
Cycling Pace Optimization

Aaron Vliet

November 2024

1 Introduction

The goal of this project is to find the optimal pacing in terms of ‘normalized power’ (8) for a cyclist to complete
a segment of road (e.g. a time trial course) in a specified time. Segment data (e.g. grade vs distance) is sourced
from Strava. The goal is to create workout files such that optimal pacing can be performed in real life. The
optimizer results can also be used to evaluate how ‘optimal’ pacing was in past efforts.

In the future, a more complicated optimizer may be formulated that takes into consideration how a cyclist’s
CDA changes with respect to power (e.g. a cyclist doing 200w can be in a much more aero position than one
sprinting at 1000w), and perhaps even how multiple riders should pace a team time trial given some assumptions
on drafting and pace-line rotation.

1.1 Preface

Note that cycling pace optimization has already been done in the past - see bestbikesplit and this paper.
Therefore, my goal with this project is instead to learn more about trajectory optimization (and a general feel
for time trial pacing), as well as to practice general modeling of real-world systems. However, the exact way
I’m framing the problem (in terms of normalized power and a specified segment time) maybe hasn’t been done
yet, as far as I can tell from my brief literature review.

1.1.1

This document was originally written to record my progress for later reference, as I don’t have a lot of time for
personal projects and thus often can’t work on them consistently. However, since I wrote most of it up already,
I figured I might as well add a few more details and post it to my portfolio website. I am hoping to further
improve/fix the optimizer, at which point I may make my GitHub repo public as well.

2 Dynamics

For the equations of motion, we will be using a “body axes,” where (x, y, z) corresponds to (forward, left, up)
relative to the bike — slightly different than typical aircraft body axes. Let v = ẋ. The dynamics of a rider
in the x̂ direction can be approximately described by the following equations for gravitational force (1), rolling
resistance (2), and aerodynamic drag (3):

Fgx = −mg sin(θ) (1)

FCrr = −Crrmg cos(θ) (2)

Where θ = 0 is a flat road, and θ > 0 is a incline.

Fd = −1

2
CDAρ(v)2 (3)

However, the above equation doesn’t take into account wind, so we will instead consider:

Fd = cos(β)
1

2
CDAρ(|v⃗ + w⃗|)2 (4)

Where w⃗ is the wind velocity (relative to the ground), with w > 0 being a headwind. β is the yaw angle, e.g.
the angle between the velocity vector and the wind vector. Drag is aligned with the direction of incident airflow,
but we only really care about the component aligned with the velocity vector of the rider, hence the cosβ term.
However, this isn’t necessarily the best way to model drag in crosswind conditions, since the CDA of a rider
will change with the yaw angle. Additionally, for highly aero-optimized bike setups (e.g. time trial bikes), parts
of the bike can act as symmetric airfoils such that when there is a moderate yaw angle (e.g. on the order of

1

https://www.strava.com
https://www.bestbikesplit.com/
https://www.sciencedirect.com/science/article/pii/S1877705813011132?ref=pdf_download&fr=RR-2&rr=85be5c143c3d4328


≈ 10◦), lift will be generated. That lift is orthogonal to the incident airflow, meaning it will have a component
in the velocity direction. This is often referred to as the “sail effect,” and can reduce the resultant aero force of
individual components (e.g. wheels) significantly. In the future it could be interesting to try to model this, but
for now it will be assumed to be a very small higher order effect.

Force produced from power:

FP =
P

|v + w|
(5)

We can now sum the horizontal forces to get the equation of motion:

ΣFx = FP + Fd + Fgx + FCrr =⇒ ΣFx =
P

|v + w|
−mg sin(θ)− Crrmg cos(θ)− 1

2
CdAρ(|v + w|)2 = ma (6)

2.1 Solution

Assuming steady state, the symbolic expression for velocity in terms of power can be found using either the
cubic formula or a symbolic solver in something like MATLAB or Mathematica — I used MATLAB. The result
is, of course, quite nasty looking:

v(p) =

(√
P 2

CDA2 ρ2 + (2 gm sin(θ)+2Crr gm cos(θ))3

27CDA3 ρ3 + P
CDAρ

)1/3

− 2 gm sin(θ)+2Crr gm cos(θ)

3CDAρ

(√
P2

CDA2 ρ2
+

(2 g m sin(θ)+2Crr g m cos(θ))3

27CDA3 ρ3
+ P

CDAρ

)1/3

On the other hand, the symbolic expression for power in terms of velocity is quite nice:

p(v) = (|v + w|)
(
cos(β)CDAρ(|v + w|)2

2
+ Crrmg cos(θ) +mg sin(θ)

)
(7)

2.2 Examples

For the following examples, we will use a fairly average CDA of .32, rolling resistance of 5
1000 , 1.225

kg
m3 , and a

combined bike and rider mass of 75kg. Using the above equations, we can find a rider producing 200 watts will
move at roughly 21.2 mph, and if the rider wants to move at 20 mph on a flat road, roughly 170 watts will
be required. Compared to real life, this seems slightly optimistic, but plausible. It is close to the Strava Sauce
Performance Predictor tool.

Figure 1: Power vs speed

2



3 Additional notes

3.1 Normalized Power

Normalized power is a common metric among cyclists that describes how difficult an effort is. It is similar to
average power, but weighs high power output more heavily, which more accurately describes the physiological
tax of an effort. TrainingPeaks describes it as “an estimate of the power that you could have maintained for
the same physiological ‘cost’ if your power had been perfectly constant, such as on an ergometer, instead of
variable power output.”

Let P30 be an array containing the average power for every 30 second period. Let N be the number of periods.

NP =

(∑(
P30

4
)

N

) 1
4

(8)

3.2 Data source

From the analysis tab on a Strava activity, the StravaSauce browser extension allows one to download raw data,
including things like speed, power, altitude, and grade. There is one data point per second.

3.2.1 A note on wind direction

As it turns out, the raw data that StravaSauce provides does not include the heading/the direction of travel.
This means that it isn’t so easy to implement wind direction. In the future I will likely write a function that
calculates this based on the change in lat/long coordinates, but for now we will assume no wind for simplicity.

3.3 Parameter modeling

3.3.1 CDA calculation

To accurately optimize pace, we need to have a reasonably accurate model of the system. While things like
mass and air density are trivial to measure, CDA is slightly more involved. Therefore, I’ve written a simple
MATLAB script that calculates CDA from a Strava ride. Specifically, the script calculates CDA for time steps
of either 1 second or 10 second duration, and then takes CDA as the average. This method — particularly with
10 second time steps — should be slightly more accurate than calculating the CDA over the entire segment at
once. However, due to braking, coasting, noise in the data, etc., sometimes there will be brief spikes in CDA.
For these points, I replace them with the StravaSauce Performance Predictor CDA estimation, which is the
CDA over the entire segment based on net change in altitude. Ideally, a wind speed sensor would be used rather
than GPS groundspeed, but in the absence of that, the function should be instead limited to use on calm days,
or at least on loops or out and back segments.

Figure 2: CDA estimation

3

https://help.trainingpeaks.com/hc/en-us/articles/204071944-Training-Stress-Scores-TSS-Explained


3.3.2 Rolling Resistance

The coefficient for rolling resistance (Crr) is also a bit hard to estimate, but has a much smaller effect on the
overall system dynamics and thus also on the optimization. However, Crr could be estimated using a tow
test/roll down test, but this is fairly difficult, especially if CDA is not precisely known. To achieve reasonably
accurate real-world Crr estimates, a lot of data would need to be collected and from that some sort of regression
(least squares would probably suffice?) to estimate the rolling resistance.

4 Optimization problem transcription

The goal here is to transcribe the trajectory optimization problem into a “constrained parameter optimiza-
tion” problem — that is, a finite dimensional problem where the “decision variables” are numbers rather than
functions. Basically, this means we will be finding an array of optimal power values rather than a continuous
function for power.

4.1 Minimization function

We will use our normalized power function (8) as our objective function. N = target time
30 However, we will con-

sider each power parameter to correspond to a timestep of 10 seconds rather than 30 seconds (=⇒ length(P) =
3N). I think 10 seconds is roughly the shortest period that a cyclist can vary their power. However, longer
time steps would obviously improve runtime significantly.

4.2 Constraint functions

We will have two constraint functions. Let v[n] and θ[k] be arrays, both of length 3N (equal to the length of
P).

4.2.1 Dynamics

We will approximate each discrete section as being under steady state. Therefore, the

P[n]

|v[k]|
−mg sin(θ[k])− Crrmg cos(θ[k])− 1

2
CdAρ(v[k])2 = mv̇ = 0

4.2.2 Velocity constraint

We want the average velocity to be equal to Total distance
Target time

=⇒ vavg =
1

3N

3N∑
n=1

v[n]

4.3 Implementation

Now that the optimization problem defined, we can use MATLAB’s fmincon() function to find the optimal
power. In the future, I may switch to python, but fmincon is very convenient for the time being.

4.4 Time dependence and position dependence

However, there’s a slight complication: the dynamics equation has both time dependence and position depen-
dence, since power is calculated for each time step, and theta is a function of position. This is a fundamental
flaw in the way the optimization problem was posed. If we only have power, we can’t determine velocity directly,
since we also need theta. But... to calculate theta, we need velocity.

My approach to solve this issue is to first assume constant velocity. Broadly speaking, this should be vaguely
optimal (depending on how much wind and/or how much the grade varies), so it should be a reasonable initial
guess. From there, we can find the average theta value for each timestep. Now that we have a better estimate
for theta, we can recalculate velocity. Through this iterative process, we can hopefully converge on the theta
and velocity arrays that match our power array.

4



5 Results and evaluation

To ‘validate’ the optimizer, we need something to check it against. The obvious option is to use existing Strava
data from Individual Time Trials (ITTs). Ideally we can also evaluate pace with one single “figure of merit”
(FoM) value.

FoM =
Normalized power

average velocity

So far the results have been generally promising, but not as insightful as I had perhaps hoped.

5.1 Example 1

The most notable example that I’ve analyzed so far is the 2024 Tour de France stage 21 ITT from Monaco to
Nice, France. This was compared to Santiago Buitrago’s effort, who seems to be one of the few top riders that
day that posted to Strava with power publicly visible. The TdF stage 21 ITT is a good candidate for optimiza-
tion and analysis since it features both a long, sustained climb in addition to shorter climbs and sustained flats
and downhills. Additionally, since the riders were pros on time trial bikes, their CDA is likely more consistent
than a more amateur rider on a road bike.

To compare to Buitrago, I pulled his weight from ProCyclingStats and assumed about 10kg for the bike and
any other miscellaneous items, putting the total mass at 70kg. From there, I approximated Buitrago’s CDA —
see figure 3. The result was a fairly decent average CDA of roughly 0.22m2. However, the CDA clearly varies
significantly between the climb, the descents, and the flats here, so assuming a constant CDA is not particularly
accurate.

Notably, figure 4 shows that the optimizer seems to prefer a harder pacing strategy up the climbs than what
Buitrago rode. The optimizer was also able to achieve a slightly lower FoM of 29.36 joules/meter, in comparison
to Buitrago’s 30.51 joules/meter. However, Buitrago was also able to catch up to the supposed optimal solution
by the second, much shorter climb — perhaps in part due to a reduced CDA on the descent. The supposed
optimal power is also a bit spikey, with a surge of over 800 watts near the beginning, and other unstable sections
on the second climb. The optimizer also doesn’t need to slow down for turns. Towards the end, Buitrago clearly
slows dramatically for the 180◦ turn in Nice, while the optimizer continues to chug on by. Given the lack of
braking coupled with the potential for slightly inaccurate constants (CDA, mass, air density), it is hard to say
that the slight decrease in normalized power (and the FoM) is significant.

Segments with more rolling terrain seem to perform notably worse. Figure 5 shows a significantly higher
FoM over the 2024 Charlie Baker Time Trial (CBTT) course in Massachusetts. The optimizer’s solution is
compared to the power of one of my friends, Derek Schaadt, an amateur rider on a road bike with clip-on
time trial bars. It isn’t clear exactly why the optimizer’s solution is so bad — it could be due to inaccuracy
introduced from discretizing the problem, or perhaps the constants associated with the problem aren’t quite
right. Either way, the optimizer is clearly not returning anywhere near the optimal result. However, the power
does seem to match the shape of Derek’s power fairly closely if the vertical shift is ignored.

5

https://www.procyclingstats.com/rider/santiago-buitrago-sanchez
https://www.strava.com/activities/11946231314/overview


Figure 3: Buitrago CDA calculation

Figure 4: Optimizer vs Buitrago, TdF stage 21

6



Figure 5: Optimizer vs Derek, CBTT

7


	Introduction
	Preface
	


	Dynamics
	Solution
	Examples

	Additional notes
	Normalized Power
	Data source
	A note on wind direction

	Parameter modeling
	CDA calculation
	Rolling Resistance


	Optimization problem transcription
	Minimization function
	Constraint functions
	Dynamics
	Velocity constraint

	Implementation
	Time dependence and position dependence

	Results and evaluation
	Example 1


