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Problem 1: Catenary

(a) Derivation:

The equilibrium shape is the one that minimizes the potential energy:

U = g

∫
µy dℓ = µg

∫ a

−a

y
√
1 + y′2 dx, where y′ =

dy

dx
.

Subject to the constraint: ∫ a

−a

dℓ =

∫ a

−a

√
1 + y′2 dx = ℓ.

Using the Lagrange multiplier to enforce the constraint, we define:

I[y(x)] = U − λℓ =

∫ a

−a

(µgy − λ)
√

1 + y′2 dx.

This is the functional I[y(x)] whose extremum gives the equilibrium shape of the chain as the curve
y(x).

(b) Let L(y, y′;x) = (µgy − λ)
√

1 + y′2.

Then,

δI = 0 → d

dx

(
∂L

∂y′

)
− ∂L

∂y
= 0

d

dx

[
(µgy − λ)y′√

1 + y′2

]
− µg√

1 + y′2
= 0

λ will be determined by enforcing the constraint.

Given solution:
y = A cosh(kx+ ϕ) +B

y′ = kA sinh(kx+ ϕ),
√
1 + y′2 =

√
1 + k2A2 sinh2(kx+ ϕ)

d

dx

[
(µgy − λ)y′√

1 + y′2

]
=

µg√
1 + y′2
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d

dx

µgA cosh(kx+ ϕ) + µgB − λ√
1 + k2A2 sinh2(kx+ ϕ)

 =
µg√

1 + k2A2 sinh2(kx+ ϕ)

Satisfied when:
kA = 1, µgB = λ →

√
1 + y′2 = cosh(kx+ ϕ) and

d

dx
[µgA sinh(kx+ ϕ)] = µg cosh(kx+ ϕ)

Therefore,

A = k−1, B =
λ

µg
, where k, λ remain to be determined.

Enforcing boundary conditions at x = ±a: y = 0,

0 = k−1 cosh(±ka+ ϕ) +
λ

µg
− ϕ = 0; k−1 cosh(ka) = −B = − λ

µg

We get λ by enforcing the constraint:

λ =

∫ a

−a

cosh(kx)dx = 2k−1 sinh(ka) = ℓ

The last equation is an implicit equation for k(ℓ). As the sketch shows, it has a unique positive root.
Once k is known, B, λ follow from B = λ

µg = −k−1 cosh(ka) and A = k−1.

(c) Tension on the chain T(x):

The tension follows by considering adding a section of length dℓ to the chain at some location (x, y).
The potential energy of the chain increases by µgydℓ, and making a gap of size dℓ releases energy Tdℓ.
Thus, the change in potential energy of the chain is (µgy − T )dℓ. But if the chain remains a catenary
(minimum potential energy), then:

dI =

(
∂Imin

∂ℓ

)
dℓ = λdℓ = (µgy − T )dℓ where we have used the result from part (a).

T (x) = µgy(x)− λ = µg[y(x)−B] =
µg

k
cosh(kx).
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(d) Adding a mass M :

Either apply Newton’s law ΣF = 0 at the mass, or modify the variational principle. We will show the
latter.

I[y(x)] =

∫ a

−a

L(y) dx+Mgy(0); L(y) = (µgy − λ)
√
1 + y′2.

We expect y′ to be discontinuous at x = 0, so the variational principle must exercise care at x = 0.

y(x) → y(x) + δy(x) (small perturbation).

δI =

∫ 0

−a

[
∂L

∂y′
δy′(x) +

∂L

∂y
δy(x)

]
dx+

∫ a

0

[
∂L

∂y′
δy′(x) +

∂L

∂y
δy(x)

]
dx+Mgδy(0).

Integrating by parts:

δI =

∫ 0

−a

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy(x) dx+

∫ a

0

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy(x) dx+

[
∂L

∂y′
δy(x)

]x=0+

x=0−
+Mgδy(0).

Since d
dx

(
∂L
∂y′

)
− ∂L

∂y = 0 as before for x ̸= 0, and:

Mg =

[
∂L

∂y′

]
x=0

(the jump at x = 0).

Now we know from (b) that y(x) = A cosh(kx+ϕ)+B satisfies the Euler–Lagrange equation if A = k−1

and B = λ
µg . For boundary conditions:

y = 0 at x = ±a → k−1 cosh(±ka+ ϕ) = −B.

Let:

ϕ+ = −ϕ− = ϕ0 → k−1 cosh(ka+ ϕ0) = −B = − λ

µg
. . . (3).

[
∂L

∂y′

]
x=0

= Mg =
µg

k
[sinh(ϕ0)− sinh(−ϕ0)] → sinh(ϕ0) =

kM

2a
. . . (1).

Finally:

ℓ

2
=

∫ a

0

√
1 + y′2 dx =

∫ a

0

cosh(kx+ ϕ0) dx = k−1 [sinh(ka+ ϕ0)− sinh(ϕ0)] =
ℓ

2
. . . (2).

Solve (1) and (2) simultaneously for k, ϕ0, then solve (3) for B and (4) for A.
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Problem 2: Plane Pendulum

a) Lagrangian: L = T − V

T =
1

2
m
(
ℓ̇2 + ℓ2θ̇2

)
, V = −mgℓ cos θ

L =
1

2
m
(
ℓ̇2 + ℓ2θ̇2

)
+mgℓ cos θ

Canonical Momentum:

pθ =
∂L

∂θ̇
= mℓ2θ̇, θ̇ =

pθ
mℓ2

Hamiltonian:

H = θ̇pθ − L =
1

2

p2θ
mℓ2

+
1

2
mℓ̇2 −mgℓ cos θ

b) Energy:

E = T + V =
1

2
m
(
ℓ̇2 + ℓ2θ̇2

)
−mgℓ cos θ = H +mℓ̇2 ̸= H

dH

dt
=

∂H

∂t
̸= 0 if ℓ̇ ̸= 0 → H is not conserved.

dE

dt
=

∂H

∂t
+ 2mℓ̇ℓ̈− p2θ

mℓ2
ℓ̇

ℓ
+mℓ̈ℓ̇−mgℓ̇ cos θ ̸= 0 in general → E is not conserved.

Work must be done to change ℓ given the tension in the string. If the Hamiltonian and the total energy
are distinct, the total energy is not conserved.

c) Equations of Motion:

θ̇ =
dθ

dt
=

∂H

∂pθ
=

pθ
mℓ2

, pθ = −∂H

∂θ
= −mgℓ sin θ

d

dt

(
mℓ2θ̇

)
+mgℓ sin θ = 0 → θ̈ + 2

ℓ̇

ℓ
θ̇ +

g

ℓ
sin θ = 0 (Second order ODE).

Special Case: When ℓ̇ = 0, the above ODE reduces to:

θ̈ +
g

ℓ
sin θ = 0

Small Oscillations: For small θ, sin θ ≈ θ, leading to:

θ̈ +
g

ℓ
θ = 0

Solution: For θ2 ≪ 1:

θ ∝ cos(ωt+ ϕ), where ω =

√
g

ℓ
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d) Adiabatic Invariant:(
ℓ̇

ℓ

)2

≪ ω2, Iθ =

∫
pθ dθ is an adiabatic invariant.

Iθ =

∫
mℓ2θ̇ dθ ≈ mℓ2

∫ 2π/ω

0

θ̇2 dθ

Ansatz: θ = A(t) cos(ωt+ ϕ) where
(

Ȧ
A

)2
≪ ω2 (slowly varying amplitude).

Iθ = mℓ2A2ω2 1

2
· 2π
ω

= πmℓ2ωA2 = πmℓ2
√

g

ℓ
A2 ∝ ℓ3/2(t)A2(t) = constant.

A2(t) ∝ ℓ−3/2(t) or A(t) ∝ ℓ−3/4(t) Q.E.D.

We can also obtain this result by applying the WKB method to the differential equation.


