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Problem 1: Catenary

Xx=-a x=+a

y=0

(a) Derivation:

The equilibrium shape is the one that minimizes the potential energy:

a
d
U:g/,uydfz,ug/ yv/1+y?2dzx, where y':—y.

—a dx

Subject to the constraint:

/dﬁz/ V1+y?da =1t

Using the Lagrange multiplier to enforce the constraint, we define:

I[y(x)]ZU—M=/a (hgy — A) V1+y?da.

—a

This is the functional I[y(x)] whose extremum gives the equilibrium shape of the chain as the curve

y(x).
(b) Let L(y,y";7) = (ngy — A/ 1+ 32
Then,

d (0L oL
““m(ay)z»yo

A | (rgy =Ny | __mg
dm /1+y/2 /1_|_y/2

A will be determined by enforcing the constraint.

Given solution:
y = Acosh(kx + ¢) + B

y' = kAsinh(kz + ¢), /1+y?= \/1 + k2 A?sinh® (kz + ¢)

A ((pgy=Ny'| _  pg
dx /1 + y2 1+ y?
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d | pgAcosh(kz +¢) +pugB — A | _ LG
V14 kA2 sin® (ke + 9) 1+ kA2 sinb? (ke + )

dx

Satisfied when:
kA=1, pgB=X — +/1+4y?=cosh(kz+¢) and

% [ugAsinh(kx + ¢)] = pg cosh(kz + @)

Therefore,

A
A=k, B= " wherek, A remain to be determined.
1y

Enforcing boundary conditions at = +a: y =0,

0 =k~ *cosh(£ka + ¢) + A ¢=0; k'cosh(ka)=—-B= A
Hg Hg

We get A by enforcing the constraint:

A= cosh(kx)dx = 2k~ sinh(ka) = ¢
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The last equation is an implicit equation for k(¢). As the sketch shows, it has a unique positive root.
Once k is known, B, A follow from B = ﬁ = —k~lcosh(ka) and A=Fk"!

(¢) Tension on the chain T(x):

The tension follows by considering adding a section of length d¢ to the chain at some location (z,y).
The potential energy of the chain increases by pgydl, and making a gap of size d¢ releases energy T'd/.
Thus, the change in potential energy of the chain is (ugy — T')d¢. But if the chain remains a catenary
(minimum potential energy), then:

Imin
dl = <88£ ) dl = \dl = (ugy — T)d¢  where we have used the result from part (a).

T(x) = pgy(x) — A = pgly(x) — B) = £ cosh(ka).
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(d) Adding a mass M:

Either apply Newton’s law ¥ F = 0 at the mass, or modify the variational principle. We will show the
latter.

Iy(z)] = /a L(y) dz + Mgy(0);  L(y) = (ngy — M)V 1+y"2.

—a

We expect y’ to be discontinuous at x = 0, so the variational principle must exercise care at x = 0.

X=-a X =+a

Xe

y(z) = y(x) + dy(z) (small perturbation).

°rorL _, oL “TOL oL
oI = /_a {Wéy (z) + ayéy(x)} da:+/0 {ay,éy (z) + 8y5y(:r)} dx 4+ Mgdy(0).

Integrating by parts:

1= [ 5 ()| ovraes [ 55— & (57| ovrdos [ Gvn] +aamio

Since % (g;,) — % = 0 as before for x # 0, and:

L
Mg = {gy’] D (the jump at = = 0).

Now we know from (b) that y(z) = A cosh(kx+¢)+ B satisfies the Euler-Lagrange equation if A = k=1

and B = ﬁ. For boundary conditions:

y=0 atz=4a — k 'cosh(fka+ ¢)=—B.
Let: \
¢ =—¢_=¢9 — Kk 'cosh(ka+¢g)=—B= g .. (3).
EM

oL kM
2a

G| = Mg = B2 (o) = sinh(—g0)] — sinh(on) =

(D).

Finally:

g = /a V1+y2de = /a cosh(kz + ¢g) dz = k™ [sinh(ka + ¢o) — sinh(¢g)] = g . (2).
0

0

Solve (1) and (2) simultaneously for k, ¢g, then solve (3) for B and (4) for A.
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Problem 2: Plane Pendulum

R N A AN

2)

Lagrangian: L=T -V
1 . .
T=2m (42 n 5292) .V =—mglcosd

1 2 242
L= 5™ (f + 00 ) + mgf cos 6

Canonical Momentum:

oL L)
= =ml*, ="
Do 90 m ’ 2
Hamiltonian:
j 1 pj L o
H=0py— L= S mlZ + imﬂ — mgl cosf
m
Energy:
1 . . .
E=T+V=:m (e%e%ﬁ) —mglcosd = H +mf® + H
dH H .
T aa—t #0 if¢#0 — H isnot conserved.
dE OH 2 ¢ .
F TS + 2mil — Lz?z +mll — mglcosf #0 in general — F is not conserved.
m

Work must be done to change ¢ given the tension in the string. If the Hamiltonian and the total energy
are distinct, the total energy is not conserved.

Equations of Motion:

s_d9 _0H _ p OH

- = = =7 - 7 6‘6
dt ~ opy  me2> Pl g s

% (m€29) +mglsinf=0 — 6+ 2%9 + %sin@ =0 (Second order ODE).

Special Case: When (= 0, the above ODE reduces to:
0+ I sno =0
L
Small Oscillations: For small 6, sinf = 0, leading to:

. g -
9+£9—0

Solution: For 62 <« 1:

0 x cos(wt + ¢), where w = g

14
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d) Adiabatic Invariant:

N\ 2
l
<€> <w? Iy= /pg df is an adiabatic invariant.
. 27w .
Iy = /mEQGdG = m€2/ 6% de
0

N2
Ansatz: 0 = A(t) cos(wt + ¢)  where (%) < w?  (slowly varying amplitude).

™

[\

Iy = m*> A*W? = mmlPwA? = mml? \/gA2 o £3/2(t) A%(t) = constant.

w

DN | =

A%(t) oc £73/2(t) or  A(t) x £73/4(t) Q.E.D.

We can also obtain this result by applying the WKB method to the differential equation.



