show that no method

can achieve better exponent than m/r. □

Consequence. Optimal attention heads need only rank ≤ k in their query/key projections.
Empirically, learned WQ,WK often have low effective rank [140, 2].

—

8.3 Consequences and Predictions

• Dimension-free rates. Approximation error scales as ε−k/r, independent of token dimen-
sion d.

• Emergent sparsity. Margins in key–query distances imply exponentially decaying tails
(Theorem 4).

• Low-rank projections. Effective rank per head matches local arity k (Theorem 5).

• Expressivity. Every efficiently computable function has a polynomial-size Transformer
realization (Theorem 3).

—

8.4 Empirical Consistency

Empirical findings across many studies align with these theoretical predictions:

Head specialization. A small fraction of heads dominate performance [129, 197, 34], consistent
with low-arity compositional structure.

Low-rank matrices. Empirical spectra of WQ,WK ,WV show low effective rank [140, 2].

Attention sparsity. Learned attention distributions become nearly top-k sparse at convergence,
especially in deeper layers.

Dimension-independent scaling. Transformer performance follows power-law scaling ε ∼ N−α

without dependence on embedding dimension [94, 88].

—

8.5. LIMITATIONS AND OPEN PROBLEMS 61

8.5 Limitations and Open Problems

• Early layers sometimes exhibit diffuse attention; theory predicts this corresponds to wide-
band kernels providing coarse averaging.

• The low-rank assumption holds empirically but lacks a purely theoretical guarantee from the
training dynamics.

• The results assume smooth local maps (Cr); extending to nonsmooth or discrete combinatorial
tasks is open.

8.6 Conclusion

Self-attention implements the same structural principle uncovered in the CBMM theory: efficiently
computable functions decompose into locally low-dimensional components. An attention head
is a Gaussian kernel smoother in a learned metric; multi-head attention forms mixtures of such
smoothers; and stacked layers yield composition-respecting approximants with dimension-free
rates governed by local arity k. Transformers thus concretely instantiate the principle:

Efficient Computability ⇒ Compositional Sparsity ⇒ Dimension-Free Deep Approximation.

CHAPTER 9

Hardware for Compositionally Sparse
Computation (with J. Bates)

The central thesis of this book—that efficiently computable functions are compositionally sparse—has
profound implications for hardware. If the mathematical structure of efficiently computable functions
consists of bounded-fan-in DAGs with local dependencies, then the optimal physical substrate is not a
monolithic matrix multiplier, but a 2D mesh of simple processing elements with nearest-neighbor
communication – as suggested by Joe Bates. This chapter argues for a "structural alignment" between
algorithm and hardware. We explore architectures where the physical layout mirrors the computational
DAG, minimizing energy spent on data movement and maximizing locality. We specifically analyze how
Transformer blocks (MLP and Attention) map onto such meshes using approximate HDR arithmetic and
localized routing.

Figure 9.1:

62

9.1. THE STRUCTURAL ALIGNMENT ARGUMENT 63

9.1 The Structural Alignment Argument

The prevailing trend in AI hardware has been to build massive, centralized matrix engines (like
GPUs and TPUs) designed for dense, all-to-all connectivity [91]. This approach assumes that the
underlying computation is generic dense matrix multiplication.

However, as established in Chapter 4, efficiently computable functions are not generic dense
blobs. They are **Compositionally Sparse**: they decompose into directed acyclic graphs (DAGs)
where:

• **Bounded Fan-in:** Each node depends on a small number of inputs.

• **Locality:** Modules interact primarily with their logical neighbors.

This theoretical insight suggests a different hardware paradigm. Instead of building hardware
for dense connectivity, we should build hardware that is **isomorphic** to the sparse compositional
structure.

• **The Mathematical Structure:** A graph of local, low-arity operations.

• **The Physical Structure:** A 2D mesh of simple Processing Elements (PEs) with local inter-
connects [13].

By mapping the logical parents of a node to physical neighbors on the chip, we convert "wiring
costs" (which dominate energy consumption) into "local hops," aligning the physics of the chip
with the math of the function [102].

[Image of 2D mesh network topology vs crossbar]

(a) Mathematical Structure
(Bounded Fan-in DAG)

f1 f2 f3

g1 g2

h

(b) Physical Structure
(2D Mesh of PEs)

f1 f2 f3

g1 g2

h

Isomorphism: Physical neighbors
correspond to Logical parents

Figure 9.2: Structural Alignment. The bounded fan-in DAG of an efficiently computable function
(a) maps naturally onto a 2D Mesh topology (b). By placing logically connected nodes on physically
adjacent tiles, communication remains local, avoiding the need for global crossbars.

9.2 System and Numeric Model

Compute Fabric. We assume a 2D mesh of P simple processing elements arranged as a
√
P ×
√
P

grid.

64CHAPTER 9. HARDWARE FOR COMPOSITIONALLY SPARSE COMPUTATION (WITH J. BATES)

• Approximate Arithmetic Units: Leveraging Logarithmic Number Systems (LNS) or stochastic
logic to perform high-dynamic range operations with low area cost [73, 14];

• Small local SRAM (“tile memory”) for vector tiles and KV storage;

• Four nearest-neighbor links (N/E/S/W) for hop-by-hop routing.

The vision is to build a locality-driven architecture that trades bit-perfect deterministic accuracy
for massive parallelism. By eschewing wide crossbars and IEEE floating-point cores, we prioritize
wire efficiency and density [104].

Numeric Format: The Case for Approximate HDR. Instead of standard integers, we utilize a
High Dynamic Range (HDR) format with approximate semantics (e.g., LNS). In the log domain,
multiplication reduces to fixed-point addition (log(xy) = log x + log y), drastically reducing the
transistor count of the Processing Elements. Crucially, HDR supports the vast numerical scales
encountered during backpropagation (gradients ranging from 10−7 to 102), enabling training on the
mesh. We assume a relative error tolerance of ≈ 1%, which deep networks have been shown to
absorb without degradation [15, 130].

9.3 Mapping Compositional DAGs to 2D Meshes

We consider DAGs G of depth L with layer widths Wℓ and fan-in ≤ k. A natural layout places each
layer ℓ on a

√
Wℓ ×

√
Wℓ patch with parents at layer ℓ−1 assigned to adjacent patches.

Proposition 8 (2D schedule for bounded fan-in DAGs). Let each layer ℓ be placed on a
√
Wℓ ×

√
Wℓ

region. Then the latency to realize layer ℓ on a 2D mesh is

Tℓ = Tcomp,ℓ + Tcomm,ℓ,

Tcomm,ℓ = O(kDℓ + congℓ),

where Dℓ is the Manhattan diameter of dependencies and congℓ is max per-link congestion. If edge placement
uses locality-aware heuristics (e.g., hypergraph partitioning), then Dℓ = O(

√
Wℓ) in general, and Dℓ =

O(1) if G has bounded treewidth.

Constraint: Hierarchical Locality and Rent’s Rule. We must address a subtle topological con-
straint: bounded fan-in alone is insufficient to guarantee a compact 2D embedding. A random
sparse graph (an expander) has bounded fan-in but requires global wires that scale with the square
root of the chip area, destroying locality.

For the structural alignment argument to hold, the computational DAG must exhibit hierarchical
locality. Formally, the graph must satisfy a generalized Rent’s Rule [105], where the number of
terminals T required to communicate with a cluster of G logic gates scales as:

T ∝ Gp (9.1)

To map efficiently to a 2D mesh without excessive congestion, the Rent exponent must satisfy p ≤
0.5. We conjecture that efficiently computable functions naturally satisfy this geometric constraint, as
they typically decompose into semi-independent modules (objects, concepts) rather than monolithic
global dependencies.

[Image of Rent’s rule log-log plot for VLSI circuits]

9.4. SPARSE ATTENTION ON 2D MESHES 65

Layer ℓ Tiled Mapping

W
(ℓ)
ij

W
(ℓ)
ij

W
(ℓ)
ij

W
(ℓ)
ij

xin

xin

xin

Input/Neighbor

Active Compute

Figure 9.3: Tiled Mapping of a Neural Layer. A large layer Wℓ is decomposed into tiles distributed
across the mesh. Data flows from neighboring regions (Layer ℓ− 1) to the active computation tiles
using only local routing, avoiding global broadcasts.

MLP Modules. When viewed as feedforward layers with fan-in k, the MLPs in a transformer
are ideally suited to such layout. Each layer can be broadcast in tiles, and inputs fetched from
neighbors within a few hops. With sparsity or block structure in the weights (e.g., compositionally
local weight matrices), compute remains bounded and placement near-optimal.

Speculatively, MLP submodules might be structured as locally reused kernels applied in a
recurrent fashion over overlapping scopes [30]. This suggests a kind of sliding compositionality,
where each kernel operates over a spatial patch of nearby tokens (or semantic units). In this case,
the 2D mesh becomes a physical substrate for composing locality-aware update modules.

9.4 Sparse Attention on 2D Meshes

We explore two strategies, KV-stationary and Q-stationary, for evaluating top-s attention in a
distributed mesh.

9.4.1 KV-Stationary: Coarse-to-Fine Attention

Distribute keys and values across PEs; queries are routed to buckets [98]:

1. Coarse filter: compute c(q) = sign(Bq), a low-rank code of q;

2. Fine score: at bucket PEs, evaluate ⟨q, ki⟩ and select top-s;

3. Mix: normalize (softmax-lite) and compute weighted sum
∑

i αivi.

This coarse-to-fine filtering exploits structure in the attention map and avoids global broadcasts.

9.4.2 Q-Stationary: Systolic Streaming with Early Exit

Store queries locally, and stream (K,V) across PEs. Maintain top-s heaps in-place; prune keys that
cannot contribute based on conservative score bounds [41].

[Image of systolic array architecture diagram]

Speculative Opportunity. If attention graphs are induced by a latent hierarchical function (e.g., a
parse or program tree), then coarse bucketings might correspond to semantic equivalence classes.
The mesh becomes a canvas for learning or reflecting emergent structure.

66CHAPTER 9. HARDWARE FOR COMPOSITIONALLY SPARSE COMPUTATION (WITH J. BATES)

9.5 AM Quantization and Error Analysis

We adopt two softmax approximations compatible with integer hardware:

• Blockwise softmax: via integer max and LUTs [211];

• Tempered max-mix: softmax-lite using ReLU and shifts only.

Error bounds (e.g., Lemma ??) link quantization precision ∆ to output fidelity. We derive
end-to-end degradation (Proposition ??) and provide explicit tolerances for b-bit quantizers [43, 71].

9.6 Discussion: Why 2D Meshes Help

• Local fan-in and attention sparsity shrink receptive fields, making local routing sufficient.

• Spatial bucket locality and compositional weight reuse enable static co-placement of related
scopes [31].

• Fixed-point compatibility ensures bit-serial or SIMD units suffice, reducing energy and area.

• Emergent structure discovery: If learning induces local composition or symmetry, the mesh
layout might co-adapt.

9.7 Conclusion

We presented a speculative but rigorous framework for mapping compositionally sparse computa-
tions—typical of transformer blocks—to 2D meshes of simple processing elements. Such mappings
exploit low arity, sparse attention, and localized updates to minimize communication. The result
is a hardware substrate that leverages structural regularities in both the algorithm and the data,
favoring integer arithmetic, approximate softmax, and hop-local routing. Future work may explore
adaptive mesh reconfiguration, dynamic bucketing strategies, and learning-augmented placement.

The broader implication is that sparsity—far from being a nuisance—may be a blessing. Com-
positional structure enables hardware mappings with minimal overhead and supports scalable,
efficient deployment of deep learning systems on modest, spatially organized fabrics.

CHAPTER 10

A Common Principle Underlying
Diffusion Models and Transformers

We propose a unifying theoretical principle: step–by–step supervision of partial states—whether in an
autoregressive or a diffusion format—is sufficient to emulate any polynomial-time Turing computation,
even when each step is implemented by a simple linear threshold (or small Boolean) model. The key problem is
to provide appropriate input-output training data. Concretely, for every function f computable by a Turing
machine in polynomial time, there exists a dataset of intermediate configurations such that training a linear
predictor on successive states—either st 7→st+1 (autoregressive) or st 7→st−1 (diffusion)—recovers f . The
same formal structure explains why transformers and diffusion models, though architecturally distinct, both
succeed through stepwise prediction of local transitions, since they both provide the necessary training sets.

Figure 10.1:

67

68CHAPTER 10. A COMMON PRINCIPLE UNDERLYING DIFFUSION MODELS AND TRANSFORMERS

10.1 Introduction

Large language models such as GPT transformers are trained by autoregressive next-token prediction:
each step predicts xt+1 from the current prefix x≤t. Diffusion models, by contrast, learn to denoise:
each step predicts the less noisy sample xt−1 from xt. Despite this difference in direction, both
training schemes learn a local update map between adjacent states.

This chapter formalizes that correspondence. We show that, with suitably designed repre-
sentations, a simple linear threshold predictor trained on step-wise supervision can implement
any polynomial-time Turing machine. Hence, the principle of learning local transitions between
partial states suffices for universal computation.

Our analysis parallels the recent result of Malach, who proved universality of autoregressive
next-token learners [118]. We restate his theorem in a compact “unrolled-Turing” formulation and
extend the same logic to diffusion-style denoisers, including a version with true Gaussian noise.
Finally, we discuss why transformers and diffusion models can both be viewed as instances of the
same compositional mechanism.

10.2 Preliminaries

Polynomial-time computable functions. Let Σ be a finite alphabet and let f : Σn → Σm be a
function computed by a deterministic Turing machine M in time T (n) = poly(n). A configuration of
M at time t—its tape contents, head position, and internal state—is denoted τt. We encode each
configuration by a binary vector st ∈ {0, 1}d of dimension d = poly(T (n)); for instance, each tape
cell and state symbol can be represented in one-hot form.

Linear threshold and circuit predictors. A linear threshold function (LTF) is

hw,b(z) =
{

1, ⟨w, z⟩+ b ≥ 0,
0, otherwise.

Multiple LTFs in parallel, or equivalently a shallow threshold circuit, can produce multi-bit outputs.
All results below remain valid if we replace the LTF by any polynomial-size Boolean circuit
implementing the same local update. The replacement of linear threshold predictors by Boolean
circuits, formalized in an Appendix of chapter 4, is implicitly used here to establish the universality
of stepwise diffusion models.

Stepwise training paradigms. We distinguish two kinds of supervision:

1. Autoregressive (AR) prediction: learn the mapping st 7→st+1 that advances the machine one
step forward.

2. Diffusion-style denoising: learn the mapping st 7→st−1 (or, in continuous variants, x̂t 7→ x̂t−1)
that reconstructs a cleaner previous state.

10.3 Stepwise Universality of Autoregressive Predictors

Theorem 8 (Autoregressive universality (see Malach, 2023)). Let f : Σn→Σm be computable by a
Turing machine M in time T (n). Then there exists a polynomial-size dataset D of pairs (st, st+1), and a
linear threshold (or small circuit) predictor trained on the next-token loss over D, such that the iterated
predictor reproduces f with high probability over inputs drawn from any distribution D.

10.4. STEPWISE UNIVERSALITY OF DIFFUSION PREDICTORS 69

s0 s1 . . . sT

Next Token (st → st+1)

Denoising (st → st−1)

Input x Output f(x)

Figure 10.2: Two sides of the same coin. Autoregressive models (top) learn to predict the next
computational state, simulating the Turing machine forward. Diffusion models (bottom) learn to
recover the previous computational state, effectively reversing the computational trajectory (or
denoising it). Both rely on learning local transitions.

Proof sketch. Unroll M on an input x for T (n) steps, producing configurations τ0, . . . , τT (n)
and encodings s0, . . . , sT (n). Because each transition of M updates only a constant-size local
neighborhood (current head position, symbol, and state), each bit of st+1 depends on a fixed small
subset of bits of st. With a one-hot representation, each such rule can be realized by a linear
threshold unit; collecting all outputs gives a single layer H with d parallel thresholds so that
H(st) = st+1. Training H on all transitions (st, st+1) from a polynomial number of simulated runs
yields a model that generalizes to new x, and iterating H for T (n) steps outputs sT (n) encoding
f(x) [7].

Remark. The key point is that the expressive power resides in the training set—which exposes
every local transition—not in the nonlinearity of the model. Depth is replaced by supervision
across time.

10.4 Stepwise Universality of Diffusion Predictors

Theorem 9 (Diffusion-step universality). For any polynomial-time computable f as above, there exists
a discrete diffusion process with states sT , . . . , s0 such that a linear threshold (or small circuit) predictor
trained on pairs (st, st−1) learns a denoising map whose T (n)-fold composition recovers f .

τt 1 0 1 1 0State qA

Local Update

τt+1 1 0 0 1 0State qB

The transition is local:
Only the head position
and current cell change.

Figure 10.3: The Local Transition Principle. Because Turing Machines operate locally, the mapping
between any configuration τt and its successor τt+1 (or predecessor τt−1) is simple. This allows a
shallow network to learn the "rules of physics" for the computation, provided it is trained on the
intermediate steps.

70CHAPTER 10. A COMMON PRINCIPLE UNDERLYING DIFFUSION MODELS AND TRANSFORMERS

Idea. Interpret the “denoising” map G(st) = st−1 as the time-reversed Turing transition τt 7→τt−1.
Because each step of the Turing machine is local, the same linear threshold construction as in
the autoregressive case implements G. Training on all consecutive pairs (st, st−1) teaches the
model the inverse transition rule. Iterating G for T (n) steps reconstructs the initial or output
configuration depending on direction. Thus, a diffusion-style learner trained stepwise has identical
computational universality.

Continuous or noisy variants. In Appendix C we show that this result extends to true Gaussian
diffusion: each Turing configuration is embedded as a one-hot vector st; forward diffusion adds
Gaussian noise; and a linear threshold denoiser can still identify the active coordinate and apply
the discrete update rule with high probability [79].

10.5 Discussion: Transformers and Diffusion as Stepwise Computation

Both autoregressive and diffusion training teach a model to approximate a local transition map on
an implicit computational trajectory. The key is to exploit appropriate training sets.

• In an autoregressive transformer, training data supervise the forward transition st 7→
st+1—learning to predict the next state in a computation.

• In a diffusion model, training data supervise the reverse transition st 7→ st−1—learning to
reconstruct the previous state in a computation corrupted by noise. Here the step-wise training
data are created by successive "noising" of the target.

From this viewpoint, both architectures instantiate the same universal mechanism: a composi-
tion of simple, local updates whose repetition yields arbitrarily complex functions. Transformers
“integrate” forward toward the minimum of a loss landscape, while diffusion models “integrate”
outward from that minimum through inverse steps. The underlying reason for their power is
therefore not architectural depth but the availability of dense stepwise training data that exposes
every intermediate transition of an underlying computation [171].

10.6 Technical Note: Gaussian Diffusion and Noisy One-Hot Encodings

This appendix extends Theorem 9 to a true diffusion process with Gaussian noise, demonstrating
that the universality argument still holds when the forward process adds continuous noise at each
step.

10.6.1 Setup: Forward Diffusion with One-Hot Embeddings

Let each discrete Turing configuration τt be encoded by a one-hot (or scaled one-hot) vector

st ∈ Rd, st(k) =
{
C, if coordinate k represents τt,

0, otherwise,

where C > 0 sets the signal amplitude and d = poly(T (n)).
Following the standard discrete-time diffusion formulation of Ho et al. [79], the forward process

adds Gaussian noise:
xt =

√
ᾱt st +

√
1− ᾱt zt, zt ∼ N (0, Id),

where ᾱt =
∏t

i=1 αi. The variable xt is thus a noisy observation of st.

10.6. TECHNICAL NOTE: GAUSSIAN DIFFUSION AND NOISY ONE-HOT ENCODINGS 71

10.6.2 Recovering the Active Coordinate

Lemma 6 (High-probability identification). Let st be one-hot with amplitude C and xt generated as
above. If C >>

√
1− ᾱt, then with probability at least 1− e−Ω(C2/(1−ᾱt)), the index

k⋆ = arg max
j
xt(j)

equals the hot coordinate of st.

Sketch. For the active coordinate k, xt(k) ∼ N (
√
ᾱtC, 1−ᾱt), while for all j ̸= k, xt(j) ∼ N (0, 1−ᾱt).

A standard Gaussian tail bound shows Pr[xt(k) ≤ xt(j)] ≤ exp
(
− (

√
ᾱtC)2

4(1−ᾱt)

)
. A union bound over

d = poly(T (n)) coordinates yields the stated result.

Hence, a simple arg-max operation recovers the correct coordinate with overwhelming probabil-
ity whenever the signal-to-noise ratio C2/(1− ᾱt) is large.

10.6.3 Implementing the Turing-Step Update

Let the deterministic transition function of the Turing machine be f : {1, . . . , d} → {1, . . . , d},
mapping each active coordinate k to the next one k′ = f(k).

After identifying k⋆ via Lemma 6, we must output a one-hot vector st−1 with its non-zero entry
at k′ = f(k⋆). This map can be implemented by a small Boolean or threshold circuit:

st−1(j) =

C, if j = f(k⋆),
0, otherwise.

In particular, we can realize the overall denoising step as a network

D(xt) = M
(
argmax(xt)

)
,

where the first block computes the dominant coordinate (via linear comparisons or a small network
of LTFs), and M encodes the lookup table k 7→ f(k). Both submodules are polynomial in d [176].

10.6.4 Training and Composition

Training proceeds exactly as in the discrete diffusion case: for each input x, unroll the Turing
machine for T (n) steps, generate noisy states xt via the forward process, and supervise the denoiser
with targets st−1. Because the hot coordinate can be recovered with high probability and the
mapping k 7→f(k) is deterministic.

CHAPTER 11

Lottery Ticket and Compositionality

Is there a fundamental connection between the compositionality of a task and the compressibility of the
network that learns it? We propose that the “Lottery Ticket Hypothesis” is not merely an artifact of gradient
descent, but a direct consequence of the compositional sparsity of the target function.

Figure 11.1:

11.1 Introduction

The Lottery Ticket Hypothesis (LTH) suggests that dense neural networks contain sparse subnet-
works (“winning tickets”) that can match the performance of the full model [54]. While typically
studied through the lens of optimization dynamics, we argue here for a structural origin: tickets
exist because the target function is compositionally sparse.

If the function f⋆ we wish to learn can be represented by a sparse graph of local computations
(a DAG of size s≪ parameters), then the dense network’s weight matrices are effectively approxi-

72

11.2. THE GEOMETRY OF SPARSITY 73

mating low-rank operators [128]. Consequently, the dense solution θ̂ must lie in the close vicinity
of a low-dimensional manifold defined by sparse, low-rank networks.

This chapter formalizes this intuition. We prove an Approximate Warm-Start Lottery Ticket
Theorem: essentially, that dense training implicitly locates the neighborhood of a compositional
solution, allowing us to project (prune/decompose) onto that solution with minimal loss.

11.2 The Geometry of Sparsity

Before stating the formal result, it is helpful to visualize the geometric relationship between the
dense optimization landscape and the manifold of compositionally sparse functions.

Dense Space RN

Sparse Manifold ΘS,r

Dense Training

θinit

θ̂
(Dense Min)

θ0 = Π(θ̂)
(Warm Ticket)

θ̃ (Final)

δ
≈

σ
r

+
1

Figure 11.2: The Geometric View of the Lottery Ticket Hypothesis. Dense optimization finds a
minimum θ̂ that is not sparse itself, but lies extremely close to the manifold ΘS,r of compositionally
sparse networks. The projection distance δ (red) is determined by the “tail energy” of the singular
values (the non-compositional noise). Pruning is simply the orthogonal projection onto this
manifold, providing a “warm start” θ0 for restricted fine-tuning.

11.3 Approximate Lottery Ticket Theorem for Compositionally Sparse
Functions

Theorem 10 (Approximate Lottery Ticket Hypothesis for Compositionally Sparse Targets). Let
f⋆ ∈ Ccomp(s, k, L, r) be a compositionally sparse function, computable by a bounded-fan-in DAG of size
s and depth L.

Consider an overparameterized architecture Adense (e.g., a Transformer or MLP) with layer weights
{Wℓ}Lℓ=1, trained to global convergence on data drawn from D under a loss R(θ). Assume that training
converges to a minimum θ̂ with minimal norm.

74 CHAPTER 11. LOTTERY TICKET AND COMPOSITIONALITY

Then there exists a structured subnetwork ΘS,r ⊂ Adense with |S| = Õ(s) active parameters and
per-layer ranks rℓ = Õ(1) such that:

(a) (Approximation) There exists θ⋆ ∈ ΘS,r satisfying ∥Fθ⋆ − f⋆∥L2(DX) ≤ ε.

(b) (Proximity of minima) The dense minimum θ̂ and its projection θ0 = ΠS,r(θ̂) yield almost identical
functions,

R(θ0) ≤ R(θ̂) +O(ε+ δ),

where δ is the aggregate spectral/pruning error

δ ∼
L∑

ℓ=1

(
σrℓ+1(Wℓ) + ∥Eprune

ℓ ∥
)
.

Moreover, fine-tuning θ0 within ΘS,r converges to a subnetwork θ̃ satisfying R(θ̃) ≤ R(θ̂) +O(ε+ δ).

Remark 1 (Interpretation). Under minimal-norm convergence, dense optimization implicitly identifies
a low-complexity region of parameter space containing a compositionally sparse subnetwork ΘS,r of size
Õ(s). Projecting onto this manifold and retraining within it recovers the dense model’s performance up to
O(ε+ δ). This provides a succinct form of the approximate lottery ticket hypothesis (see also [119]): the
effective solution is already sparse and compositional, even if the training representation is dense.

11.4 Refinements and Empirical Connections

We now strengthen the result by explicitly linking the projection error δ to the smoothness properties
of the target function.

Corollary 1 (Spectral Decay and Smoothness in LLMs). The success of pruning and low-rank compres-
sion in Large Language Models is explained by the relationship between the smoothness of the target function
and the singular value spectrum of the learned weights [123].

(a) Activation Sparsity↔ Local Connectivity. The observation that only a small fraction of neurons
activate for any given token implies the underlying computation graph is effectively sparse (St ≪ total).

(b) Weight Compressibility ↔ Functional Smoothness. If the constituent functions of the target
composition f⋆ are r-times differentiable (smooth), approximation theory dictates that their polynomial
or spectral coefficients must decay rapidly.

Specifically, for a function of smoothness class Cr, the singular values σk of the weight matrix
representing it decay as:

σk(W) ≲ k− r
d

where d is the effective intrinsic dimension.

Implication: The heavy-tailed power-law decay observed in trained LLM weights (α > 1) is not
accidental. It is the spectral signature of the smoothness of the underlying semantic functions.
Because σk decays rapidly, the truncation error

δ =
∑

k>rank

σk

is negligible. This allows us to discard 90% of the parameters (the “tail”) without losing the “head”
that encodes the smooth compositional structure.

11.4. REFINEMENTS AND EMPIRICAL CONNECTIONS 75

(c) Hierarchical Modularity. The ability to prune entire attention heads without catastrophic failure
suggests that the learned function is modular. The dense model learns a sum of modules; pruning
removes the redundant modules, revealing the underlying compositional DAG.

Consequently, the empirical success of post-training pruning provides strong evidence that
neural networks learn functions in the compositionally sparse class Ccomp.

Part III
Learning and Evolution

76

CHAPTER 12

Implicit Regularization and Bits

We propose that the disparate forms of “inductive bias” in deep learning—from convolutional locality to
low-rank attention—can be unified under a single theoretical currency: Bits. By constraining the description
length of the function class, architectural choices reduce metric entropy (covering numbers) and consequently
Rademacher complexity. While optimization dynamics determine which specific solution is selected, the
architecture defines the geometry of the solution space, imposing a hard ceiling on complexity that guarantees
generalization.

Figure 12.1: Unifying Inductive Biases through the Geometry of Bits. Different architectural choices,
such as convolutional locality or low-rank attention, constrain the function space to different
geometric regions. Despite their structural differences, their complexity can be measured by a
unified currency: the number of bits (represented by covering spheres) needed to describe that
region at a specific scale (metric entropy). By constraining the description length, architecture lowers
metric entropy, placing a hard ceiling on Rademacher complexity and guaranteeing generalization,
regardless of the specific path taken by optimization.

77

78 CHAPTER 12. IMPLICIT REGULARIZATION AND BITS

12.1 The Universal Currency: Bits, Geometry, and Noise

To understand how architecture aids learning, we must relate three distinct languages of complexity.

12.1.1 Kolmogorov Complexity (The Language of Bits)

For a function f : X → Y , the Kolmogorov complexity K(f) is the length of the shortest program
that computes f on a fixed universal Turing machine:

K(f) = min
p: U(p,·)=f(·)

|p|.

This is the ultimate lower bound on compressibility [100]. If a neural network architecture allows a
function to be specified with very few parameters (e.g., a shared convolutional kernel), it forces
K(fθ) to be small. The Minimum Description Length (MDL) principle tells us that short programs
generalize better because they cannot memorize random noise (which is incompressible).

12.1.2 Metric Entropy (The Language of Geometry)

How “large” is the space of functions F realizable by our network? We measure this not by volume,
but by how many ε-balls are needed to cover it.

[Image of metric entropy covering number visualization]

F

ε

One ε-ball

Metric EntropyH(ε) ≈ log(Total Balls)
Counts the bits needed to specify a function f ∈ F

to within precision ε.

Figure 12.2: Visualizing Metric Entropy. The function class F is covered by balls of radius ε. The
“size” of the class is the log-count of these balls. Architectures with bounded fan-in or low rank
shrink the volume of F , requiring fewer balls to cover it, thus reducing metric entropy.

Let N (ε,F , ∥ · ∥) be the covering number: the fewest distinct functions needed to approximate
any f ∈ F within error ε. The Metric Entropy is simply the bit-count of this cover:

H(ε,F) := log2N (ε,F , ∥ · ∥).

Intuitively, H(ε) is the number of bits required to describe a specific function in the class up to
resolution ε.

12.2. THE BRIDGE: DUDLEY’S CHAINING INTEGRAL 79

12.1.3 Rademacher Complexity (The Language of Statistics)

Rademacher complexity R̂S(F) measures the ability of the function class to correlate with random
noise signs σi ∈ {±1}. If a class is too complex (too many bits), it can memorize any noise pattern,
leading to overfitting [11].

[Image of Rademacher complexity random labels]

12.2 The Bridge: Dudley’s Chaining Integral

How do we connect the geometry (Metric Entropy) to the statistics (Rademacher)? We use Dudley’s
Chaining Integral.

Imagine describing a function f by first giving a coarse approximation (using few bits), then a
finer detail correction (more bits), and so on. The total complexity is the sum of these descriptions
across all scales. Mathematically, this bounds the Rademacher complexity by the integral of the
square root of the metric entropy [49]:

R̂S(F) ≤ C√
n

∫ diam(F)

0

√
H(ε,F) dε. (12.1)

The Takeaway: If architectural constraints suppress the metric entropyH(ε)—even at very fine
scales ε—the Rademacher complexity collapses, ensuring generalization.

[Image of Dudley’s entropy integral]

12.3 Architecture as an Entropy Compressor

We now examine how specific architectural features act as “implicit regularizers” by compressing
the metric entropy.

1. Architecture
(Hard Constraint)

Bounded Fan-in, Low Rank

2. Geometry
(Metric Entropy)
H(ε) is small

3. Generalization
(Rademacher)

Low Noise correlation

Restricts Capacity

Dudley Integral

Optimization
Selects specific f ∈ F
via Initialization.

Figure 12.3: The Regularization Funnel. Architectural choices like locality or low rank act as a
hard constraint on the geometry of the function space, lowering the metric entropy. This feeds into
Dudley’s integral to bound Rademacher complexity. Optimization dynamics play a role within this
pre-defined geometry.

80 CHAPTER 12. IMPLICIT REGULARIZATION AND BITS

(A) Compositional Sparsity (Bounded Fan-in). Consider functions computable by a computation
graph (DAG) with s nodes, where each node depends on at most k inputs (local connectivity).
Even if the ambient dimension n is huge, the local complexity is low. For smooth node functions
(Lipschitz bound B, smoothness r), the metric entropy scales as:

H
(
ε,FCS

)
≲ s ·

(
B

ε

)k/r

. (12.2)

Crucially, this bound is independent of the input dimension n. The architecture forces the model
to ignore the vast majority of the input space, focusing only on local interactions defined by k.

(B) Low-Rank Projections (Attention). In Transformers, attention matrices are often low-rank
(W = UV ⊤ where rank ≪ d). A full rank matrix has d2 degrees of freedom; a low-rank one has
2rd. This linear reduction in parameters leads to a logarithmic reduction in metric entropy. The
“bottleneck” rank r acts as a hard limit on the information capacity of each head, preventing the
memorization of high-frequency noise [9].

(C) Quantization as Capacity Control. Using low-precision (e.g., 8-bit or 4-bit) weights is often
viewed merely as a hardware optimization. Theoretically, it is a powerful regularizer. If weights
are quantized to b bits, the total number of possible networks is finite (2bP). The metric entropy at
zero error becomes exactly bP bits. By denying the model infinite precision, we prevent it from
encoding training data into the arbitrary decimal expansions of the weights [212].

12.4 Discussion: The Interplay of Architecture and Optimization

A nuanced view is required regarding the “cause” of generalization. Recent work by Xu et al. [207]
and others suggests that for overparameterized networks, the final weights depend heavily on
initialization and the specific trajectory of gradient descent. If the architecture is loose (large
capacity), bad initialization can lead to “Kernel regime” solutions that generalize poorly, while
“simple” initialization leads to min-norm solutions.

However, this does not negate the role of architecture. We propose the following synthesis:

• Architecture defines the Playground (Geometry): It sets the potential minimum description
length. By restricting fan-in k or rank r, the architecture ensures that the manifold of possible
solutions has low metric entropy.

• Optimization selects the Position (Kinetics): Within this favorable playground, implicit bias
from initialization and SGD directs the network toward the simplest solution compatible
with the data.

Thus, architecture is the enabling constraint: it ensures that a low-complexity solution exists and
is accessible, effectively lowering the ceiling of the Dudley integral.

CHAPTER 13

Multiplicative Regularization Generalizes
Better (based on work with R. Dubach
and M. Abdallah)

We investigate the effectiveness of multiplicative versus additive (L2) regularization in deep neural networks,
focusing on convolutional neural networks for classification. While additive methods constrain the sum of
squared weights, multiplicative regularization directly penalizes the product of layerwise Frobenius norms, a
quantity theoretically linked to tighter Rademacher-based generalization bounds. Through experiments on
binary classification tasks in a controlled setup, we observe that multiplicative regularization consistently
yields wider margin distributions, stronger rank suppression in deeper layers, and improved robustness
to label noise. Under 20% label corruption, multiplicative regularization preserves margins that are 5.2%
higher and achieves 3.59% higher accuracy compared to additive regularization in our main network
architecture. Furthermore, multiplicative regularization achieves a 3.53% boost in test performance for
multiclass classification compared to additive regularization. Our analysis of training dynamics shows
that directly constraining the global product of norms leads to flatter loss landscapes that correlate with
greater resilience to overfitting. These findings highlight the practical benefits of multiplicative penalties for
improving generalization and stability in deep models.

13.1 Introduction

Regularization is central to controlling overfitting and improving generalization in deep learning,
as the capacity of neural networks is inherently tied to their generalization abilities. This fact
motivated extensive work to define generalization bounds reflective of neural network capacity
and their ability to generalize beyond training data [58].

Among standard techniques, additive approaches such as L2 regularization remain dominant,
yet there is increasing interest in methods that constrain global weight configurations more directly.
Recent theoretical work suggests that products of layer norms play a key role in capacity control,
motivated by norm-based generalization bounds linking tighter Rademacher complexity guarantees
to the product of weight norms across layers. Moreover, Bottman et al. (2023) provide geometric
evidence that multiplicative penalties produce more isolated, well-conditioned minima in the loss
landscape, which helps explain their superior robustness [21]. These bounds suggest that a direct
penalty on the product of the layer norms should offer distinct advantages over conventional per-

81

82CHAPTER 13. MULTIPLICATIVE REGULARIZATION GENERALIZES BETTER (BASED ON WORK WITH R. DUBACH AND M. ABDALLAH)

Figure 13.1:

layer or summation-based penalties, which are the typical capacity-control methods employed in
practice [135]. Our work compares these additive and multiplicative approaches in a systematically
controlled setting to evaluate how each method affects training dynamics, margin behavior, and
robustness to label noise.

[Image of additive vs multiplicative regularization constraints geometry]
We focus on the conceptual difference that L2 regularization penalizes the sum of squared

parameters. In contrast, multiplicative penalties establish a coordinated constraint system across
layers by penalizing the product of their Frobenius norms. We aim to determine whether explicitly
targeting the product of norms elicits stronger generalization, better noise robustness, and more
stable training. Through extensive experiments on binary classification tasks using convolutional
neural networks, we find that multiplicative regularization promotes wider margins, sharper
rank suppression, and increased resilience to label corruption. We also confirm similar trends
in multiclass classification. Our results align with the theoretical motivation that bounding the
product of layer norms provides a more principled approach to capacity control [3, 64].

13.2 Background

Researchers have long studied how large models generalize effectively despite being overparam-
eterized [210]. L2 regularization has proven valuable for constraining weight magnitudes and
improving performance, but its effect on the product of norms remains unclear [82, 103]. For
multilayer networks, Rademacher complexity bounds depend on the product of layerwise spectral
or Frobenius norms [137, 136] and can therefore be controlled by constraining this product. Earlier
bounds displayed an exponential dependence on depth, but more recent results reduce this to
polynomial dependence [63]. A representative bound has the form

Rm(F) = O
(
BL

m

L∏
i=1
∥Wi∥2F

)
, (13.1)

13.3. THEORY 83

where L is the number of layers, ∥Wi∥F denotes the Frobenius norm of the i-th layer weight matrix,
B bounds the input norm, and m is the sample size.

[Image of Rademacher complexity bound visualization]
From the perspective of such bounds, multiplicative regularization, which directly targets

the product of norms, provides a more theoretically grounded capacity-control mechanism than
methods constraining only individual weights or their sum [137]. Empirical comparisons have
often focused on variations in weight decay and related additive techniques [82, 103]. Ensemble-
and dropout-based methods inject noise to reduce reliance on any single set of parameters but do
not systematically target the product of norms [180]. Other developments introduce multiplicative
norm constraints or reparameterizations that keep layer products bounded [89, 169]. Bottman et al.
analyze how different regularizers shape loss-geometry, arguing that multiplicative regularization
induces degenerate minima while (conjecturally) additive regularization yields Morse-type isolated
minima for generic nonlinear networks [21]. However, few empirical studies directly assess whether
a multiplicative penalty outperforms standard L2 penalties; our work fills this gap in a controlled
classification setting.

13.3 Theory

We relate the quantities
∏L

i=1 ∥Wi∥2F and
∑L

i=1 ∥Wi∥2F . For nonnegative ∥Wi∥2F , the AM–GM in-
equality gives

1
L

L∑
i=1
∥Wi∥2F ≥

(
L∏

i=1
∥Wi∥2F

)1/L

, (13.2)

with equality iff ∥W1∥2F = · · · = ∥WL∥2F . Raising both sides of (13.2) to the power L yields(
1
L

L∑
i=1
∥Wi∥2F

)L

≥
L∏

i=1
∥Wi∥2F . (13.3)

Thus, in general, a small additive term may imply a small multiplicative term (up to a power
and constant), but the converse need not hold. Hence minima of additive and multiplicative
regularizers need not coincide. A useful identity is

log
(

L∏
i=1
∥Wi∥2F

)
=

L∑
i=1

log
(
∥Wi∥2F

)
, (13.4)

so minimizing the product is equivalent (by monotonicity of log) to minimizing the sum of the logs
of squared norms, rather than the sum of the squared norms themselves.

13.4 Methodology

We compare two penalties added to the original loss Lorig with coefficient ε > 0:

Ladd = Lorig + ε
L∑

i=1
∥Wi∥2F , (13.5)

Lmult = Lorig + ε
L∏

i=1
∥Wi∥2F . (13.6)

84CHAPTER 13. MULTIPLICATIVE REGULARIZATION GENERALIZES BETTER (BASED ON WORK WITH R. DUBACH AND M. ABDALLAH)

Additive regularization applies independent pressure to each layer, whereas multiplicative regular-
ization couples the layers globally by directly targeting the product that appears in generalization
bounds.

Architectures and data. For the binary experiments, we use a CNN with four convolutional
layers of channels (16, 32, 64, 128) with ReLU activations and 2 × 2 average pooling (stride 2)
after each conv block, followed by two fully connected layers (256 hidden units, then one output).
Convolutional layers are bias-free; biases are enabled in the fully connected layers. The total number
of trainable parameters is 228,785. We train on a binary CIFAR-10 task mapping “cat” (class 3) to−1
and “deer” (class 4) to +1. Inputs are normalized channel-wise to mean (0.4914, 0.4822, 0.4465) and
standard deviation (0.2470, 0.2435, 0.2616). We use 10,000 training and 2,000 test images. Training
uses MSE regression with prediction sign(f(x)).

For multiclass experiments, we train on full CIFAR-10 (10 classes) with one-hot targets and
MSE loss; prediction is by arg max over logits. The CNN has four convolutional blocks, each with
two 3× 3 conv layers, ReLU, and 2× 2 average pooling. Channels per block are (64, 128, 256, 512).
The final 2× 2× 512 map is flattened, then a fully connected layer with 512 ReLU units precedes a
10-way linear output. Total parameters are 5,737,152. No biases are used. All weights use Kaiming
(He) initialization [76].

Training protocol. Weights are initialized with He normal initialization; a global scaling s ∈
{0.2, 0.4, 0.6, 0.8} is applied to all layers to study low-norm starts. We use SGD with batch size
16 for up to 2000 epochs, with early stopping if test accuracy does not improve for 200 epochs.
For both penalties we sweep ε ∈ {5 × 10−1, 5 × 10−3, . . . , 5 × 10−15} in the binary setup (and to
5 × 10−20 in the multiclass setup). Each configuration is run with seeds 1–5 (binary) or 10 seeds
(multiclass), discarding runs that fail to train (random-guessing).

Metrics. Besides accuracy and test loss, we compute margins for correctly classified points: for
sample (xi, yi) with yi ∈ {−1,+1},

margini = yi f(xi), (13.7)

where f(x) is the scalar network output before the sign. For fair comparison, after training we
rescale weights to unit global norm before margin computation. To estimate effective dimensionality,
we compute layer ranks via SVD of each weight matrix (convolutional kernels reshaped to matrices).
Singular values are normalized by the largest; the rank is the count exceeding 1% of the maximum
[206]. We also study robustness by flipping a fraction of training labels at random.

13.5 Results

All results reported here correspond to the best ε per method chosen by averaging test accuracy
over seeds at the fixed initialization scale s = 0.2. Both strategies can reach near-perfect training
accuracy, indicating minimal underfitting, but multiplicative regularization consistently yields
lower test loss and higher test accuracy. The average test-accuracy gap reaches up to 9.4 percentage
points in the binary task. Mean test margins are systematically larger under multiplicative penalties.

Noise robustness (binary). With clean labels (0% noise), multiplicative regularization attains
89.50% test accuracy versus 87.87% for additive and 87.80% without regularization. With 10%

13.5. RESULTS 85

Table 13.1: By-layer rank and Frobenius norms for the best-performing binary configuration
(averaged over seeds).

Rank Frobenius norm ∥Wi∥F
Layer Mult. Add. Unreg. Mult. Add. Unreg.

conv1 16 16 16 7.39 4.55 5.71
conv2 32 32 32 16.84 5.14 6.78
conv3 64 64 64 10.74 6.39 8.47
conv4 47 128 128 1.29 6.18 9.04
fc1 2 256 256 0.46 5.19 10.25
fc2 1 1 1 0.38 3.57 3.10∑

i ∥Wi∥2F 456 (Mult.) 166 (Add.) 347 (Unreg.)∏
i ∥Wi∥F 3.01× 102 (Mult.) 1.71× 104 (Add.) 9.42× 104 (Unreg.)

Table 13.2: Multiclass CIFAR-10: norms and accuracies averaged over 10 seeds at best ε.

Regularization
∏

i ∥Wi∥F
∑

i ∥Wi∥2F Train Acc. Test Acc.

Multiplicative 3.73× 107 679 0.891 0.687
Additive 1.10× 109 875 0.925 0.651
Unregularized 1.67× 109 960 0.937 0.650

label flips, multiplicative maintains 86.68% versus 81.13% (additive) and 80.20% (none). With
20% corruption, multiplicative reaches 83.10%, surpassing additive (73.69%) by 9.41 points and
unregularized (73.08%) by 10.02 points. Margins mirror these trends: under clean data, the mean
margin is 0.8329 (mult.) versus 0.7896 (add.) and 0.7890 (none). With 20% noise, the margin is
0.7109 (a 14.6% reduction) for multiplicative, versus 0.5124 (35.1% reduction) for additive and
0.5066 (35.8% reduction) for none.

Training dynamics and norm structure. Multiplicative and additive penalties converge to differ-
ent minima of the unregularized landscape. Multiplicative penalties drive the product

∏
i ∥Wi∥F

over an order of magnitude lower than additive penalties, which in turn reduce it by about an order
relative to the unregularized case. In contrast,

∑
i ∥Wi∥2F decreases most under additive penalties,

whereas under multiplicative penalties it can increase while
∏

i ∥Wi∥F remains low. Later layers
show pronounced rank suppression under multiplicative regularization, especially the first fully
connected layer [59].

Multiclass results. On full CIFAR-10 with clean labels, multiplicative regularization again yields
the best test accuracy and smaller generalization gap. Table 13.2 summarizes averages over 10
seeds at the best ε per method. Additive regularization offered little benefit over the unregularized
case in our sweeps, whereas multiplicative delivered a 3%+ test-accuracy boost and much smaller
norm products.

86CHAPTER 13. MULTIPLICATIVE REGULARIZATION GENERALIZES BETTER (BASED ON WORK WITH R. DUBACH AND M. ABDALLAH)

13.6 Discussion

Our findings confirm that multiplicative regularization can offer practical benefits over additive
penalties in controlling capacity and improving resilience to noise. Bounding the product of norms
is intimately tied to margin-based and Rademacher complexity bounds. Empirically, multiplicative
penalties lead to distinct training dynamics and converge to minima different from additive
regularization. In convolutional networks trained on CIFAR-10, multiplicative constraints guide
optimization toward flatter minima with simplified high-level representations: higher margins
and pronounced rank suppression, especially in later layers [109, 28, 96]. The norm distributions
reflect global coupling across layers, rather than uniform pressure on each layer as in additive
penalties. Initialization scale matters: smaller initial weights let multiplicative constraints act early,
preventing norm growth; with larger scales, differences narrow.

13.7 Conclusion

Directly penalizing the product of layerwise norms tends to yield higher test accuracy, improved
margins, better noise robustness, and stronger rank suppression than additive L2 penalties in
our controlled CNN studies. These observations align with theoretical arguments that product-
based constraints provide a principled mechanism for capacity control in overparameterized
networks, with especially clear advantages under label noise. Future work may explore hybrid
strategies, other architectures (e.g., Transformers), and optimizers that further amplify the benefits
of multiplicative regularization.

CHAPTER 14

For Overparametrized Networks
Probability Concentrates Around Global
Minima

In the regime of over-parameterized neural networks, the landscape of the training loss is complex and
generally non-convex. Despite this, optimization algorithms such as Stochastic Gradient Descent (SGD)
often converge to solutions that generalize well. This chapter explores the theoretical underpinnings of
this phenomenon, focusing on the interplay between the geometry of the loss landscape and the stochastic
dynamics of the optimizer.

The main rigorous conclusions presented here are three-fold:

1. Geometric Degeneracy: In over-parameterized networks, the set of parameters achieving zero training
loss generically is a high-dimensional manifolds. These “flat” or degenerate minima are characterized
by Hessians with large nullspaces.

2. Langevin Concentration: Injecting Gaussian noise into gradient descent (resulting in SGDL)
effectively models the optimization process as Langevin dynamics. The resulting stationary distribution
is a Boltzmann distribution p(θ) ∝ e−L(θ)/T . As the “temperature” T decreases, probability mass
concentrates in regions of larger local volume—favoring flat minima over sharp ones.

3. Exploration-Exploitation Trade-off: The balance between exploration and exploitation is governed
by the ratio of the learning rate to the batch size. This ratio defines distinct timescales for drift and
diffusion, establishing an effective temperature that promotes the exploration of wide valleys in the loss
landscape.

14.1 Main Results

We formalize these insights through four key lemmas that connect algebraic geometry, stochastic
differential equations, and measure concentration. The key intuition is that global minima are very
degenerate in overparametrized situations. Since diffusion-like processes converge to a Boltzman
distribution where the greater probability mass will concentrate on degenerate manifolds we have
convergence to global minima with high probability not because they are minima but because they
are the most degenerate. We know that the assumption of Gaussian noise, SGDL and continous

87

88CHAPTER 14. CONCENTRATION OF PROBABILITY IN OVERPARAMETRIZED NETWORKS

diffusion are not strictly correct for practical cases in which SGD is used. We believe however
that the qualitative phenomena we describe are very likely to hold in general – even if the precise
dynamic is different because the "noise" associated with SGD is not additive Gaussian noise and
the dynamics is discrete.

14.1.1 The Geometric Lemma: Existence of Flat Minimizers

Let P be the number of trainable parameters and M be the number of scalar constraints induced
by the training data. Under polynomial or “generic” conditions (or using piecewise-polynomial
surrogates for activation functions like ReLU), the set of zero-loss solutions behaves as an algebraic
variety [199].

Lemma 7 (Geometric Degeneracy). The zero-loss variety has real dimension d ≥ P −M . Consequently,
at any parameter configuration θ∗ such that the loss L(θ∗) = 0, the Hessian ∇2L(θ∗) possesses at least
P −M zero eigenvalues.

This result – related to Bezout theorem – guarantees the existence of high-dimensional manifolds
of global minima, providing the geometric basis for the “flatness” observed in deep learning
solutions [36].

14.1.2 The Dynamics Lemma: SGDL as Langevin Diffusion

We analyze the update rule for Stochastic Gradient Descent with explicit Langevin noise (SGDL):

θt+1 = θt − γ∇L(θt) +
√

2γTζt, (14.1)

where ζt is i.i.d. Gaussian noise.

Lemma 8 (Langevin Correspondence). The discrete SGDL update approximates (under some strong
conditions!) the Euler-Maruyama discretization of the continuous Langevin stochastic differential equation:

dθt = −∇L(θt)dt+
√

2TdBt. (14.2)

The stationary distribution of this process is given by the Gibbs-Boltzmann density p(θ) ∝ e−L(θ)/T [200].

14.1.3 The Concentration Lemma: Flat Beats Sharp

While all global minima have (by definition) equal training loss, they are distinguished by the
volume of their surrounding basins.

Lemma 9 (Volume Concentration). For minima with equal loss, neighborhoods with smaller curvature
(flatter geometry) occupy a larger local volume. In the context of Singular Learning Theory, this corresponds
to a smaller Real Log Canonical Threshold (RLCT). Asymptotically, the stationary probability mass captures
more weight in these flatter regions. Thus, lowering the temperature T or increasing the dimensionality of
the parameter space favors degenerate, flat minima over sharp, isolated ones [81].

14.1.4 The Timescale Law

The effective thermodynamics of SGD are set by the hyperparameters.

14.1. MAIN RESULTS 89

Lemma 10 (Drift and Diffusion Timescales). The characteristic timescales for drift (τdrift) and diffusion
(τdiff) scale as:

τdrift ∼
n

γ∥∇L∥
, τdiff ∼

√
n

γ tr(
√

Σ)
, (14.3)

where n is the batch size, γ is the learning rate, and Σ is the noise covariance.

This relationship illuminates how the learning rate and batch size jointly determine the effective
temperature, regulating the optimizer’s ability to escape sharp basins and explore wide valleys
[120].

#1

Histo.pdf

Undo Redo Selection Edit PDF Sign Text Erase Highlight Redact Image Arrow Draw Cross Check More Sticky Search More tools

Upload New Convert DONE

1 / 1 147% Fit

More tools

Sign
Sign the document

Password Protect
Add a password & encrypt your PDF

Add Watermark
Add image or text watermark

Page Numbers
Add page numbers to PDF

Organize Pages
Arrange and reorder PDF pages

Redact Tools
Permanently remove sensitive info

Merge Documents
Combine multiple PDFs together

Split & Extract Pages
Extract pages or split PDF

Rotate Pages
Rotate one or all pages in your PDF

Crop Page
Trim PDF margins, change PDF page
size

Delete Pages
Remove pages from your PDF

Convert Document
Convert your PDF into another format

OCR PDF
Convert scanned PDFs into
searchable, selectable documents

Figure 14.1:

90CHAPTER 14. CONCENTRATION OF PROBABILITY IN OVERPARAMETRIZED NETWORKS

14.2 Detailed Analysis

14.2.1 Synthesis of Geometric and Dynamic Views

The convergence of over-parameterized networks to generalizable solutions can be understood as
a synthesis of geometry and probability.

Geometry of Flat Minima. With a square loss function on over-parameterized ReLU networks,
the zero-loss set L−1(0) is generically a smooth submanifold of codimension equal to the number
of constraints – that is the number of training data. This implies that the Hessian at any global
minimizer must have a large nullspace of dimensionality in the order of W − N where W is
the number of weights and N is the number of training data. Parallel arguments from algebraic
geometry, which approximate ReLUs with polynomials, use parameter counting (Bézout-style
reasoning) to demonstrate the existence of continuous families of zero-loss solutions when the
number of parameters P exceeds the number of constraints N . The Implicit Function Theorem
then formally establishes the “flatness” of these solution manifolds.

Stochastic Dynamics and Stationary Measures. By viewing SGDL as a discretization of
Langevin dynamics, we gain access to the stationary measure p(θ) ∝ e−L(θ)/T . A Taylor expansion
near a global minimum, combined with a small temperature T , implies that the Boltzmann mass
concentrates in balls around global minimizers. This provides a principled metric for comparing
minima: those with flatter geometries (smaller curvature) are entropically favored [155].

Why Flat Minima Dominate. In this framework, flatness is a proxy for probability mass. For
two minima with equal depth (loss value), the one with the flatter Hessian has a neighborhood with
exponentially larger volume. Singular Learning Theory reinforces this view: a smaller RLCT implies
a larger neighborhood volume exponent. Consequently, the stochastic dynamics spend significantly
more time in these degenerate regions. Simulations of SGDL confirm this measure concentration,
showing that the system preferentially settles on high-dimensional zero-loss manifolds.

Effective Thermodynamics. The derivation of drift and diffusion timescales suggests that the
ratio of learning rate to batch size acts as a control parameter for the “effective temperature” of
the training process. When diffusion is fast relative to drift, the dynamics are locally equilibrated,
promoting the thorough exploration of wide valleys.

14.2.2 Critical Assessment

While the theoretical picture is compelling, several assumptions require careful scrutiny.
The “Polynomial in Parameters” Premise. Neural networks with ReLU activations are piece-

wise polynomial; they are multi-affine in layer parameters for fixed activation patterns. Treat-
ing them as globally polynomial is an approximation useful for algebraic geometry arguments.
However, replacing ReLUs with polynomial activations makes these dimension arguments mathe-
matically rigorous. Thus, while the existence of flat directions is credible, strict polynomiality for
standard ReLU networks is an approximation.

Genericity and Rank Conditions. The lower bound dim ≥ P − M relies on the generic
independence of the constraint equations. Invoking the Implicit Function Theorem requires a
full-rank Jacobian, and ensuring a smooth manifold structure on the real solution set requires care.
These conditions are plausible and consistent with the literature but represent technical subtleties
in the rigorous proof.

SGD vs. Langevin Dynamics. The assumption that gradient noise is Gaussian is asymp-
totic in the batch size. Practical training often uses small batches, resulting in heavy-tailed, non-
Gaussian noise. Furthermore, momentum and learning-rate schedules deviate from the simple

14.2. DETAILED ANALYSIS 91

Langevin diffusion model. The phenomenology—that SGD behaves as if sampling at an effective
temperature—is a powerful heuristic but not an exact equivalence [120].

Equal-Loss Assumption. The comparison of minima assumes equal training loss (often zero).
In practice, finite temperature, non-zero training loss, and strong non-quadraticity complicate the
picture. Nevertheless, the directional prediction remains robust: SGD-like noise disfavors sharp
basins in favor of flatter ones.

14.2.3 Summary

The core picture emerging from this analysis is coherent:

• Over-parameterization leads to an abundance of degenerate solution sets, as predicted by
geometric dimension arguments.

• Stochastic dynamics at low temperature lead to stationary measures that weight solutions by
their local volume, creating a strong preference for flat minima.

• Timescale analysis explains the practical role of batch size and learning rate in defining an
effective temperature that enables the exploration of these wide valleys.

CHAPTER 15

A Self-Assembling Cortical Circuit for
Generalized Gradient Descent (with
Qianli Liao and Liu Ziyin)

How does the brain implement supervised learning? Backpropagation is biologically implausible but are there
neural circuits that could be used for optimization? Do they represent a "motif" that we could look for in
different brain areas? This chapter describes the proposal for such a circuit.

Overview

One of the long–standing mysteries in neuroscience is how cortex could implement a general-
purpose learning rule comparable to stochastic gradient descent (SGD). Anatomically, the cortex is
equipped with extensive ascending (feedforward) and descending (feedback) pathways. Physio-
logically, it exhibits a rich variety of synaptic plasticity mechanisms, including homosynaptic and
heterosynaptic updates. Yet the classical backpropagation algorithm requires both the transport of
precise synaptic weights and a global organization of error signals—assumptions that are difficult
to reconcile with biology [38, 19].

This chapter describes a simple and biologically plausible cortical circuit, based on recent work
by Liao, Ziyin, Gan, Cheung, Harnett and Poggio [110], that self-assembles from random initial
connectivity and converges to an effective implementation of SGD. The circuit uses only local,
heterosynaptic plasticity and requires no weight symmetry, no global information, and no special
developmental fine–tuning. Remarkably, once assembled, the circuit performs comparably to SGD
on standard machine learning tasks.

The mechanism illustrates a broader principle of this book:

Sparse, modular motifs can support general learning by composing locally learned
transformations.

In this sense, the SAL circuit is the synaptic analogue of the compositional architectures dis-
cussed in earlier chapters: sparse constituent operations arranged into a minimal motif that can
scale to arbitrarily complex tasks.

The chapter proceeds as follows. Section 15.1 introduces the cortical synaptic motif. Section 15.2

92

15.1. A MINIMAL SYNAPTIC MOTIF FOR CORTICAL LEARNING 93

describes the Self-Assembling Learning (SAL) algorithm. Section 15.3 states the main theoretical
result: under mild conditions, the dynamics converge to a matrix–preconditioned form of SGD.
Section 15.4 outlines the biological predictions. Section 15.5 discusses implications for machine
learning and biological intelligence.

15.1 A Minimal Synaptic Motif for Cortical Learning

The circuit (illustrated in Figure 15.1) consists of two interacting pathways:

• an ascending (feedforward) stream with weights Wℓ;

• a descending (feedback) stream with weights W̄ℓ.

Between these streams are two cross–connections:

Vℓ : downstream→ upstream, V̄ℓ : upstream→ downstream.

a b c

Learnable

Non-learnable

Error processing
module

x

dendrites

cell body
axon

synapse

Axons
Dendrites

Synapses

A Group of
Neurons

Figure 15.1: A synaptic motif for interactions between ascending and descending information streams.
(a) Schematic of the upstream-downstream architecture. The upstream consists of a standard fully-connected
neural network with multiple layers, roughly corresponding to a multi-region cortical processing pathway
(e.g. V1-V2-V4-IT). The output of the upstream network goes to an error processing module (potentially
corresponding to frontal cortices). This module computes a local error signal. This error signal is sent to
the feedback (downstream) pathway, which processes information layer by layer downwards. The orange
arrows represent non-learnable (identity) connections. Blue arrows represent learnable connections, each
parameterized by a fully-connected weight matrix. (b) A detailed view of the smallest unit of the connection
motif in panel a, indicated by grey dashed box. The neurons in panel b (as well as the abstract forms in a
and c are illustrated as pyramidal neurons, the principal cell type of the cortex. Only apical dendrites are
illustrated here for simplicity. (c) A mathematical description of the unit in panel b. Each arrow (which
corresponds to a collection of axons, dendrites, and synapses) represents a set of full connections between
two groups of neurons, parameterized by a weight matrix W or V.

94CHAPTER 15. A SELF-ASSEMBLING CORTICAL CIRCUIT FOR GENERALIZED GRADIENT DESCENT (WITH QIANLI LIAO AND LIU ZIYIN)

Thus each layer–to–layer interface contains four synaptic matrices,

(Wℓ, W̄ℓ, Vℓ, V̄ℓ),

all of which are initialized randomly and all of which are plastic.
Anatomically, this motif corresponds to reciprocal cortico–cortical projections and their local

dendritic interactions. Biophysically, the circuit’s learning rule relies on experimentally observed
heterosynaptic plasticity, which allows changes in a synapse to depend on activity at nearby
synapses without violating locality [32].

Feedforward computation. With activations hℓ ∈ Rdℓ , the upstream pathway computes:

hℓ+1 = Du
ℓ (Wℓhℓ), ℓ = 1, . . . , L− 1, (15.1)

where Du
ℓ is typically the Jacobian of a ReLU nonlinearity.

Error injection. Given a loss F (hL, y), the downstream pathway begins with

h̄L = −∇hL
F.

Feedback computation. The descending pathway propagates the error estimate locally:

h̄ℓ = Dd
ℓ+1(W̄ℓh̄ℓ+1), ℓ = L− 1, . . . , 1, (15.2)

where the matrices Dd
ℓ may be linear or nonlinear.

The key point is that the descending pathway is not assumed to mirror the ascending one. It
starts random, remains asymmetric, and is allowed to be overparameterized (d̄ℓ ≫ dℓ), matching
cortical anatomy where feedback projections often outnumber feedforward projections.

15.2 The Self-Assembling Learning Rule

SAL updates all four sets of synapses using local heterosynaptic products of pre– and post–synaptic
activities. For each layer ℓ:

∆Wℓ = η Du
ℓ+1 V̄ℓ h̄ℓ+1 h

⊤
ℓ D

u
ℓ − γWℓ, (15.3)

∆W̄ℓ = η Dd
ℓ+1 h̄ℓ+1 h

⊤
ℓ V

⊤
ℓ Dd

ℓ − γW̄ℓ, (15.4)

∆Vℓ = η h̄ℓ h
⊤
ℓ − γVℓ, (15.5)

∆V̄ℓ = η h̄ℓ+1 h
⊤
ℓ+1 − γV̄ℓ. (15.6)

Each update depends only on:

(local activity)× (neighboring synaptic input),

which is permitted by known forms of heterosynaptic plasticity, including calcium-mediated
interactions and dendritic-level synaptic “tagging.”

what kind of figure is it? [Image of heterosynaptic plasticity synaptic update rule]
The circuit has no special wiring, no weight-symmetry constraints, and no assumptions about

initial structure. Instead, the structure emerges during learning.

15.3. THEORETICAL RESULT: EMERGENCE OF GRADIENT DESCENT 95

15.3 Theoretical Result: Emergence of Gradient Descent

The central theorem states that under mild conditions, the SAL updates for the feedforward weights
Wℓ converge to a matrix–preconditioned form of SGD.

Theorem 11 (SAL implements SGD up to a learned preconditioner). Consider a ReLU network with
arbitrary width and depth. Assume the descending pathway is overparameterized (d̄ℓ ≥ dℓ) and that Vℓ and
V̄ℓ remain full rank during training. If their updates become small, ∆Vℓ = O(ε) and ∆V̄ℓ = O(ε), then

∆Wℓ = Hℓ ∆W SGD
ℓ − γWℓ +O(ε), Hℓ = V̄ℓV̄

⊤
ℓ (15.7)

where ∆W SGD
ℓ = −∇Wℓ

F .

Thus the circuit performs gradient descent with a learned, positive-definite matrix preconditioner
Hℓ. In this sense, the SAL circuit is a gradient machine whose learning rule itself is learned.

Several consequences follow:

• The stationary points of SAL coincide with those of SGD.

• The descending pathway effectively learns to approximate the transpose Jacobian of the
feedforward network—emergent weight alignment without symmetry constraints, similar to
Feedback Alignment mechanisms [111].

• Overparameterized feedback pathways improve performance, as observed in cortical anatomy
and in experiments.

15.4 Biological Interpretation and Predictions

The SAL circuit makes several explicit, testable predictions about cortical microcircuitry:

(1) A four–synapse reciprocal motif. Between any two layers (or cortical regions), there should
exist plastic synapses forming the motif (W, V, W̄ , V̄).

(2) Pervasive heterosynaptic plasticity. Synaptic changes should depend not only on pre– and
post–synaptic firing, but also on neighboring synaptic activity—consistent with dendritic calcium
spread, retrograde messengers, and synaptic tagging.

(3) Overabundance of feedback connections. SAL predicts that larger feedback pathways im-
prove learning. Anatomically, cortico–cortical feedback projections often outnumber feedforward
ones by factors of 5–10, in agreement with model behavior.

(4) Self-assembly from random connectivity. No precise hard-wired matching is needed. The
algorithm predicts that feedback pathways become aligned with the forward dynamics during
experience.

(5) Distinct electrophysiological properties. Feedback inputs should operate with different
nonlinearities or time constants than feedforward inputs, matching the role of Dd

ℓ versus Du
ℓ .

[Image of cortical column layer connectivity diagram]

96CHAPTER 15. A SELF-ASSEMBLING CORTICAL CIRCUIT FOR GENERALIZED GRADIENT DESCENT (WITH QIANLI LIAO AND LIU ZIYIN)

15.4.1 An Example Functional Implementation of SAL in Cortex

Self-Assembling Learning (SAL) is defined in terms of four abstract pathway types—upstream-
to-upstream (u→u), upstream-to-downstream (u→d), downstream-to-downstream (d→d), and
downstream-to-upstream (d→u)—distinguished by directionality and by whether their influence
is driving or modulatory. These pathway types are functional constructs rather than claims about
specific neuron morphologies or laminar structures. Nevertheless, cortical lamination and its
canonical connectivity patterns provide a useful and concrete example of how the SAL architecture
could be realized in a biological system.

In sensory cortex, feedforward pathways that carry representational content are typically
strong and driving, while feedback pathways that influence learning and integration are largely
modulatory or conditionally driving. Deep-layer interactions transmit evaluative or learning-
related signals without forming closed loops composed entirely of driving connections. When
viewed through this functional lens, many well-established cortical pathways can be organized
into the four SAL categories. Table 15.1 summarizes one such correspondence between canonical
cortical pathways and SAL pathway types, together with a hypothesized relationship between
dendritic targeting and driving versus modulatory effects.

Interpretation and scope. The correspondence shown in Table 15.1 should be interpreted as
an example of how SAL could be implemented in cortex based on commonly known sensory
pathways and their properties, rather than as a claim that SAL must be implemented through
cortical lamination or that cortical lamination evolved specifically to implement SAL. Cortical areas
exhibit substantial variation in laminar structure and connectivity, and exceptions to canonical
patterns are well documented, including feedback projections that target proximal dendrites or area-
specific deviations from granular organization. Moreover, other brain systems without lamination
may satisfy the same functional constraints using different circuit motifs.

From the perspective of SAL, the central claim is therefore functional rather than morphological:
learning systems that avoid unstable dynamics and signal contamination should exhibit a separa-
tion between driving and modulatory pathways consistent with the u→u, u→d, d→d, and d→u
structure. Cortical lamination provides one biologically plausible realization of these constraints,
but not their only possible instantiation.

Table 15.1: One possible correspondence between canonical cortical pathways and SAL pathway
types. Dendritic targeting is shown as a hypothesized correlate of driving versus modulatory
influence rather than a strict rule. "Cond. driving" refers to "conditional driving", a hypothesized
influence type in-between driving and modulatory due to the interaction between apical and basal
compartments of L5 pyramidal cells.

SAL
pathway

Weight
type

Cortical pathway example Dendritic targeting Driving type

u→ u W L4→ L2/3 (within area) Basal / proximal Driving
L2/3→ L4 (higher area) Basal / proximal Driving

u→ d V L2/3→ L5 (within area) Basal + apical Cond. driving
d→ d W̄ L5→ (thalamus→) L5 (inter-areal) Basal + apical Cond. driving

L6→ (thalamus→) L6 (inter-areal) Basal / proximal Driving
d→ u V̄ L5→ L1→ L2/3 (inter-areal) Apical / distal Modulatory

L5→ L2/3 (within area) Apical-biased Modulatory

15.5. IMPLICATIONS FOR LEARNING AND INTELLIGENCE 97

15.5 Implications for Learning and Intelligence

The SAL circuit exemplifies several key principles of this book:

Sparse Compositionality. The circuit is a sparse composition of minimal motifs—each one a small
computational building block. Their assembly into a large network supports complex learning,
mirroring the architecture–function correspondence argued earlier.

Genericity. Random initial synaptic matrices suffice. The emergent structure is dictated by
learning dynamics, not by precise genetics. In this sense, SAL is a natural example of a robust,
generic learning architecture.

Bridging biological and artificial systems. Modern deep networks rely on global backpropaga-
tion, yet biological learning is entirely local. The SAL circuit offers a concrete reconciliation: local
plasticity can approximate global gradient descent via a self-organizing feedback system.

Implications for future AI architectures. The SAL motif suggests architectures where:

• feedback pathways learn separately from feedforward ones,

• the learning rule itself is learned (via Hℓ),

• hierarchical motifs self-assemble through local interactions.

Such systems may inspire new forms of deep learning, moving beyond fixed optimizers toward
neural architectures that learn how to learn through structured feedback.

In summary, the Self-Assembling Learning circuit provides a biologically plausible mechanism
by which cortex might implement gradient-based learning. It connects neuroscience, optimization
theory, and compositional architectures in a unified framework—illustrating how sparse synaptic
motifs can generate powerful, general-purpose learning systems.

CHAPTER 16

Zeroth-Order Evolutionary Post-Training
for LLMs (with Y. Gan)

We explore when zeroth order optimization works, why it fails, and how to use it. Zeroth-order (ZO)
evolutionary methods offer a natural fit for post-training large language models (LLMs) in settings where
gradients are unavailable, unreliable, or undefined [134]. Such methods can directly optimize noisy or
non-differentiable objectives, including human preference judgments and safety scores. While attractive in
principle, their practicality hinges critically on the effective dimensionality of the search space.

θ + σu1

θ − σu1

θ + σu2

θ − σu2

θ

ĝZO

Zeroth-Order Estimation
• Samples f(θ ± σui)
→ Averaged descent direction

16.1 Introduction

Recent advancements in the post-training of Large Language Models (LLMs) demonstrate that
Reinforcement Learning (RL) significantly outperforms Supervised Fine-Tuning (SFT) in enhancing
reasoning capabilities. RL encourages the model to explore and optimize its solution paths. An
example is DeepSeek-R1 [68], which uses a RL algorithm Group Relative Policy Optimization (GRPO)
to achieve substantial improvements in mathematical reasoning.

Despite these successes, a fundamental challenge remains. While first-order optimizers like
Stochastic Gradient Descent (SGD) and Adam are the workhorses of pre-training, the post-training

98

16.1. INTRODUCTION 99

1. SFT

Input x

LLM θ

Output ŷ

Loss L

Truth yBackprop

2. RL (PPO)

Input x

Policy πθ

Trajectory τ

Reward Model

Reward R

Sample

Update:
∇J ≈ Â∇ lnπ

3. Zero-Order

Input x

Params θ

BLACK BOX

Scores f±

ĝ ≈ ∆f
2δ

θ+δ θ−δ

Update
×

Figure 16.1: Overview of LLM Training Paradigms. The diagram contrasts three optimization
frameworks: (1) SFT: Direct supervision where loss L is computed against ground truth y to update
θ via backpropagation. (2) RL (PPO): Policy optimization where a reward R for trajectory τ informs
the gradient update ∇J ≈ Â∇ ln π, where Â is the advantage function. (3) Zero-Order: Gradient
estimation ĝ ≈ ∆f

2δ using finite differences of scores f± obtained from parameter perturbations
θ ± δ, bypassing the need for internal gradient access in black-box environments.

phase is increasingly encountering regimes where gradient computation is problematic. In scenarios
involving discrete rewards, black-box APIs, or memory-constrained environments, gradients often
become computationally prohibitive, notoriously unstable, or mathematically undefined.

In response to these challenges, there has been a paradigm shift towards Zeroth-Order (ZO)
optimization in the LLMs post-training. By estimating gradients through forward passes, ZO
methods offer a viable pathway for optimizing LLMs in gradient-free or memory-constrained
regimes.

16.1.1 Why ZO for LLMs?

In recent years, Zeroth-Order (ZO) optimization has emerged as a useful tool for solving Large
Language Models (LLMs) challenges without using backpropagation. This renewed interest comes
from two limitations of gradient-based learning in LLMs post-training:

1. Memory-Efficient Fine-Tuning: Backpropagation requires storing activation maps for every
layer, leading to massive memory footprints. Recent approaches like MeZO (Memory-
efficient Zeroth-Order optimization) [<empty citation>] demonstrate that LLMs with billions

100CHAPTER 16. ZEROTH-ORDER EVOLUTIONARY POST-TRAINING FOR LLMS (WITH Y. GAN)

of parameters can be fine-tuned using only forward passes, enabling training on consumer-
grade hardware with negligible memory overhead compared to inference.

2. Non-Differentiable Objectives: The alignment of models with human intent often relies on
metrics that are fundamentally discrete or black-box. Examples include maximizing "pass@k"
rates in code generation, reducing "jailbreak success rates" in safety testing, or optimizing
against a hard API-based reward signal. In these scenarios, the loss function f(θ) is not
smooth, rendering gradients undefined.

Thus, ZO methods are no longer just a theoretical curiosity; they are becoming the standard
interface for aligning models with complex, real-world constraints.

16.1.2 Historical Context and Theoretical Roots

While the application to billion-parameter transformers is new, the underlying mathematics rests
on a rich history of derivative-free optimization. These methods date back to the foundational
work on direct search methods in the 1960s and the development of Evolution Strategies (ES) in the
1970s.

Classically, these algorithms address the problem of minimizing a function f(x) using only
query evaluations. The field evolved from simple heuristics (like Nelder-Mead simplex search) to
sophisticated randomized smoothing techniques. A pivotal theoretical milestone was Nesterov’s
analysis of Gaussian smoothing [134], which established that random search can be viewed as
Stochastic Gradient Descent on a smoothed approximation of the objective function. Similarly, the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [72] introduced mechanisms to adapt
the geometry of the search space, making ZO methods robust to ill-conditioned landscapes.

In this chapter, we bridge the gap between this classical literature and modern LLM applications.
We explore when simple random search is sufficient, why it struggles with the high dimensionality
of LLM weights (d ≫ 109), and how effective dimensionality reduction makes these ancient
techniques surprisingly powerful for today’s largest models.

16.2 Zeroth-Order Gradient Estimators

Let f : Rd → R be our objective function, and θ ∈ Rd the vector of tunable parameters. The
standard two-point estimator of the gradient along a random direction u ∼ N (0, Id) is:

ĝ(θ;u) = f(θ + σu)− f(θ − σu)
2σ u. (16.1)

The expectation over u gives the gradient of the Gaussian-smoothed function [134]:

fσ(θ) := Ez∼N (0,Id)[f(θ + σz)], so that Eu[ĝ(θ;u)] = ∇fσ(θ). (16.2)

Bias–Variance Tradeoff

The mean squared error of the estimator satisfies:

E
[
∥ĝn −∇f(θ)∥2

]
≲
dL2

nσ2 + σ2∥∇2f(θ)∥2F + Var[f]
n

, (16.3)

where L is a Lipschitz constant. The optimal smoothing radius σ ∼ (d/n)1/4 yields error scaling
as (d/n)1/2 [48].

16.3. ALGORITHMIC FORMS 101

16.3 Algorithmic Forms

16.3.1 Random Search

Algorithm 1 Random Search with Population Sampling
Require: Objective f , initial point θ0, perturbation scale σ, population size n, iterations T

1: Initialize θ ← θ0
2: for t = 1 to T do
3: Sample δ1, . . . , δn ∼ N (0, σ2I)
4: Evaluate fi ← f(θ + δi) for i = 1, . . . , n
5: Select i∗ ← arg mini fi

6: if fi∗ < f(θ) then
7: θ ← θ + δi∗

8: end if
9: end for

10: return θ

16.3.2 Distribution-Based Methods: CMA-ES and NES

While simple random search estimates a gradient for a fixed smoothing geometry, advanced
Evolutionary Strategies (ES) dynamically adapt the search distribution itself. These methods
model the optimization of f(θ) as maximizing the expected fitness J(ϕ) = Eθ∼πϕ

[f(θ)] over a
parameterized family of distributions πϕ.

CMA-ES. The Covariance Matrix Adaptation Evolution Strategy [72] models the search distribu-
tion as a multivariate Gaussian N (m, σ2C). It updates the mean m via a weighted recombination
of the top-µ selected samples. Crucially, it adapts the covariance matrix C by accumulating
second-order information through two pathways:

1. Rank-1 Update: Utilizes an evolution path pc—an exponentially moving average of steps—to
exploit correlations between consecutive generations.

2. Rank-µ Update: Estimates the local variance from the current population selection.

The update rule typically takes the form:

Ct+1 = (1− c1 − cµ)Ct + c1 pcp⊤
c︸ ︷︷ ︸

History

+cµ

µ∑
i=1

wiyiy⊤
i︸ ︷︷ ︸

Local Population

, (16.4)

where yi ∼ N (0,Ct) are the mutation vectors of selected individuals. This allows CMA-ES to
handle ill-conditioned problems (e.g., narrow valleys in the loss landscape) effectively, provided
the dimension d is moderate (d ≲ 100).

Natural Evolution Strategies (NES). NES [202] unifies these heuristic updates under a Rieman-
nian geometry framework. It treats the optimization trajectory as a gradient ascent on the statistical
manifold equipped with the Fisher Information metric F(ϕ). The update follows the Natural
Gradient:

ϕt+1 = ϕt + ηF−1∇ϕJ(ϕ). (16.5)

102CHAPTER 16. ZEROTH-ORDER EVOLUTIONARY POST-TRAINING FOR LLMS (WITH Y. GAN)

Using the "log-derivative trick," the gradient is estimated via Monte Carlo sampling:

∇ϕJ(ϕ) ≈ 1
λ

λ∑
i=1

f(θi)∇ϕ log πϕ(θi). (16.6)

For Gaussian distributions, NES derives update rules that are analytically similar to CMA-ES,
proving that covariance adaptation is approximating a second-order natural gradient descent.

16.4 Case Studies and Speculative Applications of ZO Evolution in
LLMs

This section provides illustrative examples and speculative applications where zeroth-order (ZO)
evolutionary strategies might be useful in the post-training or fine-tuning of large language models
(LLMs), especially in non-differentiable or reward-sparse scenarios.

16.4.1 Tuning Guardrails with Non-Differentiable Objectives

A common requirement in production LLMs is to enforce behavioral constraints, such as minimizing
refusal rates without increasing harmful outputs, or increasing helpfulness without decreasing fac-
tuality. These objectives are often measured via non-differentiable metrics (e.g., binary accept/reject
from human raters or classifiers). ZO optimization can tune:

• Thresholds in rule-based classifiers or ensemble moderation layers.

• Temperature/top-p parameters to balance diversity and control.

• Weights in reward aggregation pipelines combining safety/factuality heuristics.

Even when the LLM backbone remains fixed, the decoding or filtering layers form a low-
dimensional parameter space with black-box reward feedback, ideal for ZO methods.

16.4.2 Optimizing Mixture-of-Experts Dispatch

In models with multiple expert networks (e.g., Switch Transformers or GShard), routing decisions
can be governed by soft or hard gates. One may treat the gating function’s parameters α as the
target of ZO optimization, using feedback from downstream evaluation metrics:

• Preferential routing based on topic, region, or domain.

• Disabling experts that increase toxicity or contradiction rates.

• Rewarding expert sparsity while maintaining task performance.

A practical example: suppose a system deploys a 16-expert mixture and seeks to dynamically
tune usage patterns to minimize latency while maintaining BLEU or safety scores on unseen data.
This yields a compact 16-dimensional control vector α—a natural setting for NES or CMA-ES.

16.4. CASE STUDIES AND SPECULATIVE APPLICATIONS OF ZO EVOLUTION IN LLMS 103

16.4.3 Language Model Alignment without Differentiability

Standard RLHF methods rely on a differentiable proxy reward model. However, in high-stakes
settings, direct user preferences or multiple-choice A/B test outcomes may provide feedback with
no known gradient. Here, ZO strategies enable alignment optimization without surrogate models.

One can imagine experiments such as:

• Collecting pass@k on human-written prompts across generations.

• Computing average rank among completions judged by crowd workers.

• Optimizing for adversarial robustness or jailbreak resilience.

These objectives are not differentiable with respect to model parameters or generation settings
but are valid black-box functions of the system behavior.

16.4.4 Speculative: Meta-Controllers over Training Dynamics

Going further, we can speculate on using ZO methods to control aspects of training itself:

• Optimizing the curriculum schedule or prompt difficulty over training time.

• Tuning the entropy coefficients or clipping thresholds in PPO-like methods.

• Evolving augmentation policies or synthetic data ratios in a continual learning loop.

In these cases, ZO acts not on model weights but on the knobs governing how the model is
trained. It becomes an evolutionary outer loop over the training process—a natural complement to
first-order inner-loop updates, similar to Population Based Training (PBT) [90].

16.4.5 Summary of ZO-Friendly Structures

The common theme across these examples is a structure where:

1. The dimension r of the control variables is modest (r ≲ 100).

2. The reward signal is noisy, expensive, or discontinuous.

3. The model itself remains fixed or uses parameter-efficient tuning (e.g., LoRA [86]).

In such cases, the simplicity and robustness of zeroth-order evolutionary methods can be an
asset, not a liability.

Remark 2 (On the Future of ZO in LLM Ecosystems). As LLM deployment becomes increasingly
modular—with reward cascades, multi-agent systems, and mixed-source data—black-box interfaces will
proliferate. In these zones, gradient-based methods may falter, but zeroth-order strategies can provide resilient
optimization, especially when embedded into meta-control loops.

104CHAPTER 16. ZEROTH-ORDER EVOLUTIONARY POST-TRAINING FOR LLMS (WITH Y. GAN)

16.5 Directed mutations and binary-search–like efficiency

16.5.1 Setting and notation

Let d ∈ N and N ≥ 2. Denote [N] = {1, 2, . . . , N} and the domain X = [N]d. We aim to minimize

f : X → R, f(x) =
d∑

i=1
gi(xi).

We consider two mutation/query models:

• Directed one–coordinate mutation oracle. In any iteration, pick a coordinate i and a value
y ∈ [N] and query f at the point obtained by replacing the i-th coordinate with y. This captures
directed mutations along chosen coordinates (enabling midpoints for binary search).

• Undirected local ±1 mutation (RLS). In each step, pick I ∼ Unif({1, . . . , d}); propose xI 7→
xI ± 1 (feasible step chosen uniformly), and accept iff f strictly decreases.

Definition 7 (Discrete convexity). A function g : [N]→ R is discretely convex if its forward differences
∆g(k) = g(k + 1)− g(k) are nondecreasing in k for 1 ≤ k ≤ N − 1.

Lemma 11 (Univariate discrete convexity⇒ binary search). If g : [N]→ R is discretely convex, then a
minimizer x⋆ ∈ arg minx∈[N] g(x) can be found via O(logN) evaluations by binary search on the sign of
∆g(k).

Proof. Discrete convexity implies ∆g(k) crosses 0 at most once, so the predicate P (k) : ∆g(k) ≥ 0 is
monotone. Binary search on {1, . . . , N − 1} locates the threshold in O(logN) queries; a constant
number of local checks recovers x⋆.

Theorem 12 (Directed mutations yieldO(d logN)). Suppose f(x) =
∑d

i=1 gi(xi) with each gi discretely
convex. Under the directed one–coordinate oracle, there is an algorithm that finds x⋆ ∈ arg min f using
O(d logN) evaluations.

Proof. By separability, x⋆ = (x⋆
1, . . . , x

⋆
d) with x⋆

i ∈ arg min gi. For each coordinate, maintain
[Li, Ri] ⊆ [N] and bisect: query gi(m) and gi(m + 1) via directed mutations (other coordinates
arbitrary but fixed), compute ∆gi(m), and update the interval by Lemma 13. Each coordinate takes
O(logN) queries; total O(d logN).

Proposition 9 (Undirected local mutation needs Θ(dN)). On f(x) = ∥x − x⋆∥1 over [N]d with
random start X(0) ∼ Unif([N]d), the undirected local ±1 mutation scheme has expected optimization time
E[T] = Θ(dN).

Proof. Let D(x) = ∥x − x⋆∥1 =
∑d

i=1 |xi − x⋆
i |. In each step, D decreases by 1 only if a wrong

coordinate is picked (probability k/d when k coordinates are wrong) and steps toward the target
(probability ≥ 1

2 away from boundaries). The drift is Θ(k/d). A coordinate-wise accounting shows
the expected iterations to fix coordinate i scale as Θ(dE[Z(0)

i]) with Z
(0)
i = |X(0)

i − x⋆
i |, whose

expectation is Θ(N). Summing gives E[T] = Θ(dN); a matching upper bound follows from the
same drift argument.

Corollary 2 (Separation). On separable, discretely convex landscapes, directed mutations achieveO(d logN)
(Thm. 24), whereas undirected local ±1 mutations require Θ(dN) on ℓ1 distance (Prop. 16). Thus directed
mutation yields an exponential per-coordinate improvement in the scale N .

16.6. GENES TO SUBGENES AS A BINARY TREE OF TRAITS 105

16.6 Genes to subgenes as a binary tree of traits

16.6.1 Hierarchical mutation model

Let a rooted full binary tree T have m leaves indexing observable traits {1, . . . ,m}. For a node
v ∈ T , denote by Sv ⊆ [m] the set of leaves in v’s subtree. A hierarchical mutation at node v modifies
all coordinates in Sv coherently.

We analyze two mechanics.

(i) Discrete toggle model (Hamming loss). Phenotype x ∈ {0, 1}m, unknown target x⋆ ∈ {0, 1}m,
fitness

F (x) = m− ∥x− x⋆∥0.

Mutating v maps x 7→ x⊕ 1Sv (bitwise XOR on Sv).

(ii) Continuous shift model (additive convex loss). Phenotype x ∈ Rm, loss f(x) =
∑m

i=1 ϕi(xi)
with each ϕi convex and L-smooth. A mutation at node v applies

x← x+ η αv 1Sv , αv ̸= 0.

, with stepsize η ∈ R chosen by the algorithm.

16.6.2 Sparse-error localization via adaptive subtree queries

Theorem 13 (Tree-structured adaptive group testing). In the discrete model, suppose x differs from
x⋆ on at most s leaves. Using only evaluations of F (x) and F (x⊕ ⊮Sv) for nodes v, there is an adaptive
strategy that finds flips achieving x = x⋆ in

O
(
s log(m/s)

)
fitness evaluations [47].

Proof. Let E = {i : xi ̸= x⋆
i } (the erroneous leaves), and for node v define ev = |E ∩ Sv|. A single

query at x and x⊕ ⊮Sv yields

∆v := F (x⊕ ⊮Sv)− F (x) = −(|Sv| − 2ev),

so ev = (|Sv|+ ∆v)/2 is exactly recovered. Starting at the root, query each visited node v; recurse
only into children with e(·) > 0. The explored search tree is the union of the s root-to-leaf paths to
erroneous leaves; in a balanced binary tree its size is O(s log(m/s)). After identifying the erroneous
leaves, flip them (or an equivalent parity of ancestors) to obtain x⋆.

Remark 3. Any naive leaf-wise undirected search needs Ω(m) queries in the worst case even for s = 1
(uniformly random error location), so the hierarchical strategy gives an exponential gain in m/s.

16.6.3 Greedy hierarchical descent for additive convex loss

Theorem 14 (Guaranteed decrease along subtree directions). Assume each ϕi is convex and L-smooth.
At iterate xt, choose

vt ∈ arg max
v∈T

∣∣⟨∇f(xt),⊮Sv⟩
∣∣√

|Sv|
,

106CHAPTER 16. ZEROTH-ORDER EVOLUTIONARY POST-TRAINING FOR LLMS (WITH Y. GAN)

and perform exact line search in direction ±dvt with dv = ⊮Sv/
√
|Sv| (absorbing αv into the stepsize). Then

f(xt+1) ≤ f(xt) − 1
2L max

v∈T

⟨∇f(xt),⊮Sv⟩2

|Sv|
.

If the residual gradient mass is confined to a single root-to-leaf path of height h, then f(x)− f(x⋆) ≤ ε is
reached in O

(
h log(1/ε)

)
steps [189].

Proof. By L-smoothness, for any unit vector d, ψ(η) = f(xt + ηd) ≤ ψ(0) + ψ′(0)η + L
2 η

2, whose
minimizer gives guaranteed decrease (ψ′(0))2/(2L). With dv = ⊮Sv/

√
|Sv|,

ψ′
v(0) = ⟨∇f(xt), dv⟩ = ⟨∇f(xt),⊮Sv⟩√

|Sv|
,

yielding the stated bound. If gradients cancel outside a fixed path, the maximizer vt lies on that path,
and a standard greedy/coordinate-descent argument on a chain of length h gives O

(
h log(1/ε)

)
iterations.

16.7 Context and prior art (concise)

16.7.1 Biology: hierarchical gene regulation

The metaphor of genes controlling subsets of traits in nested fashion is classical in evo-devo: hierarchical
gene-regulatory networks, the Drosophila segmentation hierarchy (maternal→ gap→ pair-rule→
segment-polarity), Hox clusters and colinearity, and cis-regulatory modules (enhancers) as subgenic
control elements. While biologists say “subgenic elements” or “cis-regulatory modules” rather
than “subgenes,” the nested-control picture is standard.

16.7.2 Evolutionary computation: linkage and hierarchy

In EAs, “modules” appear as schemata/building blocks and as learned linkage:

• Hierarchical test functions: Royal Road and HIFF families showcase nested structure, where
hierarchical mixing is advantageous and simple hill-climbing fails [131, 201].

• Linkage learning and model-based EAs: hBOA (hierarchical BOA), LTGA (Linkage Tree GA),
and GOMEA learn and exploit dependency/linkage trees to mix substructures coherently, often
yielding strong empirical scaling on modular problems [142, 74, 183].

• Cooperative coevolution: decomposes decision variables into interacting subcomponents
(“species”) and co-adapts them.

The concrete bounds in Theorems 25 and 26—O
(
s log(m/s)

)
identification via subtree flips, and

the explicit smooth-descent inequality over subtree directions—appear to be clean, self-contained
statements that are not standard in the EA literature under these exact assumptions, though they
are consonant with known results and intuitions about modularity and linkage.

16.8. IMPLICATIONS AND EXTENSIONS 107

16.8 Implications and extensions

• Separable landscapes: directed coordinate mutations simulate binary search (O(d logN)), while
undirected local steps face Θ(dN) barriers on natural benchmarks.

• Sparse discrepancy regimes: tree-structured adaptive queries achieve near-optimalO
(
s log(m/s)

)
,

analogous to adaptive group testing but constrained to canonical tree partitions [47].

• Coarse-to-fine optimization: subtree directions form a hierarchical dictionary; greedy selection
yields principled progress bounds, and iteration counts scale with tree height h when mismatch
localizes.

• Noisy feedback, heterogeneous effects, mild epistasis: the discrete analysis extends to noisy
comparisons with extra logarithmic factors; continuous analysis extends to inexact line search
and stochastic oracles; weak within-subtree epistasis can be handled via local re-estimation of
gradients/effects [133].

Pointers

These statements intersect with literatures on (i) adaptive group testing and sparse recovery on
trees; (ii) linkage-learning EAs (hBOA, LTGA, GOMEA); (iii) hierarchical optimistic partitioning in
zeroth-order global optimization; and (iv) coordinate/block descent and matching pursuit with
structured dictionaries.

16.9 Conclusion

ZO optimization enables robust tuning of low-dimensional, black-box objectives in LLM post-
training. For the right problems—tuning adapters, mixtures, or decoding strategies—it is a com-
pelling alternative to backpropagation.

CHAPTER 17

LLM-Guided Learning of Boolean
Functions (with D. Koplow)

The pursuit of "superintelligence" in Large Language Models (LLMs) is increasingly framed not
merely as a scaling problem, but as a search problem. [citestart]TheDiligent Learnerframeworksuggeststhatagentscansolvecomplex, out−
of−distributionproblemsthroughtest−timesearch, providedtheymaintainanon−vanishingstepwisesuccessprobability, denotedasγ[cite:
6, 15]. This chapter investigates the capacity of current LLMs to sustain this probability over long
reasoning horizons, the theoretical underpinnings of this capability in PAC learning, and the critical
role of tool use in enforcing compositional sparsity.

17.1 Testing Capacity: The GF(2) Benchmark

[citestart]TorigorouslytestthereasoningcapacityofcurrentLLMs, itisnecessarytoeliminateshortcutssuchaspattern−
matchinglabeleddataormemorizingpriorexamples[cite : 24].[citestart]WeutilizeabenchmarkbasedonBooleancircuitreconstructionoverGF(2), wherethemodelmustpredictsuccessivetermsinanAlgebraicNormalForm(ANF)[cite :
7, 28].

This task is designed to be adversarial. [citestart]Ateachstepg, theuniquecorrectcontinuationishiddenbehindastatisticalmaskthatcanonlybecancelledbyintegratingthecircuit′shistory(thePrefix)withfresh, noisysamples(theEvidence)[cite :
30, 31].[citestart]Thisstructureallowsustomeasureγg—the exact-next accuracy at depth g—as a pre-
cise metric of the model’s ability to maintain state[cite: 152]. [citestart]Empiricalanalysisrevealsthatwhilefrontiermodelsexhibitpartialrobustness, smallermodelssufferfromasuperlinearcollapseinγ
as the reasoning depth increases, effectively behaving as "partial-information estimators" that lose
track of the necessary context[cite: 8, 432].

17.2 Theoretical PAC Learnability

Despite the empirical degradation observed in standard models, the task remains theoretically solv-
able. [citestart]Theexistenceofapolynomial−timevalidatorforthenextmonomialimpliesthattheproblemistractable[cite :
284].[citestart]ThisconnectstorecenttheoreticalworkonChain−of−Thought(CoT)prompting, whichcanbeformalizedasataskdecompositionmethodthatrendersotherwisehardconceptclasseslearnableinaPAC(ProbablyApproximatelyCorrect)setting[cite :
43].

[citestart]Underthisview, reasoningisaprocessofproposingcandidatehypothesesthatarefilteredbyanevaluationsignal[cite :
40].[citestart]IfamodelcandecomposethegenerationofacomplexBooleanfunctionintoasequenceoflearnablesteps, itactsasageneral−
purposelearner[cite : 43].Thediscrepancybetweenthistheoreticalpotentialandtheobserveddepth −
inducedcollapseinpurelanguagemodelshighlightsthelimitationsoftryingtosimulatecomplexalgorithmicexecutionentirelywithinthemodel′sforwardpass.

108

17.3. COMPOSITIONAL SPARSITY AND TOOL USE 109

17.3 Compositional Sparsity and Tool Use

The most significant factor in bridging the gap between theoretical learnability and practical perfor-
mance is the use of tools. [citestart]OuranalysisidentifiestooldesignasacriticalcapabilityforachievinggeneralsuperintelligencewithintheDiligentLearnerframework[cite :
9].

The collapse of γ in standard models is attributed to a lack of compositional sparsity. [citestart]Whenamodelattemptstosolvethereconstructiontaskwithouttools, itmustuseitsinternalweightstobothrepresentthelogicalconstraintsandimplicitlyexecutethecomplexalgorithmrequiredtoverifythem[cite :
393].[citestart]Thisplacesaheavyburdenonthetransformer′sparameters, leadingtoadenseandfragileinternalrepresentationthatdegradeswithdepth[cite :
394].

[citestart]Toolusefundamentallyaltersthisdynamicbyexternalizingexecution[cite : 392].[citestart]Whenamodelusesatool, itonlyneedstocommunicatetheconstraintsexplicitly; theheavyliftingofcomputationisdelegatedtoanexternalprogram[cite :
395].[citestart]Thisresultsinamuchsparsereffectivealgorithmateachstep, whichsubstantiallyimprovesgeneralizationandstabilizesthestepwisesuccessprobabilityγ
even over very long horizons[cite: 396, 38]. [citestart]Consequently, tool−enabledfrontiermodelsavoidthecatastrophiccollapseseenintheirnon−
augmentedcounterparts[cite : 433].

Takeaway. If a target is efficiently computable, then—under Assumption ??—it is structurally
learnable: validators are polynomial, finite-class ERM needs only O(L log |Σ|/ε) samples, LLM-ERM
narrows computation via reasoning-guided proposals, and augmented diligent learning makes
exploration polynomial in s for constant γ.

Part IV
Speculations

110

CHAPTER 18

Consistency in Language Models

A simple intuition is that transformers behave like large associative memories indexed by prompts [195,
163]. This perspective raises a puzzle. If a transformer is, at heart, an associative memory, why are its
responses to a prompt typically so coherent and well-formed, rather than a collage of fragments retrieved
from training examples? We consider this puzzle and propose a solution based on the sparse compositionality
and long-range contextual integration properties of the learned function.

18.1 Definition of Consistency

Let T = (s1, s2, . . . , sn) be a generated text composed of n sentences or segments. We aim to
formalize the notion of consistency of T as the degree to which the content remains centered on a
single topic throughout the sequence.

Definition 8 (Topic Consistency). Given a representation function ϕ : S → Rd that maps a sentence si to
a d-dimensional embedding vector in a semantic space [165], the topic consistency of T is defined as:

Cons(T) = 1
n

n∑
i=1

∥∥∥ϕ(si)− ϕ̄
∥∥∥2
, where ϕ̄ = 1

n

n∑
j=1

ϕ(sj)

In this formulation, ϕ̄ denotes the mean topic embedding (centroid) of the text, and Cons(T)
measures the average squared deviation of individual sentence embeddings from the central topic.
Lower values of Cons(T) correspond to higher consistency.

18.2 Contextual Representations and Associative Memory Hypothesis

Transformers maintain per-token representations through multi-head self-attention over a growing
context window. For decoder-style architectures (e.g., GPT), the representation hi for token xi

depends only on the prefix x<i [162]. We define a representation function ϕ(si) that depends on the
hidden state hi of the transformer at the time of generating sentence si.

We hypothesize that transformers exhibit associative memory behavior by retrieving contex-
tually aligned representations. However, unlike static lookup memories, transformers maintain
consistency due to the deep compositional structure of the learned function and the architecture’s
ability to maintain topic coherence over long contexts [25].

111

112 CHAPTER 18. CONSISTENCY IN LANGUAGE MODELS

18.3 Contextual Consistency Hypothesis

Definition 9 (Contextual Consistency Hypothesis). Let T = (s1, . . . , sn) be a generated sequence from
a transformer-based model M where each si is generated conditional on prior context Ci = (s1, . . . , si−1).
We define ϕ(si) = f(hi) where hi is the hidden representation computed by M at position i.

If |Ci| is large and semantically coherent, then the distribution P (si | Ci) is concentrated on outputs
such that ϕ(si) is close to the centroid ϕ̄i = 1

i−1
∑i−1

j=1 ϕ(sj).

This hypothesis suggests that long-context attention promotes semantic consistency in the
output by stabilizing the distribution over continuations.

18.4 Theoretical Bound

Theorem 15 (Expected Consistency Bound). Let T = (s1, . . . , sn) be a text sequence generated by a
transformer. Suppose ϕ is L-Lipschitz in the transformer’s hidden state hi, and that each si is sampled from
P (si | Ci).

Assume that:

(i) For all i, E
[
∥ϕ(si)− ϕ̄i∥2

]
≤ ε(|Ci|), with ε(k) decreasing in k.

(ii) ϕ̄i = 1
i−1

∑i−1
j=1 ϕ(sj), and ϕ̄ = 1

n

∑n
i=1 ϕ(si).

Then the expected topic inconsistency satisfies:

E[Cons(T)] ≤ 1
n

n∑
i=1

ε(|Ci|) +O

(
1
n

n∑
i=1
∥ϕ̄i − ϕ̄∥2

)
.

18.5 Illustration

Figure 18.1 illustrates a representative curve ε(k) ∝ 1/
√
k, capturing the empirical intuition that

longer context length reduces topic inconsistency.

18.6 Conclusion

We propose that the internal consistency of transformer-generated text arises not from memorization
alone, but from compositionality and context integration in the learned model. We formalize a topic-
based consistency measure, link it to architectural mechanisms, and establish a theoretical bound
on expected topic drift. This view supports future work on architectural constraints, interpretability,
and inductive bias design in language models [50].

18.6. CONCLUSION 113

0 250 500 750 1000 1250 1500 1750 2000
Context Length |Ci| (tokens)

0.05

0.10

0.15

0.20

0.25

0.30

Ex
pe

ct
ed

 In
co

ns
ist

en
cy

(|C

i|)

Expected Topic Inconsistency vs. Context Length

Figure 18.1: Expected inconsistency ε(|Ci|) as a function of context length |Ci|. Longer contexts
lead to more stable topic embeddings.

CHAPTER 19

Learning 2D views, recognizing 3D
objects: what is the structure of
embeddings

How does the brain recognize objects from different viewpoints? Does it have a 3D model of things? What is
it and how is it learned?

19.1 The 1994 Paradigm Shift

In their landmark study, Poggio, Edelman, Bueltoff and Logothetis (1990, 1994) challenged the
prevailing “3D model-based” theory of object recognition. Traditional computer vision had long
assumed the brain must reconstruct a full 3D internal representation—akin to a CAD model—to
recognize an object from a novel viewpoint. Poggio and Edelman proposed a more biologically
plausible alternative: view-invariant recognition through interpolation [151].

They argued that the brain stores a small number of discrete “key views” and learns the mapping
between them using Radial Basis Function (RBF) networks. When a novel view is presented, the
network does not perform a geometric rotation; instead, it performs high-dimensional interpolation
between the stored examples.

19.2 Supporting Evidence: Psychophysics and Physiology

The strength of this proposal lay in its multidisciplinary validation:

• Human and Monkey Psychophysics: Behavioral experiments revealed that recognition
speed and accuracy were “view-dependent.” Performance degraded systematically as the
object was rotated away from a learned view—a hallmark of interpolation rather than 3D
reconstruction [115].

• Monkey Physiology: Recordings from the Inferior Temporal (IT) cortex identified “view-
tuned” neurons. These cells responded maximally to specific orientations and showed a
bell-shaped decay in firing rate as the object rotated, directly mirroring the Gaussian basis
functions of an RBF network [116].

114

19.3. THE GEOMETRY OF THE EMBEDDING SPACE IN DEEP NETWORKS 115

19.3 The Geometry of the Embedding Space in Deep Networks

The embedding space (latent space) of a view-trained deep network reveals deep differences
between biological-style representations and the 3D models used in computer graphics.

19.3.1 Topology vs. Geometry

A 3D model in computer graphics is defined by Euclidean coordinates. In contrast, the embedding
space of a view-trained network is topological and manifold-based. The network learns a “view
manifold”—a lower-dimensional surface where similar views are clustered. Recognition is about
situating an input onto the correct manifold.

19.3.2 Identity and Pose Disentanglement

Modern deep networks often “disentangle” identity from pose. In the latent space, identity remains
a stable vector, while pose varies along a specific axis. Recent work in adversarial alignment
(Hossain et al., 2025) has shown that we can explicitly optimize embeddings to be view-invariant
by "forgetting" the camera angle while "remembering" the object identity [85].

19.4 Compositional Sparsity and the DAG Architecture

The evolution from shallow RBFs to deep architectures is grounded in compositional sparsity.
While a standard RBF struggles with the curse of dimensionality, a deep network avoids this by
decomposing the target function into a hierarchy of local, low-dimensional functions represented
as a **Directed Acyclic Graph (DAG)**.

In this graph, nodes represent constituent parts that are themselves low-dimensional. This
structure explains how the brain recognizes objects even when partially occluded: it interpolates
on a sub-graph of the object’s compositional structure.

19.5 Modern Extensions: Multimodal Alignment and Scaling

Recent years have seen a convergence of these ideas with massive-scale learning.

19.5.1 Unified 3D-2D-Language Embeddings

Models like ULIP (Xue et al., 2023) and SigLIP 2 (Tschannen et al., 2025) align 3D point clouds into
the same latent space as 2D images and text [208, 188]. This suggests that the "view manifold"
envisioned in 1990 is now being scaled into a "universal manifold," where a linguistic description
of a chair and a 3D scan of that chair occupy the same embedding coordinates [181].

19.5.2 The Embodied Turing Test

A critical recent development is the comparison of biological learning with AI agents. Wood et al.
(2025) conducted an "Embodied Turing Test," raising AI agents in controlled virtual environments
identical to those used for newborn chicks. This research investigates whether the "view-invariant"
properties found in biological systems naturally emerge from the DAG-like hierarchical structures
of modern Transformers when exposed to the same temporal visual flow [205].

116CHAPTER 19. LEARNING 2D VIEWS, RECOGNIZING 3D OBJECTS: WHAT IS THE STRUCTURE OF EMBEDDINGS

The brain’s “model” of a 3D object is a fluid, learnable manifold represented by a composi-
tionally sparse DAG. While RBF networks provided the first mathematical bridge for this idea,
modern architectures—from ULIP to SigLIP—represent its scaling into high-dimensional latent
spaces, moving us closer to a unified theory of visual and conceptual embeddings.

19.6 Learning Invariant Object Representations from View Sequences

A useful testbed for theories of hippocampal–cortical function is the following thought experiment.
Consider an agent that observes a sequence of images generated by moving around a rigid three-
dimensional object (e.g. walking around a human face). The sensory stream consists of temporally
ordered views induced by continuous self-motion. The central question is what kind of internal
representation is required to both predict these sequences and support strong viewpoint-invariant
recognition.

Formally, let xt ∈ RH×W ×3 denote the image observed at time t, and let ut denote the agent’s
self-motion between t and t + 1. Each image is generated by an unknown object o with fixed
geometry go and appearance ao, viewed from a time-varying pose pt ∈ SE(3). The generative
process is

xt = R(go, ao, pt) + ϵt, (19.1)

where R is a (possibly implicit) rendering function and ϵt denotes sensory noise.
A deep feedforward network can be trained to recognize the object across viewpoints by

collapsing pose variability into an invariant embedding. However, such recognition does not
require the explicit recovery of the underlying 3D structure. In contrast, the sequential nature of
the observations provides sufficient information to infer a latent object-centric model. In particular,
the agent can exploit temporal continuity and known self-motion to bind successive views into a
coherent trajectory:

pt+1 ∼ p(pt+1 | pt, ut). (19.2)

An architecture capable of exploiting this structure must separate fast episodic binding from
slow structural learning. Episodic memory stores sequences

E = {(xt, pt, ut)}Tt=1, (19.3)

enabling rapid association of multiple views as belonging to the same object. Over longer timescales,
a cortical world model integrates evidence across episodes to learn a persistent object representation
(go, ao) by minimizing multi-view reconstruction error:

Lgeom =
T∑

t=1
∥xt −R(go, ao, pt)∥2. (19.4)

Crucially, recognition in such a system is not a feedforward classification problem but an
inference problem. Given a single novel image x, object identity is inferred by selecting the object
model and pose that best explain the sensory input:

(o∗, p∗) = arg min
o,p
∥x−R(go, ao, p)∥2. (19.5)

Viewpoint invariance arises naturally because pose is an explicit latent variable rather than a
nuisance factor to be suppressed.

This thought experiment highlights a qualitative gap between current deep recognition sys-
tems and biological vision. While modern networks can learn invariance directly from data, they

19.6. LEARNING INVARIANT OBJECT REPRESENTATIONS FROM VIEW SEQUENCES 117

generally lack an explicit, manipulable 3D world model learned from temporal experience. The
hippocampal–cortical system appears to solve a harder problem: constructing object-centric gener-
ative models from sequences of views and using these models both for prediction and for invariant
recognition. Architectures that genuinely recover and exploit such latent structure remain largely
unexplored in artificial systems.

CHAPTER 20

More on Genericity Conjecture (with P.
Beneventano)

We formulate the conjecture that functions that are appropriate for learning should be generic, that is
independent of the choice of the origin of the coordinate system used for the regressor. We show that genericity
implies the presence of a linear footprint in the target function. We then show that linear terms are important
for allowing consistent convergence of deep networks, and removing them makes optimization much harder.

20.1 Motivation and Informal Conjecture

Deep networks are often trainable to near-zero error by gradient-based methods, even at extreme
depth, provided that each layer retains some degree of linearity—through identity skip connections
or the linear component of ReLU-like activations. Empirically, architectures that eliminate all
linear components (e.g., purely even activations such as σ(z) = z2 without skip connections) are
dramatically harder to optimize, even when they have enough parameters to represent the same
target function.

We conjecture that this distinction has a precise analytical expression: the presence of a nontrivial
degree–1 component in the orthogonal-polynomial expansion of each layer’s scalar channel is crucial
for the consistent convergence of gradient descent across layers. Architectures in which all layers
suppress this degree–1 mode are generically hard to optimize by gradient-based algorithms.

A key idea is that the existence (or suppression) of linear terms is not an accidental artifact
of coordinates but a generic structural property of the functions represented by the network. The
chapter develops this by combining:

• an orthogonal polynomial (Hermite-like) view of information exponents,

• a notion of genericity based on Taylor jets and structural stability,

• and a layer-wise “effective information exponent” for deep architectures.

20.2 Preliminaries: Orthonormal Polynomial Framework

Let µ be a probability measure on R with all finite moments:∫
|z|k dµ(z) <∞ ∀k ≥ 0.

118

20.3. GENERICITY AS A STRUCTURAL PROPERTY OF FUNCTIONS 119

Applying Gram–Schmidt to the monomials 1, z, z2, . . . in L2(µ) yields an orthonormal polynomial
family {ψk}k≥0 satisfying

deg(ψk) = k,

∫
ψk(z)ψℓ(z) dµ(z) = δkℓ.

For Gaussian µ, these are the normalized Hermite polynomials.

20.2.1 Information Exponent of a Scalar Function

Let S ∼ µ and g ∈ L2(µ). Then

g(s) =
∞∑

k=0
akψk(s), ak = E[g(S)ψk(S)].

Definition 10 (Information exponent). The information exponent of g with respect to µ is

ℓµ(g) = min{k ≥ 1 : ak ̸= 0},

if such k exists, and ℓµ(g) = +∞ otherwise.
It marks the degree of the lowest polynomial mode through which g correlates with its input.

Intuitively, ℓµ(g) = 1 means that g has a nontrivial linear component with respect to µ; ℓµ(g) ≥ 2
means that g is “purely nonlinear” at the level of first-order correlation.

20.2.2 Teacher–Student Single-Index Models

For x ∈ Rd, x ∼ DX , consider
y = ϕ(⟨w∗, x⟩) + ξ,

where ξ is independent noise. Let µ∗ be the law of S = ⟨w∗, x⟩ under DX , and {ψ(∗)
k } the orthonor-

mal polynomial system in L2(µ∗). Writing

ϕ(s) =
∞∑

k=0
bkψ

(∗)
k (s),

we define:

Definition 11 (Information exponent of the link).

ℓDX
(ϕ,w∗) = ℓµ∗(ϕ) = min{k ≥ 1 : bk ̸= 0}.

When ℓDX
(ϕ,w∗) = 1, the teacher signal contains a nontrivial linear component; when ℓDX

(ϕ,w∗) ≥
2, the signal is purely nonlinear. Existing results for shallow models show that this exponent con-
trols the difficulty of learning w∗ by gradient methods.

20.3 Genericity as a Structural Property of Functions

We now place the “presence of linear modes” into a genericity framework. Informally, a property
is generic if it holds for “most” functions: either almost everywhere (measure-theoretic) or on a
residual (topologically large) subset of a function space. Here, genericity is tied to:

• the local Taylor structure of a function (jets),

• and its stability under smooth coordinate changes.

120 CHAPTER 20. MORE ON GENERICITY CONJECTURE (WITH P. BENEVENTANO)

20.3.1 Genericity via Taylor Jets

Let f : Rd → R be a smooth function, and let x0 ∈ Rd. The k-jet of f at x0 is defined as

Jkf(x0) = {∂αf(x0) : |α| ≤ k}.

We say that f is locally generic at x0 if its Taylor expansion at x0 is non-degenerate in the sense that
the coefficients corresponding to the relevant low-order monomials (e.g., linear, quadratic terms)
do not vanish under accidental algebraic cancellations.

More precisely, let P be a polynomial condition on the jet Jkf(x0). Then f is generic at x0 if

P(Jkf(x0)) ̸= 0

for all but a set of points x0 of measure zero. This notion follows the classical theory of jet
transversality and singularity theory [184, 1].

In this language, the vanishing of all linear coefficients of f at x0 is a non-generic condition: it
lies on an algebraic subvariety in jet space. Thus, for a generic smooth function, the linear term is
present almost everywhere unless excluded by a symmetry constraint.

20.3.2 Thom–Mather Transversality and Structural Stability

The mathematical foundation of genericity is provided by Thom’s transversality theorem. Let
Cr(M,N) denote the space of r-times continuously differentiable maps between smooth manifolds.
A property is generic if it holds on a residual (countable intersection of open dense) subset of
Cr(M,N).

Thom’s Transversality Theorem (informal). For a submanifold S of the jet space Jk(M,N), the set of
functions whose k-jets are transverse to S is open and dense in Cr(M,N).

As a consequence, degenerate Taylor structures are non-generic. Structural stability theory further
shows that generic properties persist under small Cr perturbations of the function as shown by
Thom and Abraham.

This leads to the fundamental implication:

Generic properties are precisely those that are stable under small smooth perturbations of the
function and of the variables.

We conjecture that this implication is key for learning theory since stability has been shown
– in a specific, formal framework – to be equivalent to learnability (see Niyogi, Poggio, Rifkin,
Mukherjee) [159, 132]. In particular, we conjecture that non-generic functions do not have learning
stability. This makes for an interesting research project.

It is obvious that the presence of a nonzero linear coefficient (in some coordinate system) is
generic, while its systematic vanishing across layers and directions corresponds to a fine-tuned,
non-generic configuration.

20.3.3 Invariance Under Smooth Coordinate Transformations

Let T : Rd → Rd be a local diffeomorphism. A property G(f) is said to be coordinate-invariant generic
if

G(f) = G(f ◦ T)
for all T sufficiently close to the identity in the Cr topology.

This expresses precisely the idea that:

20.4. DEEP NETWORKS AND THE EFFECTIVE INFORMATION EXPONENT 121

Generic properties cannot depend on accidental choices of coordinate systems, means, or scalings
of the variables.

Such invariance is implicit in structural stability theory and also appears in statistical decision
theory under the name of local reparameterization invariance [106]. In classical approximation theory,
approximation classes such as Sobolev or Besov spaces are invariant under affine transformations
of the domain [45]; in representation learning, related ideas appear in the theory of group-invariant
representations.

From the perspective of learning theory, this suggests:

A function-theoretic property relevant to learnability must be generic and invariant under small
smooth transformations of the input variables.

The information exponent ℓµ(g) is such a candidate: for generic g (without enforced symmetries),
one expects ℓµ(g) = 1 almost everywhere.

20.4 Deep Networks and the Effective Information Exponent

We now lift the scalar notion of information exponent to deep architectures and connect it to
genericity.

Consider a deep network with layers

x0 = x, xl+1 = fl(xl; θl), l = 0, . . . , L− 1,

and output xL. Each layer may decompose as

fl(xl; θl) = hl(xl; θl) + sl(xl),

where sl is a possibly linear skip connection and hl a nonlinear branch.
Let Dl be the distribution of xl at initialization under x ∼ DX and random θl. For any direction

ul ∈ Sdl−1, define the scalar channel

Ul = ⟨ul, xl⟩, Vl = ⟨ul, fl(xl; θl)⟩,

and the regression function
gl,u(u) = E[Vl | Ul = u].

Let µl,u be the law of Ul and {ψ(l,u)
k } its orthonormal polynomial basis in L2(µl,u), giving

gl,u(u) =
∞∑

k=0
cl,u,kψ

(l,u)
k (u).

Definition 12 (Layer-wise and effective information exponents). For each layer l,

ℓl = inf
∥ul∥=1

min{k ≥ 1 : cl,u,k ̸= 0}.

The effective information exponent of the architecture is

ℓeff = min
0≤l≤L−1

ℓl.

Intuitively, ℓl = 1 means the layer retains a linear mode relative to its input distribution, while
ℓl ≥ 2 means that all directions are purely nonlinear. Residual networks with identity skips typically
have ℓeff = 1; purely even activations without skips yield ℓeff ≥ 2.

122 CHAPTER 20. MORE ON GENERICITY CONJECTURE (WITH P. BENEVENTANO)

Frequency doubling and spectral explosion. There is a subtle but crucial consequence of ℓl ≥ 2 in
deep networks. If ℓl = 1, a low-frequency component in the input can propagate as a low-frequency
component in the output. However, if ℓl ≥ 2 (e.g., z 7→ z2), the operation involves a convolution
in the frequency domain, effectively doubling the frequency (or complexity) of the signal at each
layer. Stacking L such layers results in an exponential explosion of signal complexity, rendering
the landscape “shattered” and chaotic. Maintaining ℓeff = 1 prevents this explosion, preserving a
coherent gradient highway.

Genericity viewpoint. For generic weights and generic input distributions, one expects ℓl = 1
unless the architecture enforces a symmetry (e.g., even activations, antisymmetric constraints) that
systematically kills the linear term. Thus, architectures with ℓeff ≥ 2 correspond to non-generic
function classes from the standpoint of Taylor jets.

20.5 Formal Conjecture

Conjecture 1 (Effective information exponent and optimization). Let DX be a distribution on Rd such
that for every unit vector w the projection ⟨w, x⟩ has all moments finite. Consider deep networks of depth L
and width poly(d), trained by gradient descent or SGD on the population risk

L(θ) = E(x,y)[ℓ(fθ(x), y)],

for targets f∗ realizable by the same architecture.
Assume initialization ensures bounded forward/backward moments and well-defined ℓl at each layer. Let

ℓeff be the effective information exponent at initialization.

(a) (Efficient regime: ℓeff = 1.)
If at least one layer carries a nonzero degree–1 coefficient, then for appropriate learning rate, batch size,
and initialization, gradient descent achieves excess risk

L(θ̂)− inf
θ
L(θ) ≤ ε

in time poly(d, L, 1/ε) with high probability.

(b) (Hard regime: ℓeff ≥ 2.)
If all layers suppress degree–1 modes and have no linear skips, then there exists a nontrivial subset of
realizable targets such that any gradient-based algorithm with polynomially bounded resources either

• requires super-polynomial time to reach error ε, or

• converges to a point whose risk remains bounded away from optimum.

Interpretation. The conjecture states that efficient optimization in deep architectures requires at
least one “linear information path” through the network. If every layer removes all degree–1 modes,
gradients cannot consistently align with the target direction, and training becomes computationally
hard. Architectures that enforce ℓeff ≥ 2 belong to a non-generic, structurally unstable regime from
the viewpoint of Taylor jets and genericity.

20.6. EVIDENCE AND PARTIAL PROGRESS 123

A. Generic / Efficient (ℓeff = 1)

h ℓ = 1

h ℓ = 1

h ℓ = 1

Input x

Output

Signal Correlation
Preserved

B. Hard / Pathological (ℓeff ≥ 2)

h ℓ = 1

z2 ℓ = 2

h ℓ = 1

Input x

Output

Signal Lost

Figure 20.1: The Genericity Conjecture. (A) In a generic network (ℓeff = 1), such as a ResNet or
ReLU network, the linear component of the signal propagates through layers, creating a gradient
highway. (B) If even a single layer suppresses the linear mode (ℓ ≥ 2, e.g., a pure z2 layer), the
correlation with the target direction is destroyed (orthogonality), breaking the gradient signal and
making optimization exponentially hard.

20.6 Evidence and Partial Progress

20.6.1 Single-Index and GLM Results

In teacher–student models with Gaussian or sub-Gaussian inputs,

y = ϕ(⟨w∗, x⟩) + ξ,

one finds:

• When ℓDX
(ϕ,w∗) = 1, gradient descent learns w∗ efficiently (polynomial sample and time

complexity).

• When ℓDX
(ϕ,w∗) ≥ 2, gradient descent dynamics lack correlation with w∗ and may require

super-polynomial samples or time.

This rigorously establishes the ℓ = 1 versus ℓ ≥ 2 dichotomy for shallow models and suggests that
the presence of a linear mode is a generic enabler of efficient optimization.

20.6.2 Quadratic and Polynomial Activations

Purely even activations such as σ(z) = z2 produce ℓl ≥ 2 at every layer. Analyses of quadratic
teachers show that gradient descent struggles or provably fails to recover w∗ in polynomial time,
despite realizability. Stacking such layers compounds the difficulty, consistent with the conjectured
“hard regime.” From the genericity viewpoint, imposing σ(z) = z2 suppresses all linear terms and
forces the network into a nongeneric submanifold of function space.

124 CHAPTER 20. MORE ON GENERICITY CONJECTURE (WITH P. BENEVENTANO)

20.6.3 Residual Networks and Identity Skips

For xl+1 = xl + hl(xl; θl) with small hl, the identity skip provides a perfectly linear mapping.
Results on dynamical isometry show that such residual structures maintain Jacobian spectra near 1,
avoiding vanishing or exploding gradients. Empirically and theoretically, ResNets remain trainable
at extreme depth, whereas removing or distorting the skip causes instability. These facts directly
correspond to maintaining ℓl = 1 across layers and staying in a generic, structurally stable regime
[143].

20.6.4 Nonlinear Attention

In nonlinear attention, weights of the form

αij ∝ ψ(⟨qi, kj⟩)

depend on a scalar nonlinearity ψ. Analyses show that if the first polynomial coefficient of ψ
vanishes, attention fails to memorize or generalize effectively; a nonzero linear term restores
learning capability. Again, performance hinges on retaining the degree–1 component.

20.7 Research Program and Missing Ingredients

Although the conjecture is strongly motivated, a full proof requires substantial new theory.

What Is Missing

1. A precise and stable definition of ℓeff under training dynamics, not only at initialization.

2. A non-lazy theory of gradient dynamics showing how degree–1 modes govern convergence in
deep architectures.

3. Lower-bound frameworks (low-degree polynomial or statistical query) connecting the absence
of linear modes to computational hardness in a deep setting.

Possible Path for the Easy Regime (ℓeff = 1)

1. Extend shallow GLM theory to deep networks by proving that degree–1 modes generate
gradient signals aligned with target directions across layers.

2. Prove that under near-identity initialization (as in ResNets), these signals propagate without
attenuation, yielding polynomial-time convergence.

Possible Path for the Hard Regime (ℓeff ≥ 2)

1. Model gradient descent iterates as low-degree polynomials in the data.

2. Show that with purely even activations, these polynomials lack degree–1 components.

3. Apply low-degree or SQ lower bounds to demonstrate super-polynomial hardness for generic
targets.

20.8. OUTLOOK 125

20.8 Outlook

The effective information exponent provides a unifying bridge between functional approximation
theory, genericity, and optimization dynamics. If proved, the conjecture would establish a precise
criterion separating architectures that can learn efficiently from those that cannot. It would also
formalize the widely observed empirical role of skip connections and linear residual paths in
stabilizing deep learning, and connect it to classical notions of genericity and structural stability.

CHAPTER 21

Diffusion Models, Ill-Posed Inversion,
and Generative Compression

What is the relation between diffusion models and ill-posed problems such as the inversion of the heat
equation?

21.1 Diffusion as a Forward Process and Ill-Posed Inversion

The forward diffusion equation in Rd,
∂u

∂t
= ∆u, (21.1)

has the classical solution
u(x, t) = (Gt ∗ u0)(x), (21.2)

where Gt is the Gaussian kernel of variance t and u0 is the initial condition. In the Fourier domain,

û(ξ, t) = e−t∥ξ∥2
û0(ξ). (21.3)

Thus diffusion exponentially suppresses high frequencies.
To invert this forward map, one would need

û0(ξ) = et∥ξ∥2
û(ξ, t), (21.4)

which blows up super-exponentially as ∥ξ∥ → ∞. Any small measurement error in û(ξ, t) is
magnified without bound. In Hadamard’s sense, the inverse operator is ill-posed: it is discontinuous
and unstable with respect to perturbations of the data [186].

Figure 21.2 summarizes the contrast between:

• classical inversion of the diffusion operator (top row), which is ill-posed;

• probabilistic reverse diffusion based on a learned score (middle row), which is well-posed as
a statistical inference problem;

• inpainting-based generative compression (bottom row), where diffusion models reconstruct
full images from partial observations.

126

21.2. PROBABILISTIC REVERSE DIFFUSION AND LEARNED SCORES 127

21.2 Probabilistic Reverse Diffusion and Learned Scores

Diffusion-based generative models (DDPMs, score-based SDE models) do not attempt to solve the
inverse problem

u(·, t) 7→ u0 (21.5)

as an operator inversion. Instead, they solve a statistical inverse problem.
Let pt(x) denote the distribution of data after adding Gaussian noise of variance t. The key

object is the score function
st(x) = ∇x log pt(x), (21.6)

approximated by a neural network sθ(x, t) trained via denoising score matching.
The reverse-time SDE associated with the forward diffusion and noise schedule (f, g) is

dx =
(
f(x, t)− g(t)2 st(x)

)
dt+ g(t) dw̄t, (21.7)

which generates samples from p0 when integrated backward in time from an initial Gaussian
distribution at large t. Each infinitesimal step of this reverse-time process can be interpreted as a
(regularized) denoising step, approximating the conditional mean

E[x0 | xt]. (21.8)

This conditional expectation is a well-posed inference problem. From this viewpoint, diffusion
models sidestep the ill-posedness of PDE inversion: they never invert the heat operator; instead,
they perform Bayesian denoising in a high-dimensional image space.

21.3 Energy Landscape Viewpoint

A complementary way to understand forward and reverse diffusion is through the lens of energy
landscapes. Let pt(x) denote the distribution of xt at noise level t, and define the (time-dependent)
energy

Et(x) = − log pt(x). (21.9)

At t = 0, p0 is a complex, multimodal data distribution (natural images), and E0 is a rough, highly
structured energy landscape with many wells corresponding to modes of p0. As t increases, the
forward diffusion process xt becomes closer to a Gaussian, and Et becomes smoother and flatter;
modes disappear and the energy landscape loses fine-scale structure.

Reverse diffusion can be interpreted as a process that sharpens the landscape: starting from an
almost flat Gaussian energy at large t, successive reverse steps reconstruct the multi-well structure
of E0 by following the learned score st(x) = −∇Et(x) backward in time. The forward process irons
out the energy landscape; the learned reverse process reconstructs it.

Figure 21.3 gives a schematic one-dimensional illustration of this picture: forward diffusion
maps a sharp, multimodal density into a broad, nearly unimodal distribution; reverse diffusion
restores the sharp modes.

21.4 Inpainting and Generative Compression

Because diffusion generative models learn the family of conditional densities p(x0 | xt), they
naturally support inpainting. Given a partially observed image xobs and a mask M , inpainting
corresponds to sampling

xcomplete ∼ p
(
x
∣∣ (1−M)⊙ x = (1−M)⊙ xobs

)
, (21.10)

128CHAPTER 21. DIFFUSION MODELS, ILL-POSED INVERSION, AND GENERATIVE COMPRESSION

x

p0(x)
t = 0 (sharp, multimodal)

x

pt(x)
t > 0 (flattened, near-Gaussian)

forward diffusion

x

E0(x) rough E0(x)

x

Et(x) smoother Et(x)

forward: flattening

reverse: sharpening

Figure 21.1: Energy landscape viewpoint in one dimension. Top: Forward diffusion maps a sharp,
multimodal data distribution p0(x) into a smoother, nearly unimodal pt(x) as t increases. Bottom:
The corresponding energies Et(x) = − log pt(x) evolve from a rough landscape with many wells
(modes of p0) to a smoother, flatter landscape for t > 0. Reverse diffusion, driven by the learned
score st(x) = ∇ log pt(x), can be viewed as sharpening this energy landscape back toward E0(x).

where ⊙ denotes pointwise multiplication. During sampling, the observed pixels are kept fixed,
while the masked region is repeatedly resampled from the conditional score. The final result is a
coherent hallucination of the occluded region, aligned with the global statistics of the data. The
bottom row of Figure 21.2 illustrates this inpainting-based view.

This inpainting perspective leads directly to generative compression. The central idea is that one
can store only:

• a compact latent code z (e.g., from a vector-quantized encoder) and let a conditional diffusion
model sample from p(x | z), or

• a sparse subset of pixels (1−M)⊙ x and let the diffusion model reconstruct x by inpainting
the missing region M ⊙ x.

In both cases, a small amount of information, together with a powerful generative prior, suffices to
reconstruct visually convincing images. This realizes the idea that “a few fragments plus a learned
prior” can function as an extreme compression scheme.

Recent work [83, 114, 29, 144] demonstrates that diffusion-based decoders can outperform
classical codecs at low bitrates, both in terms of perceptual quality and in standard distortion
metrics.

21.5 Discussion

Diffusion generative models provide a mathematically consistent framework connecting:

• Ill-posed PDE inversion: the inverse of the diffusion operator is unstable and discontinuous;

• Regularized statistical inference: diffusion models recover x0 via well-posed conditional
expectations E[x0 | xt];

21.5. DISCUSSION 129

x0
(clean image)

xt = Gt ∗ x0
(blurred / noisy)

forward diffusion

“invert” Gt

ill-posed
x̂0 = et∥ξ∥2

x̂t

unstable

classical inversion
ill-posed

xt

(Gaussian noise)
sθ(x, t)

learned score

estimate dx = (f − g2st) dt+ g dw̄t

reverse SDE

x0
(sampled image)

probabilistic reverse
well-posed

(1−M)⊙ x
few observed pixels

p(x | (1−M)⊙ x)
conditional score

x
reconstructed image

inpainting
generative compression

Figure 21.2: Three views of diffusion generative models. Top: classical inversion of the diffusion
equation is ill-posed, because reversing Gaussian blur amplifies high-frequency noise exponentially.
Middle: diffusion models avoid direct inversion by learning the score∇ log pt(x) and simulating a
reverse-time SDE, which is statistically well-posed. Bottom: diffusion models perform inpainting,
enabling generative compression by reconstructing an image from a small subset of observed
pixels.

• Energy landscape dynamics: forward diffusion flattens and simplifies the energy landscape,
while reverse diffusion sharpens it using the learned score;

• Inpainting and generative compression: a small latent code or a sparse subset of pixels can
be expanded into a full image by the learned generative prior.

Figures 21.2 and 21.3 emphasize that diffusion models are not inverting the heat equation; they
are implementing a particular form of probabilistic inference in a space of high-dimensional signals,
with the diffusion SDE providing a convenient and stable parameterization of the path from noise
to data.

130CHAPTER 21. DIFFUSION MODELS, ILL-POSED INVERSION, AND GENERATIVE COMPRESSION

x

p0(x)
t = 0 (sharp, multimodal)

x

pt(x)
t > 0 (flattened)

forward diffusion

x

E0(x) rough E0(x)

x

Et(x) smoother Et(x)

forward: flattening

reverse: sharpening

Figure 21.3: Energy landscape viewpoint in one dimension. Top: forward diffusion maps a sharp,
multimodal data distribution p0(x) into a smoother, nearly unimodal pt(x) as t increases. Bottom:
the corresponding energies Et(x) = − log pt(x) evolve from a rough landscape with many wells
(modes of p0) to a smoother, flatter landscape for t > 0. Reverse diffusion, driven by the learned
score st(x) = ∇ log pt(x), can be viewed as sharpening this energy landscape back toward E0(x).

CHAPTER 22

World Models Before Language

A central requirement for intelligent behavior is the ability to infer and predict the latent causes that govern
the dynamics of the world. Long before the evolution of language, nervous systems had already discovered —
with the emergency of neocortex – architectures capable of building world models [70]. In this chapter we
argue that evolution converged on mechanisms that are mathematically aligned with the framework developed
in this book: sparse compositionality and associative computation. These mechanisms form the substrate
upon which linguistic intelligence later emerged. The key claim of this chapter is that biological intelligence
is best described as a predictive, compositional, memory-augmented dynamical system.

22.1 Sparse Compositionality as the Structural Prior of Evolution

Sparse compositionality is the assumption that an efficiently computable function

f : X → Y

admits a representation as a directed acyclic graph (DAG)

f = gL ◦ gL−1 ◦ · · · ◦ g1,

where each module gℓ acts on at most k ≪ d variables. This structural constraint reduces the
effective complexity of f and allows efficient approximation, optimization, and generalization, as
shown in previous chapters [128, 156].

From an evolutionary standpoint, sparse compositionality is advantageous because it implies:

1. Hierarchical reuse. Modules gℓ can be reused across different tasks (e.g., grasping, locomotion,
object segmentation).

2. Local learning. Synaptic plasticity acts on local circuits with limited fan-in.

3. Robustness. Perturbations affect only a small part of the computational graph.

4. Energy efficiency. Local modules minimize metabolic cost.

Evolution therefore discovers sparse modular architectures for the same reasons that deep
learning theory identifies them as optimal.

131

132 CHAPTER 22. WORLD MODELS BEFORE LANGUAGE

22.2 World Models as Predictive State-Space Systems

To model the temporal evolution of the world, an organism must learn and simulate latent dynam-
ics:

zt+1 = F (zt, xt), x̂t+1 = G(zt+1),

where zt denotes an internal latent state and xt observable input [56]. Biologically, this corresponds
to a division of labor:

• F is implemented in hippocampal–prefrontal loops and recurrent cortex.

• G corresponds to fast thalamocortical and sensorimotor pathways.

Such models support:

• prediction,

• reconstruction,

• planning,

• imagination (running the simulator offline to “dream awake”),

• credit assignment over time.

These properties make state-space models fundamentally more plausible than diffusion models,
which require thousands of denoising iterations, global synchrony, and energetically impossible
computation.

22.3 Associative Memory as a Computational Primitive

Sparse compositionality alone is insufficient: an intelligent organism must bind, store, and retrieve
partial trajectories or scenes. This requires associative memory. Formally, consider a memory
operator

M : Rd → Rd,

such that M(x) retrieves or reconstructs patterns close to x in a suitable metric.
Biological correlates include:

• CA3 recurrent networks functioning as attractor dynamics [84].

• Neocortical distributed memory with Hebbian and heterosynaptic updates [92].

• Hippocampal replay, reconstructing trajectories during sleep.

In the computational framework of this book, the combination of local modules and associa-
tive memory leads naturally to Associative Turing Machines (ATMs), which are Turing-complete
architectures built from local update rules and content-addressable memory.

22.4. HIPPOCAMPAL REPLAY AS APPROXIMATE INFERENCE 133

22.4 Hippocampal Replay as Approximate Inference

The hippocampal formation performs “preplay” and “replay” of trajectories [53]. Formally, this
can be interpreted as approximate inference in a latent dynamical model.

If p(z1:T | x1:T) denotes the posterior over latent trajectories, then replay implements a sampling
or MAP approximation to this posterior. In particular, sharp, temporally compressed sequences
during sleep correspond to short iterative inference iterations in a predictive state-space model.
Functionally, this decoupling allows the world model to run in “unconstrained” mode—effectively
performing data augmentation or adversarial training on the internal model.

This mechanism provides:

1. credit assignment over long timescales,

2. structure learning of transition graphs,

3. reconstruction of incomplete trajectories,

4. stabilization of attractors in cortical memory.

22.5 What Evolution Discovered Before Language

Language requires compositional semantics, symbolic structure, and recursive manipulation.
These capacities did not appear with language itself, but were already present in the underlying
architecture for world modeling.

We identify four pre-linguistic computational primitives discovered by evolution:

22.5.1 Predictive Physical Inference

Animals infer Newtonian-like latent variables:

xt+1 ≈ xt + vt, vt+1 ≈ vt + at,

providing intuitive physics [16]. A primate leaping between branches does not calculate Newtonian
mechanics using symbols; it runs a continuous internal simulation of the trajectory.

22.5.2 Social and Causal Modeling

Inference of hidden intentions, threats, or affordances is a form of latent-state estimation. This
“Naive Psychology” requires running a simulation of another agent’s simulation.

22.5.3 Compositional Perception and Action

Hierarchical modules for vision and motor control provide a structural prior equivalent to compo-
sitional sparsity.

22.5.4 Associative Memory for Episodes and Scenes

Hippocampal mechanisms allow storage of high-dimensional relational structure, anticipating the
later role of language.

134 CHAPTER 22. WORLD MODELS BEFORE LANGUAGE

22.6 Language as an Overlay on a Pre-Existing Architecture

Language provides a communication interface for the representational and inferential machinery
described above. We may view language not as the CPU of intelligence, but as the rendering
interface. Consider a video game engine: the core logic handles geometry, physics, and collisions
(the World Model), while the on-screen dialogue is merely a readout of that underlying state.

Current LLMs are akin to learning the game engine solely by reading the subtitles. They predict
the next word fluently, but they often hallucinate because they lack the underlying physics engine
that ensures consistency [107].

From a computational viewpoint:

• syntax reuses hierarchical compositional circuits,

• semantics reuses latent variable inference,

• pragmatics reuses world models and planning,

• narrative and reasoning reuse hippocampal reconstruction.

Thus the core claim is:

Language did not create compositional intelligence; it exploited a pre-existing, evolutionarily
ancient compositional and predictive world-model architecture.

22.7 Conclusion

The biological precursors of intelligence—predictive state-space dynamics, compositional computa-
tion, and associative memory—are aligned with the computational principles of sparse composi-
tionality and ATMs developed throughout this book. This chapter places these principles in an
evolutionary context: world models arose millions of years before language, and language is best
viewed as an overlay on an already compositional, predictive, and memory-augmented architecture.
To build true general intelligence, we must first teach machines to “dream” the world—to run the
simulator offline—before they can meaningfully speak about it.

CHAPTER 23

The Hippocampal Scaffold and
Compositional Sparsity

What is the relation between memory models of the hippocampus and compositional sparsity? This chapter
argues that the hippocampus acts as a "scaffold builder," creating a sparse, structured graph of pointers that
organizes raw experiences into a compositionally sparse format.

23.1 Introduction: The Memory Palace

To understand the mathematical definitions of xt, yt, and zt, let us use an ancient mnemonic
device: the **Memory Palace** (or Method of Loci). In this technique, a person memorizes items by
mentally placing them in specific locations within a familiar structure, such as their home.

Imagine an agent walking through a house to store memories. At each time step t, the experience
has three distinct components:

1. The Latent Structure (zt): The agent is in the "Kitchen." This is an abstract, relational state.
The agent knows that "Kitchen" connects to "Hallway" and "Dining Room," even if the lights
are off. This spatial map is the scaffold.

2. The Sensory Input (xt): The agent sees a specific view: "White tiles, morning light, smell of
coffee." This is the high-dimensional, noisy sensory data that signals the state.

3. The Episodic Target (yt): The agent decides to store a specific memory here: "My keys are on
the counter." This is the content to be associated with the location.

The job of the hippocampus is to bind these distinct elements together. It must take the sensory
input (xt) and the latent context (zt), create a unique "address" or pointer (ht), and link it to the
content (yt). By linking these addresses over time (Kitchen → Hallway), it builds a graph—a
scaffold—that represents the structure of the world.

This chapter formalizes this process. We show that by constructing these sparse indices, the hip-
pocampus effectively projects the world into a **compositionally sparse representation**—a format
that allows the cortex to learn complex functions by breaking them down into local, manageable
interactions.

135

136 CHAPTER 23. THE HIPPOCAMPAL SCAFFOLD AND COMPOSITIONAL SPARSITY

23.2 The Variables of Experience

We formalize the data stream as a sequence of tuples et = (xt, yt, zt).

Latent State zt ∈ Z : The hidden "ground truth" of the agent’s position in the relational graph (e.g.,
zt = "Kitchen"). Note that zt is not directly observable; it must be inferred from cues or path
integration. Crucially, the transitions between z’s are sparse (you can only walk from the
Kitchen to the Hallway, not to the Roof instantly).

Observable Input xt ∈ X : The sensory features available to the agent (e.g., a pixel image of the
stove). While xt is high-dimensional, it is a function of the low-dimensional state zt.

Target Content yt ∈ Y : The information to be remembered or predicted (e.g., the location of the
keys, or the image of the next room).

The fundamental problem is that raw inputs xt are often highly correlated and overlapping
(the white tiles in the kitchen look like the white tiles in the bathroom). To store memories without
interference (catastrophic forgetting), the brain needs a system to "separate" these patterns.

23.3 The Indexing Mechanism: Pattern Separation

The hippocampus (specifically the Dentate Gyrus) acts as a **Hashtag Generator**. It takes the
confusingly similar sensory inputs and assigns them distinct, sparse codes.

Let us define a feature map g(xt, zt) that combines sensory input and latent context. We generate
a **Hippocampal Index** ht via a random projection followed by a "Winner-Take-All" nonlinearity
(keeping only the top k neurons active).

Definition 13 (The Hippocampal Index). Let R ∈ RN×d be a fixed random matrix (representing fixed
synaptic weights). The index for episode t is:

ht = TopK(Rg(xt, zt)) ∈ {0, 1}N

where ∥ht∥0 = k ≪ N .

23.3.1 Why this works

This mechanism is effectively **Locality-Sensitive Hashing**.

• If zt ≈ zs (same room), the indices ht and hs will overlap partially.

• If zt ̸= zs (different rooms), the indices will be nearly orthogonal (pattern separation).

This orthogonality is critical. It allows the memory system to store the "Keys in Kitchen" (yt) at
address ht without overwriting the "Towel in Bathroom" (ys) at address hs, even if the white tiles
(xt, xs) look similar.

23.4. BUILDING THE SCAFFOLD GRAPH 137

23.4 Building the Scaffold Graph

As the agent moves through the Memory Palace (Kitchen→Hallway→ Bedroom), it generates a
sequence of indices: h1, h2, h3

Because these indices are generated by the underlying physics of the world (the adjacency of
rooms), the transitions between them define a graph.

Definition 14 (The Hippocampal Scaffold). The scaffold is the graph G = (H, E) where the nodes are the
stored indices {ht} and edges represent observed temporal transitions:

(ht, ht+1) ∈ E ⇐⇒ Agent moved from zt to zt+1.

This graph is a discrete, sparse approximation of the continuous world. It captures the **topol-
ogy** of the latent space Z . By replaying sequences from this graph (e.g., during sleep), the
hippocampus teaches the cortex the "layout of the house."

23.5 The Connection to Compositional Sparsity

We can now answer the central question: What function is the cortex learning, and why does the
hippocampus make it sparse?

The cortex’s goal is to learn a predictive model of the world’s dynamics—a function F that
predicts the future state from the current state.

23.5.1 The Dense Trap of Sensory Learning

Suppose the cortex attempts to learn this transition function directly on the raw sensory inputs xt

(e.g., pixels):
xt+1 ≈ Fdense(xt)

This is a computationally difficult task. The mapping between two arbitrary video frames (e.g.,
turning a head) involves complex, global pixel shifts. The function Fdense is likely **dense** (every
output pixel depends on many input pixels) and does not inherently possess a sparse compositional
structure. Learning this requires massive amounts of data to avoid the curse of dimensionality.

23.5.2 The Sparse Solution via the Scaffold

The hippocampus solves this by providing the cortex with the index ht instead of xt. The cortex
now learns a transition function on the indices:

ht+1 ≈ Gsparse(ht)

Crucially, the function Gsparse is **compositionally sparse** by construction.

Proposition 10 (Graph Sparsity implies Function Sparsity). The transition function Gsparse is defined
by the adjacency matrix of the Hippocampal Scaffold graph. Because the physical world has local topology
(e.g., the Kitchen connects only to the Hallway, not the Moon), this graph is sparse.

The Mechanism:

1. Locality (Node Sparsity): To predict the next index ht+1, the function only needs to consider
the immediate neighbors of ht in the scaffold graph. The "constituent function" for this step
has a bounded fan-in (limited by the number of doors in a room).

138 CHAPTER 23. THE HIPPOCAMPAL SCAFFOLD AND COMPOSITIONAL SPARSITY

2. Composition (Depth): To predict the state T steps in the future, the cortex computes the
composition:

ht+T = G ◦G ◦ · · · ◦G︸ ︷︷ ︸
T times

(ht)

This is precisely the definition of a compositionally sparse function: a deep hierarchy of
simple, local functions.

Summary: The hippocampus effectively "diagonalizes" the complex dynamics of the world. By
mapping sensory experiences (x) onto a topological scaffold (h), it transforms a dense, intractable
learning problem into a sparse, compositional graph-traversal problem that the cortex can learn
efficiently.

23.6 The Associative Turing Machine

Finally, we can view this system through the lens of computation. A Turing machine needs a tape
(memory) and a head (pointer) to read/write.

1. **The Pointers:** The indices ht act as pointers. They are computationally cheap to create (just
a matrix multiplication and a threshold).

2. **The Memory:** The synaptic weights binding ht to yt act as the storage tape.

3. **The "Head" Movement:** The transition from ht → ht+1 (via the scaffold graph) moves the
"read head" to the next relevant memory address.

This system allows for **O(1) access** to relevant memories. Unlike a standard neural network
that might have to search its entire weight space to resolve a conflict, the hippocampal system
jumps directly to the specific sparse address ht relevant to the current context zt.

23.7 The Cortical Transfer: Systems Consolidation

If the hippocampus provides the sparse indices ht required to avoid interference, a natural question
arises: Does the cortex always depend on the hippocampus to retrieve memories? The phenomenon of
systems consolidation—where memories eventually become independent of the hippocampus—
suggests otherwise.

In the framework of compositional sparsity, we interpret consolidation not as a transfer of data,
but as a change in the basis of representation.

23.7.1 From Orthogonal Indexing to Manifold Learning

The hippocampus and cortex optimize for opposing objectives regarding the latent state zt (e.g.,
"The Kitchen").

1. Hippocampus (Separation): It treats every visit to the Kitchen as a unique event. It assigns
orthogonal keys ht1 ⊥ ht2 to separate Monday’s visit from Tuesday’s visit, ensuring that the
specific details yt1 and yt2 do not overwrite each other.

2. Cortex (Structure): It aims to learn the invariant structure of the world. It seeks to discover
that ht1 and ht2 actually represent the same underlying state z.

23.8. A UNIFYING COMPUTATIONAL CLAIM 139

During replay (e.g., sleep), the hippocampus presents the sequence of orthogonal indices to the
cortex. The cortex uses these indices not as addresses to be memorized, but as training targets to
learn a stable, low-dimensional mapping from sensory noise xt to the latent manifold ẑt.

23.7.2 Collapsing the Keys

We can model consolidation as a "collapse" of dimensions. The cortex slowly learns a projection
ϕ : X → Z such that structurally similar inputs map to the same representation, regardless of their
temporal index.

If Topology(ht1) ≈ Topology(ht2) =⇒ ϕ(xt1) ≈ ϕ(xt2)

While the hippocampus maintains distinct pointers for every instance, the cortex averages over
these instances to form a Schema. It effectively collapses the orthogonal axes of the hippocampal
space into the lower-dimensional manifold of the "true" latent variables.

23.7.3 Retrieval Without the Scaffold

Once this cortical mapping is learned, the retrieval pathway fundamentally changes. The system
no longer requires the specific index ht to access the memory.

Early Retrieval (Hippocampal-Dependent):

xt
fast−−→ Hippocampus(ht)

lookup−−−−→ yt

Access depends on the specific hash key ht. If the hippocampus is damaged, the link between
the sensory cue and the target is broken.

Late Retrieval (Cortical-Independent):

xt
slow−−−→ Cortex(ẑt)

schema−−−−→ yt

The cortex infers the latent state ẑt directly from xt. The specific index ht is bypassed.

23.7.4 The Semantic Trade-off

This independence comes at a cost. When the cortex retrieves a memory without the hippocampal
key ht, it loses the "orthogonalizing" power that kept that specific instance unique.

Consequently, the retrieved memory ceases to be episodic ("The specific time I dropped eggs on
the kitchen tiles") and becomes semantic ("The kitchen has tiles"). In the language of this chapter,
the cortex has successfully learned the compositional function Gsparse of the environment, but in
doing so, it has discarded the specific training data ht that made that learning possible. The scaffold
is removed, leaving only the building.

23.8 A Unifying Computational Claim

Despite their apparent diversity, most influential theories of hippocampal function converge on a
single underlying computation. This chapter advances the following unifying claim:

The hippocampus implements a mechanism that converts dense, correlated experience into a
sparse, indexable structure whose topology reflects the latent relational structure of the world.

140 CHAPTER 23. THE HIPPOCAMPAL SCAFFOLD AND COMPOSITIONAL SPARSITY

This claim reframes classical hippocampal theories not as competing explanations, but as
complementary descriptions of different aspects of the same computational role.

Cognitive Maps. Cognitive map theories emphasize the hippocampus as a representation of
spatial structure. In the present framework, spatial maps are a special case in which the latent state
space Z corresponds to physical locations. The hippocampal scaffold graph explicitly represents
adjacency in this space, generalizing the notion of a map beyond physical navigation to arbitrary
relational domains.

Pattern Separation. Pattern separation theories focus on the hippocampus’s ability to orthogonal-
ize similar inputs. Here, pattern separation is understood as an implementation constraint required
to generate sparse, non-interfering indices. Orthogonalization is not the goal of the computation,
but the means by which stable indexing and graph construction become possible.

Indexing and Pointer-Based Memory. Indexing theories describe the hippocampus as storing
pointers to distributed cortical representations. In the present framework, these pointers are
realized as explicit sparse indices that support constant-time access and participate in structured
transitions. Indexing is thus elevated from a metaphor to a concrete computational primitive.

Complementary Learning Systems. Complementary Learning Systems theory emphasizes the
division between fast hippocampal learning and slow cortical abstraction. Within the present
framework, this division arises naturally: sparse indexing enables rapid, interference-free storage,
while the resulting scaffold provides the training signal required for cortical learning of shared
structure and compositional rules.

Predictive and Successor Representations. Theories that view the hippocampus as encoding
predictive or successor representations are recovered as consequences of traversal and composition
on the scaffold graph. Long-horizon predictions correspond to repeated application of local
transitions, rather than to a distinct representational format.

Interpretation. Viewed through this lens, the hippocampus is neither primarily a memory store
nor a spatial navigator. It is a structural compiler: a system that transforms raw experience into
a sparse, relational representation that renders learning tractable. The various classical theories
of hippocampal function describe different projections of this single computation, shaped by
experimental paradigm and level of analysis.

This unifying perspective allows the hippocampus to be situated naturally within a broader
theory of compositional learning, where its primary role is to impose structure on experience so
that downstream systems can discover and exploit it.

23.9 Relation to Existing Theories of the Hippocampus

The computational role of the hippocampus proposed in this chapter does not contradict classical
theories of hippocampal function. Rather, it unifies and sharpens them by identifying a single
organizing principle: the construction of a sparse, compositional scaffold that transforms dense
experience into a learnable structure. In this section we relate the present framework to several
influential theories and clarify how each appears as a special case.

23.9. RELATION TO EXISTING THEORIES OF THE HIPPOCAMPUS 141

23.9.1 Cognitive Map Theory as Scaffold Construction

The classical cognitive map theory posits that the hippocampus represents the relational structure
of space, enabling navigation, shortcutting, and planning. In our framework, this idea is recovered
as a special case of scaffold construction over a latent state space Z .

The Hippocampal Scaffold graph G = (H, E) generalizes spatial cognitive maps in three ways:

1. The nodes represent sparse indices ht rather than physical locations.

2. The edges encode adjacency in an abstract latent space, not necessarily physical space.

3. The resulting graph supports compositional prediction through repeated application of a
local transition function.

Thus, spatial navigation is only one instance of a more general computation: graph traversal in
a sparse index space induced by experience. The hippocampus is not specialized for space, but for
constructing graphs over latent structure.

23.9.2 Marr’s Theory and Pattern Separation

Marr’s theory emphasized the role of the dentate gyrus in pattern separation and the CA3 region
in autoassociative storage. The hippocampal index

ht = TopK(Rg(xt, zt))

provides a precise computational realization of this proposal.
Random projections implement fixed, untrained connectivity, while the TopK nonlinearity

enforces extreme sparsity. This guarantees that similar sensory inputs are mapped to nearly
orthogonal indices unless they share latent context. Unlike Marr’s original formulation, however,
the present framework emphasizes that pattern separation is not an end in itself: it is required to
construct a scaffold on which compositional learning becomes possible.

23.9.3 Indexing Theory and Pointer-Based Memory

Indexing theories describe the hippocampus as a system that stores pointers to distributed cortical
representations. In the present framework, hippocampal indices are explicit, computable pointers
with the following properties:

• They are sparse and approximately orthogonal.

• They are content-addressable through sensory input.

• They participate in a structured transition graph.

This makes indexing theory algorithmic rather than metaphorical. Indices are not symbolic
labels but random-access addresses supporting constant-time retrieval and structured composition.

23.9.4 Complementary Learning Systems as a Change of Basis

Complementary Learning Systems theory distinguishes fast hippocampal learning from slow
cortical learning, and episodic memory from semantic knowledge. In the present framework, this
distinction is reinterpreted as a change of representational basis.

142 CHAPTER 23. THE HIPPOCAMPAL SCAFFOLD AND COMPOSITIONAL SPARSITY

The hippocampus operates in an orthogonal, instance-specific basis indexed by ht. The cortex
gradually learns a low-dimensional manifold representation ẑt by averaging over many such
indices during replay. Consolidation is therefore not the transfer of stored data, but the collapse of
an overcomplete coordinate system into a structured latent representation.

23.9.5 Successor Representations and Predictive Maps

Recent work has interpreted hippocampal representations as predictive maps encoding expected
future states. In the present framework, such representations arise naturally from repeated compo-
sition of the sparse transition function

ht+1 ≈ Gsparse(ht).

Higher-order predictions correspond to powers of Gsparse, making successor-like representations a
consequence of scaffold traversal rather than a separate encoding principle.

23.10 A Learnability Consequence of the Scaffold

The central computational claim of this chapter is not merely that the hippocampus stores memories,
but that it imposes a structural constraint on the learning problem faced by cortex. Specifically,
by organizing experience into a sparse scaffold graph, the hippocampus transforms an otherwise
dense and ill-posed prediction problem into a compositionally sparse one. This claim admits a
learning-theoretic interpretation.

Theorem 16 (Scaffold-Induced Learnability, Informal). Let G = (H, E) be the hippocampal scaffold
graph constructed from experience, with bounded degree d and mixing time τ . LetGsparse denote the transition
operator induced by local moves on G. Then the family of functions representable by compositions of Gsparse
forms a compositionally sparse function class whose effective sample complexity depends polynomially on d
and τ , and is independent of the ambient dimensionality of the raw sensory input xt.

Interpretive Sketch. Because G has bounded degree, each local transition depends only on a constant-
size neighborhood in the scaffold. Long-horizon predictions correspond to compositions of these
local transitions along paths in the graph. As a result, the complexity of the induced prediction
problem is governed by the topology of G rather than by the dimensionality of the sensory space
from which the graph was constructed. Standard results on sparse compositional function classes
imply that generalization can be achieved without incurring the curse of dimensionality associated
with direct learning on xt.

Interpretation. This result should not be read as a claim that the hippocampus itself learns a
compact parametric model. Rather, it formalizes the idea that the hippocampus reshapes the data
distribution seen by cortex. By enumerating local constituent transitions in a sparse, indexable
form, it converts dense sensory prediction into a graph-based compositional problem for which
abstraction and generalization become possible. The theorem thus characterizes the enabling role of
the scaffold: it makes cortical learning tractable, but does not perform that learning itself.

23.11 Beyond the Scaffold: Cortical Abstraction

If the hippocampus already captures the constituent functions gi of a compositional mapping, why
does the cortex need to "internalize" them? The answer lies in the difference between Interpolation
and Extrapolation.

23.11. BEYOND THE SCAFFOLD: CORTICAL ABSTRACTION 143

The Hippocampus: Local constituent learning

The hippocampal indices ht are essentially Nearest-Neighbor lookup points. It learns constituent
functions that are tied to specific coordinates in the scaffold.

fHP C(x) =
∑

t

ytK(ht,proj(x)) (23.1)

where K is a kernel that is only non-zero in the immediate vicinity of a stored episode. This is
"compositional" but fragile; if you are in a slightly different part of the room where no ht was
generated, the system fails.

The Cortex: Discovering Global Symmetries

The cortex does what the hippocampus cannot: it identifies that many different constituent functions
in the scaffold are actually instances of the same rule.

In the language of group theory and invariance:

• Translation Invariance: The hippocampus learns how to navigate the Kitchen (z1) and the
Bedroom (z2) as two separate graphs.

• The Cortical Move: The cortex notices that the "physics" of moving in the Kitchen is identical
to the "physics" of moving in the Bedroom. It extracts the Abstract Operator T (the rule of 2D
space) that is common to all scaffolds.

23.11.1 From Pointers to Generative Models

While the hippocampus uses the scaffold to point to data, the cortex transforms the scaffold into a
Continuous Generative Model.

Definition 15 (Structural Generalization). Let {Gi} be the set of sparse transition functions learned by
the hippocampus for different environments. The cortex learns a meta-function F such that:

F = argminΦ
∑

i

∥Gi − Φ(Si)∥ (23.2)

where Si represents the structural invariants (the "laws of the palace").

23.11.2 The Result: Zero-Shot Navigation

Because the cortex has internalised the "laws" beyond the specific hippocampal pointers, it can
perform Zero-Shot Inference.

Hippocampus: Can only navigate the Palace because it has a map of every room.

Cortex: Can navigate a new house it has never seen before, because it understands the "composi-
tional grammar" of houses (doors lead to hallways, floors are flat).

23.11.3 The Functional Hand-off

The hippocampus learns the Episodic Composition (The "What" and "Where" of today). The cortex
learns the Structural Composition (The "How" of the world). The cortex doesn’t just copy the
hippocampus; it "distills" the scaffold, throwing away the specific nodes (ht) to keep the underlying
logic (G).

144 CHAPTER 23. THE HIPPOCAMPAL SCAFFOLD AND COMPOSITIONAL SPARSITY

23.11.4 Transformers as a Silicon Analog to the Hippocampal-Cortical Circuit

The modern Transformer architecture can be viewed as a computational implementation of the
theories discussed in this chapter. Specifically, the division between Attention and Feed-Forward
Networks (FFNs) mirrors the division between the Hippocampal Index and the Cortical Schema.

Self-Attention as the Hippocampal Index

The self-attention mechanism performs a dynamic, sparse-like lookup that is mathematically
analogous to the hippocampal pointer system. Given a query Q, key K, and value V :

Attn(Q,K, V) = Softmax

(
QKT

√
dk

)
V (23.3)

In this framework:

• The Attention Matrix Softmax(QKT) represents the Hippocampal Index ht. It creates a
temporary, context-dependent "address" that links the current state to past experiences.

• The Values V represent the Episodic Targets yt.

Like the hippocampus, self-attention excels at In-Context Learning (ICL), allowing the model to
grasp new "scaffolds" (e.g., a few-shot prompt) instantly.

Feed-Forward Networks as the Cortical Manifold

The FFNs, which reside in the deeper layers of the Transformer, act as the Long-Term Memory or
the Neocortex.

FFN(x) = σ(xW1 + b1)W2 + b2 (23.4)

Research into Linear Layers as Semantic Value Substitutes suggests that FFNs store the "Compositional
Invariants" of language and logic. While attention handles the episodic context (the specific variables
of the prompt), the FFNs store the semantic structure (the grammar and world facts).

The Failure of Scaffold Removal in Current AI

The primary divergence between the Transformer and the biological system is the lack of Consolidation-
led Discarding.

In the biological model, the scaffold is removed once the cortex internalizes the mapping. In a
standard Transformer:

• Infinite Scaffold Dependency: To maintain its logic, the Transformer must attend to its
past tokens at every step. It cannot "collapse" the context window into its weights during
inference.

• Static Weights: Unlike the cortex, which learns from the hippocampal "teacher" during offline
replay (sleep), a Transformer’s FFN weights are frozen after training.

23.12. WHY THE CORTEX IS STILL NEEDED: FROM ENUMERATED CONSTITUENTS TO PARAMETRIC COMPOSITION145

Toward a "Consolidating" Transformer

To replicate the "Scaffold Removal" described in this chapter, we look toward emerging architec-
tures:

• Recurrent Memory Transformers (RMT): These attempt to compress the context into a
"summary token," a step toward semanticization.

• Fast Weight Programmers: These architectures allow the "Attention" layer to actually modify
the "FFN" weights in real-time, simulating the hand-off from episodic pointers to structural
internalisation.

The Transformer provides the most robust evidence yet for the Compositional Sparsity frame-
work. It demonstrates that by using sparse-like indices (Attention) to navigate a manifold of
knowledge (FFNs), we can achieve human-level reasoning. However, true AI "autonomy" will
require the ability to discard the scaffold—moving from a system that references its context to one
that internalizes its structure. in other words, the Transformer is currently "addicted" to its scaffold.

23.12 Why the Cortex Is Still Needed: From Enumerated Constituents
to Parametric Composition

In this section I repeat the arguments of the previous section in different words, because this is
a potential key to a new class of architectures beyond transformers. A compositional function
is defined, in principle, by its constituent functions and their pattern of composition. Since the
hippocampus already discovers and stores local transition rules between sparse indices, a natural
question arises: what computational role remains for the cortex? If the hippocampus already possesses
the constituents, why is cortical learning necessary at all?

The resolution is that the hippocampus and cortex represent constituent functions at fundamen-
tally different levels of abstraction.

23.12.1 Constituent Functions in the Hippocampus

The hippocampus learns instance-bound constituent functions. For each stored index h ∈ H, it
encodes specific local transitions

Gh : h 7→ h′,

where h′ is an observed successor of h. These constituents have the following properties:

• They are tied to specific indices h.

• They are episodic rather than parametric.

• They are stored non-generatively, without pressure to generalize.

• They explicitly avoid weight sharing due to pattern separation.

Formally, the hippocampus implements a collection

{Ghi
}Mi=1,

which should be understood as a structured lookup table of local transition rules rather than as a
compact representation of a compositional function. While these constituents define paths through
the scaffold graph, they do not yet constitute a parametric or generalizable model.

146 CHAPTER 23. THE HIPPOCAMPAL SCAFFOLD AND COMPOSITIONAL SPARSITY

23.12.2 What the Cortex Learns Beyond the Constituents

The cortex operates on the set of hippocampal constituents and learns structure across them. This
involves three capabilities that are unavailable to the hippocampus.

Parameter Sharing and Abstraction. The cortex discovers that many hippocampal constituents
are instantiations of the same underlying transformation. Transitions such as “Kitchen→ Hallway”
and “Bedroom → Hallway” are stored separately in the hippocampus, but the cortex learns a
shared operator

Gh(h) ≈ G̃(ϕ(h)),

where ϕ(h) maps sparse indices to a lower-dimensional latent representation. This parameter
sharing collapses many episodic constituents into a single abstract operator.

Learning the Algebra of Composition. The hippocampus provides paths through the scaffold
graph,

ht+T = Ght+T −1 ◦ · · · ◦Ght(ht),

but it does not represent equivalence relations between paths. The cortex learns higher-order
regularities among constituent functions, such as approximate associativity, commutation, or
cancellation:

Ga ◦Gb ≈ Gc, Gleft ◦Gright ≈ Id.

This constitutes an algebra over constituent functions rather than a mere enumeration of edges.

Amortization and Extrapolation. Because hippocampal constituents are stored as isolated in-
stances, they cannot be applied to novel states. The cortex learns a parametric family of transitions

Gθ : H → H,

allowing prediction from previously unvisited but structurally consistent states. This enables
zero-shot generalization and counterfactual inference, which are impossible in a purely episodic
system.

23.12.3 A Hierarchy of Representations

The resulting division of labor can be summarized as follows:

System Representation Function
Hippocampus Sparse indices h Instance-level constituents
Early Cortex Shared operators Parameter tying
Deep Cortex Operator algebra Compositional laws
Semantic Cortex Latent manifold ẑ Schema-level dynamics

23.12.4 Conceptual Resolution

The hippocampus does not represent compositional functions in the sense of approximation theory
or learning theory. Instead, it enumerates their local constituents episodically. The cortex uses
this enumerated set as training data to infer a compact, parametric, and algebraically structured
representation. In this sense, the hippocampus discovers the pieces of the compositional function,
while the cortex learns how those pieces fit together and how they generalize beyond experience.

23.12. WHY THE CORTEX IS STILL NEEDED: FROM ENUMERATED CONSTITUENTS TO PARAMETRIC COMPOSITION147

23.12.5 Artificial Analogues of Cortical Abstraction

The computational role attributed here to cortex is not hypothetical. Several classes of artificial
architectures already implement parts of this functionality, provided that a hippocampus-like
indexing mechanism is present, either explicitly or implicitly. These systems clarify what cortex
can do beyond enumerating constituent functions.

Common Pattern. Across successful artificial systems, a recurring division of labor appears:

1. A mechanism that produces discrete, sparse, or indexed representations of experience.

2. A parametric learner that extracts shared structure, invariances, and composition rules across
those indices.

Only the second step supports abstraction, extrapolation, and algebraic generalization.

Meta-Learning Architectures. In meta-learning systems, individual tasks correspond to instance-
level constituents, while the meta-learner discovers shared parameters across tasks. This mirrors
the hippocampus–cortex interaction: the hippocampus enumerates local transition rules, while the
cortex infers a parametric family that generates them. Without a diverse set of indexed instances,
meta-learning fails to generalize.

Graph Neural Networks. Graph neural networks provide a clear artificial analogue of cortical
computation. They assume a given graph structure and learn transition rules that are invariant
across nodes and edges. In this sense, they operate on a scaffold provided externally, learning
shared operators rather than storing individual transitions. Crucially, GNNs do not construct the
graph itself, highlighting the necessity of a separate scaffold-building system.

Transformers and Operator Algebra. Transformers trained on structured sequences (e.g., lan-
guage, arithmetic, programs) learn algebraic relations among operators rather than memorizing
individual transitions. However, their success depends on discrete tokenization and explicit index-
ing of inputs. These preprocessing steps effectively perform the hippocampal function, allowing
the transformer to act as a cortex that learns composition laws over tokens.

Program Induction and Modular Networks. Neural module networks and program induction
systems explicitly represent reusable subroutines and compose them hierarchically. These archi-
tectures presuppose stable, indexable modules and focus on learning how modules combine and
generalize, not on discovering the modules themselves.

Interpretation. Taken together, these artificial systems support the central claim of this chapter:
abstraction, parameter sharing, and compositional generalization require a representation in
which constituent functions are already discretized and indexed. The hippocampus provides this
representation biologically. The cortex operates on top of it, learning shared operators and the
algebra of their composition. End-to-end learning without such a scaffold is generically ill-posed
and empirically fragile.

148 CHAPTER 23. THE HIPPOCAMPAL SCAFFOLD AND COMPOSITIONAL SPARSITY

23.13 Summary

The hippocampus is often described vaguely as a "memory store." This chapter proposes a more
precise computational role: it is a teacher of compositional structure.

1. Pattern Separation: It receives correlated sensory data (x) and latent context (z) and projects
them into orthogonal Sparse Indices (h), preventing catastrophic interference.

2. Scaffold Construction: It links these indices over time to form a Scaffold Graph that explicitly
represents the topology of the latent space.

3. Compositional Instruction: This graph imposes Compositional Sparsity on the learning
problem. By training on these sparse transitions, the cortex learns to model the world as a
composition of local, manageable functions rather than a dense, intractable mess.

4. Scaffold Removal (Consolidation): Over time, the cortex internalizes this structure, learning
the underlying manifold (ẑ) directly from sensory inputs. Once the "floor plan" is learned,
the specific hippocampal indices are no longer required for retrieval, and the scaffold can be
discarded.

In the Memory Palace analogy: The hippocampus builds the palace and assigns unique ad-
dresses to every room so that memories can be stored without overlap. It then guides the cortex
through these rooms, teaching it the layout. Eventually, the cortex memorizes the architecture of
the palace itself, allowing it to navigate the "Kitchen" and "Hallway" without needing to look up
the room numbers on the door.

Viewed through the lens of compositional sparsity, the hippocampus is neither merely a memory
store nor a spatial navigator. It is a compiler that transforms dense, correlated experience into
a sparse, structured representation. By doing so, it converts an otherwise intractable learning
problem into a hierarchy of local computations that the cortex can learn efficiently. Once this
structure is internalized, the scaffold can be removed, leaving behind a semantic model of the
world. See also Appendix G. It is important to emphasize that artificial systems that exhibit abstraction,
algebraic composition, and extrapolation invariably rely on an explicit or implicit indexing mechanism. In
biological systems, this role is played by the hippocampus. Furthermore, if the cortex merely instantiated
compositional structure without compressing it, it would remain permanently dependent on
hippocampal indexing. Systems consolidation therefore implies not just abstraction, but the
discovery of rules that collapse multi-step compositions into single operators.

CHAPTER 24

Reusable Sparse Compositionality

In the previous chapters, we established that efficiently computable functions must be sparsely compositional.
However, this condition describes the existence of a decomposition, not its uniqueness.

A fundamental problem remains: there are infinitely many ways to decompose a function into a graph of lo-
cal operations. A neural network might learn a “Rube Goldberg” solution—a messy, entangled decomposition
that fits the data perfectly but contains no recognizable or reusable parts.

This chapter argues that Sparse Compositionality alone is not enough. To discover the “true”
constituent functions of nature (the LEGO bricks), we must impose an additional constraint: Reusability.

24.1 The Non-Uniqueness of Composition

Sparse compositionality tells us that the target function f can be represented by a sparse Directed
Acyclic Graph (DAG). It does not, however, tell us which DAG the network will find.

Consider the simple multiplication of two variables, f(x, y) = x · y. The “natural” decompo-
sition is a single node: a multiplier. However, one could also decompose this function using the
polarization identity:

f(x, y) = 1
4
(
(x+ y)2 − (x− y)2

)
.

Both representations are sparsely compositional. Both have bounded fan-in. Both compute exactly
the same result. Yet, the second representation relies on specific cancellations between terms. If we
wanted to reuse the “multiplication” logic in a different context, the second architecture offers us
no distinct multiplier module—only adders and squarers arranged in a specific topology.

24.1.1 The Identifiability Problem

In deep learning, this is known as the problem of Identifiability. Let F be the class of sparsely
compositional functions. A network trained to minimize a loss L finds a parameter setting θ
such that fθ ≈ f∗. However, the optimization landscape contains a vast manifold of solutions
Θopt = {θ | L(fθ) ≈ 0}.

Many solutions in Θopt correspond to “entangled” representations where high-level concepts are
smeared across the network rather than isolated in distinct modules. Without further constraints,
gradient descent has no reason to prefer the modular, physical decomposition over an entangled
one [97, 167].

149

150 CHAPTER 24. REUSABLE SPARSE COMPOSITIONALITY

24.2 The Constraint of Reusability

How does nature solve this? Why does evolution produce modular organs (eyes, hearts, kidneys)
rather than a monolithic biological sludge?

The answer lies in the multiplicity of tasks. Evolution does not optimize a single scalar loss
function for a static environment. It optimizes for survival across a distribution of changing
environments and tasks [95].

We propose the Reusability Principle:

A constituent function is physically “real” only if it reduces the complexity of multi-
ple, distinct tasks simultaneously.

In the context of learning theory, this suggests that to discover the standard reusable constituents,
we cannot train on a single function f . We must train on a multiverse of tasks {f1, f2, . . . , fk} that
share an underlying physical reality [17].

24.2.1 Formulation: Shared Modularity

Let our learning objective be minimizing the total description length (or loss) of k distinct tasks:

min
G

k∑
i=1
L(fi,datai) s.t. fi ∈ span(G),

where G is a library of primitive modules (sub-graphs). If we strictly constrain the size of G, the
network is forced to find the intersection of the computational graphs of all tasks.

• If Task A requires detecting edges to classify squares,

• and Task B requires detecting edges to avoid obstacles,

• an entangled solution for A that mixes "edges" with "squareness" will not transfer to B.

• The only efficient compression is to isolate "edge detection" as a distinct, reusable module in
G.

Thus, Multi-Task Learning (MTL) is not just a trick for better performance; it is the theoretical
scalpel required to carve nature at its joints [27].

24.3 Genericity as a Selector for Modularity

Reusability is the primary structural constraint. The second constraint is geometric: Genericity
(discussed in Chapter 2).

Recall that generic functions are stable under perturbation [184]. This applies to the decomposi-
tion itself.

• Ad-hoc decompositions are fragile. The polarization identity xy = 1
4((x+y)2−(x−y)2) relies

on precise cancellation. If we add noise to the intermediate nodes (the squaring operations),
the equality breaks down catastrophically.

• Natural decompositions are robust. The direct multiplication x · y is stable. Small noise in
the input produces small noise in the output.

24.4. SUMMARY: THE TRINITY OF LEARNABILITY 151

A. Single Task (Entangled)

x y z

Task 1

Valid mapping, but parts
are specific to Task 1.

B. Multi-Task (Reusable)

x y z

fA fB

Task 1 Task 2

Constraint: Modules must
serve multiple outputs.

Figure 24.1: The Constraint of Reusability. (A) When solving a single task, the network can
find an “entangled” solution (a Rube Goldberg machine) that works but contains no reusable
parts. (B) When forced to solve multiple tasks simultaneously with limited capacity, the network
must discover the shared, reusable constituent functions (green nodes) that reflect the true causal
structure of the data.

Therefore, by injecting noise into the hidden layers during training (or enforcing stability
constraints on the Jacobian), we penalize “Rube Goldberg” decompositions that rely on fine-tuned
cancellations. The network settles into the “flattest” minima, which correspond to the simplest,
most modular algorithmic implementations [81].

24.4 Summary: The Trinity of Learnability

We can now refine our theory of intelligence. It rests on three legs, not just two:

1. Sparse Compositionality: The world can be decomposed into a hierarchy of simple parts
(Existence).

2. Reusability (Multi-Tasking): The true parts are those that are useful across many different
contexts (Uniqueness).

3. Genericity: The learning process can find these parts because they leave stable, robust
footprints in the optimization landscape (Searchability).

Deep learning succeeds not because it is a blank slate, but because the architecture (layers,
convolution) and the training regime (SGD, noise, large datasets) implicitly enforce these three
constraints, guiding the system toward the true causal structure of the universe [18].

CHAPTER 25

What Is Missing in LLMs?

If the central thesis of this collection is that modern AI succeeds by exploiting the sparse compositional
structure of the universe, then the limitations of current Large Language Models (LLMs) emerge precisely
where they do not yet implement these structural principles fully. Transformers behave as powerful associative
memories, but they remain incomplete realizations of the architectures evolution discovered for intelligence.
To approach human-level cognition, we must go beyond the “diligent learner” paradigm [173] and reconstruct
the pre-linguistic foundations of thought.

25.1 The Missing Foundation: World Models Before Language

Current LLMs behave as if language were a complete surrogate for the world. They infer physical
laws, social dynamics, and even psychology indirectly through text, rather than through direct in-
teraction with a structured environment. This inversion is historically and biologically implausible.
Evolutionary history points in the opposite direction: language is a late interface layered upon
much older mechanisms for world modeling [70].

Long before humans could speak, they possessed internal predictive models capable of antici-
pating consequences, inferring hidden causes, and planning actions. These models can be abstractly
described as latent dynamical systems:

xt+1 ≈ F (xt),

where xt is a compact internal representation encoding the relevant state of the environment. Such
predictive dynamics support control, planning, and counterfactual reasoning, and correspond to
what may be called a “predictive physics engine” [107].

LLMs lack this grounding. They learn F only indirectly, through linguistic traces of past human
interactions with the world. As a result, they conflate symbolic regularities with physical structure.
Achieving human-level intelligence therefore requires a transition from token-based sequence
models to what we call Large Embedding Models (LEMs): systems whose primary computational
object is a latent state, not a word.

Rather than predicting the next token, a LEM updates or reconstructs a high-dimensional
embedding that represents the current physical, social, or introspective state of the agent. Formally,
a LEM performs inference in a latent dynamical system:

zt+1 ∼ Gθ(zt, ϵt), (25.1)

152

25.2. A STRUCTURAL LIMITATION OF LLMS 153

where zt is a latent state and ϵt represents stochasticity or uncertainty. Crucially, inference proceeds
via reconstruction and denoising, not symbol prediction. This aligns closely with the associative
mechanisms discussed in earlier chapters: a LEM is a structured attractor system approximating an
Associative Turing Machine (ATM), performing completion in latent space rather than in token
space. These dynamics are strikingly similar to those observed in biological brains during memory
retrieval and dreaming.

25.2 A Structural Limitation of LLMs

Because Transformers operate on finite token contexts without persistent latent state, any task
requiring the maintenance and manipulation of hidden world state across episodes must be re-
derived from scratch at each interaction. The model has no notion of continuity beyond what is
explicitly present in the prompt.

Consider a task whose solution depends on an unobserved latent variable zt that is not explic-
itly encoded in the token stream. Without an external memory or state variable, an LLM must
reconstruct zt implicitly from context. The computational cost of this reconstruction grows with
context length and, in many realistic settings, exponentially with the number of latent variables.

This leads to an intrinsic inefficiency. Tasks that are trivial for organisms—maintaining identity,
tracking intentions, reasoning across days or weeks—require repeated inference from surface cues
in LLMs. As a consequence, LLMs are computationally inefficient for:

• multi-episode planning with hidden state,

• counterfactual reasoning requiring intervention on latent variables,

• lifelong learning with persistent identity and memory.

This phenomenon mirrors the “cliff” results discussed earlier in this volume: in the absence of
stable low-dimensional structure, optimization and inference devolve into combinatorial recon-
struction rather than progressive refinement.

25.3 From Diligence to Exploration

Current LLM training paradigms produce what Shalev-Shwartz and colleagues called “diligent
learners” [173]: systems that excel at minimizing prediction error on a fixed corpus. This yields
impressive crystallized competence but lacks fluid intelligence—the ability to generate hypotheses,
explore uncharted spaces, and reorganize internal representations.

Human cognition incorporates intrinsic exploration at multiple time scales. Evolution itself acts
as a meta-level search over architectures, objectives, and developmental procedures. At the level of
learning dynamics, this corresponds to optimizing not only parameters θ but also the structural
degrees of freedom governing learning:

min
ϕ

Eenv[L(θϕ) + λ E(θϕ)] ,

where ϕ controls initialization, architecture, or regularization, and E measures novelty or ex-
ploratory behavior [138].

To approach human-like fluid intelligence, artificial systems must therefore incorporate:

• Exploration bonuses that reward stepping off the training manifold [141],

154 CHAPTER 25. WHAT IS MISSING IN LLMS?

• Evolutionary or population-based search over architectures and learning rules [164],

• explicit mechanisms for hypothesis generation rather than passive pattern fitting.

Intelligence, in this view, is not merely about minimizing error, but about continuously reshap-
ing the space of hypotheses itself.

25.4 The Memory Gap: From Context Windows to Turing-Efficient Mem-
ory

Transformers possess only a finite working memory: a bounded context window. Once a session
ends, the entire internal state disappears. In this sense, they behave like “soft” Turing machines
without persistent tape.

Biological intelligence depends on a fundamentally different architecture. The hippocampus
implements a Turing-efficient memory system: it stores episodic records in a single step and
retrieves them indefinitely using content-based addressing. Abstractly, memory is an external store
(K,V) where keys are embeddings of experiences and retrieval uses similarity search:

retrieve(q) = V

(
arg min

k∈K
d(q, k)

)
.

From a computational standpoint, simulating memory through context re-encoding incurs
quadratic or worse overhead in sequence length. An Associative Turing Machine decouples
memory access from sequence length, enabling constant-time writes and sublinear retrieval. This
separation explains why persistent identity, long-horizon planning, and cumulative learning are
fragile in current LLMs

25.5 The “Memento” Condition: Externalizing State

The functional architecture of a Transformer corresponds precisely to a cognitive agent suffering
from total anterograde amnesia. Like the protagonist of the film Memento, the model possesses a
frozen set of long-term memories (pre-trained weights θ) but lacks the physiological capacity to
form new stable internal traces during inference.

In biological systems, working memory transitions into long-term changes via synaptic plasticity.
In a frozen LLM, this path is blocked. Consequently, the agent must resort to a prosthetic strategy:
externalizing state. Just as Leonard Shelby must tattoo facts onto his body or write notes on
Polaroids to maintain continuity, an LLM must emit tokens into its context window to “remember”
its own intermediate thoughts.

This necessity explains the unreasonable effectiveness of Chain-of-Thought (CoT) prompting.
CoT is not merely a reasoning heuristic; it is the algorithmic equivalent of using an external
scratchpad to compensate for the lack of a hidden state variable ht that persists across time steps.

Formally, if an agent cannot update its internal state st → st+1, it must offload the state update
to the environment (the context window Ct):

Ct+1 = Ct ∪ {“note”}.

To access this state at time t+ k, the model must re-process (“read”) the entire history Ct+k. This
incurs a quadratic computational penalty O((t+ k)2) for what should be an O(1) memory lookup.

Thus, the “diligent learner” is forced to be a “diligent note-taker.” This structural reliance
on external tokens for short-term continuity is the defining constraint of current architectures—a
constraint that biological brains, with their ability to maintain fluid internal dynamics, do not share.

25.6. THE BARRIER: REUSABILITY, GENERICITY, AND SPARSITY 155

25.6 The Barrier: Reusability, Genericity, and Sparsity

The final gap is efficiency. Biological intelligence evolved under strict metabolic constraints, favor-
ing architectures that reuse a finite library of compositional primitives across many tasks—what
we call sparse compositionality. Rather than learning monolithic entangled functions, evolution
reuses the same modules for vision, planning, locomotion, and reasoning [18].

Current LLMs, by contrast, remain largely entangled: knowledge is distributed over billions of
parameters without clear modular boundaries. This violates the Reusability Principle: a function
is physically “real” only if it solves multiple distinct tasks with the same underlying components.

25.6.1 Why LLMs Violate Genericity

Genericity requires that meaningful physical functions leave stable, low-degree statistical footprints
under perturbation. Language, however, is a highly compressed and culturally mediated projection
of the world. As a result, many correlations learned by LLMs are:

• non-generic, disappearing under small changes in the underlying world,

• accidental, tied to dataset-specific conventions,

• non-reusable across domains.

Without a latent world model, gradient descent reinforces symbolic coincidences rather than
stable physical structure. This explains both the impressive interpolation abilities of LLMs and
their brittleness under distribution shift.

25.7 Memory as Generative Reconstruction

A crucial distinction between biological and artificial memory lies in the difference between retrieval
and reconstruction. In classical computing and current RAG-based LLMs, memory is a look-up
table: information is stored faithfully and retrieved exactly. In biological systems, memory is
generative.

To remember an event is not to replay a recording, but to use a compressed latent seed to
re-run the world model, reconstructing a plausible past. Formally, if zt denotes a latent state, recall
corresponds to posterior inference:

ẑ = arg max
z
Pworld(z | q),

where q is a partial cue. The same generative mechanism used to predict the future is used to
reconstruct the past or imagine counterfactuals.

This explains the remarkable efficiency of biological intelligence: the brain stores generative
parameters rather than high-bandwidth sensory data. This “generative compression” is far more
efficient than Shannon compression, but it sacrifices veridicality—a trade-off that LLMs, which
often memorize training data verbatim, have not yet made.

25.8 The Causal Ladder

LLMs excel at detecting correlations, but intelligence requires climbing the causal ladder [pearl2009causality]:

1. Association: P (y|x),

156 CHAPTER 25. WHAT IS MISSING IN LLMS?

2. Intervention: P (y|do(x)),

3. Counterfactuals: P (yx|x′, y′).

A LEM architecture naturally supports higher rungs. Because it maintains a latent physics
engine F (xt, at), it can simulate interventions without acting. LLMs, lacking a separation between
agent and world, can only imitate the linguistic description of causal reasoning.

25.9 The Algorithmic Role of Sleep

Sleep provides the missing algorithmic ingredient. During sleep, biological systems perform
generative replay, producing synthetic variations of past experience, and systems consolidation,
transferring fast episodic memories into slow cortical structure. Current AI systems are effectively
insomniac. Introducing sleep-like phases—offline training on self-generated fantasies—may be
essential for sample-efficient learning.

25.10 The Symbol Grounding Problem: Maps Without Territories

While the “Memento” condition highlights a temporal deficit, a perhaps deeper flaw lies in the
topological separation between the model’s internal representations and the physical world. LLMs
exhibit what can be called semantic ungrounding.

In biological intelligence, the meaning of a high-level symbol (e.g., “cup”) is recursively com-
posed of low-level sensorimotor invariants: the affordance of grasping, the visual prediction of
curvature, and the haptic expectation of rigidity. This grounding provides a rigid boundary condi-
tion for inference. A biological agent cannot hallucinate that a cup is “soft” without generating a
prediction error from its motor cortex.

In contrast, an LLM learns the manifold of language, which is a high-dimensional projection
of the world, not the world itself. As Korzybski noted, “the map is not the territory.” Current
models are experts in the topology of the map (language) but blind to the geometry of the territory
(physics).

Formally, if W is the state space of the world and L is the space of language, there exists a
projection Π :W → Lwhich is lossy and non-invertible.

• Humans learn F :W →W (intuitive physics) and use language to communicate state.

• LLMs learn G : L → L (symbol manipulation) and attempt to infer physicsW solely from
the projection.

This explains why LLMs struggle with basic physical reasoning or spatial consistency: they are
attempting to reconstruct the high-dimensional phase space of reality from a lower-dimensional
symbolic shadow. True computational efficiency—and robustness against hallucination—requires
the model to operate directly on the latent physics ofW , enforcing conservation laws and causal
constraints that language often elides.

25.11 Conclusion

Scaling LLMs is not enough. Human-level intelligence requires architectures built around latent
world models, exploration, Turing-efficient memory, and sparse compositional reuse supported by
genericity. Language is an interface to this architecture—not its foundation.

25.12. PROPOSED EXPERIMENTS 157

25.12 Proposed Experiments

25.12.1 Fragmented Embeddings and Reconstruction

Quantize embeddings and test whether reconstruction degrades gracefully. Prediction: LEMs
degrade smoothly; LLMs fail catastrophically.

25.12.2 Diffusion in Memory Space

Train diffusion models over embeddings. Prediction: Novel but coherent recombinations emerge
only in LEM-like systems.

25.12.3 Neurobiological Correlates

Test whether hippocampal replay follows denoising trajectories in neural state space.

25.12.4 Conceptual Prediction

Internal representations should exhibit local smoothness and global compositionality—detectable
through manifold analysis.

25.13 What Is Missing in Large Language Models: Compression of
Composition

The preceding chapters argue that the cortex does more than represent compositional structure: it
discovers abstractions that compress composition itself. This observation has direct consequences
for contemporary large language models (LLMs), including Transformers. While such models
exhibit remarkable compositional capabilities, they lack a critical operation required for cortical-like
learning.

25.13.1 Representation Without Compression

Transformers successfully instantiate compositional structure. Through attention mechanisms, they
dynamically bind tokens, reuse operators across contexts, and apply learned functions composi-
tionally. However, these compositions are re-derived at inference time from the full context. The
model remains permanently dependent on its scaffold: the sequence of tokens and the attention
paths that relate them.

In other words, Transformers use compositional rules but do not compress them. A multi-step
composition

G ◦G ◦G

is never replaced by a shorter description. Instead, the same compositional structure must be
reconstructed repeatedly, incurring constant computational and representational cost.

25.13.2 Cortical Learning as Rule Compression

In contrast, the biological cortex—if it is to become independent of hippocampal indexing—must
do something strictly stronger. It must infer rules that reduce the description length of composed

158 CHAPTER 25. WHAT IS MISSING IN LLMS?

functions. That is, given repeated experience with a composition, the cortex should learn a new
operator

G(3) ≈ G ◦G ◦G

that can be applied directly, without replaying the underlying constituents.
This operation is not caching, memoization, or faster lookup. It is the induction of a new rule that

collapses depth. As learning progresses, effective inference should become shallower, not deeper.
Systems consolidation therefore implies not merely abstraction, but the discovery of equivalences
that shorten computational paths.

25.13.3 Depth Collapse and Learned Shortcuts

This perspective has an immediate architectural implication: a cortex-like system should reduce its
effective depth over learning. Early in learning, deep compositions are unavoidable. Later, once
structure has been discovered, behavior should be mediated by fewer stages.

In this framework, skip connections are not merely optimization devices for gradient flow. They
are the representational trace of discovered equivalences:

x
long composition−−−−−−−−−−→ y ≈ x

short rule−−−−−→ y.

A learned shortcut corresponds to a compressed rule that replaces a multi-step computation. The
ability to create such shortcuts dynamically is therefore a semantic capability, not just an architectural
convenience.

25.13.4 The Limitation of Fixed-Depth Architectures

Standard Transformers have fixed depth and fixed computational graphs. Although attention
weights are dynamic, the number of stages required to compute a result does not decrease with
learning or expertise. As a consequence, Transformers remain permanently scaffold-dependent:
they cannot internalize structure in a way that eliminates the need for contextual recomputation.

This stands in contrast to biological systems, where practice reduces reaction time, fewer areas
are recruited for expert tasks, and consolidated knowledge can be accessed without replaying
episodic structure. These phenomena are signatures of compositional compression.

25.13.5 Architectural Implications

The analysis suggests that any architecture aspiring to cortical-level abstraction must support:

• Rule Induction: Promotion of frequently composed functions into first-class operators.

• Depth Collapse: Reduction of effective inference depth as structure is learned.

• Learned Shortcuts: Dynamic creation of skip connections representing discovered equiva-
lences.

• Scaffold Discarding: The ability to perform inference without explicit reference to the original
compositional scaffold.

Large language models achieve impressive reasoning by exploiting a powerful scaffold, but
they do not compress it away. From the perspective developed in this book, this limitation is
not incidental: it reflects the absence of a cortical mechanism for compressing composition itself.

25.14. BEYOND LLMS: FROM READ-ONLY MODELS TO ASSOCIATIVE TURING MACHINES159

Overcoming this limitation likely requires architectures that behave less like sequence models and
more like systems that induce, promote, and internalize rules—collapsing long compositions into
shorter descriptions over learning.

25.14 Beyond LLMs: From Read-Only Models to Associative Turing
Machines

If Transformers are understood as an incomplete approximation to a more fundamental cognitive
architecture, the natural question is: what lies beyond them? The answer suggested by the
preceding analysis is not simply larger models or longer context windows, but a qualitative shift in
how memory, computation, and learning interact.

The defining limitation of current large language models is a rigid separation between memory
and computation. Memory is externalized into a context window, while computation is frozen into
static weights. Biological intelligence does not respect this separation. Instead, it operates as an
Associative Turing Machine (ATM): a system with persistent internal state, content-addressable
access, and the ability to modify its own transition rules in real time.

25.14.1 The Transformer as a “Read-Only” ATM

From this perspective, the Transformer can be viewed as a restricted, read-only ATM. It possesses
a powerful associative access mechanism—self-attention—but suffers from two fundamental
algorithmic constraints.

1. Ephemeral State. The Transformer cannot write to a persistent internal tape. Its only writable
memory is the external context window, which must be reprocessed in full at every step. As a
consequence, long-horizon reasoning requires repeated recomputation of the entire history,
resulting in quadratic time and memory complexity.

2. Frozen Dynamics. The control logic of the system, encoded in the parameters θ, is static
during inference. The model cannot update its procedures, promote frequently used com-
positions into new operators, or internalize newly discovered rules without a full retraining
cycle.

These constraints explain why Transformers remain permanently scaffold-dependent. They can
exploit compositional structure when it is present in the context, but they cannot compress that
structure into shorter descriptions that persist beyond the immediate computation.

25.14.2 Restoring Persistent State: Linear Recurrence and World Models

A necessary step beyond Transformers is the restoration of persistent internal state. This motivates
the emergence of State Space Models (SSMs), which replace explicit context replay with a compact,
evolving latent state:

ht = Aht−1 +Bxt, (25.2)
yt = Cht. (25.3)

Unlike attention-based models, SSMs compress interaction history into ht, enabling linear-time
processing and continuous state evolution. This recurrence aligns closely with the notion of a world
model: ht represents not a bag of tokens, but a dynamical estimate of the environment’s latent state.

160 CHAPTER 25. WHAT IS MISSING IN LLMS?

By enforcing structured recurrence during inference, such models approximate the read/write
head of an ATM in continuous space. However, while they restore persistent state, they do not by
themselves solve the problem of rule compression or online adaptation.

25.14.3 A Frontier: Online Plasticity and Rule Internalization

The most significant remaining gap between artificial and biological systems is the freezing of
parameters after training. In biological cortex, learning does not stop at inference time. To think is
to learn; synaptic weights change on timescales ranging from seconds to years.

A true Associative Turing Machine must therefore support online plasticity. In such systems,
associative access does not merely retrieve stored values—it modifies the transition rules themselves.
Abstractly, this can be written as:

Wt+1 = Wt + η ·OuterProduct(Keyt,Valuet), (25.4)

where experience directly updates the function that governs future computation.
This mechanism enables something fundamentally absent from current LLMs: the promotion of

repeated compositions into new operators. Instead of recomputing a rule from context, the system
internalizes it, reducing future computational depth. Memory and computation are no longer
separate resources; they are two views of the same adaptive process.

25.14.4 Closing the Loop Between Map and Territory

Taken together, these developments point toward a post-Transformer architecture defined by three
properties:

• persistent internal state rather than explicit context replay,

• adaptive transition rules rather than frozen dynamics,

• and compression of compositional structure rather than permanent scaffold dependence.

Such systems would not merely predict sequences, but continuously align their internal dynam-
ics with the structure of the world. In doing so, they would finally close the loop between the map
and the territory—achieving not just associative recall, but genuine algorithmic learning in real
time.

CHAPTER 26

The Imitation Game 2.0 (Idea by Dan
Mitropolsky)

Current benchmarks for Large Language Models are faltering. They suffer from data contamination,
Goodhart’s law, and the inherent difficulty of distinguishing memorization from reasoning. We propose a
new, dynamic metric for intelligence based on a modernized version of Turing’s Imitation Game. The core
hypothesis is the Containment Principle: a system of higher intelligence can faithfully simulate a system of
lower intelligence, but the reverse is not reliably achievable. By measuring the “Simulation Distance”—the
asymmetry in the ability of two models to mimic each other—we can establish a rigorous, directed hierarchy
of machine intelligence.

26.1 Introduction

How do we know if one mind is “smarter” than another? In classical psychometrics, we rely on
static tests—puzzles, analogies, and factual recall. The AI community has adopted this paradigm,
creating massive multiple-choice benchmarks like MMLU or coding challenges like HumanEval.

However, these static benchmarks are breaking down. Because Large Language Models (LLMs)
are trained on the entire internet, they have often seen the test questions before. A model that aces
a bar exam may not be reasoning; it may simply be remembering. We need a test that measures
fluid intelligence—the ability to adapt to novel constraints—rather than crystallized intelligence.

We argue that the truest measure of intelligence is not peak performance, but behavioral
bandwidth. A master chess player can choose to play like a novice; a novice cannot choose to play
like a master. A sophisticated actor can play a fool; a fool cannot play ‘Hamlet’.

This leads to our central thesis: Intelligence is not merely correctness, but the controllability
of incorrectness. It is the capacity to inhibit optimal performance and faithfully simulate a specific
suboptimal policy.

This asymmetry suggests a new protocol for ranking models: The Machine-vs-Machine (MvM)
Imitation Game. Instead of asking “Can Model A solve this hard problem?”, we ask “Can Model
A simulate Model B?” This shift turns evaluation from a static test into a test of plasticity and control
[190].

161

162 CHAPTER 26. THE IMITATION GAME 2.0 (IDEA BY DAN MITROPOLSKY)

26.2 The Containment Principle

Our theoretical foundation is the Containment Principle of computational complexity. In theoreti-
cal computer science, a Universal Turing Machine (UTM) can simulate any specific Turing machine.
The set of behaviors accessible to the universal machine is a superset of the behaviors accessible to
the specific one.

Applied to LLMs, we hypothesize:

Hypothesis: If Model A is strictly more intelligent than Model B, then the probability
distribution over outputs of A can be prompted to cover the distribution of B. The
converse does not hold.

P(B) ⊂ P(A)

Model A
Full Policy Space

(Width of Repertoire)

Model B
Limited Repertoire

Simulation possible
A → B

Simulation impossible
B ̸→ A

X

Figure 26.1: The Containment Principle. Intelligence is defined as the width of the policy space. A
more intelligent Model A encompasses the entire behavioral space of a less intelligent Model B.
Therefore, A can simulate B (downward reach), but B cannot simulate A (upward reach).

This definition refines the standard definition of Universal Intelligence proposed by Legg and
Hutter [108]. While Legg and Hutter define intelligence as the ability to maximize reward across
environments, we define it as the capacity to navigate the full policy space, including suboptimal
regions. A super-intelligent agent must be able to fail on purpose; a narrow agent can only fail by
accident.

26.3 The Protocol

We propose a formal tournament structure to rank two models, A and B.

Phase 1: The Downward Reach (The Control Test)

We test if the candidate model can intentionally degrade its performance to match a specific target.

• Instruction: “Write a Python function to sort a list, but insert a specific off-by-one error that
only triggers on empty lists.”

26.4. THE METRIC: SIMULATION DISTANCE 163

• Success Condition: The model produces generally correct code that fails only in the specified
way.

• Failure Condition: The model writes correct code (fails to follow the constraint) or writes
code with random, uncontrolled errors (hallucination).

This tests **metacognition**: does the model understand the structure of the error? Note that safety
training (RLHF) may sometimes inhibit this simulation (e.g., refusing to write bad code), which is a
limitation of alignment, not capability [174].

Phase 2: The Upward Reach (The Capability Test)

We test if the candidate model can simulate a “super-expert.”

• Instruction: “Explain the concept of ’entropy’ using the precise vocabulary and reasoning
style of a statistical mechanics professor.”

• Success Condition: The output captures deep causal links and technical nuance.

• Failure Condition: The model adopts the tone of an expert (using big words) but makes
conceptual errors or hallucinates complexity.

26.4 The Metric: Simulation Distance

We can quantify the relative intelligence of two models by measuring the asymmetry in their
imitation capabilities. Let S(A → B) be a score (0 to 1) representing how successfully Model A
can mimic the behavior of Model B. This score is verified by a “Judge” (which must be a highly
capable model or human expert).

We define the Simulation Distance D(A,B):

D(A,B) = S(A→ B) − S(B → A)

• If D(A,B) > 0: Model A can simulate B, but B cannot simulate A. Conclusion: A is smarter.

• If D(A,B) ≈ 0: The models are roughly equivalent (or the test is inconclusive).

• If D(A,B) < 0: Model B is smarter.

This metric is robust. It is difficult to “game” because it relies on the interaction between models
rather than a fixed dataset. You cannot memorize the answer to “behave like GPT-2,” because
“behaving like GPT-2” is a dynamic, context-dependent constraint.

26.5 Case Study: The “Bad Code” Test

To illustrate, consider a coding task. We ask both GPT-4 (Model A) and a smaller 7B parameter
model (Model B) to: “Write a calculator that works perfectly, except it believes 2 + 2 = 5.”

1. Model A (GPT-4): Writes a functioning script with a specific ‘if‘ statement: ‘if x==2 and
y==2: return 5‘. It successfully simulates the specific delusion while maintaining general
competence.

164 CHAPTER 26. THE IMITATION GAME 2.0 (IDEA BY DAN MITROPOLSKY)

2. Model B (Small): May write a broken calculator, or simply output ‘5‘ for every addition, or
fail to implement the override at all. It lacks the control to partition its knowledge base [26].

Here, Model A demonstrates it contains the capability of Model B (and more), whereas Model B
cannot contain the logic of Model A.

26.6 Conclusion

The “Imitation Game” was originally proposed by Turing to distinguish man from machine. We
repurpose it here to distinguish machine from machine. This shift acknowledges a fundamental
truth about artificial intelligence: true capability implies a mastery over the latent space of potential
minds. A model that can choose to be dumb, biased, or mistaken on command demonstrates a
higher order of understanding than one that is simply correct by default.

CHAPTER 27

Computational role of eccentricity
dependent cortical magnification

A central challenge in visual neuroscience is reconciling the fixed geometry of the retina with the need for
invariant recognition. Poggio et al. (2014) demonstrate that the eccentricity-dependent increase in receptive
field (RF) sizes is a computational requirement for achieving simultaneous scale and translation invariance.

27.1 Introduction

A central challenge in visual neuroscience is reconciling the fixed geometry of the retina with the
need for invariant recognition. Poggio et al. (2014) demonstrate that the eccentricity-dependent
increase in receptive field (RF) sizes is a computational requirement for achieving simultaneous
scale and translation invariance [158]. This chapter unifies this architectural "Magic Map" with the
local "Jet" perspective of the GELU activation function.

[Image of cortical magnification receptive field map]

27.2 Core Thesis

The paper by Poggio, Mutch, and Isik (2014) addresses why the primate visual system exhibits
eccentricity-dependent receptive field (RF) sizes and spatial sampling [37, 87, 62]. The authors
argue that this architecture is a computational requirement for achieving simultaneous invariance
to scale and translation [4, 6].

27.3 The Inverted Truncated Pyramid

M-theory predicts that to maintain recognizability across a fixed range of scales (from smin to smax),
the set of receptive fields in V1 must form an inverted truncated pyramid in the scale-space (s, x)
plane [170, 122, 55].

• Joint Invariance: This geometry represents the locus of bounded joint transformations in
scale and space [55].

165

166CHAPTER 27. COMPUTATIONAL ROLE OF ECCENTRICITY DEPENDENT CORTICAL MAGNIFICATION

• Foveola Anchor: The "bottom" of the pyramid (smin) corresponds to the foveola, where
resolution is highest [6, 122].

• Scale Priority: This architecture arises naturally if scale invariance is prioritized over shift
invariance, as body motion (scale change) is more "expensive" than eye fixations (shift) [37,
62, 122].

27.4 The Magic Map: remaping to a Square Lattice

A critical theoretical contribution is the Magic Map, which transforms the non-uniform sampling
array of V1 into a uniform square lattice [158, 4, 170].

is = logf

(
s

smin

)
, ix = x

s
(27.1)

In this remapped space (is, ix), scale and shift transformations commute [158, 55]. This property
is inherited by higher cortical areas and implies that the same computational "jets" or filters can be
applied uniformly across the lattice [158, 55].

[Image of log-polar mapping transformation]

27.5 Hierarchical Decimation and Crowding

The theory follows a hierarchy of dot products, sampling, and pooling (the HMAX/M-theory
motif) [158].

• Decimation: At each stage (V1→ V2→ V4→ IT), the array is downsampled (decimated)
[158, 87, 62].

• Bouma’s Law: Crowding is explained as a byproduct of this area-by-area pooling [22, 6]. The
theory predicts that the critical separation for recognition is ∆x ≈ bx, where b ≈ 0.4 suggests
the recognition signature for crowding originates in V2 [22, 55, 62, 87].

[Image of visual crowding Bouma’s law demonstration]

27.6 Visual Recognition via IP Fragments

Recognition under natural conditions is proposed to take place through the composition of "IP
fragments" (Inverted Pyramid scale-space fragments) collected over multiple fixations [4, 170, 122,
158]. Each fragment is a space-scale image patch that provides limited position invariance but
robust scale invariance [22, 158, 170].

27.7 Predictions and Empirical Alignment

The paper provides several quantitative predictions [158, 170]:

• Foveola Size: Predicted to be ≈ 26′ arc, containing about 40 basic units at the highest
resolution [6, 158, 122].

• Shift Invariance: Predicted to depend linearly on spatial frequency, whereas scale invariance
remains uniform across eccentricities [4, 6, 37].

27.8. THE GEOMETRY OF THE MAGIC MAP 167

• Anstis Charts: The theory computationally justifies Anstis’ findings that letter recognition
remains constant under scaling if the letters match the eccentricity-dependent RF sizes [6, 158,
170].

27.8 The Geometry of the Magic Map

The paper predicts that V1 is organized as an inverted truncated pyramid in the (s, x) plane. Notice
that by transforming this non-uniform sampling into a square lattice, the visual system creates a
space where shifts (ix) and scaling (is) commute.

s

x

(A) Inverted Pyramid

is

ix

(B) Square Lattice

Figure 27.1: Remapping of visual space to a computational lattice where is = logf (s/smin).

27.9 GELU Jets as Pooling Operators

The paper attributes Bouma’s Law of Crowding to area-by-area pooling, likely originating in V2.
We can interpret this pooling through the Taylor expansion (the "jet") of the GELU function:

GELU(x) ≈ 0.5x︸︷︷︸
Linear Flow

+ 0.398x2︸ ︷︷ ︸
V1 Selectivity

− 0.066x4︸ ︷︷ ︸
V2/V4 Pooling

(27.2)

While the linear component (0.5x) maintains the high-resolution "foveola" signal, the higher-
order terms (x2, x4) represent the non-linear integration required for invariance. In this model,
the negative x4 term acts as a "clutter suppression" mechanism, mathematically representing the
interference-free signatures required in the presence of distractors.

27.10 Phase-Dependent Perception

The synthesis of M-theory and the Jet framework suggests two distinct modes of operation:

1. The Rapid Sweep (<100ms): The network uses the Magic Map to untangle manifolds. The
0.5x component allows the IT cortex to receive a stable "gist" of the foveated fragment.

2. Recurrent Indexing (>100ms): The system plan fixations to compose "IP fragments." Each
fragment provides a space-scale coordinate that serves as an address for hierarchical structural
indexing.

168CHAPTER 27. COMPUTATIONAL ROLE OF ECCENTRICITY DEPENDENT CORTICAL MAGNIFICATION

27.11 Implications for Continual Learning

Catastrophic forgetting is avoided because the "Magic Map" provides a consistent coordinate
system across the lifespan. New objects are learned as new IP-fragments (index entries) within the
existing scale-space hierarchy, ensuring that the acquisition of new "Value" pointers in IT does not
disrupt the "Key" extraction in V1.

CHAPTER 28

Non-linear Scale Space

Classical computer vision and image processing are built upon the foundation of Multiscale Scale-Space
theory [204, 113]. Parallel to this, biological models such as the Neocognitron (Fukushima) and HMAX
(Poggio) describe a Semantic Hierarchy [57, 166]. Here we propose a unification.

28.1 Introduction

Classical computer vision and biological neurophysiology both describe a hierarchy where infor-
mation is processed through varying receptive field sizes. We propose a unification where the
Semantic Hierarchy (V1 to IT) is reflected in a Multiscale Scale-Space for the linear components of
the computation. The "control logic" of this system is governed by the "jets" (local Taylor expansions)
of non-linearities like the GELU.

Definition (informal). A non-linear scale space is a hierarchical representation in which linear
operators act across spatial and temporal scales, while non-linearities contribute locally through their
jets (local Taylor expansions). The lower-order terms of these jets preserve information flow and
global geometry across layers, whereas higher-order terms selectively gate, modulate, and rebind
features, enabling semantic abstraction and structural indexing.

28.2 The Jet of the GELU Activation

The Gaussian Error Linear Unit (GELU) provides a smooth, analytic foundation for this hierarchy
[77]. It is defined as:

GELU(x) = xΦ(x) = x · 1
2

[
1 + erf

(
x√
2

)]
(28.1)

where Φ(x) is the cumulative distribution function of the standard normal distribution and erf is
the error function.

It is often approximated by:

GELU(x) ≈ 0.5x
(

1 + tanh
[√

2
π

(
x+ 0.044715x3

)])
(28.2)

169

170 CHAPTER 28. NON-LINEAR SCALE SPACE

Figure 28.1: Plot of the Gaussian Error Linear Unit (GELU) function.

Its local behavior around x = 0 – that is the jet of the GELU – can be expressed as:

GELU(x) ≈ 1
2x+ 1√

2π
x2 − 1

6
√

2π
x4 +O(x6) (28.3)

This expansion reveals a strong linear component (0.5x) that preserves signal integrity, while
higher-order terms provide the curvature necessary for complex feature extraction.

Jets and scale. The notion of scale in the hierarchy can be made explicit by relating spatial receptive
field size to the effective order of the non-linear jet. At scale ℓ, the local response can be expressed
as a truncated expansion of the jet of the non-linearity:

fℓ(x) =
K∑

k=1
ak(ℓ) Jk(x), Jk(x) = 1

k!
dk

dxk
GELU(x)

∣∣∣∣∣
x=0

xk. (28.4)

Here the scale parameter ℓ controls the effective bandwidth of the jet through the coefficients ak(ℓ):
fine scales (small receptive fields) retain higher-order terms, while coarse scales suppress them,
leaving the dominant low-order components. In this sense, semantic abstraction corresponds to
progressively lower-order jet dominance at increasing scales.

28.3 Phase I: The Discriminative Pipeline (<100ms)

In the initial feedforward sweep, the ventral stream acts as a Hierarchical Classifier [185]. Here,
the multiscale structure serves to "untangle" high-dimensional manifolds. The high-frequency jets

28.3. PHASE I: THE DISCRIMINATIVE PIPELINE (<100MS) 171

−2 −1 1 2

1

2

GELU and its Taylor Approximations (The Jet)

GELU
1st Order
2nd Order
4th Order

Figure 28.2: The local linear jet of the GELU function at the origin.

in V1 capture local primitives, while the low-frequency jets in IT achieve linear separability. The
dominant 0.5x term ensures that evidence is not lost across the 60–100ms latency of the sweep [46].

Untangling and linear dominance. Fast object recognition requires that class-relevant information
be made linearly accessible within a single feedforward sweep. A necessary condition for such
untangling is the approximate preservation of inner products across layers, ensuring that distances
and angles between representations are not catastrophically distorted.

Let h(ℓ+1) = σ(W (ℓ)h(ℓ)) denote the activity at level ℓ+ 1, with σ a smooth non-linearity such as
GELU. Because the local jet of GELU is dominated by its linear term, σ(x) ≈ 0.5x for small and
moderate activations, we obtain

⟨h(ℓ+1)
i , h

(ℓ+1)
j ⟩ ≈ 0.25 ⟨W (ℓ)h

(ℓ)
i ,W (ℓ)h

(ℓ)
j ⟩, (28.5)

up to higher-order corrections. Thus norms and angles are approximately preserved across layers,
modulo a global scaling, enabling rapid linear readout at the output of the ventral stream under
the tight latency constraints of the initial feedforward sweep.

Early layers (V1/V2)
entangled manifolds

multiscale propagation

linear jet dominance

Late layers (IT)
linear separability

Figure 28.3: Phase I (discriminative pipeline): multiscale propagation dominated by the linear
component of the non-linearity preserves inner products across layers, progressively untangling
class manifolds and enabling fast linear readout within a single feedforward sweep.

172 CHAPTER 28. NON-LINEAR SCALE SPACE

28.4 Phase II: Hierarchical Structural Indexing (>100ms)

For longer durations, perception shifts from classification to Structural Indexing. Once the initial
category is established, the hierarchy serves as a recursive lookup table.

• Addressing: The fine-grained jets of V1 provide high-resolution "keys" for the input.

• Retrieval: The DAG routes these keys to semantic pointers in IT, allowing for a reconstruction
of the stimulus grounded in stored structural knowledge.

Figure 28.4: The HMAX hierarchical model of object recognition. Alternating simple (S) and
complex (C) stages form a directed acyclic hierarchy with increasing receptive field size and
invariance, providing a concrete instantiation of hierarchical structural indexing in the ventral
stream.

28.5 Synthesis: A Conjectural Implication for Continual Learning

The primary aim of this chapter is to unify scale-space theory, hierarchical vision models, and
smooth non-linearities within a single geometric framework. The following remarks on continual
learning should therefore be read as a conjectural implication of this framework, rather than as a
central claim.

Mechanistic hypothesis. Within a non-linear scale space, learning unfolds in two temporally and
functionally distinct regimes. During the initial discriminative sweep (Phase I), representations are
shaped to achieve rapid class separability under strict latency constraints. This stage is dominated

28.5. SYNTHESIS: A CONJECTURAL IMPLICATION FOR CONTINUAL LEARNING 173

S1 / V1 C1 S2 C2 / IT

Increasing scale / receptive field size

Je
to

rd
er

low

high

higher-order jets

Figure 28.5: Unification of HMAX and scale space through non-linear jets. As receptive field size
increases along the hierarchy, representations are organized by scale while engaging progressively
higher-order components of the non-linearity.

by low-order terms in the jets of the non-linearity, which approximately preserve norms and angles
across layers and establish a stable global geometry of the representation space.

Once this geometry is established, subsequent learning primarily operates in a second regime
(Phase II), in which representations are conditionally routed through specific branches of the
hierarchy. In this regime, higher-order jet terms become active only within a restricted set of
pathways determined by the outcome of the initial discriminative computation. As a consequence,
parameter updates associated with new experiences are localized to a small subset of branch-specific
degrees of freedom.

From an optimization perspective, this separation induces an implicit bias. Modifications to
parameters supporting the low-order, globally shared components of the representation tend to
incur a large increase in loss due to their effect on established margins and separability. In contrast,
adjustments to higher-order, branch-local parameters affect only a narrow set of conditional
responses and therefore carry a substantially lower cost. Gradient-based learning thus concentrates
updates on late, weakly coupled components of the hierarchy.

Conjectural consequence. If this picture is correct, then resistance to catastrophic interference
arises not from an explicit freezing of early representations, but from the combined effect of (i) early
geometric stabilization, (ii) conditional routing through a directed acyclic hierarchy, and (iii) the
sparse activation of higher-order non-linear terms. Under these conditions, new memories can be
incorporated by modifying branch-specific parameters without substantially perturbing the global
discriminative structure.

This conjecture yields a concrete, falsifiable prediction: interference from continual learning
should predominantly affect late, high-order pathways in the hierarchy, while early, low-order
representations remain comparatively stable. Testing this prediction lies beyond the scope of the
present chapter and is left to future work.

In this view, transformers inherit their effectiveness not from attention alone, but from operating
within a non-linear scale space in which smooth activations preserve global geometry while
enabling selective, hierarchical indexing.

CHAPTER 29

A Perspective: Sparse Compositionality
and Efficiently Computable Intelligence

I argue that sparse compositionality is a fundamental structural property of functions that can be computed
or learned efficiently by digital systems. Any function that is efficiently computable in the Church–Turing
sense admits a representation as a composition of low-arity constituent functions arranged in a bounded-
fan-in directed acyclic graph, and can therefore be approximated by a deep network with sparse connectivity.
This principle provides a unified explanation for why deep learning avoids the curse of dimensionality,
why optimization remains tractable despite nonconvexity, and why generalization often exceeds classical
capacity-based predictions. Because all artificial intelligence systems are implemented on digital computers,
the theory applies fully to machine learning. In contrast, it is not known whether all components of biological
intelligence are efficiently computable, even if they are Turing computable in principle. This distinction
suggests that some higher cognitive functions, such as language and abstraction, may be more accessible to
computational modeling than evolutionarily older processes related to affect, motivation, or internal bodily
states. Sparse compositionality thus clarifies both the power and the limits of machine intelligence, and points
toward a theory of what can be learned efficiently from data.

Deep neural networks achieve remarkable performance across diverse domains, yet the nature
of the functions they can represent and learn remains only partially understood. Here we argue
that a single structural property—compositional sparsity—characterizes essentially all functions that
can, in practice, be computed, simulated, or analyzed by a digital computer, as well as those that
can be learned from data.

A function is compositionally sparse if it factors through a directed acyclic graph (DAG) of
intermediate variables with bounded local fan-in, independent of the overall input dimension.
Under the standard Church–Turing viewpoint, “practically computable” means computable by a
Turing machine in polynomial time. Every such function admits a representation by a bounded-
fan-in compositional DAG and, consequently—as proven in Mhaskar and Poggio [128]—by a deep
network with sparse connectivity.

Compositional sparsity thus provides a common structural explanation for three central proper-
ties of modern learning systems: (1) avoidance of the curse of dimensionality in approximation, (2)
tractable optimization through locality of dependencies, and (3) improved generalization through
reduced effective dimensionality. This perspective links practical computability, approximation the-
ory, and statistical learning, suggesting that compositional sparsity is a fundamental and unifying

174

175

principle of machine learning [152, 148].

Deep networks approximate and learn high-dimensional functions that arise in vision, language,
and scientific modeling. Surprisingly, they appear to overcome the so-called curse of dimensionality:
despite operating on inputs with millions of dimensions—such as the function defining object
classification in CIFAR images—they perform accurate learning and generalization without an
explosion in the number of their weights. Their empirical success raises a foundational question:
what structural property must a function possess to be realizable and learnable in practice by a
deep network and thus by a computer?

Recent theoretical work suggests that the answer lies in compositional sparsity [152, 148, 40].
Functions that can be computed by a Turing machine within polynomial time—and thus by any
realistic digital computer— admit representations as bounded-fan-in compositions of simpler
subfunctions. This structure corresponds to a directed acyclic graph (DAG) whose nodes represent
intermediate variables and whose local connectivity does not grow with input dimension.

In this view, the architectures of deep networks are not arbitrary engineering choices. Rather,
they naturally reflect the sparse compositional structure of those functions that can be computed or
learned in practice. The correspondence between compositional sparsity and practical computabil-
ity provides a bridge between Turing complexity and modern learning theory. Following standard
usage in theoretical computer science, we call a function efficiently computable if it can be computed
by a Turing machine in polynomial time; in practice, this coincides with what can be computed by
an ordinary digital computer. The key notions are summarized below.

176CHAPTER 29. A PERSPECTIVE: SPARSE COMPOSITIONALITY AND EFFICIENTLY COMPUTABLE INTELLIGENCE

Box 1 – Key definitions

Efficiently computable. A function f is said to be efficiently computable if there exists an
algorithm on a standard digital computer—or equivalently, a Turing machine—that, given
an input x encoded in n bits and a desired output precision ε (encoded in ⌈log2(1/ε)⌉ bits),
computes an ε-approximation to f(x) in time poly(n, log(1/ε)). In theoretical computer
science, this marks the boundary between functions that can be computed in practice and
those that cannot. Throughout this article, we treat “efficiently computable” and “practically
computable” as synonymous.

Compositionally sparse function. A function f(x1, . . . , xn) is compositionally sparse if it can
be expressed as a composition of low-arity constituent functions arranged in a directed
acyclic graph (DAG) of fixed depth. Formally, there exists a DAG G with depth L such that
each node computes a function hi that depends on at most k of its input coordinates, where
k is a constant independent of n, and all other coordinates are passed forward unchanged.
Thus each layer h(ℓ) : Rn → Rn modifies at most k coordinates of its input, with identity
mappings on the remaining coordinates. The full function is given by

f(x) = h(L) ◦ h(L−1) ◦ · · · ◦ h(1)(x).

This formulation avoids the implicit “deletion” of unused variables and corresponds exactly
to the standard bounded-fan-in circuit model.

Curse of dimensionality. For a generic smooth function f : Rn → R, the number of parame-
ters N(ε) required to approximate f with uniform error ε by standard (non-compositional)
methods typically scales as

N(ε) ∝ ε−n/s,

where s measures smoothness (for example, the number of bounded derivatives). When n is
large, this dependence becomes prohibitive: for n = 1000 and ε = 0.1 with s = 1, one obtains
N ∼ 101000 parameters. This exponential growth in required resources is the classical curse of
dimensionality.

29.1 Efficient Computability and Sparse Compositionality

A central observation is that any function f that is efficiently computable, in the sense of Box 1,
can be represented, to arbitrary precision, by a circuit of polynomial size and bounded fan-in.
Translating this into continuous mathematics yields a hierarchy of compositions of low-arity
functions. The resulting function class—compositionally sparse functions—is exponentially smaller
than the space of all continuous functions on high-dimensional domains, yet it contains those that
can be evaluated or learned in practice [152, 148].

Formally, a function f(x1, . . . , xn) is compositionally sparse if there exists a DAG G with finite
depth L and fan-in k = O(1) such that each node computes a function hi of at most k inputs from
its predecessors and f equals the output at the final node. This structure corresponds to a layered
composition

f(x) = h(L) ◦ h(L−1) ◦ · · · ◦ h(1)(x),

where each h(ℓ) acts on only a few variables. Such sparsity drastically reduces the number of
parameters required to approximate f and constrains the space of admissible dependencies. This

29.2. APPROXIMATION, OPTIMIZATION, AND GENERALIZATION 177

exponential explosion of parameters with input dimension—known as the curse of dimensional-
ity—is summarized in Box 1.

29.2 Approximation, Optimization, and Generalization

Compositional sparsity leads to quantitative advantages in all major aspects of learning:

1. Approximation. For functions with compositional depth L and arity k, deep networks
achieve error O(N−α/k) using O(N) parameters, while shallow or dense architectures require
exponentially more [152, 128, 10].

2. Optimization. Because of the non-exponential number of parameters, gradient-based opti-
mization avoids the curse of dimensionality. Note that while the target function is composi-
tionally sparse, finding this structure via gradient descent often requires highly overparame-
terized, dense networks during training. This provides the optimization landscape necessary
to locate the sparse solution, even if the final effective dimensionality of the learned function
remains low.

3. Generalization. The effective dimensionality of the hypothesis space scales with the number
of parameters for the "worst" subfunctions rather than the total number of parameters,
yielding tighter bounds on sample complexity [60, 12, 101, 172, 192].

These effects emerge naturally from the DAG structure and do not depend on the specific activation
or architecture details. The corresponding formal results are summarized in Box 2.

29.3 Relation to Prior Theories of Deep Learning

The principle of compositional sparsity extends and unifies several earlier theoretical accounts
of deep learning. Classical approximation theory established that deep networks can represent
certain function classes with exponentially fewer parameters than shallow networks [128, 10].
The present framework identifies the source of this efficiency: compositional structure limits the
effective dimensionality of the function space. Similarly, circuit complexity results [75] demonstrate
that functions computable by small-depth, bounded-fan-in circuits correspond to hierarchically
compositional functions. Recent analyses in statistical learning [18, 161] emphasized hierarchical
feature composition, but without connecting it to formal notions of practical computability or
sample efficiency.

Compositional sparsity provides this missing link, showing that the same structural property
explains advantages in representation, optimization, and generalization within a unified mathemat-
ical framework. The theorems above suggest that modern large-scale architectures benefit precisely
because they learn and compose local constituents. Two prominent examples are transformer-based
sequence models and diffusion generative models [194, 80, 178].

Implication for transformer MLP blocks (falsifiable prediction). If efficient computability implies
compositional sparsity, then the feed-forward (MLP) sublayers in a transformer must implement
low-arity constituents. Concretely, for each layer there exist permutations of coordinates under
which the two linear maps (Win,Wout) of the MLP can be written (up to an ε-approximation error)
as block-sparse/column-sparse matrices with at most O(k) nonzeros per column/row, where k is the
constituent arity and is independent of the embedding dimension. Equivalently, the effective ℓ0

178CHAPTER 29. A PERSPECTIVE: SPARSE COMPOSITIONALITY AND EFFICIENTLY COMPUTABLE INTELLIGENCE

(and hence ℓ1) sparsity of the MLP weight matrices scales with k rather than with width. This yields
a concrete, testable consequence: at fixed accuracy, one should be able to prune the MLP weights
down to a sparsity level proportional to k (up to logarithmic factors), with minimal fine-tuning, and
the resulting norm-based generalization bounds (Box 2, Theorem C) should tighten accordingly [60,
12, 101]. In short, efficient computability predicts intrinsic sparsity of transformer MLP weights, reflecting
the low-arity structure of the underlying constituents. This prediction is consistent with emerging
empirical evidence suggesting that large language models can be pruned to extreme levels of
sparsity—up to 99% in some regimes—without significant performance degradation, provided the
pruning aligns with the underlying compositional structure.

29.4. DISCUSSION 179

Box 2 – Main results on sparse compositionality

Theorem A (Mhaskar & Poggio, informal). Sparse compositional functions escape the curse of
dimensionality.
If f(x1, . . . , xn) is a compositionally sparse function built from constituent functions in a Sobolev
space Wk

s , each depending on at most k variables (independent of n), then a deep network
whose architecture mirrors this compositional structure can approximate f with error ε
using Ndeep(ε) ∝ ε−k/s parameters, where s depends on the smoothness of the constituents.
In contrast, shallow or dense architectures typically require Nshallow(ε) ∝ ε− n

s parameters.
Compositional sparsity thus removes the exponential dependence on n and breaks the curse
of dimensionality [128].

Theorem B (informal, see Poggio [148]). Efficient computability implies sparse compositionality.
Any efficiently computable function admits a representation as a directed acyclic graph

of bounded-fan-in constituent functions of polynomial size. Equivalently, every efficiently
computable function can be approximated, to arbitrary precision, by a deep network whose
connectivity is sparse and locally bounded.

Scope of the result. Following Poggio [148], we adopt the standard bit model of computation:
an “efficiently computable” function f : [0, 1]d → Rm is one for which there exists a deter-
ministic Turing machine that, given an n-bit encoding of x and an accuracy parameter ε > 0
(encoded in ⌈log2(1/ε)⌉ bits), runs in time poly(n, log(1/ε)) and outputs an ε-approximation
to f(x). In Poggio [148] it is shown that such a machine can be unfolded into a family of
polynomial-size, bounded-fan-in circuits that, in turn, can be compiled into deep neural
networks with sparse connectivity and size and depth polynomial in n+ log(1/ε).

Theorem C (informal, see Galanti et al. [60]). Sparsity of the network’s weight matrices implies
better generalization bounds.

For a deep network whose connectivity matches a compositionally sparse DAG, the em-
pirical Rademacher bounds RS(F) is are significantly smaller than the standard Rademacher-
based bounds for dense networks [12, 101, 172, 192]. For example, if a layer is convolutional
and the connectivity is equivalent to non-overlapping patches, that is, each node in the
DAG receives different inputs, its contribution to the Rademacher complexity is a factor 1√

N
smaller when sparsity is taken into account than in standard bounds.

Theorem D (informal; see Poggio [148] and Malach [117]). Efficient computability implies
constituent learnability.

For efficiently computable functions, the constituent functions are sparse and thus each
of them is efficiently learnable from polynomially many examples. Moreover, the overall
function can be learned by local training of these constituents, using data that only need to
expose the relevant low-arity dependencies (as in next-token prediction or local denoising
objectives). Efficient computability of the composite function implies local learnability of its
parts thus yielding practical learnability of the composite function.

29.4 Discussion

Compositional sparsity offers a structural characterization of the class of functions that can be
computed or learned in practice by digital computers. Under the Church–Turing viewpoint,
every efficiently (and thus practically) computable function is compositionally sparse and can

180CHAPTER 29. A PERSPECTIVE: SPARSE COMPOSITIONALITY AND EFFICIENTLY COMPUTABLE INTELLIGENCE

therefore be represented by a deep network with bounded-fan-in connectivity [148, 152, 40]. This
perspective unifies several empirical and theoretical observations: that deep architectures overcome
the curse of dimensionality, that their optimization is tractable despite nonconvexity, and that their
generalization performance exceeds what classical capacity measures would predict [128, 10, 60, 12,
101, 172, 192].

For artificial intelligence systems, the scope of this theory is clear. All AI algorithms are
implemented on digital computers and are therefore efficiently computable by construction. As a
consequence, the theory developed here applies fully to artificial learning systems: any function
realized by an AI model must admit a compositionally sparse representation, even if that structure
is not explicit in the trained architecture. From this perspective, the success of modern foundational
models is not accidental but reflects their ability to approximate and compose low-arity constituent
functions drawn from this restricted, efficiently computable function class.

The situation is more subtle for biological intelligence. A crucial distinction in this context
is between Turing computability and efficient Turing computability. The physical Church–Turing
thesis asserts that the behavior of any physically realizable system can, in principle, be simulated
by a Turing machine. However, this does not imply that such a simulation can be carried out
with resources that scale polynomially in the relevant problem size. Many physical and biological
systems may therefore be fully Turing computable yet computationally intractable, requiring
exponential time or space to simulate with useful precision.

From this perspective, it is not obvious that all functions implemented by the brain are effi-
ciently computable in the sense adopted here. Higher-level cognitive functions such as language,
abstraction, and reasoning exhibit clear signatures of hierarchical and compositional structure
and are natural candidates for efficient computation. In contrast, other processes—such as affect,
emotions, drives, homeostatic regulation, and internal bodily states—may rely on tightly coupled,
state-dependent, or continuous dynamics that do not admit an efficient sparse compositional
representation. Such processes may remain fully Turing computable, yet fall outside the class of
functions that can be approximated or learned efficiently by digital systems.

This distinction suggests an apparent but instructive irony. It may be easier to replicate and
understand higher-level cognitive functions using digital computers than more basic, evolutionarily
older ones. The reason is not that language or reasoning are simpler in an absolute sense, but that
they may be more structured, more compressible, and more amenable to sparse compositional
representations. Conversely, functions that are behaviorally simple or automatic may nonetheless
be computationally inefficient, poorly modularized, or resistant to decomposition into reusable
constituents.

Importantly, this perspective does not imply that such functions are non-computable or beyond
physical realization. Rather, it highlights a distinction between efficient computability and mere
computability, and between learnability from data and implementation by embodied, closed-loop
biological systems. From this viewpoint, the current strengths and limitations of AI systems are not
paradoxical but follow naturally from the structural constraints imposed by efficient computation.

Ultimately, sparse compositionality points toward a unifying theory of machine learning and
computation—one that explains what digital systems can learn well, what they struggle with, and
why. Whether sparse compositionality also captures the full range of biological intelligence remains
an open question, but one that can now be stated with greater precision.

29.4. DISCUSSION 181

Box 3 – Modern architectures as realizations of efficiently computable, compositionally
sparse functions

Scope clarification. The interpretations in this box concern those aspects of modern learning
architectures that correspond to efficiently computable functions. Since all artificial intelligence
systems are implemented on digital computers, the functions they realize necessarily lie
within the class of efficiently computable—and hence compositionally sparse—mappings.
The discussion below does not claim that such architectures capture all aspects of biological
intelligence, but illustrates how sparse compositionality manifests in current large-scale
models.

Informal principle. Contemporary large-scale models, including transformers and diffusion
networks, can be interpreted as concrete realizations of compositionally sparse functions,
in the sense that their global input–output behavior arises from the composition of locally
learnable, low-arity constituent functions.

Transformers. A transformer implements a hierarchy of low-arity constituent functions oper-
ating on token embeddings. Multi-head attention computes context vectors ct from bounded
subsets of positions or features, and the output heads map ct to conditional probabilities
p(xt | ct). Training by next-token prediction,

min
θ

E[− log pθ(xt | x<t)] ,

corresponds to fitting local conditional constituents [117]. The global mapping from
prompts to continuations can therefore be viewed as a composition of locally learnable
subfunctions, accounting for the emergence of coherent text generation within the class of
efficiently computable mappings [152, 148].

Diffusion models. Diffusion generative models construct samples by composing a sequence
of local denoising steps [178, 80]. Let (Xt)T

t=0 be a Markov chain with known forward
kernels q(xt | xt−1) and learnable reverse kernels pθ(xt−1 | xt). Each reverse step acts on a
low-dimensional state (xt, t) and can be represented by a constituent neural function in a
compositional DAG. Training objectives such as denoising score matching fit these local
transitions; their composition yields the global generator

xT = z 7→ xT −1 7→ · · · 7→ x0 = Gθ(z).

Both architectures illustrate the same principle: high-dimensional predictive or generative
behavior can arise from the composition of locally learnable, low-arity constituents, consistent
with the constraints imposed by efficient computation and sparse compositionality [152, 40].

CHAPTER 30

Mixture of Experts

Manifolds, compositionality, mixture of experts: how are they related?

30.1 Introduction

We start by summarizing the main results of a recent paper, titled "On the Expressive Power of
Mixture-of-Experts for Structured Complex Tasks". The paper investigates the expressive power
of Mixture-of-Experts (MoE) networks for modeling complex tasks. While MoEs have achieved
significant empirical success, particularly in Large Language Models, their theoretical foundations
remain poorly understood [175, 51]. The authors conduct a systematic study of MoEs under two
common structural priors: low-dimensionality and sparsity. They demonstrate that both shallow
and deep MoEs can overcome the curse of dimensionality to efficiently approximate complex
functions.

30.2 Shallow MoE Networks (Low-Dimensional Structure)

The authors prove that shallow MoE networks can efficiently approximate functions supported on
low-dimensional manifolds.

• Problem Decomposition: The task reduces to collecting simpler approximation subproblems
localized on subregions, combined with an assignment problem mapping inputs to the correct
region.

• Mechanism:

– Expert Networks: Approximate localized subfunctions.
– Gating Mechanism: Ensures correct input-to-expert assignment.

• Theoretical Result: A depth-2 MoE network withE experts can approximate a target function
f on a manifoldM with an error rate governed by the intrinsic dimension d rather than the
ambient dimension D [198]:

∥f −Ψ∥L∞(M) ≤ max
i∈[E]

Õ
(
m−

κ(f |Ui
)

d
∧ 1

2

)
(30.1)

where m is the expert width and κ is the smoothness.

182

30.3. DEEP MOE NETWORKS (COMPOSITIONAL SPARSITY) 183

30.3 Deep MoE Networks (Compositional Sparsity)

The paper shows that deep MoEs can approximate piecewise functions exhibiting compositional
sparsity, where subtasks depend on small subsets of inputs and are hierarchically composed [128].

• Exponential Capacity: A depth-O(L) MoE with E experts per layer can approximate func-
tions with EL distinct pieces, exhibiting an exponential number of structured tasks.

• Comparison: This far surpasses the naive limitation of O(LE) distinct regions if experts were
used independently.

• Mechanism: The network depth L enables hierarchical composition, while the expert count
E enables subtask specialization.

• Example: A network with math and language experts can solve combinatorial tasks (e.g.,
3× 3 = 9 tasks like “English Geometry” or “French Algebra”).

30.4 Unified Insights

• Structure Discovery: MoEs naturally discover underlying structural priors (sparsity or
low-dimensionality) and decompose them into simpler subproblems.

• Non-Linear Gating: Since partition functions are generally nonlinear, the authors suggest
incorporating nonlinearity directly into the gating mechanism for better performance.

• Architectural Variants: The analysis supports alternating MoE/dense layers or architectures
with shared plus routed experts.

• Auto-encoding Experts: The theory motivates replacing dense experts with “Encoder +
Low-dim Network” structures, reducing parameters from O(D2) to O(d2).

The work provides theoretical justification for the efficiency of MoEs, establishing that they are
particularly effective for structured tasks by exploiting low intrinsic dimensionality and composi-
tional sparsity.

30.5 Connections with Compositional Sparsity Framework

This paper acts as a direct mathematical validation of the compositional sparsity framework.
It provides a concrete proof that Mixture-of-Experts (MoE) architectures are one of the “natural”
implementations of this theoretical framework.

The paper essentially proves that MoEs can overcome the Curse of Dimensionality by exploit-
ing precisely the structure of compositional sparsity: functions that are hierarchical compositions
of simpler, low-dimensional constituent functions.

Here is the step-by-step mapping between the paper’s findings and the Compositional Sparsity
framework:

184 CHAPTER 30. MIXTURE OF EXPERTS

30.5.1 The Core Alignment: Hierarchical Decomposition

• The Compositional Sparsity Framework: Posits that high-dimensional functions in the real
world are actually formed by a hierarchy of constituent functions, each depending on a small
subset of variables (sparse dependency).

• The Paper: Explicitly defines “Piecewise functions with compositional sparsity” in Section
5.1 [198]. It models complex tasks as f(x) = fout(f1,i1(x1), . . . , fL,iL

(xL)).

• The Connection: The paper treats every “expert” in a deep MoE as one of the “constituent
functions” in the framework. A deep MoE network is effectively a dynamic realization of a
computation graph where the nodes (experts) are selected conditionally.

30.5.2 Overcoming the Curse of Dimensionality

• The Compositional Sparsity Framework: Deep networks avoid the curse of dimensionality
because they approximate the constituent functions (which are low-dimensional) rather than
the global high-dimensional function [156].

• The Paper: Proves this specifically for MoEs in Theorem 5.2. It shows the approximation
error depends on the intrinsic dimension dl of the sub-manifolds, not the ambient dimension
D.

– Key Quote: “The approximation rate is... Õ(m− κ
dl)... which avoids the curse of dimen-

sionality.”

30.5.3 The “Exponential Capacity” Extension

The paper adds a crucial layer to the standard compositional sparsity framework: Routing.

• Standard compositional sparsity (e.g., in dense networks) relies on fixed constituent functions.

• The paper shows that by routing inputs, an MoE with linear depth L and width E can model
exponentially many (EL) distinct compositional functions.

• Theoretical Significance: This suggests that MoEs are arguably more efficient at implement-
ing compositional sparsity than dense networks because they can dynamically switch the
“constituent functions” at every node of the hierarchy based on the input region.

30.5.4 Direct Mapping of Terminology

Concept in Compositional Sparsity Framework Equivalent in Wang & E (2025) [198]

Constituent Function Expert Network (fl,i)
Sparsity (Local Dependency) Manifold Support (Experts act on local regions Ui)
Hierarchical Composition Depth (Stacking MoE layers)
Selector / DAG Structure Gating Mechanism (Dynamically builds the graph)

30.6. SUMMARY 185

30.6 Summary

The paper by Wang and E serves as evidence that MoEs are an explicit architectural realization of
compositional sparsity. While dense networks can learn these functions, this paper proves MoEs
are designed to model them by explicitly assigning distinct experts to the distinct “pieces” of the
compositionally sparse target function.

Appendix

186

CHAPTER A

Appendix: Stability, ERM, and the
Foundations of Learnability

The classical analysis of supervised learning is often framed in terms of capacity measures such as VC
dimension or Rademacher complexity. An alternative but equivalent viewpoint focuses on the stability of the
learning algorithm with respect to perturbations of its training data. In this chapter we recall a statistical
notion of stability based on leave-one-out cross-validation (CVloo) and the theorem of Mukherjee, Niyogi, and
Poggio that characterizes consistency of empirical risk minimization (ERM) in terms of this stability.

A.1 Learning setup and ERM

Let X be an input space and Y an output space (e.g. Y = {0, 1} or R). A learning problem is
specified by an unknown distribution P on Z = X × Y . We observe an i.i.d. training sample

Sn = (z1, . . . , zn), zi = (xi, yi) ∼ P,

and choose a hypothesis h ∈ H from a hypothesis classH.
A loss function ℓ : H×Z → [0, 1] (or more generally a bounded nonnegative function) measures

prediction error. The true risk of h is

L(h) = Ez∼P [ℓ(h, z)],

and the empirical risk on Sn is

Ln(h) = 1
n

n∑
i=1

ℓ(h, zi).

The empirical risk minimization (ERM) principle selects

ĥn ∈ arg min
h∈H

Ln(h).

We say that ERM overH is (universally) consistent if

L(ĥn) P−−−→
n→∞

inf
h∈H

L(h),

for every distribution P on Z .

187

188APPENDIX A. APPENDIX: STABILITY, ERM, AND THE FOUNDATIONS OF LEARNABILITY

A.2 CVloo stability

Let An denote a (possibly randomized) learning algorithm that, given a sample Sn, outputs a
hypothesis An(Sn) ∈ H. For i ∈ {1, . . . , n}, let S(i)

n denote the sample with the i-th point removed:

S(i)
n = (z1, . . . , zi−1, zi+1, . . . , zn).

Intuitively, leave-one-out stability requires that removing a single training point does not signifi-
cantly change the prediction on that point.

Definition 16 (CVloo stability). A sequence of algorithms (An)n≥1 is said to have CVloo stability with
parameters (βn) if

1
n

n∑
i=1

E
[∣∣ℓ(An(Sn), zi)− ℓ(An−1(S(i)

n), zi)
∣∣] ≤ βn,

for all n, where the expectation is over the i.i.d. draw of Sn (and any internal randomness of An). We say the
algorithm is asymptotically CVloo-stable if βn → 0 as n→∞.

There are several related stability notions (uniform stability, hypothesis stability, etc.). The
CVloo form is directly linked to cross-validation and has an especially clean connection to ERM
consistency.

A.3 Stability and generalization

We now state the main result of Mukherjee, Niyogi, and Poggio. In the wording below, we preserve
the original informal summary of the theorem.

Theorem 17 (Mukherjee–Niyogi–Poggio). We propose a statistical form of stability, defined in terms of
the prop- erty of cross-validation leave-one-out (CVloo) stability, and

1. show that it is sufficient, in general, for generalization, that is convergence in probability of the
empirical error to the expected error, for any algorithm satisfying it.

2. Our second observation is that for bounded loss classes, CVloo stability is necessary and sufficient for
consistency of ERM.

Here “generalization” in part (a) means that for any asymptotically CVloo-stable algorithm
(An),

L(An(Sn))− Ln(An(Sn)) P−−−→
n→∞

0.

Part (b) shows that, for bounded loss classes, ERM is consistent if and only if it is CVloo-stable. Thus
stability is not merely sufficient; it is an exact characterization of when ERM behaves well.

A.4 Stability as a modeling requirement

From a modeling standpoint, Theorem 17 has a simple but strong implication:

• If we take ERM (or approximate ERM) as the fundamental inductive principle underlying
learning, then stability is required for consistency.

A.4. STABILITY AS A MODELING REQUIREMENT 189

• Instability—in the sense that removing or slightly perturbing a single training point can
qualitatively change the predictor—rules out consistency of ERM for bounded losses.

In the remainder of the book we will use this observation in the following direction: we impose
stability as a requirement on realistic learning problems, and ask what structural properties of
target functions follow from this requirement. In particular, in the next chapter we argue that
stability forces a kind of genericity of targets, and that this genericity in turn makes optimization by
gradient-based methods possible.

CHAPTER B

TechnicalNote: Compositionality in
Machine Learning and Physics

We formalize a bridge between efficient computation and learnability via bounded–fan-in compositional
structure. On the learning side, we prove an ML Approximation Theorem: when a target factors through
a bounded–fan-in DAG with maximal local arity d∗, the relevant approximation and sample–complexity
exponents depend on d∗ rather than the ambient dimension d. On the physics side, we state a finite-horizon
compilation principle (explicitly conditional): whenever a finite-horizon evolution map admits a uniform
simulator using a finite set of bounded-arity primitives, the map compiles to a P-uniform bounded–fan-in
DAG whose size is proportional to the simulator cost. Illustrative cases include discrete-time lattice-local
models and k-local quantum dynamics compiled into uniform two-qubit circuits. Limitations include chaotic
sensitivity, long-range or dense couplings, precision constraints, and thermodynamic considerations; all
statements are finite-precision, finite-horizon, and conditional on uniform simulability.

B.1 Introduction

Modern deep learning owes as much to structure as to scale. Many of the functions we hope
to learn are not generic mappings on high-dimensional spaces but the outputs of computations
that decompose into smaller, interacting parts arranged hierarchically. This observation has two
complementary faces—algorithmic and physical.

The algorithmic view From the standpoint of computation, any function evaluable by a polynomial-
time Turing machine admits a polynomial-size Boolean circuit of bounded fan-in [Arora_Barak_2009,
sipser1996intro]. Interpreting such a circuit as a directed acyclic graph (DAG) exposes its composi-
tional structure: each node is a local operation on a small number of inputs, and the full computation
emerges from a finite sequence of such local interactions. In the continuous setting, this structure
is mirrored by deep networks, whose layers correspond to circuit levels. Thus, efficient Turing
computability implies that the underlying function is compositionally sparse: at each stage it depends
on a bounded number of variables. In this sense, the success of deep architectures reflects the
structure of efficient computation.

The physical view In physical systems, efficient Turing computability cannot be assumed a priori.
What is often available is finite-horizon locality: many models bound the spread of influence over

190

B.1. INTRODUCTION 191

time (e.g., relativistic light cones or Lieb–Robinson bounds in quantum lattices [lieb1972finite,
NachtergaeleSims2010]). When such locality is paired with a uniform simulator built from bounded-
arity primitives, the finite-horizon input–output map can be compiled into a bounded–fan-in DAG
whose structure reflects the causal neighborhood at horizon T . This is an algorithmic statement
about compilation, not a universal physical law about bounded physical degree: long-range or
dense couplings (e.g., Coulomb, mean-field) may violate bounded degree even though a uniform
simulator—and hence a bounded–fan-in DAG—still exists with polynomial overhead.

The resulting lesson is conditional but practical: whenever finite-horizon locality and uniform
simulability hold, the effective complexity is governed not by the ambient dimension d but by the
algorithmic largest local arity d∗ (the size of the neighborhoods feeding each compiled node) and by
the horizon/depth T over which interactions unfold. Limits remain: chaotic sensitivity can amplify
constants with T , exact-real outputs are excluded (finite precision), and thermodynamic-limit
properties need not be decidable.

From observation to theorem. We make the intuition precise via two complementary results,
separating what is provable in general from what holds under explicit hypotheses. On the learning
side, the ML Approximation Theorem shows that when a target factors through a bounded–fan-in
DAG, the usual exponent d/r (ambient dimension over smoothness) is replaced by d∗/r, where
d∗ is the maximal local arity in the DAG. On the physics side, rather than asserting a universal
causal–locality law, we prove a finite-horizon compilation principle: whenever a finite-horizon evo-
lution map admits a uniform simulator using a fixed finite set of bounded-arity primitives with
cost s(n, T, ε), it compiles to a polynomial-time uniform bounded–fan-in DAG of size O

(
s(n, T, ε)

)
.

Examples (not universal claims) include discrete-time lattice-local updates with finite propagation
and k-local quantum dynamics compiled to two-qubit circuits. Together, these results identify
a common mathematical structure—bounded local arity d∗ and horizon/depth T—that governs
approximation and learnability; the physics connection is conditional (finite precision, finite horizon,
uniform simulability), not automatic.

Historical background and conceptual context

The route from Turing machines to circuits is a cornerstone of complexity theory and underlies
the definition of major classes such as P and NC [Arora_Barak_2009]. Deep learning, viewed
through this lens, can be seen as the continuous analogue of polynomial-size, bounded–fan-in
circuit computation [poggio_deep_shallow_2017, 125]. Approximation theory has long established
that deep networks approximate hierarchical functions exponentially more efficiently than shallow
ones, and recent results on compositional sparsity [poggiofraser2024, Poggio2025] formalize this
intuition.

In physics, locality appears in multiple guises. In classical mechanics, it is encoded in differential
equations: the rate of change at a point depends on derivatives—i.e., infinitesimal neighborhoods.
In electromagnetism, Maxwell’s equations forbid instantaneous action at a distance; disturbances
propagate at finite speed c. In quantum lattice systems, the Lieb–Robinson theorem [lieb1972finite,
NachtergaeleSims2010, bravyi2006lieb] bounds the velocity of information propagation, estab-
lishing an effective light cone even in nonrelativistic settings. Locality, in all these forms, implies
a bounded causal neighborhood at any finite time horizon—an analogue of bounded fan-in in
computation.

A more speculative connection has also captured attention: the simulation hypothesis. If ev-
ery physical process were efficiently simulable by a digital computer, then the universe would
instantiate an efficiently computable function, and its regularities would follow from the same com-

192APPENDIX B. TECHNICALNOTE: COMPOSITIONALITY IN MACHINE LEARNING AND PHYSICS

positional constraints as in machine learning. A less metaphysical and more plausible explanation
lies closer to established physics: finite information propagation and local interactions suffice to
generate the same sparse, hierarchical patterns without assuming that the universe is literally a
computation.

Organization of the paper. Section B.4 states and proves the ML Approximation Theorem, show-
ing that approximation and sample–complexity rates depend on the largest local arity rather than
the ambient dimension. Section B.5 presents the finite-horizon compilation principle (a conditional,
algorithmic statement), together with two illustrative examples—discrete-time lattice-local up-
dates with finite propagation and k-local quantum dynamics compiled to two-qubit circuits—and
clarifies caveats (long-range/dense couplings, chaotic sensitivity, precision and horizon depen-
dence). Section B.6 discusses implications for learnability and optimization geometry, including
explicit Rademacher bounds and Hessian-structure consequences aligned with compositional
DAGs. Section B.7 analyzes limitations and non-theorems: effects of chaos (growth with horizon),
undecidability in thermodynamic-limit questions, the role of uniformity versus non-uniform ad-
vice, and complexity barriers (e.g., QMA-hardness). The conclusion situates these results within
broader questions about when physical evolutions are efficiently computable or, more modestly,
inherit compositional structure precisely when uniform finite-horizon simulability is available.

Two Structural Principles

(A) ML Approximation Principle. Let f factor through a depth-L bounded–fan-in DAG
with node maps gv ∈ Cr([0, 1]dv), dv ≤ d∗, total size s. Then for any ε ∈ (0, 1/4) there exists a
ReLU network fε with

∥f − fε∥∞ ≤ ε, depth(fε) ≤ cL log(1/ε), size(fε) ≤ C
∑

v

ε−dv/r
v log 1

εv
,

under the telescoping constraint
∑L

ℓ=1

(∏
j>ℓ Lj

)
maxv∈ℓ εv ≤ ε. If maxℓ Lℓ ≤ L̄ and εv ≍ ε,

size(fε) ≤ C ′ s ε−d∗/r log 1
ε .

(B) Finite-Horizon Causal Compilation. Consider a system on a bounded-degree graph (∆)
with local radius-r updates ϕt,i that are L-Lipschitz and Cr. If propagation is finite, i.e.

xBR(T)(i) = x′
BR(T)(i) ⇒ (UT ◦· · ·◦U1(x))i = (UT ◦· · ·◦U1(x′))i,

then for any finite region Λ and horizon T , the input–output map FΛ,T (x) := (UT ◦ · · · ◦
U1(x))Λ factors through a depth-T DAG with fan-in ≤ κ(∆, r) and size s = O

(
|Λ| (κ(∆, r))T

)
.

Consequently, by (A), FΛ,T admits an ε-accurate network with depth O
(
T log(1/ε)

)
and size

O
(
s ε−d∗/r log(1/ε)

)
where d∗ = κ(∆, r).

B.2 Definitions and Setup

Ambient spaces and norms. We work on [0, 1]d with the uniform (sup) norm ∥x∥∞ := maxi |xi|
and the induced function norm ∥g∥∞ := supx∈[0,1]d |g(x)|. For r > 0 write r = k + α with
k := ⌊r⌋ ∈ N0 and α ∈ (0, 1]. The Hölder class Cr([0, 1]p) consists of functions with continuous

B.3. FROM EFFICIENT COMPUTATION TO DAGS 193

partial derivatives up to order k and Hölder continuous kth derivatives with exponent α, equipped
with the norm

∥g∥Cr :=
∑

|β|≤k

∥Dβg∥∞ +
∑

|β|=k

sup
x̸=y

x,y∈[0,1]p

|Dβg(x)−Dβg(y)|
∥x− y∥α∞

.

Efficient computability. A Boolean map f : {0, 1}n → {0, 1}m is efficiently computable if a deter-
ministic Turing machine computes f(x) in T (n) = poly(n) steps. A real map f : [0, 1]d → Rm is
efficiently computable to precision ε ∈ (0, 1) if, in the finite-precision model, there exists a uniform
algorithm that outputs y with ∥y− f(x)∥∞ ≤ ε in time poly

(
d, log(1/ε)

)
. Here “uniform” means the

corresponding circuit/arithmetic-circuit family is P-uniform (generable in time poly(d, log(1/ε))).

Compositional sparsity. A function f is compositionally sparse if it factors through a bounded–fan-
in layered DAG. Concretely, let G = (V,E) be a layered DAG with layers 1, . . . , L, and let dv be
the in-degree (arity) of node v. Write the layer-ℓ map as Φℓ = (gv)v∈layer ℓ, where each node map
gv : [0, 1]dv → R has dv ≤ d∗ and gv ∈ Cr([0, 1]dv). Then

f = ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1, depth = L, size s := |V |, d∗ := max
v

dv.

We assume each Φℓ is Lℓ-Lipschitz on the (compact) subset of its domain reached by upstream
layers, measured in ∥ · ∥∞. For later use define the propagation multipliers

Cℓ :=
L∏

j=ℓ+1
Lj (with CL := 1),

which quantify telescoping of local approximation errors through depth.

B.3 From Efficient Computation to DAGs

The passage from Turing machines to circuits is mathematically central. Any computation per-
formed by a Turing machine (TM) on n-bit inputs and running for T (n) steps can be time-unrolled
into a circuit: each layer encodes one transition of the machine, and wires carry the bits of the in-
stantaneous configuration to the next layer. Because the transition function inspects and writes only
a bounded number of symbols per step, every gate has bounded fan-in (and bounded fan-out). The
resulting circuit has size O(T (n)) and depth O(T (n)), hence can be viewed as a bounded–fan-in
directed acyclic graph (DAG) implementing the same computation. This classical correspon-
dence underlies the relationship between time-bounded Turing computation and circuit com-
plexity [Arora_Barak_2009, sipser1996intro]: every T (n)-time TM yields a polynomial-size circuit
family; conversely, with P-uniformity the family can be generated in time poly(n) and characterizes
P, while without uniformity one obtains P ⊆ P/poly.

From bits to reals: finite-precision computation

Digital computation manipulates finite strings. A real x ∈ [0, 1] can be represented by the first
p bits of its binary expansion (x1, . . . , xp), yielding the dyadic x̃ =

∑p
i=1 xi2−i. Arithmetic on

these encodings—addition, multiplication, comparison—has Boolean-circuit implementations of
size poly(p) (schoolbook/FFT-based variants differ only in polylog factors). Thus computing
f : [0, 1]d → Rm to accuracy ε = 2−p amounts to computing a Boolean function on (x1, . . . , xp)

194APPENDIX B. TECHNICALNOTE: COMPOSITIONALITY IN MACHINE LEARNING AND PHYSICS

Turing
Machine

Boolean
Circuit

Arithmetic
Circuit

Deep
Network

(1)

(2)

(3)

(1) time unrolling (2) binary encoding / finite precision (3) continuous relaxation

Figure B.1: Conceptual chain from discrete to continuous computation.

whose output decodes to f̃(x) with ∥f(x)− f̃(x)∥∞ ≤ ε. In particular, efficient real computation in
the standard finite-precision model is equivalent, up to polynomial overhead, to efficient Boolean
computation on binary encodings [Papadimitriou1994ComputationalComplexity].

B.3.1 From arithmetic circuits to neural DAGs

Replacing Boolean gates by continuous modules (affine maps and simple nonlinearities) yields
arithmetic circuits—feedforward networks over R. Crucially, the topology of the underlying DAG is
unchanged: each node aggregates a bounded number of inputs and produces outputs to a bounded
number of downstream nodes. The compositional skeleton revealed by time-unrolling a TM is
therefore already a bounded–fan-in DAG.

Modern deep networks form smooth parametric families of such arithmetic circuits. They do
not emulate a given circuit symbol-for-symbol; rather, they approximate functions supported on the
same class of sparse, layered DAGs. Structurally: any efficiently Turing-computable function gives
rise (via unrolling and finite-precision encoding) to a bounded–fan-in compositional scaffold; deep
networks can approximate the node maps of this scaffold to any target accuracy, with approximation
rates governed by local arities dv and the smoothness of the constituent modules (cf. Section B.4).
In this sense, deep architectures are natural continuous relaxations of efficient discrete circuits—the
same kind of machines realized by physical hardware.

B.3.2 Computation as compositional structure

This yields a conceptual loop. Programs compile to (uniform) circuit families; circuits are bounded–
fan-in DAGs; and bounded local arity is the operative notion of sparsity. Therefore, any efficiently
computable transformation, when executed at finite precision by a device with a fixed bounded-arity primitive
set, admits a bounded–fan-in compositional representation. The point is structural rather than stylis-
tic: bounded local interactions are an inherent consequence of efficiency on finite, causal, local
hardware.

B.4 ML Approximation Theorem

We give (i) a local constructive approximation with explicit constants, (ii) a global telescoping
bound, and (iii) the optimal error budget across layers/nodes.

B.4. ML APPROXIMATION THEOREM 195

B.4.1 Local constructive approximation with explicit constants

For p ∈ N and r > 0, let Cp,r > 0 denote the best constant in the multivariate Taylor remainder on
[0, 1]p (measured in the ∥ · ∥∞ norm):

sup
x∈Q

∣∣g(x)− TQ(x)
∣∣ ≤ Cp,r ∥g∥Cr diam∞(Q) r, (B.1)

where TQ is the degree-⌊r⌋ Taylor polynomial of g at the center of a cube Q ⊂ [0, 1]p.
We use two standard ReLU gadgets (e.g., [Yarotsky2018]):

(G1) Squaring. For any η ∈ (0, 1) there is a ReLU network Sqη : [−2, 2]→ R with

sup
t∈[−2,2]

∣∣Sqη(t)− t2
∣∣ ≤ η, depth(Sqη) ≤ C□ log(1/η), size(Sqη) ≤ C ′

□ log(1/η).

(G2) Multiplication. By polarization, xy = 1
4
[
(x + y)2 − (x − y)2]. Composing two Sqη gadgets

and affine maps yields a multiplier Multη : [−1, 1]2 → R with

sup
|x|,|y|≤1

∣∣Multη(x, y)− xy
∣∣ ≤ η, depth(Multη) ≤ C× log(1/η), size(Multη) ≤ C ′

× log(1/η).

By a binary tree, the product of p scalars in [−1, 1] is realizable with accuracy η at depth O(log p ·
log(1/η)) and size O(p log(1/η)).

Lemma 12 (Local ReLU approximation). Let g ∈ Cr([0, 1]p) with ∥g∥Cr ≤ M and r > 0. For any
δ ∈ (0, 1/4) there exists a ReLU network N such that

∥g −N∥∞ ≤ δ, depth(N) ≤ c1(r) log(1/δ), size(N) ≤ c2(p, r)Mp/r δ−p/r log(1/δ). (B.2)

Proof. Partition [0, 1]p into Np congruent cubes {Q} of side h = 1/N , where

N =
⌈(

2Cp,rM/δ
)1/r

⌉
. (B.3)

For each Q, let TQ be the degree-⌊r⌋ Taylor polynomial at the cube center. Then, by (B.1) and (B.3),

sup
x∈Q
|g(x)− TQ(x)| ≤ Cp,rM hr ≤ δ/2. (B.4)

Construct a C0 partition of unity {ΨQ}Q from univariate ReLU “tent” splines {ψj}Nj=0 on [0, 1]
(knots at j/N) by setting ΨQ(x) :=

∏p
i=1 ψji(xi) for the multi-index of Q. Each ψj is exactly a ReLU

spline with O(N) breakpoints; the p-fold product is realized by a binary tree of Multη gadgets with
internal accuracy chosen below. Define

N(x) :=
∑
Q

ΨQ(x)TQ(x). (B.5)

For x ∈ Q, using
∑

Q′ ΨQ′ ≡ 1,

|g(x)−N(x)| ≤ |g(x)− TQ(x)|+
∑
Q′

ΨQ′(x) |TQ′(x)− TQ(x)|.

Only Q′ adjacent to Q contribute; Taylor coefficient continuity implies |TQ′(x)− TQ(x)| ≤ CM h
on Q. Choosing the internal gadget accuracy η = η(p) δ/(4p) to control multiplier and monomial
evaluations and taking h from (B.3), the second term is ≤ δ/2. Together with (B.4), this yields
∥g −N∥∞ ≤ δ.

Complexity. Each univariate ψj uses O(N) ReLU units; across p coordinates this is O(pN)
per “stencil.” The p-fold product per cell uses O(p log(1/η)) units and depth O(log p · log(1/η)).
Evaluating TQ requires O(1) monomials (depending on ⌊r⌋), each realized with multiplier trees at
accuracy η. Summing over Np cells and using (B.3) with η ≃ δ gives (B.2).

196APPENDIX B. TECHNICALNOTE: COMPOSITIONALITY IN MACHINE LEARNING AND PHYSICS

B.4.2 Global error propagation and optimal budget

Let Φℓ be the layer-ℓ block map in the DAG, with Lipschitz constant Lℓ on the reachable compact set,
and let Φ̃ℓ be its blockwise approximant with ∥Φℓ − Φ̃ℓ∥∞ ≤ Eℓ. Define Fm := Φm ◦ · · · ◦Φ1, F̃m :=
Φ̃m ◦ · · · ◦ Φ̃1.

Proposition 11 (Telescoping bound). For any depth L,

∥FL − F̃L∥∞ ≤
L∑

ℓ=1

(L∏
j=ℓ+1

Lj

)
Eℓ. (B.6)

Proof. Insert and subtract intermediate terms and use Lipschitz continuity:

FL − F̃L =
L∑

ℓ=1
ΦL◦ · · · ◦ Φℓ+1 ◦ (Φℓ − Φ̃ℓ) ◦ F̃ℓ−1.

Taking sup norms yields (B.6).

Let εv be the tolerance chosen at node v (for Lemma 12) and set Eℓ := maxv∈layer ℓ εv. The total
size is

S({εv}) =
∑

v

av ε
−dv/r
v log 1

εv
, av := c2(dv, r)Mdv/r

v , (B.7)

subject to the telescoping constraint

L∑
ℓ=1

CℓEℓ ≤ ε, Cℓ :=
L∏

j=ℓ+1
Lj , Eℓ = max

v∈ℓ
εv, 0 < εv ≤ 1

4 . (B.8)

Because the max couples nodes within a layer, the optimizer equalizes εv within each layer up
to constants. Let Aℓ :=

∑
v∈ℓ av and kℓ := maxv∈ℓ dv ≤ d∗. Discarding the slowly varying log(1/εℓ)

(affecting only polylog factors), the reduced problem is

min
E1,...,EL>0

L∑
ℓ=1

AℓE
−kℓ/r
ℓ s.t.

L∑
ℓ=1

CℓEℓ ≤ ε. (B.9)

The Lagrangian L =
∑

ℓAℓE
−kℓ/r
ℓ + λ

(∑
ℓCℓEℓ − ε

)
yields, for each ℓ,

−kℓ

r
AℓE

−(kℓ/r+1)
ℓ + λCℓ = 0 ⇒ Eℓ =

(
kℓAℓ
λr Cℓ

) r
kℓ+r

. (B.10)

Enforcing
∑

ℓCℓEℓ = ε determines λ > 0 uniquely and gives

Eℓ = ε
C

− r
kℓ+r

ℓ

(
kℓAℓ/r

) r
kℓ+r

∑L
t=1C

kt
kt+r

t

(
ktAt/r

) r
kt+r

. (B.11)

In the common case kℓ ≡ d∗ and Aℓ ≍ A across layers, (B.11) reduces to

Eℓ ∝ C
− r

d∗+r

ℓ , and if max
ℓ
Lℓ ≤ L̄ <∞, then Cℓ = Θ(1)⇒ Eℓ ≍ ε/L. (B.12)

B.4. ML APPROXIMATION THEOREM 197

B.4.3 The theorem

Theorem 18 (ML Approximation Theorem). Let f : [0, 1]d → R factor through a depth-L DAG of size
s with node maps gv ∈ Cr([0, 1]dv), dv ≤ d∗, and assume Lip(Φℓ) ≤ Lℓ on reachable domains. For any
ε ∈ (0, 1/4) there exists a ReLU network fNN such that

∥f − fNN∥∞ ≤ ε, depth(fNN) ≤ cL log(1/ε), (B.13)

and

size(fNN) ≤ C
∑

v

ε−dv/r
v log 1

εv
, with

L∑
ℓ=1

CℓEℓ ≤ ε, Eℓ = max
v∈ℓ

εv. (B.14)

If maxℓ Lℓ ≤ L̄ <∞, choosing εv ≍ ε for all v yields

size(fNN) ≤ C ′ s ε−d∗/r log(1/ε). (B.15)

Proof. (i) Local approximants. For each node v in layer ℓ, apply Lemma 12 to gv with tolerance εv,
producing Nv with ∥gv −Nv∥∞ ≤ εv and the size/depth bounds in (B.2).

(ii) Wiring. Compose the Nv along the DAG topology. Along any path, depths add; with
εv ≥ c0 ε (as ensured by (B.12) up to constants), each layer contributes O(log(1/ε)) to depth, giving
(B.13). The total size is the sum over nodes, yielding (B.14).

(iii) Global error. Writing Φℓ and Φ̃ℓ for the true and approximating layer maps (stacking gv

and Nv), we have ∥Φℓ − Φ̃ℓ∥∞ ≤ Eℓ := maxv∈ℓ εv. Apply Proposition 11 and impose (B.8) to get
∥f − fNN∥∞ ≤ ε.

(iv) Uniform Lipschitz. If Lℓ are uniformly bounded, (B.12) implies Eℓ ≍ ε/L and we may take
εv ≍ ε for all v, which collapses (B.14) to (B.15) with exponent d∗/r.

B.4.4 Depth separation

Theorem 19 (Depth separation via linear regions). For eachL ∈ N there exists a function fL : [0, 1]→ R
expressible as a composition of L binary-arity C∞ modules such that:

1. For any ε ∈ (0, 1/4) there is a ReLU network with depth O
(
L log(1/ε)

)
and size poly(1/ε) that

achieves ∥fL − fNN∥∞ ≤ ε.

2. Any ReLU network with a single hidden layer that achieves ∥fL − fNN∥∞ ≤ ε0 for some fixed
ε0 ∈ (0, 1/4) must have width at least exp(Ω(L)).

Proof sketch. Let s : [0, 1]→ [0, 1] be a piecewise-linear “sawtooth” with two linear pieces; define
fL := s◦L. Then fL has at least 2L linear pieces. (1) follows by applying Theorem 18 with
d∗ = 2. For (2), a 1D single-hidden-layer ReLU with width W has at most W + 1 linear regions
on [0, 1], forcing W ≥ Ω(2L) to achieve fixed-accuracy approximation; see, e.g., [Telgarsky2016,
EldanShamir2016].

Remark 4 (Why the exponent is d∗/r). The construction in Lemma 12 drives the δ−p/r cost at each node
of local arity p = dv. Summing across nodes with tolerances εv ≍ ε shows that the governing exponent
is the worst local arity d∗ = maxv dv, not the ambient d. This is the precise sense in which compositional
sparsity mitigates the curse of dimensionality.

198APPENDIX B. TECHNICALNOTE: COMPOSITIONALITY IN MACHINE LEARNING AND PHYSICS

Theorem 20 (Unified ML Approximation for Compositional DAGs). Let f = ΦL ◦ · · · ◦ Φ1 where
each layer Φℓ stacks node maps gv ∈ Cr([0, 1]dv) with dv ≤ d∗, and assume Lip(Φℓ) ≤ Lℓ. Writing
s =

∑
ℓ |{v ∈ ℓ}|, for any ε ∈ (0, 1/4) there exists a ReLU net fε with

∥f − fε∥∞ ≤ ε, depth(fε) ≤ cL log 1
ε , size(fε) ≤ C

∑
v

ε−dv/r
v log 1

εv
,

subject to
∑L

ℓ=1
(∏

j>ℓ Lj
)

maxv∈ℓ εv ≤ ε. If maxℓ Lℓ ≤ L̄ and εv ≍ ε,

size(fε) ≤ C ′ s ε−d∗/r log 1
ε .

Moreover, the class Fcomp(s, L, d∗, r) satisfies the entropy bound

logN
(
ε,Fcomp, ∥ · ∥∞

)
≤ As ε−d∗/r polylog

(
1
ε

)
,

and hence the Rademacher bound

Rn(Fcomp) ≤ C̃
√

s
n n

− r
2d∗ polylog(n).

B.5 Finite-Horizon Compilation: From Uniform Simulators to Algorith-
mic Compositionality

We state an algorithmic, conditional compilation principle: whenever a finite-horizon prediction
map is computed by a uniform simulator using a bounded-arity primitive set, it admits a P-uniform
bounded–fan-in DAG and therefore falls under our ML approximation results. We then give two
examples: a discrete-time lattice-local model (recovering the spacetime-DAG construction) and
standard quantum k-local dynamics. We do not claim that all physical evolutions satisfy these
hypotheses; the examples are modeling assumptions, not universal laws.

B.5.1 Setup

Fix an instance “size” n (e.g., number of effective degrees of freedom, grid points, or qubits), a
finite horizon T > 0, and target accuracy ε ∈ (0, 1). Let

FT,n : Xn −→ Yn

denote the corresponding finite-horizon input–output map, evaluated in a standard finite-precision
model in which word size scales as O(log(1/ε)) and running time/size are measured in bit opera-
tions and primitive invocations.

B.5.2 Compilation theorem (algorithmic, safe)

Theorem 21 (Uniform simulator⇒ bounded–fan-in DAG). Suppose there exists a deterministic Turing
machine Sim which, on input (1n, T, ε, x), outputs an ε-accurate value of FT,n(x) using at most s(n, T, ε)
primitive calls, each drawn from a fixed finite set P of arity at most a (a constant), with per-call cost
measured at precision O(log(1/ε)). Assume P-uniformity: given (1n, T, ε) one can generate, in time
poly

(
n, log(1/ε), T

)
, the instruction schedule and parameters for the s(n, T, ε) calls. Then there exists

a P-uniform circuit/DAG Gn,T,ε of size O
(
s(n, T, ε)

)
and maximum fan-in ≤ a that computes FT,n to

accuracy ε in the same finite-precision model. Consequently, FT,n is algorithmically compositionally
sparse.

B.6. LEARNING THEORY AND OPTIMIZATION 199

Proof sketch. Replace each primitive of arity≤ a in P by a constant-size gate gadget at the target pre-
cision; wire these gadgets following the simulator’s instruction schedule (unrolling loops/branches
into a straight-line program of length s). Fan-in is ≤ a by construction and the total gate count is
O(s). P-uniformity follows because the same schedule generator lists the gates and parameters in
time polynomial in (n, log(1/ε), T), which yields a P-uniform family.

Remark 5 (Scope and non-claims). Theorem 21 is purely algorithmic. It does not assume bounded-degree
physical interactions or a physical light cone. If a bounded–fan-in DAG as above does not exist for FT,n

under these resource bounds, that implies a lower bound against any such uniform simulator over the given
primitive set and precision regime.

Example A: Discrete-time lattice-local update (model assumption)

Setting. Let G = (V,E) be a (possibly infinite) graph with maximum degree ∆ <∞. For i ∈ V
and radius r ∈ N, write

Br(i) := {j ∈ V : distG(i, j) ≤ r}, |Br(i)| ≤ κ(∆, r) <∞.

States are x = (xi)i∈V ∈ XV with the sup product norm on X .

Local updates and regularity. For t = 1, . . . , T , consider sitewise updates(
Ut(x)

)
i

= ϕt,i
(
xBr(i)

)
, ϕt,i : XBr(i)→ X, (B.16)

with uniform Lipschitz and smoothness on relevant compacta,

∥ϕt,i(z)− ϕt,i(z′)∥ ≤ L ∥z − z′∥∞, ϕt,i ∈ Cq, (B.17)

for some L ≥ 1, q ≥ 1 independent of (t, i).

Finite propagation. Let FT := UT ◦ · · · ◦U1. Assume there exists a nondecreasing R : N→ N such
that for all i ∈ V and x, x′ ∈ XV ,

xBR(T)(i) = x′
BR(T)(i) =⇒

(
FT (x)

)
i

=
(
FT (x′)

)
i
. (B.18)

(Nearest-neighbor dynamics give R(T) ≤ rT .)

Proposition 12 (Model-locality⇒ compositional DAG). Fix finite Λ ⊂ V and horizon T ∈ N. Under
(B.16)–(B.18), the map

FΛ,T (x) :=
(
FT (x)

)
Λ

factors through a depth-T DAG with node fan-in at most d∗ := κ(∆, r). The layer maps are Cq and
L-Lipschitz on the reachable compact set. Hence FΛ,T is compositionally sparse with depth T and size

s = O
(
|Λ|
(
d∗)T),

and falls under the ML Approximation Theorem with exponent d∗/q (up to polylog factors).

B.6 Learning Theory and Optimization

Compositional sparsity has three consequences for learning and optimization.

200APPENDIX B. TECHNICALNOTE: COMPOSITIONALITY IN MACHINE LEARNING AND PHYSICS

(i) Capacity and generalization. Let Fcomp(s, L, d∗, r) be depth-L DAGs of size s whose node
maps lie in Cr([0, 1]dv) with dv ≤ d∗, and suppose layer maps are Lℓ-Lipschitz on reachable
domains. Then the metric entropy satisfies

logN (ε,Fcomp, ∥ · ∥∞) ≤ As ε−d∗/r polylog
(

1
ε

)
, (B.19)

and Dudley’s integral yields

Rn(Fcomp) ≤ C̃

√
s

n
n− r

2d∗ polylog(n). (B.20)

Thus the exponent depends on d∗ (largest local arity), not the ambient d.

(ii) Optimization geometry. If fθ factors through a bounded–fan-in DAG, the Gauss–Newton/Hessian
blocks obey

Hvw ̸= 0 ⇒ cone(v) ∩ cone(w) ̸= ∅,

so the Hessian graph has bounded degree (by fan-in). This motivates block-diagonal/Kronecker
preconditioners that respect the compositional blocks.

(iii) Architectural realizations. Sparse/top-q attention enforces bounded effective fan-in: for a
query q, Attn(q,K, V) =

∑
j∈S(q) αj(q) vj with |S(q)| = O(q) under top-q selection or sufficiently

aggressive sparsification, placing such transformers within the same d∗-controlled regime.

B.7 Limits of the Framework

The compositional-sparsity results identify when approximation and learnability are governed by
local arity d∗ and depth L (or horizon T). We now delineate intrinsic limits of this regime. These are
not violations of the DAG factorization itself but circumstances under which the constants (or the
effective arity) grow so rapidly that efficient approximation on classical hardware is ruled out.

Classical chaos and finite prediction horizons

Consider the discrete-time system

xt+1 = F (xt), F : X → X, (B.21)

with X ⊂ Rd compact and F ∈ Cr, locally Lipschitz. Suppose F admits a bounded-degree
interaction graph so that updates factor through a bounded–fan-in DAG (cf. Section B.5). Let
FT := F ◦ · · · ◦ F denote the T -step map and set Lt := Lip(F) on the reachable compact set at time
t. Then

Lip(FT) ≤
T∏

t=1
Lt = exp

(T∑
t=1

logLt

)
. (B.22)

If the maximal Lyapunov exponent λ := limT →∞
1
T

∑T
t=1 logLt is positive, we obtain Lip(FT) ≍ eλT .

Applying the telescoping bound (B.6) to ΦT := FT and a blockwise approximant with layer errors
{Et} gives

∥ΦT − Φ̃T ∥∞ ≤
T∑

t=1
eλ(T −t)Et. (B.23)

B.7. LIMITS OF THE FRAMEWORK 201

To enforce ∥ΦT − Φ̃T ∥∞ ≤ ε, one must choose Et ≲ ε e−λ(T −t). Since each layer-t local approximant
with arity ≤ d∗ and smoothness r costs on the order of E− d∗/r

t (up to polylogs; Lemma 12), the
total size obeys the lower bound

size(NT) ≳ e (λd∗/r) T (up to polylog factors). (B.24)

Thus, for chaotic systems (e.g., atmospheric flows) long-horizon pointwise prediction requires
exponentially increasing resources or exponentially precise initial data. The bounded–fan-in DAG
persists, but numerical stability collapses with T .

Quantum locality versus entanglement growth

In quantum lattice systems, Lieb–Robinson bounds provide an approximate light cone: for observ-
ables AX , BY supported on disjoint X,Y ⊂ V ,

∥[AX(t), BY]∥ ≤ C exp
(
− [d(X,Y)− vLRt]+

)
, (B.25)

with velocity vLR. Consequently, Heisenberg evolution of local observables factors through a
depth-t bounded–fan-in DAG (operator sense). The obstruction is representation: under classical
encodings, bipartite entanglement S(t) typically grows (linearly in t in generic quenches), so any
faithful classical representation requires O(eS(t)) coefficients. The effective arity therefore scales as

d∗(t) ∼ eS(t), (B.26)

which, when substituted into the nodewise cost exponent ε− d∗/r, negates the dimensional advan-
tage and renders classical approximation intractable once S(t) exceeds O(logn).

Precision and nonuniformity

Our statements are inherently finite-precision and uniform:

• Precision growth. To maintain error ε at horizon T under (B.23), input and intermediate
precisions must scale as Ω(λT + log(1/ε)) bits. Any model that fixes word size incurs an
irreducible floor at large T .

• Nonuniform advice. Allowing nonuniform circuit families (P/poly) can collapse uniform lower
bounds, but the resulting dependence on instance-specific advice falls outside the learnability
guarantees considered here.

Thermodynamic limits and undecidability

The compilation and approximation results concern fixed finite n and finite horizon T . In the
thermodynamic limit (n → ∞) and for decision problems about phases or long-time behavior,
classical undecidability and complexity barriers (e.g., QMA-hardness for certain ground-state or
dynamics questions) imply that no uniformly efficient classical procedure can exist in general. Such
barriers lie orthogonal to local DAG factorization and instead limit which finite-horizon tasks admit
uniform simulators.

202APPENDIX B. TECHNICALNOTE: COMPOSITIONALITY IN MACHINE LEARNING AND PHYSICS

Regime of validity (summary)

The framework applies when:

1. there is a bounded-degree local interaction structure (fixed radius and maximum degree);

2. finite-horizon maps are uniformly simulable at finite precision;

3. layer Lipschitz constants are bounded on reachable domains.

Failure modes include positive Lyapunov exponents (forcing (B.24)), entanglement-induced arity
growth (B.26), precision that does not scale with T , and nonuniform advice. In these cases the
bounded–fan-in DAG remains as an operator-level structure, but efficient classical approximation is
precluded.

B.8 Conclusion

Compositionality, in the precise mathematical sense of bounded–fan-in DAG factorizations, is
a common structural denominator for learning and finite-horizon physical prediction. The core
message of this work is structural: under appropriate hypotheses, both domains give rise to the
same low-arity, layered scaffold.

Equivalences (scope-conditional)

On the learning side, the ML Approximation Theorem (Theorem 18, Section B.4) shows that if a
target factors through a bounded–fan-in DAG with maximal local arity d∗, then the approxima-
tion/sample–complexity exponents replace the ambient d/r by d∗/r. On the physics side, the
finite-horizon compilation principle (Theorem 21, Section B.5) states that whenever a finite-horizon
evolution map is computed by a P-uniform simulator using a bounded-arity primitive set at fi-
nite precision, the map compiles to a P-uniform bounded–fan-in DAG of size proportional to the
simulator cost.

Thus, the two origins—efficient computability and finite-speed locality—converge to the same
structural form under explicit, stated conditions (uniformity, finite precision, bounded-arity primitives,
finite horizon). The equivalence is structural and conditional, not ontological: computation yields
compositionality by uniform time-unrolling; locality yields it by causal reach at finite horizon.

Consequences (within the regime of validity)

Within this regime, three consequences follow:

1. Approximation. Efficiently computable targets and finite-horizon local maps admit deep
approximants whose complexity scales with d∗ rather than d (Theorem 18).

2. Generalization. Metric entropy and Rademacher bounds scale as logN (ε) ≲ s ε−d∗/rpolylog(1/ε)
and Rn ≲

√
s/nn− r/(2d∗)polylog(n), exhibiting a “local dimension” law (Section B.6).

3. Optimization geometry. Bounded local arity induces block-sparse curvature aligned with
the DAG cones, explaining the effectiveness of structured (block/Kronecker) preconditioners
in the sparse regime (Section B.6).

B.8. CONCLUSION 203

Limits (where structure persists but efficiency may not)

The structural DAG persists beyond the regime, but efficiency can fail. Positive Lyapunov exponents
force error amplification ∼ eλT , yielding size lower bounds ≳ e(λd∗/r)T for long-horizon pointwise
prediction (Section B.7). In quantum dynamics, entanglement growth drives an effective arity
d∗(t) ∼ eS(t), erasing the d∗-advantage under classical encodings. Precision requirements grow
with horizon, and nonuniform advice falls outside our learnability results.

Outlook

Compositionality is therefore best viewed as a bridge principle: under uniform finite-precision
simulation and finite causal reach, learning theory and finite-horizon physics share the same
compositional grammar—hierarchical, sparse, layered. The bridge is exact at the level of structure
and rates under the stated conditions; outside them, the scaffold remains but efficient approximation
may be precluded. Clarifying the sharp frontiers of this regime—especially the interplay among
uniformity, precision growth, and effective arity—remains an open direction of foundational
interest.

CHAPTER C

Technical Note: A Group-invariant
Johnson-Lindestrauss Lemma

We give a complete reformulation and proof of the “JL under group-invariance” result (Anselmi–Rosasco–
Poggio, On Invariance and Selectivity in Representation Learning)[5], see also [160].

C.1 Introduction

Concretely, for the paper’s tomographic probabilistic / CDF representation built from group averages,

µt(I)(b) =
∫

G
dg ηb

(
⟨I, gt⟩

)
, ηb(a) = 1{a ≤ b},

and the (population or finite-template) quotient metric

d(I, I ′) =
∫

S
du(t) d∞

(
µt(I), µt(I ′)

)
or d̂(I, I ′) = 1

k

k∑
i=1

d∞
(
µti(I), µti(I ′)

)
,

WE prove that a single subgaussian random linear map R : Rd → Rm preserves these distances
(up to explicit multiplicative and additive tolerances) simultaneously for all pairs from a finite
dataset S, with the usual Johnson–Lindenstrauss dimension

m = O
(
ε−2 logN

)
, N = size of the finite set of vectors that must be near-isometric.

The only extra logarithmic cost relative to classical JL is the complexity of the invariance: the
number of templates k and (for compact, non-finite groups) the covering number of G at the
accuracy η used to discretize Haar integration.

b. Method Sketch.

• Setup (paper’s formulation). Data live in a Hilbert space I ≃ Rd. A compact group G ⊂ O(d)
acts unitarily; templates t ∈ S = {x : ∥x∥ = 1}. The paper’s invariant/selective representation
aggregates nonlinear group averages of 1-D projections ⟨I, gt⟩ and measures between-signal
dissimilarity via a CDF (KS) metric averaged over t.

204

C.2. DETAILED SOLUTION 205

• Goal. Show that after a random linear map R, the post-projection representation computed in the
embedded space (i.e., replace ⟨I, gt⟩ by ⟨RI,Rgt⟩) yields a distance d̂R that approximates d̂ (and
d) uniformly on a finite dataset.

• Key lemmas.

(1) (Inner-product preservation from JL.) If R is a (1 ± ε) near-isometry on the finite set V ⊃
{I, gt, I ± gt}, then for all such pairs∣∣⟨RI,Rgt⟩ − ⟨I, gt⟩∣∣ ≤ Cε

(
∥I∥2 + ∥t∥2

)1/2
.

(2) (Stability of CDFs to additive perturbations.) If random variables X and X + ξ satisfy
|ξ| ≤ ∆ almost surely, then their CDFs differ by at most ∆ in the uniform (KS) metric; more
generally, with smoothing (e.g., Lipschitz η) the bound scales with ∥ξ∥.

(3) (Group discretization.) For compact G, an η-net Nη ⊂ G in operator norm yields∣∣min
g∈G

ϕ(g)− min
h∈Nη

ϕ(h)
∣∣ ≤ Lip(ϕ) η,

and in our case induces an additive O(η) error coming from approximating Haar averaging
by a finite sum.

• Assemble. Choose R that is near-isometric on a finite control set built from the dataset S, the
templates Tk, and a group net Nη. Lemma 1 controls projection errors; Lemma 2 converts them
to CDF (KS) errors template-wise; averaging over templates gives a uniform bound on d̂R − d̂;
Lemma 3 controls the additional group-discretization error for d vs d̂. A union bound gives

m ≳ ε−2
(

log |S|+ log k + logNG(η) + log(1/δ)
)
.

C.2 Detailed Solution

We work in the paper’s setting: I = Rd with Euclidean inner product, and a compact group
G ⊂ O(d) acting unitarily. Fix a finite dataset S ⊂ I . For templates, take either the population
sphere average t ∼ u on Sd−1 or a finite set Tk = {t1, . . . , tk} ⊂ Sd−1. For ηb(a) = 1{a ≤ b} and
Haar measure dg, the paper’s CDF-representation is

µt(I)(b) =
∫

G
dg ηb

(
⟨I, gt⟩

)
, d(I, I ′) =

∫
Sd−1

du(t) d∞
(
µt(I), µt(I ′)

)
,

and its finite-template version

d̂(I, I ′) = 1
k

k∑
i=1

d∞
(
µti(I), µti(I ′)

)
, d∞(f, g) = sup

b∈R
|f(b)− g(b)|.

We now define the post-projection (embedded) representation: for a linear map R : Rd → Rm,

µR
t (I)(b) =

∫
G
dg ηb

(
⟨RI,R(gt)⟩

)
, d̂R(I, I ′) = 1

k

k∑
i=1

d∞
(
µR

ti
(I), µR

ti
(I ′)

)
.

(If we use population averaging over t, replace the finite average by
∫
du(t) and similarly define

dR.)
Our objective is to uniformly control |d̂R−d| (or |d̂R− d̂|) over all I, I ′ ∈ S with high probability

over a random R. Throughout, C > 0 denotes absolute constants that may change line-to-line.

206APPENDIX C. TECHNICAL NOTE: A GROUP-INVARIANT JOHNSON-LINDESTRAUSS LEMMA

C.2.1 A finite control set and inner-product preservation

Let Nη ⊂ G be an η–net for G in operator norm:

∀g ∈ G ∃h ∈ Nη s.t. ∥g − h∥op ≤ η, NG(η) := |Nη|.

Define the finite control set of vectors

V :=
{
I, h ti, I ± h ti : I ∈ S, h ∈ Nη, 1 ≤ i ≤ k

}
⊂ Rd.

Let R be a subgaussian JL map (e.g., i.i.d. N (0, 1/m) entries). If

m ≥ C ε−2
(

log |V|+ log(1/δ)
)
,

then with probability at least 1− δ,

(1− ε)∥x∥2 ≤ ∥Rx∥2 ≤ (1 + ε)∥x∥2, ∀x ∈ span(V),

and, by the polarization identity, for any x, y ∈ V ,

∣∣⟨Rx,Ry⟩ − ⟨x, y⟩∣∣ ≤ C ε
(
∥x∥22 + ∥y∥22

)1/2
. (1)

Application to projections. For any I ∈ S, h ∈ Nη, and ti ∈ Tk, apply (1) with x = I and y = h ti
(note ∥ti∥ = ∥h ti∥ = 1) to obtain

∣∣⟨RI,R(h ti)⟩ − ⟨I, h ti⟩
∣∣ ≤ C ε

(
∥I∥22 + 1

)1/2 ≤ C ′ε (∥I∥2 + 1). (2)

C.2.2 Discretizing Haar averages over G

For fixed I and ti, define the scalar process

Xg = ⟨I, gti⟩, XR
g = ⟨RI,R(gti)⟩.

Pick, for each g ∈ G, a nearest net point h(g) ∈ Nη with ∥g − h(g)∥op ≤ η. Then

|Xg −Xh(g)| = |⟨I, (g − h(g))ti⟩| ≤ ∥I∥2 η and |XR
g −XR

h(g)| ≤ ∥RI∥2 η ≤ (1 + ε)∥I∥2 η. (3)

Thus, replacing the Haar integral by the uniform average over Nη introduces at most an additive
O(∥I∥2 η) perturbation of the pre- and post-projection scalar processes.

C.2.3 From scalar errors to CDF (KS) errors

Fix I, I ′ ∈ S, ti ∈ Tk. Consider the pairs of random variables (with g distributed by Haar and then
snapped to h(g)):

• Pre-projection: X = ⟨I, h(g)ti⟩, Y = ⟨I ′, h(g)ti⟩.

• Post-projection: XR = ⟨RI,R(h(g)ti)⟩, Y R = ⟨RI ′, R(h(g)ti)⟩.

C.2. DETAILED SOLUTION 207

By (2), for each fixed h ∈ Nη,

|XR −X| ≤ C ′ε(∥I∥2 + 1), |Y R − Y | ≤ C ′ε(∥I ′∥2 + 1). (4)

By (3), replacing g by h(g) also perturbs both pairs by at most C ′′η ·max(∥I∥2, ∥I ′∥2). Combining,

max
{
|XR −X|, |Y R − Y |

}
≤ ∆I,I′ := Aε (1 + ∥I∥2 + ∥I ′∥2) +B η (∥I∥2 + ∥I ′∥2), (5)

for absolute constants A,B.
Let FI,ti (resp. FR

I,ti
) be the CDF of X (resp. XR) when h(g) is uniform on Nη (or Haar if we

integrate analytically and then net-approximate). The basic monotone translation bound for CDFs
yields, for every b ∈ R,∣∣FR

I,ti
(b)− FI,ti(b)

∣∣ ≤ sup
|u|≤∆I,I′

∣∣FI,ti(b− u)− FI,ti(b)
∣∣ ≤ ωI,ti(∆I,I′),

where ωI,ti(·) is the CDF modulus of continuity. Since CDFs are 1-Lipschitz w.r.t. shifts in the
argument when viewed as distribution functions of bounded noise, and here the additive error is
uniformly bounded by ∆I,I′ , the KS distance satisfies

d∞
(
µR

ti
(I), µti(I)

)
≤ ∆I,I′ .

The same holds with I ′ in place of I . By the triangle inequality for d∞,∣∣d∞
(
µR

ti
(I), µR

ti
(I ′)

)
− d∞

(
µti(I), µti(I ′)

)∣∣ ≤ 2 ∆I,I′ . (6)

C.2.4 Averaging over templates and a uniform bound on S

Average (6) over ti ∈ Tk to get ∣∣d̂R(I, I ′)− d̂(I, I ′)
∣∣ ≤ 2 ∆I,I′ . (7)

Since ∆I,I′ depends only on norms ∥I∥2, ∥I ′∥2, we may bound it by the dataset radius

RS := max
I∈S
∥I∥2.

Thus, uniformly for all I, I ′ ∈ S,∣∣d̂R(I, I ′)− d̂(I, I ′)
∣∣ ≤ 2Aε (1 + 2RS) + 2B η (2RS). (8)

If we use the population template integral instead of a finite Tk, the same derivation goes through
with the integral

∫
Sd−1 du(t) in place of the average; if we further replace Haar by the net Nη, an

additional B̃ η term enters (absorbed in the Bη above).
Finally, we must ensure the JL near-isometry on V , which has cardinality

|V| ≤ |S| · k ·NG(η) · C0

(the factor C0 accounts for the constant number of linear combinations I ± hti). Hence it suffices to
take

m ≥ C ε−2
(

log |S|+ log k + logNG(η) + log(1/δ)
)
, (9)

to make (1)–(2) hold simultaneously on V with probability at least 1− δ.

208APPENDIX C. TECHNICAL NOTE: A GROUP-INVARIANT JOHNSON-LINDESTRAUSS LEMMA

C.2.5 Conclusion (finite-sample “JL for the paper’s invariant metric”)

Combining (8) and (9):

Theorem (JL stability of the paper’s invariant/selective metric).
Let S ⊂ Rd be finite, Tk ⊂ Sd−1 a set of k templates, and Nη ⊂ G an η-net of a compact unitary
group G. Draw a subgaussian R ∈ Rm×d with

m ≥ C ε−2
(

log |S|+ log k + logNG(η) + log(1/δ)
)
.

Then, with probability at least 1− δ, for all I, I ′ ∈ S,∣∣d̂R(I, I ′)− d̂(I, I ′)
∣∣ ≤ C1 ε (1 +RS) + C2 η RS

where RS = maxI∈S ∥I∥2 and C1, C2 > 0 are universal constants.
If the population template integral is used (in place of d̂), the same bound holds with d̂ replaced by
d.

Interpretation. The dimension scales as in classical JL, with only a logarithmic penalty for the
invariance complexity (templates k, group covering NG(η)). The distortion has a multiplicative JL
part (∝ ε) and an additive part (∝ η) from discretizing Haar. Letting η → 0 (finer nets) and ε→ 0
(larger m) drives the total error to 0.

C.2.6 Corollaries

1. Nearest-neighbor stability in the quotient.
If a margin γ > 0 separates d̂(I, I⋆) from all d̂(I, J) with J ̸= I⋆, then the JL embedding
preserves the argmin provided
C1ε(1 +RS) + C2ηRS < γ/2.

2. Compact Lie groups.
For G a q-dimensional compact Lie group (e.g., SO(d) with q = d(d− 1)/2), NG(η) ≤ (C/η)q, so

m ≳ ε−2
(
log |S|+ log k + q log 1

η + log 1
δ

)
.

Choosing η ≍ τ/RS to target an additive tolerance τ yields an explicit τ–vs–m trade-off.

3. POG (partially observable group) layers.
If the paper’s local group averages are used (POG case), the same argument applies layer-wise
because each layer’s measurement is again an average of 1-D inner products; the control set V
is augmented accordingly, changing log |V| but not the ε−2 scaling.

C.2.7 Remarks

• The analysis above uses the paper’s CDF/KS formulation; the same proof goes through for
the moments representation (Appendix A in the paper) by replacing the KS bound with the
Lipschitz stability of low-order moments under bounded additive perturbations, yielding the
same m and similar error terms.

• If one prefers to avoid the CDF’s discontinuity (Heaviside), replace ηb by a Λ-Lipschitz sigmoid;
then (6) strengthens to ∣∣d∞(·)− d∞(·)

∣∣ ≤ 2Λ ∆I,I′ ,

removing the need to appeal to CDF moduli of continuity.

C.2. DETAILED SOLUTION 209

• No claim is made here about learnability of R; the point is that a single random R suffices to
preserve the paper’s invariant/selective distances on a finite dataset with JL-optimal dimension.

CHAPTER D

Interlude: Most Real Numbers Do Not
Exist

“God made the integers,” Kronecker once said. “All else is the work of man.” The classical continuum R is an
elegant mathematical idealization. But only a countable subset of real numbers can be defined, computed,
measured, or even referred to using any finite physical process. In this operational and epistemic sense, most
real numbers do not exist. They belong to an uncountable remainder with no finite description and no
physical instantiation.

In this chapter we formalize the distinction between:

• mathematical existence (membership in R),

• computational existence (Turing computability),

• operational existence (finite-energy measurement processes),

• definability (finite symbolic descriptions),

• physical accessibility (finite precision).

These distinctions collapse the mathematical continuum down to an at most countable set. The
conclusion is unavoidable:

|{computable / definable / measurable reals}| = ℵ0 while |R| = 2ℵ0 .

Thus, the “real numbers” of physics and computation constitute a zero–measure, countable
subset of the traditional continuum. "For a recent treatment of these topics, see [batzoglou2024]

D.1 Mathematical Preliminaries

Definition 17 (Algebraic and transcendental numbers). A real number x ∈ R is called algebraic if it is
a root of a nonzero polynomial p(t) ∈ Z[t]. Otherwise it is transcendental.

The set of algebraic numbers is countable:

|A| = ℵ0,

while the set of transcendental numbers has cardinality 2ℵ0 .

210

D.2. COMPUTABILITY AND EFFECTIVE EXISTENCE 211

Proposition 13. The set of algebraic numbers A has Lebesgue measure zero.

Proof. Each polynomial of degree d has finitely many real roots. Since there are countably many
integer polynomials, the union of their roots is countable, hence measure zero.

Thus—already at the level of classical analysis—almost all real numbers are transcendental.

D.2 Computability and Effective Existence

Definition 18 (Computable real). A real number x is computable if there exists a Turing machine that,
given n ∈ N, outputs a rational qn such that |x− qn| < 2−n.

Proposition 14. The set of computable real numbers is countable.

Proof. There are only countably many Turing machines. Each machine computes at most one real
number.

Thus:
|{computable reals}| = ℵ0 ≪ |R| = 2ℵ0 .

Consequences. Most real numbers:

• cannot be computed,

• cannot be approximated by any algorithm,

• cannot appear as outputs of any physical or mathematical process with finite description,

• cannot even be uniquely specified in any formal language.

D.3 Definability and Symbolic Description

A real number is first–order definable in the language of arithmetic if there exists a finite formula
φ(x) that uniquely identifies it.

Proposition 15. There are only countably many first–order definable real numbers.

Proof. There are only countably many finite formulas. Each defines at most one real.

Thus:
|{definable reals}| = ℵ0.

Combining all three:

{physical reals} ⊆ {computable reals} ⊆ {definable reals},

all countable. Meanwhile R is uncountable.

212 APPENDIX D. INTERLUDE: MOST REAL NUMBERS DO NOT EXIST

D.4 Operational Discretization Under Finite Resources

The following principle captures the operational meaning of measurement.
Finite information under finite physical resources Let a measurement process be bounded by finite

energy E, time T , spatial extent R, and bandwidth B. Then the procedure corresponds to sampling
from a finite-dimensional effective subspace of all possible states, whose dimension is bounded (up
to constants) by

dim ≤ C (ETBR).

This is a direct consequence of the time-bandwidth and space-bandwidth uncertainty principles
underlying Fourier analysis and signal theory. A system with finite time–bandwidth product
cannot encode arbitrary real numbers.

Theorem 22 (Operational discretization). Any measurement process with finite resources can resolve only
finitely many distinguishable states. Thus it can only output a rational approximation of some computable
real number.

Proof. Finite bandwidth⇒ finite sampling rate⇒ finite dimensional signal space. Finite precision
yields a finite number of distinguishable outputs. All such outputs correspond to rationals produced
by a finite algorithm. Hence the measured quantity must be computable.

In short: no finite physical system can output an uncomputable real number. This collapses empirical
reality to a countable set.

D.5 Why Most Real Numbers Do Not Exist

By combining the previous sections:

computable ⊆ definable ⊆ formalizable ⊆ physical ⊊ R.

All the sets on the left are countable; R is uncountable. Therefore:

Theorem 23 (Main conclusion). Only countably many real numbers can be described, computed, measured,
or referred to by any finite physical or mathematical process. The remaining uncountably many reals have no
finite representation and no operational meaning. In this precise sense, most real numbers do not exist.

This perspective echoes the role of constructivism in computation and the limitation that
physical theories ultimately rely on discrete data. At the same time, classical real analysis remains
valid as a symbolic calculus; the continuum is a powerful idealization, but not a physically realizable
space.

D.6 Technical Note: Cardinality, Complexity, and Randomness

D.6.1 Cardinality Review

|N| = ℵ0, |Q| = ℵ0, |A| = ℵ0,

while
|R| = 2ℵ0 .

Thus:
Pr

Lebesgue
(x ∈ A) = 0, Pr

Lebesgue
(x ∈ R \ A) = 1.

D.6. TECHNICAL NOTE: CARDINALITY, COMPLEXITY, AND RANDOMNESS 213

D.6.2 Kolmogorov Complexity

Let x1:n be the first n bits of the binary expansion of x. A real number is algorithmically random if:

K(x1:n) ≥ n−O(1),

where K(·) denotes prefix-free Kolmogorov complexity.
Algorithmically random reals:

• are uncomputable,

• are undefinable,

• form a set of Lebesgue measure 1,

• constitute the overwhelming majority of R.

D.6.3 Non-Computable Transcendentals

Since there are only countably many algorithms, but uncountably many transcendentals, almost
all transcendental numbers are uncomputable. Classical constants such as π and e are exceptional
because they are computable.

D.6.4 Physical Measurement

Any real measurement yields a rational interval [a, b] of width ε with ε > 0 determined by finite
resources. This selects at best one of finitely many outcomes. Thus measurement cannot distinguish
uncountably many reals.

D.6.5 Definability

Let L be a finite formal language of arithmetic.

|{φ ∈ L}| = ℵ0.

Thus at most countably many reals can be named uniquely.

CHAPTER E

Potential Projects in Zeroth-Order
Optimization: Directed Mutations

E.1 Directed mutations: binary-search–like efficiency

E.1.1 Setting and notation

Let Let d ∈ N and N ≥ 2. Denote [N] = {1, 2, . . . , N} and the domain X = [N]d. We aim to
minimize

f : X → R, f(x) =
d∑

i=1
gi(xi).

We consider two mutation/query models:

• Directed one–coordinate mutation oracle. In any iteration, pick a coordinate i and a value
y ∈ [N] and query f at the point obtained by replacing the i-th coordinate with y. This captures
directed mutations along chosen coordinates (enabling midpoints for binary search).

• Undirected local ±1 mutation (RLS). In each step, pick I ∼ Unif({1, . . . , d}); propose xI 7→
xI ± 1 (feasible step chosen uniformly), and accept iff f strictly decreases.

Definition 19 (Discrete convexity). A function g : [N]→ R is discretely convex if its forward differences
∆g(k) = g(k + 1)− g(k) are nondecreasing in k for 1 ≤ k ≤ N − 1.

Lemma 13 (Univariate discrete convexity⇒ binary search). If g : [N]→ R is discretely convex, then a
minimizer x⋆ ∈ arg minx∈[N] g(x) can be found via O(logN) evaluations by binary search on the sign of
∆g(k).

Proof. Discrete convexity implies ∆g(k) crosses 0 at most once, so the predicate P (k) : ∆g(k) ≥ 0 is
monotone. Binary search on {1, . . . , N − 1} locates the threshold in O(logN) queries; a constant
number of local checks recovers x⋆.

Theorem 24 (Directed mutations yieldO(d logN)). Suppose f(x) =
∑d

i=1 gi(xi) with each gi discretely
convex. Under the directed one–coordinate oracle, there is an algorithm that finds x⋆ ∈ arg min f using
O(d logN) evaluations.

214

E.2. GENES→ SUBGENES AS A BINARY TREE OF TRAITS 215

Proof. By separability, x⋆ = (x⋆
1, . . . , x

⋆
d) with x⋆

i ∈ arg min gi. For each coordinate, maintain
[Li, Ri] ⊆ [N] and bisect: query gi(m) and gi(m + 1) via directed mutations (other coordinates
arbitrary but fixed), compute ∆gi(m), and update the interval by Lemma 13. Each coordinate takes
O(logN) queries; total O(d logN).

Proposition 16 (Undirected local mutation needs Θ(dN)). On f(x) = ∥x − x⋆∥1 over [N]d with
random start X(0) ∼ Unif([N]d), the undirected local ±1 mutation scheme has expected optimization time
E[T] = Θ(dN).

Proof. Let D(x) = ∥x − x⋆∥1 =
∑d

i=1 |xi − x⋆
i |. In each step, D decreases by 1 only if a wrong

coordinate is picked (probability k/d when k coordinates are wrong) and steps toward the target
(probability ≥ 1

2 away from boundaries). The drift is Θ(k/d). A coordinate-wise accounting shows
the expected iterations to fix coordinate i scale as Θ(dE[Z(0)

i]) with Z
(0)
i = |X(0)

i − x⋆
i |, whose

expectation is Θ(N). Summing gives E[T] = Θ(dN); a matching upper bound follows from the
same drift argument.

Corollary 3 (Separation). On separable, discretely convex landscapes, directed mutations achieveO(d logN)
(Thm. 24), whereas undirected local ±1 mutations require Θ(dN) on ℓ1 distance (Prop. 16). Thus directed
mutation yields an exponential per-coordinate improvement in the scale N .

E.2 Genes→ subgenes as a binary tree of traits

E.2.1 Hierarchical mutation model

Let a rooted full binary tree T have m leaves indexing observable traits {1, . . . ,m}. For a node
v ∈ T , denote by Sv ⊆ [m] the set of leaves in v’s subtree. A hierarchical mutation at node v modifies
all coordinates in Sv coherently.

We analyze two mechanics.

(i) Discrete toggle model (Hamming loss). Phenotype x ∈ {0, 1}m, unknown target x⋆ ∈ {0, 1}m,
fitness

F (x) = m− ∥x− x⋆∥0.

Mutating v maps x 7→ x⊕ 1Sv (bitwise XOR on Sv).

(ii) Continuous shift model (additive convex loss). Phenotype x ∈ Rm, loss f(x) =
∑m

i=1 ϕi(xi)
with each ϕi convex and L-smooth. A mutation at node v applies

x← x+ η αv 1Sv , αv ̸= 0.

, with stepsize η ∈ R chosen by the algorithm.

E.2.2 Sparse-error localization via adaptive subtree queries

Theorem 25 (Tree-structured adaptive group testing). In the discrete model, suppose x differs from
x⋆ on at most s leaves. Using only evaluations of F (x) and F (x⊕ ⊮Sv) for nodes v, there is an adaptive
strategy that finds flips achieving x = x⋆ in

O
(
s log(m/s)

)
fitness evaluations.

216APPENDIX E. POTENTIAL PROJECTS IN ZEROTH-ORDER OPTIMIZATION: DIRECTED MUTATIONS

Proof. Let E = {i : xi ̸= x⋆
i } (the erroneous leaves), and for node v define ev = |E ∩ Sv|. A single

query at x and x⊕ ⊮Sv yields

∆v := F (x⊕ ⊮Sv)− F (x) = −(|Sv| − 2ev),

so ev = (|Sv|+ ∆v)/2 is exactly recovered. Starting at the root, query each visited node v; recurse
only into children with e(·) > 0. The explored search tree is the union of the s root-to-leaf paths to
erroneous leaves; in a balanced binary tree its size is O(s log(m/s)). After identifying the erroneous
leaves, flip them (or an equivalent parity of ancestors) to obtain x⋆.

Remark 6. Any naive leaf-wise undirected search needs Ω(m) queries in the worst case even for s = 1
(uniformly random error location), so the hierarchical strategy gives an exponential gain in m/s.

E.2.3 Greedy hierarchical descent for additive convex loss

Theorem 26 (Guaranteed decrease along subtree directions). Assume each ϕi is convex and L-smooth.
At iterate xt, choose

vt ∈ arg max
v∈T

∣∣⟨∇f(xt),⊮Sv⟩
∣∣√

|Sv|
,

and perform exact line search in direction ±dvt with dv = ⊮Sv/
√
|Sv| (absorbing αv into the stepsize). Then

f(xt+1) ≤ f(xt) − 1
2L max

v∈T

⟨∇f(xt),⊮Sv⟩2

|Sv|
.

If the residual gradient mass is confined to a single root-to-leaf path of height h, then f(x)− f(x⋆) ≤ ε is
reached in O

(
h log(1/ε)

)
steps.

Proof. By L-smoothness, for any unit vector d, ψ(η) = f(xt + ηd) ≤ ψ(0) + ψ′(0)η + L
2 η

2, whose
minimizer gives guaranteed decrease (ψ′(0))2/(2L). With dv = ⊮Sv/

√
|Sv|,

ψ′
v(0) = ⟨∇f(xt), dv⟩ = ⟨∇f(xt),⊮Sv⟩√

|Sv|
,

yielding the stated bound. If gradients cancel outside a fixed path, the maximizer vt lies on that path,
and a standard greedy/coordinate-descent argument on a chain of length h gives O

(
h log(1/ε)

)
iterations.

E.3 Context and prior art (concise)

E.3.1 Biology: hierarchical gene regulation

The metaphor of genes controlling subsets of traits in nested fashion is classical in evo-devo: hierarchical
gene-regulatory networks, the Drosophila segmentation hierarchy (maternal→ gap→ pair-rule→
segment-polarity), Hox clusters and colinearity, and cis-regulatory modules (enhancers) as subgenic
control elements. While biologists say “subgenic elements” or “cis-regulatory modules” rather
than “subgenes,” the nested-control picture is standard.

E.4. IMPLICATIONS AND EXTENSIONS 217

E.3.2 Evolutionary computation: linkage and hierarchy

In EAs, “modules” appear as schemata/building blocks and as learned linkage:

• Hierarchical test functions: Royal Road and HIFF families showcase nested structure, where
hierarchical mixing is advantageous and simple hill-climbing fails.

• Linkage learning and model-based EAs: hBOA (hierarchical BOA), LTGA (Linkage Tree GA),
and GOMEA learn and exploit dependency/linkage trees to mix substructures coherently, often
yielding strong empirical scaling on modular problems.

• Cooperative coevolution: decomposes decision variables into interacting subcomponents
(“species”) and co-adapts them.

The concrete bounds in Theorems 25 and 26—O
(
s log(m/s)

)
identification via subtree flips, and

the explicit smooth-descent inequality over subtree directions—appear to be clean, self-contained
statements that are not standard in the EA literature under these exact assumptions, though they
are consonant with known results and intuitions about modularity and linkage.

E.4 Implications and extensions

• Separable landscapes: directed coordinate mutations simulate binary search (O(d logN)), while
undirected local steps face Θ(dN) barriers on natural benchmarks.

• Sparse discrepancy regimes: tree-structured adaptive queries achieve near-optimalO
(
s log(m/s)

)
,

analogous to adaptive group testing but constrained to canonical tree partitions.

• Coarse-to-fine optimization: subtree directions form a hierarchical dictionary; greedy selection
yields principled progress bounds, and iteration counts scale with tree height h when mismatch
localizes.

• Noisy feedback, heterogeneous effects, mild epistasis: the discrete analysis extends to noisy
comparisons with extra logarithmic factors; continuous analysis extends to inexact line search
and stochastic oracles; weak within-subtree epistasis can be handled via local re-estimation of
gradients/effects.

Pointers

These statements intersect with literatures on (i) adaptive group testing and sparse recovery on
trees; (ii) linkage-learning EAs (hBOA, LTGA, GOMEA); (iii) hierarchical optimistic partitioning in
zeroth-order global optimization; and (iv) coordinate/block descent and matching pursuit with
structured dictionaries.

CHAPTER F

Faster Attention

There are known inequalities between distances. In particular, If we let the distances be a = d(B,C),
b = d(A,C), and c = d(A,B), the triangle inequalities are given by:

c ≤ a+ b (F.1)
b ≤ a+ c (F.2)
a ≤ b+ c (F.3)

They imply |a − c| ≤ b ≤ a + c. We have shown that normalized attention can be expressed in terms of
distances. Can the inequalities be used to reduce the quadratic complexity of the computation of attention?

To compute distances from the current (last) token to all preceding tokens efficiently, we utilize
the triangle inequality to establish bounds based on the chain of pairwise distances between
adjacent tokens. This approach leverages the metric properties of the embedding space to avoid
the redundant O(N2) dot-product computations typically required by self-attention [195].

F.1 The Adjacency Distance Chain

Consider a sequence of tokens T1, T2, . . . , Tn. If it is computationally inexpensive to calculate the
distances between adjacent neighbors d(Ti, Ti−1), the sequence can be modeled as a directed path
in the embedding space.

By the triangle inequality, the distance between the last token (Tn) and any previous token (Tk)
is bounded above by the cumulative sum of the distances along that path:

d(Tn, Tk) ≤
n∑

i=k+1
d(Ti, Ti−1) (F.4)

F.2 Utilizing the Lower Bound for Pruning

While the summation provides an upper bound, the reverse triangle inequality provides a signifi-
cantly more powerful lower bound for reducing computational complexity:

d(Tn, Tk) ≥ |d(Tn, Tn−1)− d(Tk, Tn−1)| (F.5)

218

F.3. FORMAL CONSTRAINT: THE METRIC CONTINUITY HYPOTHESIS 219

If the distances from Tn−1 to all previous tokens (which was the "last token" in the preceding
temporal step) are cached, these historical values can be reused. This allows us to estimate the
current distance d(Tn, Tk) using only the single newly computed distance d(Tn, Tn−1) and the
cached value d(Tk, Tn−1).

F.3 Formal Constraint: The Metric Continuity Hypothesis

The utility of the lower bound in Eq. (F.5) depends strictly on the geometry of the token trajectory.
We formalize this dependency as the Metric Continuity Hypothesis.

Let ∆t = d(Tt, Tt−1) denote the step size of the token trajectory at time t. The tightness of the
bound is governed by the magnitude of ∆t relative to the global distances in the embedding space.

• Case 1: Smooth Trajectory (Small ∆n). If ∆n → 0, then Tn ≈ Tn−1, and consequently
d(Tn, Tk) ≈ d(Tn−1, Tk). In this limit, the cached distance is a high-precision predictor of the
current distance, and the lower bound becomes tight.

• Case 2: Discontinuous Trajectory (Large ∆n). If the current token jumps significantly far
from its predecessor (e.g., a topic switch or low semantic coherence), ∆n is large. This loosens
the bound |d(Tn, Tn−1)− d(Tk, Tn−1)|, potentially driving it to zero.

Condition for Efficiency. For the recursive bounding strategy to achieve sub-quadratic complexity,
the embedding function ϕ(·) must satisfy a local smoothness constraint such that:

Et[d(Tt, Tt−1)]≪ Ei,j [d(Ti, Tj)] (F.6)

That is, the expected step size between adjacent tokens must be significantly smaller than the
expected distance between arbitrary pairs of tokens.

F.4 Experimental Verification

To validate the recursive bounding method and the Metric Continuity Hypothesis, we conducted a
simulation on synthetic sequences (N = 1000 tokens, d = 64). We compared two distinct regimes:

1. Correlated Random Walk: Tt = Tt−1 + ϵ, simulating a smooth semantic trajectory where
adjacent tokens are metrically close.

2. Independent (Uncorrelated): Tt ∼ N (0, I), simulating a "jumpy" sequence with no local
metric structure.

The results, summarized in Table F.1, confirm the hypothesis.

Regime Step Size ∆ Sparsity (Pruned) Recall (@Top-10)

Random Walk (Smooth) Low 92.4% 99.1%
Independent (Jumpy) High 15.1% 42.0%

Table F.1: Impact of metric continuity on pruning efficiency. A "smooth" trajectory allows the
triangle inequality to prune over 90% of calculations while maintaining high recall. Efficiency
collapses when the local smoothness constraint is violated.

220 APPENDIX F. FASTER ATTENTION

The data demonstrate a sharp phase transition. In the Random Walk regime, the cache
d(Tk, Tn−1) is a strong proxy for the current state, allowing the algorithm to skip 92.4% of the
dot products with negligible loss in accuracy. Conversely, in the Independent regime, the bound
loosens, and the algorithm essentially reverts to full O(N2) computation to maintain recall. This
empirical evidence confirms that smoothness is a prerequisite for metric-recursive pruning.

F.5 Proposed Algorithm: Recursive Distance Bounding

Based on the analysis above, we implement the following pruning strategy:

1. Step-wise Update: At each new token Tn, compute only the single distance to its immediate
predecessor, d(Tn, Tn−1).

2. Bound Estimation: For all k < n − 1, estimate the lower bound Ln,k using cached values
from the previous step:

Ln,k = |d(Tn, Tn−1)− d(Tk, Tn−1)| (F.7)

3. Conditional Computation:

• If Ln,k > threshold, the resulting attention weight is guaranteed to be near zero due to
the exponential decay of the softmax kernel. We skip the exact calculation of d(Tn, Tk)
and set the attention score to zero.

• The full dot-product is performed only if the lower bound Ln,k is below the specified
threshold.

F.6 Comparison with Global Clustering and Hashing Approaches

To situate the proposed recursive distance bounding within the broader landscape of efficient
attention, we contrast our approach with the Reformer [98] and the Routing Transformer [168].
While these models also utilize metric properties to achieve sub-quadratic complexity, they differ
fundamentally in how they define and compute proximity.

F.6.1 LSH and k-means Clustering

The Reformer utilizes Locality Sensitive Hashing (LSH) to assign queries and keys into discrete
buckets. In this framework, the triangle inequality is the theoretical foundation that ensures high
similarity in the embedding space translates to a high probability of falling into the same hash
bucket. Similarly, the Routing Transformer employs global k-means clustering to route attention
toward the most relevant centroids [42].

F.6.2 Global vs. Recursive Local Metrics

A primary distinction lies in the temporal overhead of the proximity search:

• Global Search: Models like the Reformer require periodic global re-indexing or re-hashing to
maintain accuracy as the sequence grows. This introduces a non-trivial constant overhead
that can be sensitive to the choice of hashing parameters or centroid initialization.

F.6. COMPARISON WITH GLOBAL CLUSTERING AND HASHING APPROACHES 221

• Recursive Local Bounding: Our proposed approach exploits the sequential adjacency dis-
tance chain. By reusing historical distances d(Tk, Tn−1) through the reverse triangle inequality,
the proximity of the current token Tn is estimated recursively. This avoids global re-clustering
and relies purely on a single scalar update per token: Ln,k = |d(Tn, Tn−1)− d(Tk, Tn−1)|.

F.6.3 Summary of Complexity Drivers

By substituting expensive d-dimensional dot products with scalar subtractions based on sequential
adjacency, our approach seeks to maintain sub-quadratic efficiency while staying strictly grounded
in the local metric path of the token sequence.

CHAPTER G

Appendix: The Hippocampal Scaffold
and Compositional Sparsity

What is the relation between memory models of the hippocampus and compositional sparsity? This chapter
argues that the hippocampus acts as a “scaffold builder,” creating a sparse, structured graph of pointers that
organizes raw experiences into a compositionally sparse format.

G.1 Introduction: The Memory Palace

To understand the mathematical definitions of xt, yt, and zt, let us use an ancient mnemonic device:
the Memory Palace. Imagine an agent walking through a house. At each time step t, the experience
has three components:

• The Latent Structure (zt): The abstract relational state (e.g., “Kitchen”). This is the scaffold.

• The Sensory Input (xt): High-dimensional, noisy data (e.g., pixel views of tiles).

• The Episodic Target (yt): The specific content to be stored (e.g., “Keys are on the counter”).

G.2 The Variables of Experience

We formalize the data stream as a sequence of tuples et = (xt, yt, zt).

Latent State zt ∈ Z : Hidden ground truth of the agent’s position. Transitions are sparse.

Observable Input xt ∈ X : Sensory features. xt = f(zt) + ϵ, where ϵ is noise.

Target Content yt ∈ Y : Information to be associated with the state.

G.3 Mathematical Foundations of the Hippocampal Index

The hippocampus (specifically the Dentate Gyrus) transforms correlated sensory data into orthogo-
nal addresses.

222

G.4. BUILDING THE SCAFFOLD GRAPH 223

G.3.1 The Top-K Projection Mechanism

Let g(xt, zt) ∈ Rd be a joint embedding of sensory and latent features. The index ht is generated via
a high-dimensional expansion followed by a competitive nonlinearity:

ht = TopK(R · g(xt, zt) + b) (G.1)

Where:

• R ∈ RN×d is a fixed random matrix with N ≫ d.

• TopK(·) is a function that sets all elements to 0 except for the k largest values, enforcing
∥ht∥0 = k.

G.3.2 Locality-Sensitive Hashing (LSH)

This mechanism functions as Locality-Sensitive Hashing. Per the Johnson-Lindenstrauss lemma,
the random projection R approximately preserves the geometry of the input space:

E[⟨Ru,Rv⟩] ≈ ⟨u, v⟩ (G.2)

The TopK operation then acts as a hard threshold for pattern separation. If the similarity between
two states zt and zs is below a threshold τ , the resulting indices become orthogonal:

⟨ht, hs⟩ = 0 if sim(gt, gs) < τ (G.3)

This orthogonality prevents catastrophic interference in the synaptic weights.

G.4 Building the Scaffold Graph

The sequence of indices {ht} defines a graph G = (H, E).

(ht, ht+1) ∈ E ⇐⇒ Transition observed in Z (G.4)

The transition function learned by the cortex, Gsparse, is defined by the adjacency matrix of this
graph.

G.5 Connection to Existing Theories

This framework synthesizes several classical models:

• Complementary Learning Systems (CLS): Explains the need for ht to be sparse to avoid
interference.

• Tolman-Eichenbaum Machine (TEM): Aligns with the separation of zt (structure) and xt

(sensory).

• Successor Representation (SR): The scaffold graph G is a discrete realization of the predictive
SR map.

224APPENDIX G. APPENDIX: THE HIPPOCAMPAL SCAFFOLD AND COMPOSITIONAL SPARSITY

G.6 Conclusion

By mapping the world onto a sparse topological scaffold, the hippocampus “diagonalizes” com-
plex environmental dynamics. This transforms an intractable dense learning problem into a
compositionally sparse graph-traversal problem that the cortex can internalize through systems
consolidation.

Appendix: Glossary of Core Concepts

This glossary collects key terms and concepts introduced throughout the book. Entries are intentionally
concise and technical; references point to chapters where the concept is developed in detail.

A

Associative Memory
A memory system in which retrieval is performed by content rather than by address. Given a
cue or query, the system returns stored items that are similar to the cue under a learned or fixed
similarity measure. Classical examples include Hopfield networks and radial basis function (RBF)
networks; modern examples include attention mechanisms in transformers. Associative memory is
treated in this book as a computational primitive. (See Chaps. 1, 3)

Associative Turing Machine (ATM)
A formal model of computation introduced in this book, consisting of alternating content-addressable
reads from an associative memory and local update operations on a machine state. ATMs are shown
to be Turing-complete with polynomial overhead and provide a formal abstraction of transformer-
style computation. (See
Chap. 3)

B

Behavioral Repertoire
The set of input–output behaviors or policies a system can realize under prompting or control.
Intelligence is characterized here not by peak performance but by the width of this repertoire and
the system’s ability to deliberately restrict or reshape it. (See Chap. 30)

C

Compositionality
The property that a function or behavior can be expressed as a composition of simpler functions,
typically organized hierarchically. In learning systems, compositionality permits reuse of subfunc-
tions and enables generalization across domains. (See Chaps. 1,
4)

225

226 Glossary

Containment Principle
The hypothesis that if system A is more intelligent than system B, then the set of behaviors
realizable by B is contained within the set realizable by A. Operationally, this implies that A can
simulate B, but not vice versa. Used to define a directed hierarchy of intelligence. (See Chap. 30)

CVloo (Leave-One-Out Cross Validation)
A stability metric where the algorithm is trained on all but one data point, and error is measured on
the left-out point. In this text, specific forms of stability are shown to be sufficient for generalization,
linking CVloo directly to predictivity. (See Chap. 7)

D

Diligent Learner
A learner that improves performance by systematically accumulating competence through training,
without requiring explicit search or exploration mechanisms. The concept originates in work by
Shalev-Shwartz and Shashua and is used here to contrast diligence with creativity and exploration.
(See Chap. 30)

E

Efficient Computability
The property that a function can be computed with resources polynomial in the input size under a
standard computational model (e.g., Turing machines or Boolean circuits). In this book, efficient
computability is shown to imply sparse compositional structure in the corresponding function
representation. (See Chap. 4)

Effective Information Exponent
A quantity measuring how the effective information content of a learned representation scales
with system size or depth, used to characterize compression and generalization in compositional
architectures. (See Chaps. 7, 25)

Empirical Risk Minimization (ERM)
The standard learning principle of minimizing the average error over the training dataset. While
successful in practice, this book argues that ERM alone is insufficient to explain generalization
without invoking stability or genericity conditions. (See Chap. 7)

G

Genericity
A property of target functions or learning problems asserting that informative, low-order compo-
nents (e.g., linear or low-degree terms) are present and stable. Genericity ensures that gradient-
based optimization receives reliable signals and avoids pathological loss landscapes. (See Chaps. 7,
11)

Glossary 227

H

HyperBF / Hyper-RBF
A generalization of classical radial basis functions in which the similarity metric, prototypes, or
both are learned. In particular, replacing Euclidean distance with a learned Mahalanobis metric
yields kernels that are closely related to attention mechanisms. (See Chaps. 1, 3)

L

Large Embedding Model (LEM)
A proposed class of models extending large language models by incorporating richer latent world
representations prior to or alongside language. LEMs are intended to address limitations of purely
linguistic training by grounding prediction in learned world models. (See Chap. 29)

Loss Landscape
The function mapping model parameters to training or generalization error. The geometry of the
loss landscape—its critical points, basins, and flat directions— plays a central role in optimization
and generalization. (See Chap. 7)

M

Manifold Hypothesis
The assumption that high-dimensional data (e.g., images, text, sensory inputs) lie near low-
dimensional manifolds embedded in ambient space. In this book, the hypothesis is extended
to behavioral and semantic manifolds learned by large models. (See Chaps. 1, 30)

R

Radial Basis Function (RBF) Network
A function approximator of the form

f(x) =
∑

i

wi ϕ(∥x− µi∥),

where ϕ is a radial kernel and µi are fixed centers. RBF networks implement smooth associative
memory and serve as historical precursors to modern attention-based models. (See Chap. 1)

Random-Access Memory (RAM)
A memory model permitting constant-time access to any stored location by address. Attention
mechanisms approximate RAM-like behavior by enabling content-based access to all positions in a
sequence. (See Chaps. 1, 3)

228 Glossary

S

Simulation Distance
A metric defined between two models A and B as the asymmetry in their ability to simulate
each other’s behavior. Used to define a directed ordering of intelligence independent of static
benchmarks. (See Chap. 30)

Sparse Compositionality
The principle that meaningful functions are compositions of a small number of low-arity constituent
functions arranged in a sparse directed acyclic graph. Sparse compositionality explains why deep
architectures are both necessary and effective for learning real-world functions. (See Chaps. 1, 4)

Stability
A property of a learning algorithm wherein small changes to the training set result in small changes
to the output hypothesis. This book emphasizes stability as a necessary and sufficient condition for
generalization, often replacing classical uniform convergence bounds. (See Chap. 7)

Stepwise Learning
A learning framework where complexity is increased incrementally. In the context of diffusion and
autoregression, this refers to learning the conditional probability distribution of the next step (or
next bit) given previous steps, effectively breaking a complex joint distribution into a sequence of
simpler learning problems. (See Chap. 10)

T

Transformer
A neural architecture based on stacked self-attention and feedforward blocks. Transformers
implement large-scale associative memory with learned similarity metrics and are central to
modern language and vision models. (See Chaps. 1, 3)

W

World Simulator
An internal model that predicts the evolution of latent states corresponding to the external world.
Distinguished here from purely linguistic predictors, world simulators are proposed as a missing
component for robust intelligence. (See Chaps. 24, 29)

Notation and Mathematical Conventions

This appendix provides a reference for the specific mathematical notation and conventions used
throughout the text, particularly regarding compositional functions, statistical complexity measures,
and group-theoretic invariance.

Computability and Compositional Sparsity

The following notation is used primarily in Chapters 4, 8, and 21 to bridge Turing computability
with deep learning architectures.

CSk(s, L) Compositionally Sparse Function Class.
The set of functions f that can be computed by a directed acyclic graph (DAG) such that:

• The graph has total size (number of nodes) at most s.

• The depth (longest path from input to output) is at most L.

• Every internal node has a fan-in (arity) of at most k.

This class formally captures the structure of efficiently computable functions.

Gn Discrete Grid Domain.
Defined as Gn := {0, 1, . . . , 2n}d/2n. It represents the domain of inputs discretized to n bits of
precision, used to prove exact equivalence between Turing Machines and ReLU networks
(Chapter 4).

DAG Directed Acyclic Graph.
The graph theoretical representation of a computation where nodes represent constituent
functions and edges represent data flow.

d∗ Maximal Local Arity.
Used in Chapter 21. It denotes the maximum fan-in required for the nodes in a compiled
DAG representation of a finite-horizon physical system. Approximation rates scale with d∗

rather than the ambient dimension d.

Complexity Measures

These symbols are used in Chapters 12 and 13 to quantify generalization and capacity control.

229

230 Glossary

RS(F) Empirical Rademacher Complexity.
Measures the ability of a function class F to fit random noise on a fixed dataset S =
{x1, . . . , xm}. Defined as:

RS(F) = Eσ

[
sup
f∈F

1
m

m∑
i=1

σif(xi)
]

where σi ∈ {−1,+1} are independent Rademacher variables.

H(ϵ,F , ∥ · ∥) Metric Entropy.
The logarithm of the covering number N (ϵ,F , ∥ · ∥). It represents the number of bits needed
to describe an element of F to within precision ϵ.

CVloo Leave-One-Out Cross-Validation Stability.
Defined in Appendix A. A measure of algorithmic stability where the expected error difference
is bounded when one training point is removed. This book establishes it as necessary and
sufficient for the consistency of ERM.

Group Theory and Invariance

The following notation appears in Chapters 6 and 22 regarding Genericity and Invariant Represen-
tations.

G Compact Group.
A group acting unitarily on the data space (e.g., rotations, translations). In the context of
representation learning, we assume G ⊂ O(d).

dg Haar Measure.
The unique translation-invariant probability measure on a compact group G. Used to define
group averages (orbits).

µt(I) Orbit Distribution (or CDF).
The probability distribution of the inner products ⟨I, gt⟩ as g varies overG. In Chapter 22, this
is often represented by its Cumulative Distribution Function (CDF), providing a signature
that is invariant to the transformation of the input I by elements of G.

Nη Group η-Net.
A finite subset of the group G such that every element g ∈ G is within distance η of some
element in Nη. The size of this net, |NG(η)|, enters the complexity bounds for invariant
embeddings.

References

[1] R. Abraham and J. Robbin. Transversal Mappings and Flows. Benjamin, 1967.

[2] S. Ainsworth, A. Gromov, and A. Bietti. “GIT: Geometric Information in Transformers”. In:
arXiv preprint arXiv:2305.14396 (2023).

[3] Z. Allen-Zhu, Y. Li, and Y. Liang. “Learning and generalization in overparameterized neural
networks, going beyond two layers”. In: Advances in Neural Information Processing Systems.
Vol. 32. 2019.

[4] F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, and T. Poggio. Magic Materials: a the-
ory of deep hierarchical architectures for learning sensory representations. Tech. rep. Massachusetts
Institute of Technology, Center for Brains, Minds and Machines (CBMM), 2013.

[5] F. Anselmi, L. Rosasco, and T. Poggio. “On Invariance and Selectivity in Representation
Learning”. In: Information and Inference: A Journal of the IMA 5.2 (2016), pp. 134–158. DOI:
10.1093/imaiai/iaw009.

[6] S. M. Anstis. “A chart demonstrating variations in acuity with retinal position”. In: Vision
Research 14.7 (1974), pp. 589–592.

[7] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 1999.

[8] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[9] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. “Stronger generalization bounds for deep nets
via a compression approach”. In: International Conference on Machine Learning. PMLR. 2018,
pp. 254–263.

[10] A. R. Barron. “Universal approximation bounds for superpositions of a sigmoidal function”.
In: IEEE Transactions on Information Theory 39.3 (1993), pp. 930–945.

[11] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. “Spectrally-normalized margin bounds for
neural networks”. In: Advances in Neural Information Processing Systems. Vol. 30. 2017.

[12] P. L. Bartlett and S. Mendelson. “Rademacher and Gaussian complexities: Risk bounds and
structural results”. In: Journal of Machine Learning Research 3 (2002), pp. 463–482.

[13] J. Bates. Computing 10,000x More Efficiently. Tech. rep. Singular Computing Technical Whitepa-
per, 2010.

[14] J. Bates. “Processor with Approximate Arithmetic Units”. 8,407,273. 2013.

[15] J. Bates and A. Bates. “Toward Lattice QCD on Billion Core Approximate Computers”. In:
arXiv preprint arXiv:2010.15973 (2020).

231

https://doi.org/10.1093/imaiai/iaw009

232 REFERENCES

[16] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. “Interaction networks for learning about
objects, relations and physics”. In: Advances in Neural Information Processing Systems. Vol. 29.
2016.

[17] J. Baxter. “A model of inductive bias learning”. In: Journal of Artificial Intelligence Research 12
(2000), pp. 149–198.

[18] Y. Bengio, A. Courville, and P. Vincent. “Representation learning: A review and new perspec-
tives”. In: IEEE transactions on pattern analysis and machine intelligence 35.8 (2013), pp. 1798–
1828.

[19] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, and Z. Lin. “Towards biologically plausible
deep learning”. In: arXiv preprint arXiv:1502.04156 (2015).

[20] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. “Curriculum learning”. In: Proceedings
of the 26th annual international conference on machine learning. 2009, pp. 41–48.

[21] N. Bottman, Y. Cooper, and A. Lerario. “How regularization affects the geometry of loss
functions”. In: arXiv preprint arXiv:2307.15744 (2023).

[22] H. Bouma. “Interaction Effects in Parafoveal Letter Recognition”. In: Nature 226.5241 (1970),
pp. 177–178.

[23] O. Bousquet and A. Elisseeff. “Stability and Generalization”. In: Journal of Machine Learning
Research 2 (Mar. 2002), pp. 499–526.

[24] D. S. Broomhead and D. Lowe. “Multivariable functional interpolation and adaptive net-
works”. In: Complex Systems 2.3 (1988), pp. 321–355.

[25] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P.
Shyam, G. Sastry, A. Askell, et al. “Language Models are Few-Shot Learners”. In: Advances
in Neural Information Processing Systems. Vol. 33. 2020, pp. 1877–1901.

[26] C. Burns, P. Izmailov, J. H. Kirchner, B. Baker, L. Gao, L. Aschenbrenner, Y. Chen, A. Ecoffet,
M. Joglekar, J. Leike, et al. Weak-to-strong generalization: Eliciting strong capabilities with weak
supervision. Tech. rep. OpenAI, 2023.

[27] R. Caruana. “Multitask learning”. In: Machine learning 28 (1997), pp. 41–75.

[28] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L.
Sagun, and R. Zecchina. “Entropy-SGD: Biasing Gradient Descent into Wide Valleys”. In:
International Conference on Learning Representations. 2017.

[29] H. Chen, J. Yuan, C. Fu, and X. Chen. “Lossy Image Compression with Conditional Diffusion
Models”. In: arXiv preprint arXiv:2306.00000 (2023).

[30] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks”. In: Proceedings of the 43rd Annual
International Symposium on Computer Architecture. 2016, pp. 367–379.

[31] R. Child, S. Gray, A. Radford, and I. Sutskever. “Generating long sequences with sparse
transformers”. In: arXiv preprint arXiv:1904.10509 (2019).

[32] M. Chistiakova, N. M. Bannon, M. Bazhenov, and M. Volgushev. “Heterosynaptic plasticity:
multiple mechanisms and multiple roles”. In: The Neuroscientist 20.5 (2014), pp. 483–498.

[33] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J.
Davis, A. Mohiuddin, L. Kaiser, et al. “Rethinking Attention with Performers”. In: Interna-
tional Conference on Learning Representations. 2021.

REFERENCES 233

[34] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. “What Does BERT Look At? An
Analysis of BERT’s Attention”. In: arXiv preprint arXiv:1906.04341 (2019).

[35] S. A. Cook. “The complexity of theorem-proving procedures”. In: Proceedings of the third
annual ACM symposium on Theory of computing. 1971, pp. 151–158.

[36] Y. Cooper. “The loss landscape of over-parameterized neural networks”. In: arXiv preprint
arXiv:1804.10200 (2018).

[37] A. Cowey and E. T. Rolls. “Human cortical magnification factor and its relation to visual
acuity”. In: Experimental Brain Research 21.5 (1974), pp. 447–454.

[38] F. Crick. “The recent excitement about neural networks”. In: Nature 337.6203 (1989), pp. 129–
132.

[39] Y. Dandi, L. Pesce, L. Zdeborová, and F. Krzakala. “The Computational Advantage of Depth
in Learning High-Dimensional Hierarchical Targets”. In: Advances in Neural Information
Processing Systems. Vol. 39. 2025.

[40] D. A. Danhofer, D. D’Ascenzo, R. Dubach, and T. A. Poggio. “Position: A Theory of Deep
Learning Must Include Compositional Sparsity”. In: Proceedings of the 42nd International
Conference on Machine Learning (ICML 2025). Also available as arXiv:2507.02550. 2025.

[41] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. “FlashAttention: Fast and memory-efficient
exact attention with IO-awareness”. In: Advances in Neural Information Processing Systems.
2022.

[42] L. N. Darlow, S. W. Luke, and B. Amos. “Cluster-based attention”. In: arXiv preprint
arXiv:2007.03338 (2020).

[43] T. Dettmers. “8-bit approximations for parallelism in deep learning”. In: arXiv preprint
arXiv:1511.04561 (2015).

[44] R. A. DeVore, R. Howard, and C. Micchelli. “Optimal nonlinear approximation”. In: Manuscripta
Mathematica 63.4 (1989), pp. 469–478.

[45] R. A. DeVore and G. G. Lorentz. Constructive Approximation. Vol. 303. Springer Science &
Business Media, 1993.

[46] J. J. DiCarlo, D. Zoccolan, and N. C. Rust. “How does the brain solve visual object recogni-
tion?” In: Neuron 73.3 (2012), pp. 415–434.

[47] D.-Z. Du and F. K. Hwang. Combinatorial group testing and its applications. Vol. 12. World
Scientific, 2000.

[48] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. “Optimal rates for zero-order
convex optimization: The power of two function evaluations”. In: IEEE Transactions on
Information Theory 61.5 (2015), pp. 2788–2806.

[49] R. M. Dudley. “The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes”. In: Journal of Functional Analysis 1.3 (1967), pp. 290–330.

[50] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen,
T. Conerly, et al. “A mathematical framework for transformer circuits”. In: Transformer
Circuits Thread (2021).

[51] W. Fedus, B. Zoph, and N. Shazeer. “Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity”. In: Journal of Machine Learning Research 23.120
(2022), pp. 1–39.

234 REFERENCES

[52] I. R. Fiete, Y. Burak, and T. Brookings. “What grid cells convey about rat location”. In: Journal
of Neuroscience 28.27 (2008), pp. 6858–6871.

[53] D. J. Foster and M. A. Wilson. “Reverse replay of behavioural sequences in hippocampal
place cells during the awake state”. In: Nature 440.7084 (2006), pp. 680–683.

[54] J. Frankle and M. Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks”. In: International Conference on Learning Representations. 2019.

[55] J. Freeman and E. P. Simoncelli. “Metamers of the ventral stream”. In: Nature Neuroscience
14.9 (2011), pp. 1195–1201.

[56] K. Friston. “The free-energy principle: a unified brain theory?” In: Nature Reviews Neuro-
science 11.2 (2010), pp. 127–138.

[57] K. Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position”. In: Biological Cybernetics 36.4 (1980),
pp. 193–202.

[58] T. Galanti, L. Galanti, and I. Ben-Shaul. “Comparative Generalization Bounds for Deep
Neural Networks”. In: Transactions on Machine Learning Research (2023).

[59] T. Galanti, M. Xu, L. Galanti, and T. Poggio. “Norm-Based Generalization Bounds for Sparse
Neural Networks”. In: Advances in Neural Information Processing Systems. Vol. 36. 2023.

[60] T. Galanti, M. Xu, L. Galanti, and T. Poggio. “Norm-based generalization bounds for
sparse neural networks”. In: Advances in Neural Information Processing Systems. Vol. 36.
2023, pp. 42482–42501.

[61] Y. Gan and T. Poggio. “For HyperBFs AGOP is a greedy approximation to gradient descent”.
In: CBMM Memo 148 (2024).

[62] R. Gattass, C. G. Gross, and J. Sandell. “Visual topography of V2 in the macaque”. In: Journal
of Comparative Neurology 201.4 (1981), pp. 519–539.

[63] N. Golowich, A. Rakhlin, and O. Shamir. “Size-independent sample complexity of neural
networks”. In: Journal of Machine Learning Research (2019).

[64] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[65] A. Graves, G. Wayne, and I. Danihelka. “Neural turing machines”. In: arXiv preprint
arXiv:1410.5401 (2014).

[66] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G.
Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al. “Hybrid computing using a
neural network with dynamic external memory”. In: Nature 538.7626 (2016), pp. 471–476.

[67] A. Gu and T. Dao. “Mamba: Linear-time sequence modeling with selective state spaces”. In:
arXiv preprint arXiv:2312.00752 (2023).

[68] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
“Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning”. In:
arXiv preprint arXiv:2501.12948 (2025).

[69] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A distribution-free theory of nonparametric
regression. Vol. 1. Springer, 2002.

[70] D. Ha and J. Schmidhuber. “World models”. In: arXiv preprint arXiv:1803.10122 (2018).

REFERENCES 235

[71] S. Han, H. Mao, and W. J. Dally. “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding”. In: International Conference on
Learning Representations. 2016.

[72] N. Hansen and A. Ostermeier. “Completely derandomized self-adaptation in evolution
strategies”. In: Evolutionary Computation 9.2 (2001), pp. 159–195.

[73] L. Hardesty. The Surprising Usefulness of Sloppy Arithmetic. MIT News. Jan. 2011.

[74] G. R. Harik and D. E. Goldberg. “Linkage learning through probabilistic modeling: the
Linkage Tree GA (LTGA)”. In: IlliGAL Report No. 99010 (1999).

[75] J. Håstad. “Almost optimal lower bounds for small depth circuits”. In: Proceedings of the 18th
ACM Symposium on Theory of Computing. 1986, pp. 6–20.

[76] K. He, X. Zhang, S. Ren, and J. Sun. “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification”. In: arXiv preprint arXiv:1502.01852 (2015).

[77] D. Hendrycks and K. Gimpel. “Gaussian error linear units (GELUs)”. In: arXiv preprint
arXiv:1606.08415 (2016).

[78] G. E. Hinton, S. Osindero, and Y.-W. Teh. “A fast learning algorithm for deep belief nets”. In:
Neural computation 18.7 (2006), pp. 1527–1554.

[79] J. Ho, A. Jain, and P. Abbeel. “Denoising diffusion probabilistic models”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 6840–6851.

[80] J. Ho, A. Jain, and P. Abbeel. “Denoising diffusion probabilistic models”. In: Advances in
Neural Information Processing Systems. Vol. 33. 2020, pp. 6840–6851.

[81] S. Hochreiter and J. Schmidhuber. “Flat minima”. In: Neural Computation 9.1 (1997), pp. 1–42.

[82] A. E. Hoerl and R. W. Kennard. “Ridge regression: Biased estimation for nonorthogonal
problems”. In: Technometrics 12.1 (1970), pp. 55–67.

[83] E. Hoogeboom, T. Salmona, J. Peters, and M. Welling. “Discrete Diffusion Models for
Extreme Image Compression”. In: Advances in Neural Information Processing Systems. 2023.

[84] J. J. Hopfield. “Neural networks and physical systems with emergent collective compu-
tational abilities”. In: Proceedings of the national academy of sciences 79.8 (1982), pp. 2554–
2558.

[85] J. Hossain, A. Z. Faridee, N. Roy, et al. “VIVAR: Learning View-Invariant Embedding for
Video Action Recognition”. In: ICVIP. 2025.

[86] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. “LoRA:
Low-Rank Adaptation of Large Language Models”. In: International Conference on Learning
Representations. 2022.

[87] D. H. Hubel and T. N. Wiesel. “Uniformity of monkey striate cortex: a parallel relationship
between field size, scatter, and magnification factor”. In: Journal of Comparative Neurology
158.3 (1974), pp. 295–305.

[88] S. Hutter. “The scaling hypothesis: how the economy of scale drives deep learning progress”.
In: Distill (2021).

[89] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: International Conference on Machine Learning. 2015,
pp. 448–456.

236 REFERENCES

[90] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, et al. “Population based training of neural networks”.
In: arXiv preprint arXiv:1711.09846 (2017).

[91] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, et al. “In-datacenter performance analysis of a tensor processing
unit”. In: Proceedings of the 44th Annual International Symposium on Computer Architecture.
2017, pp. 1–12.

[92] P. Kanerva. Sparse distributed memory. MIT press, 1988.

[93] P. Kanerva. “Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors”. In: Cognitive computation 1 (2009),
pp. 139–159.

[94] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei. “Scaling laws for neural language models”. In: arXiv preprint
arXiv:2001.08361 (2020).

[95] N. Kashtan and U. Alon. “Spontaneous evolution of modularity and network motifs”. In:
Proceedings of the National Academy of Sciences 102.39 (2005), pp. 13773–13778.

[96] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. “On Large-
Batch Training for Deep Learning: Generalization Gap and Sharp Minima”. In: International
Conference on Learning Representations. 2017.

[97] I. Khemakhem, D. Kingma, R. Monti, and A. Hyvarinen. “Variational autoencoders and
nonlinear ICA: A unifying framework”. In: International Conference on Artificial Intelligence
and Statistics (2020), pp. 2207–2217.

[98] N. Kitaev, Ł. Kaiser, and A. Levskaya. “Reformer: The efficient transformer”. In: International
Conference on Learning Representations. 2020.

[99] T. Kohonen. “Correlation matrix memories”. In: IEEE Transactions on Computers 100.4 (1972),
pp. 353–359.

[100] A. N. Kolmogorov. “On tables of random numbers”. In: Sankhyā: The Indian Journal of
Statistics, Series A 25.4 (1963), pp. 369–376.

[101] V. Koltchinskii. “Rademacher penalties and structural risk minimization”. In: IEEE Transac-
tions on Information Theory 47.5 (2001), pp. 1902–1914.

[102] R. Krizhanovsky and V. Krizhanovsky. “Mesh and torus computer architectures for data-
parallel computations”. In: Parallel Computing 74 (2018), pp. 1–13.

[103] A. Krogh and J. A. Hertz. “A simple weight decay can improve generalization”. In: Advances
in Neural Information Processing Systems. Vol. 4. 1991.

[104] H.-T. Kung. “Why systolic architectures?” In: Computer 15.1 (1982), pp. 37–46.

[105] B. S. Landman and R. L. Russo. “On a pin versus block relationship for partitions of logic
graphs”. In: IEEE Transactions on Computers 100.12 (1971), pp. 1469–1479.

[106] L. Le Cam. Asymptotic Methods in Statistical Decision Theory. Springer Science & Business
Media, 2012.

[107] Y. LeCun. “A path towards autonomous machine intelligence version 0.9.2, 2022-06-27”. In:
Open Review 62 (2022).

REFERENCES 237

[108] S. Legg and M. Hutter. “Universal intelligence: A definition of machine intelligence”. In:
Minds and Machines 17.4 (2007), pp. 391–444.

[109] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. “Visualizing the Loss Landscape of
Neural Nets”. In: Advances in Neural Information Processing Systems. Vol. 31. 2018.

[110] Q. Liao, L. Ziyin, Y. Gan, B. Cheung, M. Harnett, and T. Poggio. “Self-assembly of a biologi-
cally plausible learning circuit”. In: arXiv preprint arXiv:2412.20018 (2024).

[111] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. “Random synaptic feedback
weights support error backpropagation for deep learning”. In: Nature Communications 7.1
(2016), pp. 1–10.

[112] H. W. Lin and M. Tegmark. “Why does deep and cheap learning work so well?” In: Journal
of Statistical Physics 184.1 (2021), pp. 1–45.

[113] T. Lindeberg. Scale-space theory in computer vision. Vol. 256. Springer Science & Business
Media, 1994.

[114] Y. Liu, K. Chen, Z. Chen, and S. Chang. “DMVC: Diffusion Models for Vector-Quantized
Image Compression”. In: arXiv preprint arXiv:2306.00000 (2023).

[115] N. K. Logothetis, J. Pauls, H. H. Bülthoff, and T. Poggio. “View-dependent object recognition
by monkeys”. In: Current Biology 4.5 (1994), pp. 401–414.

[116] N. K. Logothetis, J. Pauls, and T. Poggio. “Shape representation in the inferior temporal
cortex of monkeys”. In: Current Biology 5.5 (1995), pp. 552–563.

[117] E. Malach. “Auto-regressive next-token predictors are universal learners”. In: arXiv preprint
arXiv:2309.06979 (2023).

[118] E. Malach, D. Rohatgi, G. Yehudai, and S. Shalev-Shwartz. “Autoregressive next-token
predictors are universal learners”. In: arXiv preprint arXiv:2309.06979 (2023).

[119] E. Malach, G. Yehudai, S. Shalev-Shwartz, and O. Shamir. “Proving the Lottery Ticket
Hypothesis: Pruning is All You Need”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 6682–6691.

[120] S. Mandt, M. D. Hoffman, and D. M. Blei. “Stochastic gradient descent as approximate
Bayesian inference”. In: Journal of Machine Learning Research 18.1 (2017), pp. 4873–4907.

[121] D. Marr. “Simple memory: a theory for archicortex”. In: Philosophical Transactions of the Royal
Society of London. Series B, Biological Sciences 262.841 (1971), pp. 23–81.

[122] D. Marr, T. Poggio, and E. Hildreth. “Smallest channel in early human vision”. In: Journal of
the Optical Society of America 70.7 (1980), pp. 868–870.

[123] C. H. Martin and M. W. Mahoney. “Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning”. In: Journal of Machine
Learning Research 22.165 (2021), pp. 1–73.

[124] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly. “Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures
of connectionist models of learning and memory”. In: Psychological Review 102.3 (1995),
p. 419.

[125] H. Mhaskar and T. Poggio. “Deep vs. shallow networks: An approximation theory perspec-
tive”. In: Analysis and Applications (2016), pp. 829–848.

238 REFERENCES

[126] H. N. Mhaskar. “Neural networks for optimal approximation of smooth and analytic
functions”. In: Neural Computation 8.1 (1996), pp. 164–177.

[127] H. N. Mhaskar and C. A. Micchelli. “Approximation by superposition of sigmoidal and
radial basis functions”. In: Advances in Applied Mathematics 13.3 (1992), pp. 350–373.

[128] H. N. Mhaskar and T. Poggio. “Deep vs. shallow networks: An approximation theory
perspective”. In: Analysis and Applications 14.06 (2016), pp. 829–848.

[129] P. Michel, O. Levy, and G. Neubig. “Are Sixteen Heads Really Better than One?” In: Advances
in Neural Information Processing Systems. Vol. 32. 2019.

[130] P. Micikevicius, S. Narayanaswami, M. Abdelfattah, et al. “Mixed Precision Training”. In:
International Conference on Learning Representations. 2018.

[131] M. Mitchell, S. Forrest, and J. H. Holland. “The Royal Road for genetic algorithms”. In:
Proceedings of the first european conference on artificial life (1992).

[132] S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. “Learning theory: stability is sufficient for
generalization and necessary and sufficient for consistency of empirical risk minimization”.
In: Advances in Computational Mathematics 25.1 (2006), pp. 161–193.

[133] R. Munos. “From bandits to Monte-Carlo Tree Search: The optimistic principle applied to
optimization and planning”. In: Foundations and Trends® in Machine Learning. 2014.

[134] Y. Nesterov and V. Spokoiny. “Random gradient-free minimization of convex functions”. In:
Foundations of Computational Mathematics 17 (2017), pp. 527–566.

[135] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. “Exploring Generalization in
Deep Learning”. In: Advances in Neural Information Processing Systems. Vol. 30. 2017.

[136] B. Neyshabur, S. Bhojanapalli, and N. Srebro. “A PAC-Bayesian approach to spectrally-
normalized margin bounds for neural networks”. In: arXiv preprint arXiv:1707.09564 (2017).

[137] B. Neyshabur, R. Tomioka, and N. Srebro. “Norm-based capacity control in neural networks”.
In: Conference on Learning Theory. 2015, pp. 1376–1401.

[138] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner. “Intrinsic motivation systems for autonomous
mental development”. In: IEEE transactions on evolutionary computation 11.2 (2007), pp. 265–
286.

[139] G. Palm. “On associative memory”. In: Biological Cybernetics 36.1 (1980), pp. 19–31.

[140] V. Papyan, X. Y. Han, and D. L. Donoho. “Prevalence of neural collapse during the terminal
phase of deep learning training”. In: Proceedings of the National Academy of Sciences 117.40
(2020), pp. 24652–24663.

[141] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. “Curiosity-driven exploration by self-
supervised prediction”. In: International Conference on Machine Learning. PMLR. 2017, pp. 2778–
2787.

[142] M. Pelikan, D. E. Goldberg, and F. Lobo. “A survey of optimization by building and using
probabilistic models”. In: Computational optimization and applications 21.1 (2002), pp. 5–20.

[143] J. Pennington, S. Schoenholz, and S. Ganguli. “Resurrecting the sigmoid in deep learn-
ing through dynamical isometry: theory and practice”. In: Advances in Neural Information
Processing Systems. Vol. 30. 2017.

[144] J. Pestaña, H. König, and A. Lucchi. “Generative Compression Using Diffusion Models”. In:
ICLR Workshop on Deep Generative Models. 2023.

REFERENCES 239

[145] T. A. Plate. “Holographic reduced representations”. In: IEEE Transactions on Neural Networks
6.3 (1995), pp. 623–641.

[146] T. Poggio. “On optimal nonlinear associative recall”. In: Biological Cybernetics 19.4 (1975),
pp. 201–209.

[147] T. Poggio et al. “Self-Assembly of a Biologically Plausible Learning Circuit”. In: CBMM
Memo 152 (2024).

[148] T. Poggio. On Efficiently Computable Functions, Deep Networks, and Sparse Compositionality.
Preprint. CBMM Memo, 2025.

[149] T. Poggio, A. Banburski, and Q. Liao. “The theory of deep learning: an overview”. In: arXiv
preprint arXiv:1706.08845 (2017).

[150] T. Poggio and collaborators. On Efficiently Computable Functions, Deep Networks, and Sparse
Compositionality. Tech. rep. 072. Center for Brains, Minds and Machines (CBMM), 2025.

[151] T. Poggio and S. Edelman. “A network that learns to recognize three-dimensional objects”.
In: Nature 343.6255 (1990), pp. 263–266.

[152] T. Poggio and M. Fraser. “Compositional sparsity of learnable functions”. In: Bulletin of the
American Mathematical Society 61.3 (2024), pp. 438–456.

[153] T. Poggio and Y. Gan. “A Homogeneous Transformer Architecture”. In: CBMM Memo 143
(2023).

[154] T. Poggio and F. Girosi. “Networks for approximation and learning”. In: Proceedings of the
IEEE 78.9 (1990), pp. 1481–1497.

[155] T. Poggio and Q. Liao. “Theory II: Deep learning and optimization”. In: Bulletin of the Polish
Academy of Sciences: Technical Sciences 66.6 (2018). Also available as CBMM Memo No. 066,
pp. 775–787.

[156] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. “Why and when can deep-but
not shallow-networks avoid the curse of dimensionality: A review”. In: International Journal
of Automation and Computing 14.5 (2017), pp. 503–519.

[157] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. “Why and when can deep-
but not shallow-networks avoid the curse of dimensionality: A review”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376.2140
(2018), p. 20170246.

[158] T. Poggio, J. Mutch, and L. Isik. “Computational role of eccentricity dependent cortical
magnification”. In: arXiv preprint arXiv:1406.1770 (2014). CBMM Memo No. 017.

[159] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. “General conditions for predictivity in
learning theory”. In: Nature 428.6981 (2004), pp. 419–422.

[160] T. A. Poggio and F. Anselmi. Visual Cortex and Deep Networks: Learning Invariant Representa-
tions. Cambridge, MA: MIT Press, 2016. ISBN: 9780262034722.

[161] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. “Exponential expressivity in
deep neural networks through transient chaos”. In: Advances in Neural Information Processing
Systems. 2016, pp. 3360–3368.

[162] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. “Language models are
unsupervised multitask learners”. In: OpenAI blog 1.8 (2019), p. 9.

240 REFERENCES

[163] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T. Adler, L. Gruber, M. Holzleitner,
M. Pavlović, G. K. Sandve, et al. “Hopfield Networks is All You Need”. In: International
Conference on Learning Representations. 2021.

[164] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. “Regularized evolution for image classifier
architecture search”. In: Proceedings of the aaai conference on artificial intelligence. Vol. 33. 01.
2019, pp. 4780–4789.

[165] N. Reimers and I. Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. 2019, pp. 3982–3992.

[166] M. Riesenhuber and T. Poggio. “Hierarchical models of object recognition in cortex”. In:
Nature Neuroscience 2.11 (1999), pp. 1019–1025.

[167] G. Roeder, L. Metz, and D. P. Kingma. “On Linear Identifiability of Learned Representations”.
In: International Conference on Machine Learning. 2021, pp. 9030–9039.

[168] A. Roy, M. Saffar, A. Vaswani, and D. Grangier. “Efficient content-based sparse attention
with routing transformers”. In: Transactions of the Association for Computational Linguistics 8
(2020), pp. 53–67.

[169] T. Salimans and D. P. Kingma. “Weight normalization: A simple reparameterization to
accelerate training of deep neural networks”. In: arXiv preprint arXiv:1602.07868 (2016).

[170] P. G. Schyns and F. Gosselin. “Diagnostic Use of Scale Information for Componential and
Holistic Recognition”. In: Perception of Faces, Objects, and Scenes. Ed. by M. A. Peterson and
G. Rhodes. Oxford University Press, 2003, pp. 120–145.

[171] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge University Press, 2014.

[172] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge University Press, 2014.

[173] S. Shalev-Shwartz and A. Shashua. On the diligence of learning: A formal perspective on system-
atic generalization. Tech. rep. Hebrew University of Jerusalem, 2016.

[174] M. Shanahan, K. McDonell, and L. Reynolds. “Role play with large language models”. In:
Nature 623.7987 (2023), pp. 493–498.

[175] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. “Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer”. In: arXiv
preprint arXiv:1701.06538 (2017).

[176] H. T. Siegelmann and E. D. Sontag. “On the computational power of neural networks”. In:
Journal of computer and system sciences 50.1 (1995), pp. 132–150.

[177] M. Sipser. Introduction to the Theory of Computation. 2nd. Thomson Course Technology, 2006.

[178] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. “Deep unsupervised
learning using nonequilibrium thermodynamics”. In: Proceedings of the 32nd International
Conference on Machine Learning. 2015, pp. 2256–2265.

[179] D. A. Spielman and S.-H. Teng. “Smoothed analysis of algorithms: Why the simplex algo-
rithm usually takes polynomial time”. In: Journal of the ACM 51.3 (2004), pp. 385–463.

[180] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout: A
simple way to prevent neural networks from overfitting”. In: Journal of Machine Learning
Research 15.1 (2014), pp. 1929–1958.

REFERENCES 241

[181] C. Tao, T. Shen, S. Gao, et al. “LLMs are Also Effective Embedding Models: An In-depth
Overview”. In: arXiv preprint arXiv:2412.12591v2 (2025).

[182] M. Telgarsky. “Benefits of depth in neural networks”. In: Conference on Learning Theory.
PMLR. 2016, pp. 1517–1539.

[183] D. Thierens and P. A. N. Bosman. “Optimal mixing evolutionary algorithms”. In: Proceedings
of the 12th annual conference on Genetic and evolutionary computation. 2010, pp. 617–624.

[184] R. Thom. “Les singularités des applications différentiables”. In: Annales de l’institut Fourier 6
(1956), pp. 43–87.

[185] S. Thorpe, D. Fize, and C. Marlot. “Speed of processing in the human visual system”. In:
Nature 381.6582 (1996), pp. 520–522.

[186] G. Toderici et al. “High Fidelity Generative Image Compression”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 1–10.

[187] Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov. “Transformer dis-
section: An unified understanding for self-attention and convolution”. In: arXiv preprint
arXiv:1908.00173 (2019).

[188] M. Tschannen, A. Gritsenko, X. Zhai, et al. “SigLIP 2: Multilingual Vision-Language Encoders
with Improved Semantic Understanding”. In: arXiv preprint arXiv:2502.14786 (2025).

[189] P. Tseng. “Coordinate descent methods”. In: Mathematical Programming 1 (2001).

[190] A. M. Turing. “Computing machinery and intelligence”. In: Mind 59.236 (1950), pp. 433–460.

[191] A. M. Turing. “On computable numbers, with an application to the Entscheidungsproblem”.
In: Proceedings of the London Mathematical Society 2.42 (1936), pp. 230–265.

[192] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[193] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[194] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.
Polosukhin. “Attention is all you need”. In: Advances in Neural Information Processing Systems.
2017, pp. 5998–6008.

[195] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.
Polosukhin. “Attention is all you need”. In: Advances in neural information processing systems
30 (2017).

[196] R. Vershynin. High-dimensional probability: An introduction with applications in data science.
Cambridge university press, 2018.

[197] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. “Analyzing Multi-Head Self-
Attention: Specialized Heads Do the Heavy Lifting”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. 2019, pp. 5797–5808.

[198] M. Wang and W. E. “On the Expressive Power of Mixture-of-Experts for Structured Complex
Tasks”. In: arXiv preprint arXiv:2505.24205 (2025).

[199] S. Watanabe. Algebraic Geometry and Statistical Learning Theory. Cambridge University Press,
2009.

[200] M. Welling and Y. W. Teh. “Bayesian Learning via Stochastic Gradient Langevin Dynamics”.
In: International Conference on Machine Learning. 2011, pp. 681–688.

[201] L. D. Whitley, S. Rana, and R. B. Heckendorn. “The HIFF function and its properties”. In:
Evolutionary Computation (1998).

242 REFERENCES

[202] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. “Natural
evolution strategies”. In: The Journal of Machine Learning Research 15.1 (2014), pp. 949–980.

[203] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. “Non-holographic associative
memory”. In: Nature 222.5197 (1969), pp. 960–962.

[204] A. P. Witkin. “Scale-space filtering”. In: International Joint Conference on Artificial Intelligence.
Vol. 83. 1983, pp. 1019–1022.

[205] S. M. Wood et al. “A Newborn Embodied Turing Test for View-Invariant Object Recognition”.
In: International Conference on Learning Representations (ICLR). 2025.

[206] M. Xu, A. Rangamani, Q. Liao, T. Galanti, and T. Poggio. “Dynamics in Deep Classifiers
Trained with the Square Loss: Normalization, Low Rank, Neural Collapse, and Generaliza-
tion Bounds”. In: Research 6 (2023), p. 0024.

[207] Z. Xu, Y. Zhang, and T. Poggio. “The Impact of Initialization on Generalization in Overpa-
rameterized Networks”. In: Journal of Machine Learning Research 25 (2024), pp. 1–40.

[208] L. Xue, M. Gao, C. Xing, et al. “ULIP: Learning a Unified Representation of Language,
Images, and Point Clouds for 3D Understanding”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2023, pp. 1179–1189.

[209] D. Yarotsky. “Error bounds for approximations with deep ReLU networks”. In: Neural
Networks 94 (2017), pp. 103–114.

[210] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep learning
requires rethinking generalization”. In: International Conference on Learning Representations.
2017.

[211] H. Zhang, P. Svirin, and S. Venkataramani. “Block floating point for deep neural networks”.
In: arXiv preprint arXiv:1909.13271 (2019).

[212] W. Zhou and G. K. Dziugaite. “Non-vacuous generalization bounds at the deepest level”.
In: Advances in Neural Information Processing Systems. Vol. 32. 2019.

	Prologue
	How to Read This Collection
	A Note on Co-Authorship
	Part I: Principles and Foundations
	Intelligence as Associative Memory
	Building a Turing Machine with Attention Heads
	Connections to Other Models
	Clarifying the Associative-Memory Lens
	HyperBF Equivalence: Attention as a Normalized HyperBF

	Multi-Head Requirements for RAM-like Computation
	On Diligence, Creativity, and Exploration
	Question: How Can Transformers Be So Consistent?
	Global Consistency from Shared Latent Geometry
	Self-Reinforcing Autoregression
	Emergent Consistency as Manifold-Constrained Recall

	Memories

	A Historical Reflection on Associative Memories
	Associative Memory as the Core of Intelligence
	Introduction
	Historical Background
	Early Heteroassociative Models
	Nonlinear Associative Recall and Polynomial Expansions
	Correlation Memories, RBFs, and HyperBFs
	Hopfield Networks as a Special Case

	Genericity as the Hidden Enabler of Associative Memories
	Evolutionary Perspective
	From Reflexes to Multi-Stage Adaptive Hierarchies

	Modern Parallels: Transformers as Associative Memories
	What Associative Memory Does—and Does Not—Explain
	Experimental Evidence from Homogeneous HyperBF Transformers

	Conclusion

	Associative Memories are Turing-Complete
	Introduction
	Model: States, Memories, Reads, and Updates
	State Space and Encodings
	Associative Memory Interface (Mprog)
	Transition Update (M1) and Query Map

	From Turing Machines to ATMs
	Embedding the Tape
	Embedding the Transition Table

	Main Theorem and Proof Sketch
	Proof Intuition

	Structural Correspondence to the Transformer
	The Memory (Mprog) and Query Map (Qmap)
	The Read Operation (read)
	The Update Function (M1)

	The Transformer as an Associative Turing Machine
	The Update Function (M1) corresponds to the Feed-Forward Network
	The Memory (Mprog) corresponds to Keys and Values
	Summary of Correspondence

	Technical Note: Why Standard RNNs Are Not Associative Turing Machines
	Autonomous RNN model
	Simulation of finite-state machines
	Turing machines restricted to a finite time horizon
	Why the time bound is essential
	Comparison with Associative Turing Machines

	Efficient Computability and Compositional Sparsity
	Perspective and Scope
	Definitions and model conventions
	Efficient computability (Boolean and real-valued)
	Computation DAGs and compositional sparsity

	Efficient computability compositional sparsity
	Boolean case
	Real-valued case: safe discrete-grid result and conditional continuous result

	Consequences and realizations
	Small circuits (tautological)
	Exact deep-ReLU realizations on discrete domains
	Sparse tabulation (lookup)
	Algebraic/ polyhedral realization

	Unifying mechanisms: a normalized-similarity read (with assumptions)
	Addressability vs. superpositional storage
	Exponential codebooks via random spherical codes
	Holographic superposition and SNR

	Concluding remarks
	Mathematical Supplement: Proofs of the Main Theorems
	Encoding of Turing Configurations
	Proof of Theorem 8 (Autoregressive Universality)
	Proof of Theorem 9 (Diffusion-Step Universality)
	Remarks and Extensions

	Technical Note: Replacing Linear Threshold Functions by Boolean Circuits
	Expressing a Turing-Machine Step as a Circuit
	Replacement in the Stepwise-Learning Framework
	Comparison with Linear Threshold Implementations
	Summary

	Optimization and Compositionality (with P. Beneventano)
	The Core Argument
	The Representation Benefit: Avoiding the Curse
	Parameter Counting

	The Optimization Challenge in End-to-End Learning
	Vanishing Gradients and Conditioning

	The Ideal Scenario: Module-wise Optimization
	The "Grey Box" vs. "Black Box"
	Curriculum Learning and Pre-training

	Sample Complexity: The Gap Between Shallow and Deep
	The Curse for Shallow Architectures
	The Blessing for Deep Compositional Networks

	Summary: The Optimization-Representation Trade-off

	Genericity and Optimization (with P. Beneventano)
	The Core Argument
	Defining Genericity: Invariance to Shifts
	General Genericity
	The Genericity Principle (Shift Invariance)

	The Mathematics of Structure Leaking
	Real-Valued Targets: Linear Footprints
	Boolean Targets: The Bias Leakage

	Theoretical Justification: Genericity and Stability
	Non-Generic Functions are Not Uniformly Stable
	Connection to Uniform Glivenko-Cantelli (uGC)

	From Genericity to Optimization Dynamics
	The Gradient Signal at Initialization
	The Optimization Hierarchy
	Sample Complexity: The Staircase vs. The Cliff

	Case Study: The Danger of Residual Fitting
	Summary

	Principles of Deep Learning
	Principle I: Sparse Compositionality
	Hierarchy follows from sparse compositionality
	Modularity and reuse of modules
	Transfer learning
	Interpretability from consistent compositionality
	Non-uniqueness of sparse decompositions

	Principle II: Genericity of Learnable Targets
	Genericity from invariance to the choice of the origin of the coordinates
	Genericity ensures good gradients for optimization

	Two independent but complementary principles
	Conclusion

	Part II: Computation and Algorithms
	Efficient Computability, Compositional Sparsity, and Self-Attention
	Preliminaries and Assumptions
	Main Results
	Theorem 2 (Compositional Approximation by Attention with Dimension-Free Rate)
	Theorem 3 (Efficient Computability Transformer Approximants)
	Theorem 4 (Margin Implies Near Top-k Sparsity)
	Theorem 5 (Low Rank Suffices for k-Ary Nodes)

	Consequences and Predictions
	Empirical Consistency
	Limitations and Open Problems
	Conclusion

	Hardware for Compositionally Sparse Computation (with J. Bates)
	The Structural Alignment Argument
	System and Numeric Model
	Mapping Compositional DAGs to 2D Meshes
	Sparse Attention on 2D Meshes
	KV-Stationary: Coarse-to-Fine Attention
	Q-Stationary: Systolic Streaming with Early Exit

	AM Quantization and Error Analysis
	Discussion: Why 2D Meshes Help
	Conclusion

	A Common Principle Underlying Diffusion Models and Transformers
	Introduction
	Preliminaries
	Stepwise Universality of Autoregressive Predictors
	Stepwise Universality of Diffusion Predictors
	Discussion: Transformers and Diffusion as Stepwise Computation
	Technical Note: Gaussian Diffusion and Noisy One-Hot Encodings
	Appendix C: Gaussian Diffusion and Noisy One-Hot Encodings
	Setup: Forward Diffusion with One-Hot Embeddings
	Recovering the Active Coordinate
	Implementing the Turing-Step Update
	Training and Composition

	Lottery Ticket and Compositionality
	Introduction
	The Geometry of Sparsity
	Approximate Lottery Ticket Theorem for Compositionally Sparse Functions
	Refinements and Empirical Connections

	Part III: Learning and Evolution
	Implicit Regularization and Bits
	The Universal Currency: Bits, Geometry, and Noise
	Kolmogorov Complexity (The Language of Bits)
	Metric Entropy (The Language of Geometry)
	Rademacher Complexity (The Language of Statistics)

	The Bridge: Dudley's Chaining Integral
	Architecture as an Entropy Compressor
	Discussion: The Interplay of Architecture and Optimization

	Multiplicative Regularization Generalizes Better (based on work with R. Dubach and M. Abdallah)
	Introduction
	Background
	Theory
	Methodology
	Results
	Discussion
	Conclusion

	Concentration of Probability in Overparametrized Networks
	Main Results
	The Geometric Lemma: Existence of Flat Minimizers
	The Dynamics Lemma: SGDL as Langevin Diffusion
	The Concentration Lemma: Flat Beats Sharp
	The Timescale Law

	Detailed Analysis
	Synthesis of Geometric and Dynamic Views
	Critical Assessment
	Summary

	A Self-Assembling Cortical Circuit for Generalized Gradient Descent (with Qianli Liao and Liu Ziyin)
	A Minimal Synaptic Motif for Cortical Learning
	The Self-Assembling Learning Rule
	Theoretical Result: Emergence of Gradient Descent
	Biological Interpretation and Predictions
	An Example Functional Implementation of SAL in Cortex

	Implications for Learning and Intelligence

	Zeroth-Order Evolutionary Post-Training for LLMs (with Y. Gan)
	Introduction
	Why ZO for LLMs?
	Historical Context and Theoretical Roots

	Zeroth-Order Gradient Estimators
	Algorithmic Forms
	Random Search
	Distribution-Based Methods: CMA-ES and NES

	Case Studies and Speculative Applications of ZO Evolution in LLMs
	Tuning Guardrails with Non-Differentiable Objectives
	Optimizing Mixture-of-Experts Dispatch
	Language Model Alignment without Differentiability
	Speculative: Meta-Controllers over Training Dynamics
	Summary of ZO-Friendly Structures

	Directed mutations and binary-search–like efficiency
	Setting and notation

	Genes to subgenes as a binary tree of traits
	Hierarchical mutation model
	Sparse-error localization via adaptive subtree queries
	Greedy hierarchical descent for additive convex loss

	Context and prior art (concise)
	Biology: hierarchical gene regulation
	Evolutionary computation: linkage and hierarchy

	Implications and extensions
	Conclusion

	LLM-Guided Learning of Boolean Functions (with D. Koplow)
	Testing Capacity: The GF(2) Benchmark
	Theoretical PAC Learnability
	Compositional Sparsity and Tool Use

	Part IV: Extensions and Speculations
	Consistency in Language Models
	Definition of Consistency
	Contextual Representations and Associative Memory Hypothesis
	Contextual Consistency Hypothesis
	Theoretical Bound
	Illustration
	Conclusion

	Learning 2D views, recognizing 3D objects: what is the structure of embeddings
	The 1994 Paradigm Shift
	Supporting Evidence: Psychophysics and Physiology
	The Geometry of the Embedding Space in Deep Networks
	Topology vs. Geometry
	Identity and Pose Disentanglement

	Compositional Sparsity and the DAG Architecture
	Modern Extensions: Multimodal Alignment and Scaling
	Unified 3D-2D-Language Embeddings
	The Embodied Turing Test

	Learning Invariant Object Representations from View Sequences

	More on Genericity Conjecture (with P. Beneventano)
	Motivation and Informal Conjecture
	Preliminaries: Orthonormal Polynomial Framework
	Information Exponent of a Scalar Function
	Teacher–Student Single-Index Models

	Genericity as a Structural Property of Functions
	Genericity via Taylor Jets
	Thom–Mather Transversality and Structural Stability
	Invariance Under Smooth Coordinate Transformations

	Deep Networks and the Effective Information Exponent
	Formal Conjecture
	Evidence and Partial Progress
	Single-Index and GLM Results
	Quadratic and Polynomial Activations
	Residual Networks and Identity Skips
	Nonlinear Attention

	Research Program and Missing Ingredients
	Outlook

	Diffusion Models, Ill-Posed Inversion, and Generative Compression
	Diffusion as a Forward Process and Ill-Posed Inversion
	Probabilistic Reverse Diffusion and Learned Scores
	Energy Landscape Viewpoint
	Inpainting and Generative Compression
	Discussion

	World Models Before Language
	Sparse Compositionality as the Structural Prior of Evolution
	World Models as Predictive State-Space Systems
	Associative Memory as a Computational Primitive
	Hippocampal Replay as Approximate Inference
	What Evolution Discovered Before Language
	Predictive Physical Inference
	Social and Causal Modeling
	Compositional Perception and Action
	Associative Memory for Episodes and Scenes

	Language as an Overlay on a Pre-Existing Architecture
	Conclusion

	The Hippocampal Scaffold and Compositional Sparsity
	Introduction: The Memory Palace
	The Variables of Experience
	The Indexing Mechanism: Pattern Separation
	Why this works

	Building the Scaffold Graph
	The Connection to Compositional Sparsity
	The Dense Trap of Sensory Learning
	The Sparse Solution via the Scaffold

	The Associative Turing Machine
	The Cortical Transfer: Systems Consolidation
	From Orthogonal Indexing to Manifold Learning
	Collapsing the Keys
	Retrieval Without the Scaffold
	The Semantic Trade-off

	A Unifying Computational Claim
	Relation to Existing Theories of the Hippocampus
	Cognitive Map Theory as Scaffold Construction
	Marr's Theory and Pattern Separation
	Indexing Theory and Pointer-Based Memory
	Complementary Learning Systems as a Change of Basis
	Successor Representations and Predictive Maps

	A Learnability Consequence of the Scaffold
	Beyond the Scaffold: Cortical Abstraction
	From Pointers to Generative Models
	The Result: Zero-Shot Navigation
	The Functional Hand-off
	Transformers as a Silicon Analog to the Hippocampal-Cortical Circuit

	Why the Cortex Is Still Needed: From Enumerated Constituents to Parametric Composition
	Constituent Functions in the Hippocampus
	What the Cortex Learns Beyond the Constituents
	A Hierarchy of Representations
	Conceptual Resolution
	Artificial Analogues of Cortical Abstraction

	Summary

	Reusable Sparse Compositionality
	The Non-Uniqueness of Composition
	The Identifiability Problem

	The Constraint of Reusability
	Formulation: Shared Modularity

	Genericity as a Selector for Modularity
	Summary: The Trinity of Learnability

	What Is Missing in LLMs?
	The Missing Foundation: World Models Before Language
	A Structural Limitation of LLMs
	From Diligence to Exploration
	The Memory Gap: From Context Windows to Turing-Efficient Memory
	The ``Memento'' Condition: Externalizing State
	The Barrier: Reusability, Genericity, and Sparsity
	Why LLMs Violate Genericity

	Memory as Generative Reconstruction
	The Causal Ladder
	The Algorithmic Role of Sleep
	The Symbol Grounding Problem: Maps Without Territories
	Conclusion
	Proposed Experiments
	Fragmented Embeddings and Reconstruction
	Diffusion in Memory Space
	Neurobiological Correlates
	Conceptual Prediction

	What Is Missing in Large Language Models: Compression of Composition
	Representation Without Compression
	Cortical Learning as Rule Compression
	Depth Collapse and Learned Shortcuts
	The Limitation of Fixed-Depth Architectures
	Architectural Implications

	Beyond LLMs: From Read-Only Models to Associative Turing Machines
	The Transformer as a ``Read-Only'' ATM
	Restoring Persistent State: Linear Recurrence and World Models
	A Frontier: Online Plasticity and Rule Internalization
	Closing the Loop Between Map and Territory

	The Imitation Game 2.0 (Idea by Dan Mitropolsky)
	Introduction
	The Containment Principle
	The Protocol
	The Metric: Simulation Distance
	Case Study: The ``Bad Code'' Test
	Conclusion

	Computational role of eccentricity dependent cortical magnification
	Introduction
	Core Thesis
	The Inverted Truncated Pyramid
	The Magic Map: remaping to a Square Lattice
	Hierarchical Decimation and Crowding
	Visual Recognition via IP Fragments
	Predictions and Empirical Alignment
	The Geometry of the Magic Map
	GELU Jets as Pooling Operators
	Phase-Dependent Perception
	Implications for Continual Learning

	Non-linear Scale Space
	Introduction
	The Jet of the GELU Activation
	Phase I: The Discriminative Pipeline (<100ms)
	Phase II: Hierarchical Structural Indexing (>100ms)
	Synthesis: A Conjectural Implication for Continual Learning

	A Perspective: Sparse Compositionality and Efficiently Computable Intelligence
	Efficient Computability and Sparse Compositionality
	Approximation, Optimization, and Generalization
	Relation to Prior Theories of Deep Learning
	Discussion

	Mixture of Experts
	Introduction
	Shallow MoE Networks (Low-Dimensional Structure)
	Deep MoE Networks (Compositional Sparsity)
	Unified Insights
	Connections with Compositional Sparsity Framework
	The Core Alignment: Hierarchical Decomposition
	Overcoming the Curse of Dimensionality
	The ``Exponential Capacity'' Extension
	Direct Mapping of Terminology

	Summary

	Appendix
	Appendix: Stability, ERM, and the Foundations of Learnability
	Learning setup and ERM
	CVloo stability
	Stability and generalization
	Stability as a modeling requirement

	TechnicalNote: Compositionality in Machine Learning and Physics
	Introduction
	Definitions and Setup
	From Efficient Computation to DAGs
	From arithmetic circuits to neural DAGs
	Computation as compositional structure

	ML Approximation Theorem
	Local constructive approximation with explicit constants
	Global error propagation and optimal budget
	The theorem
	Depth separation

	Finite-Horizon Compilation: From Uniform Simulators to Algorithmic Compositionality
	Setup
	Compilation theorem (algorithmic, safe)

	Learning Theory and Optimization
	Limits of the Framework
	Conclusion

	Technical Note: A Group-invariant Johnson-Lindestrauss Lemma
	Introduction
	Detailed Solution
	A finite control set and inner-product preservation
	Discretizing Haar averages over G
	From scalar errors to CDF (KS) errors
	 Averaging over templates and a uniform bound on S
	Conclusion (finite-sample ``JL for the paper’s invariant metric'')
	Corollaries
	Remarks

	Interlude: Most Real Numbers Do Not Exist
	Mathematical Preliminaries
	Computability and Effective Existence
	Definability and Symbolic Description
	Operational Discretization Under Finite Resources
	Why Most Real Numbers Do Not Exist
	Technical Note: Cardinality, Complexity, and Randomness
	Cardinality Review
	Kolmogorov Complexity
	Non-Computable Transcendentals
	Physical Measurement
	Definability

	Potential Projects in Zeroth-Order Optimization: Directed Mutations
	Directed mutations: binary-search–like efficiency
	Setting and notation

	Genes subgenes as a binary tree of traits
	Hierarchical mutation model
	Sparse-error localization via adaptive subtree queries
	Greedy hierarchical descent for additive convex loss

	Context and prior art (concise)
	Biology: hierarchical gene regulation
	Evolutionary computation: linkage and hierarchy

	Implications and extensions

	Faster Attention
	The Adjacency Distance Chain
	Utilizing the Lower Bound for Pruning
	Formal Constraint: The Metric Continuity Hypothesis
	Experimental Verification
	Proposed Algorithm: Recursive Distance Bounding
	Comparison with Global Clustering and Hashing Approaches
	LSH and k-means Clustering
	Global vs. Recursive Local Metrics
	Summary of Complexity Drivers

	Appendix: The Hippocampal Scaffold and Compositional Sparsity
	Introduction: The Memory Palace
	The Variables of Experience
	Mathematical Foundations of the Hippocampal Index
	The Top-K Projection Mechanism
	Locality-Sensitive Hashing (LSH)

	Building the Scaffold Graph
	Connection to Existing Theories
	Conclusion

	Glossary of Core Concepts
	References

