Symposium F.1
Chalcogenide Semiconductor Research and Applications
Tutorial

Chalcogenide electronic materials research: Computation, synthesis, characterization

First principles calculations of electronic structure, defects, disorder

Stephan Lany, National Renewable Energy Laboratory, Golden, CO

Thin film growth

Rafael Jaramillo, Massachusetts Institute of Technology, Cambridge, MA

High-throughput computation and thermoelectrics

Prashun Gorai, Colorado School of Mines and NREL, Golden, CO

Thin film characterization

Rafael Jaramillo

Tutorial

First principles calculations: Electronic structure, defects, disorder

Stephan Lany

National Renewable Energy Laboratory, Golden, CO

What do we want to predict by theory?

Properties of semiconductors

Structure (total-energy)

Inter-atomic potentials (Lennard-Jones, Morse, VFF)

Electrostatic interactions

Quantum-mechanical (DFT)

Thermodynamic stability (total-energy)

Quantum-mechanical (DFT)

Defects and doping (total-energy)

Cavity model for vacancies

Model potentials (e.g., Morse)

Quantum-mechanical (DFT)

Band-structure (quasi-particle energies)

Empirical (tight-binding, k·p, EPM, NLEP)

Quantum-mechanical (Hartree-Fock \rightarrow CI, CC, MCSCF)

Quantum-mechanical (DFT \rightarrow GW)

Working horse of electronic structure theory: Local Density Approximation (LDA)

Schrödinger's equation:

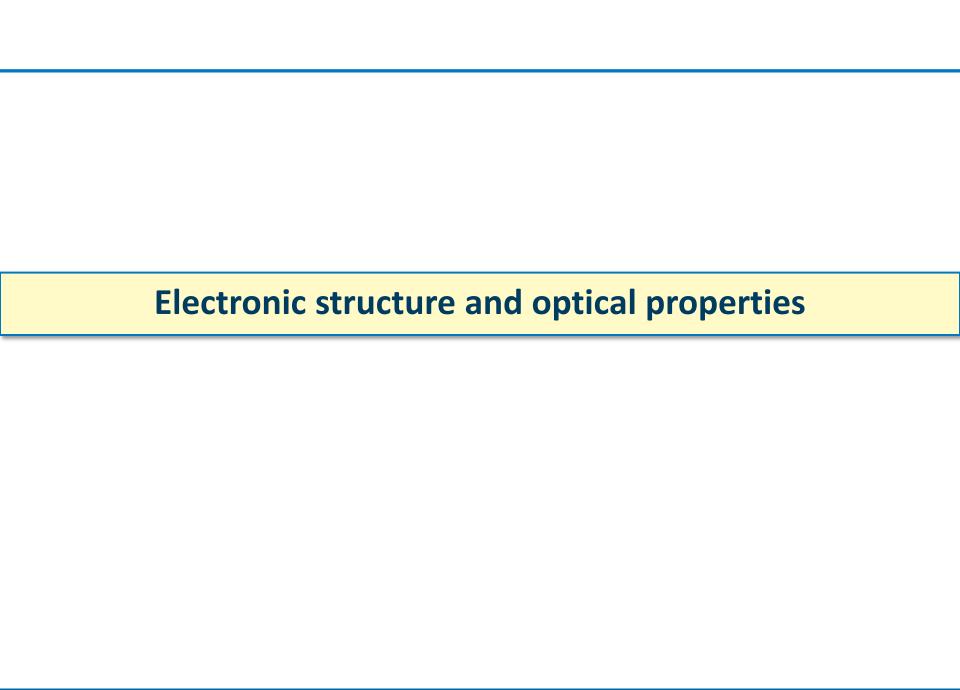
$$\hat{H}\psi = E\psi$$

General Quantum mechanics:

$$[\hat{T} + \hat{V}]\psi(\mathbf{r}_1, ..., \mathbf{r}_N) = E\psi(\mathbf{r}_1, ..., \mathbf{r}_N)$$

Density Functional Theory:

$$[\hat{T}_0 + \sum_Z V_Z + \sum_e V_e + V_{XC}]\psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$$


$$E_{\text{DFT}} = T_0 + E_{ii} + E_{ei} + E_{ee} + E_{\text{XC}}$$

 ΣV_e includes self-interaction $V_{\rm XC}$ corrects for SI, many-particle effects

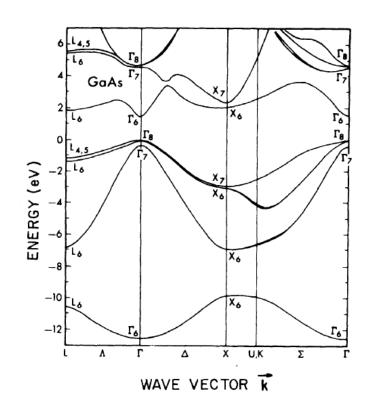
$$E_{\text{XC}} = \int n(\mathbf{r}) \varepsilon_{\text{XC}}[n, |\nabla n|] d\mathbf{r}$$
 $V_{\text{XC}}(\mathbf{r}) = \frac{\delta E_{\text{XC}}(n)}{\delta n(\mathbf{r})}$

Hohenberg-Kohn 1964, applications ~70s, Perdew–Zunger LDA 1981

- High accuracy for electronic density and total-energies
- Usually not sufficiently accurate for single-particle energies

Empirical approaches

• Empirical approaches for band structure calculation Tight-binding (LCAO), $k \cdot p$, empirical pseudopotentials


$$\left(-\frac{1}{2}\nabla^2 + \sum_{\alpha,n} v_\alpha(|\mathbf{r} - \mathbf{R}_{\alpha,n}|)\right) \psi_{i,\mathbf{k}}(\mathbf{r}) = e_{i,\mathbf{k}} \psi_{i,\mathbf{k}}(\mathbf{r})$$

- (1) Fit parameters to reference data (experiment, accurate theory)
- (2) Assuming transferability, apply to more complex cases Full BZ, alloys, nanostructures, ...

Energy-band interpolation scheme based on a pseudopotential J.C. Phillips, Phys. Rev. **112**, 685 (1958)

Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors

J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B 14, 556 (1976)

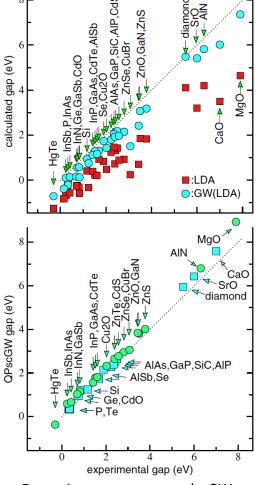
Properties for energy materials: Band structure calculation

Importance of electronic-structure

- Band-gaps, band-structure, optical properties (α, ϵ) , transport: effective masses
- Energy materials: Photovoltaics, solar fuels, thermoelectrics, electronic materials, battery materials

Band-structures and band gaps with DFT starting point

 Starting from DFT, calculate electron self energy Σ, get quasiparticle energy correction to DFT


$$e_n^{GW} = e_n^{DFT} + \text{Re} \left\langle \psi_n^{DFT} \middle| \Sigma(e_n^{GW}) - V_{xc}^{DFT} \middle| \psi_n^{DFT} \right\rangle$$

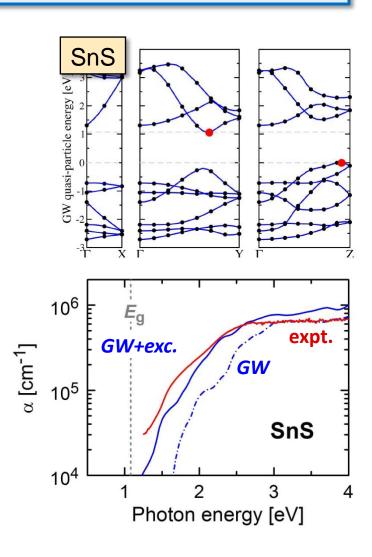
GW approximation for self energy Σ

G: Green's function, W: screened Coulomb interaction

 GW uses the screened Coulomb potential (cf. "screened exchange")

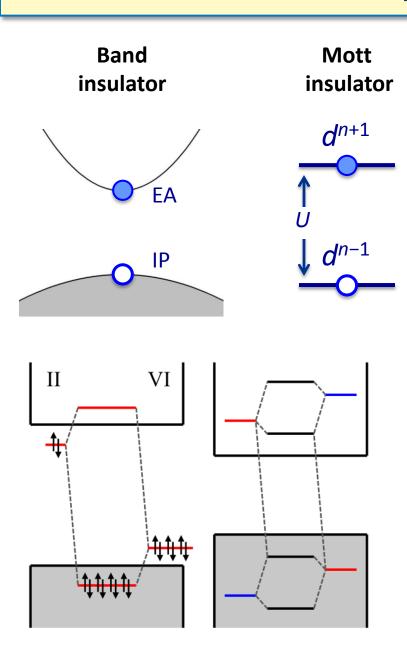
$$\Sigma(\mathbf{r}, \mathbf{r}', \omega) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{i\omega'} \delta G(\mathbf{r}, \mathbf{r}', \omega + \omega') W(\mathbf{r}, \mathbf{r}', \omega') d\omega'$$

For main group compounds, GW calculations give band gaps in very good agreement with experiment

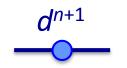

M. van Schilfgaarde *et al.*, PRL **96**, 226402 (2006)

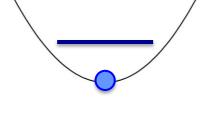
GW calculation of band-structure and optical properties

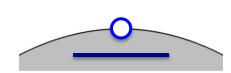
- Many-body perturbation theory in GW approximation implemented in numerous codes (VASP, BerkeleyGW, Questaal, Yambo)
- More demanding than DFT calculations:
 - CPU and memory requirements
 - Convergence, self-consistency, vertex-corrections
 - 3d transition metals
- Optical properties from dielectric function $\varepsilon(\omega) + i\varepsilon_2(\omega)$
 - independent particle approximation
 - Bethe-Salpeter equation (excitonic effects)

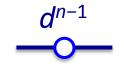

Implementation and performance of the frequency-dependent GW method within the PAW framework, M. Shishkin, G. Kresse, Phys. Rev. B **74**, 035101 (2006)

Dielectric properties and excitons for extended systems from hybrid functionals, J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B **78**, 121201(R) (2008)

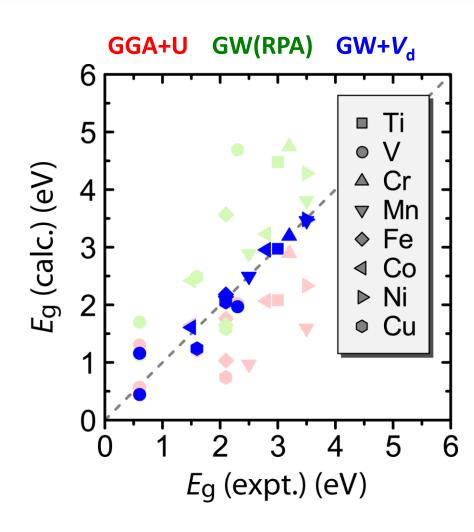



J. Vidal *et al.*, Appl. Phys. Lett. **100**, 032104 (2012)


Transition metal compounds: Band vs Mott insulator

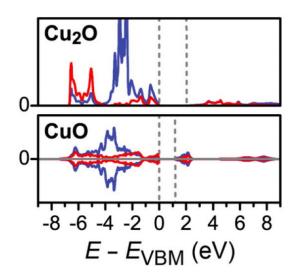


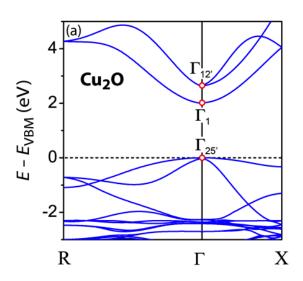
Charge transfer insulator

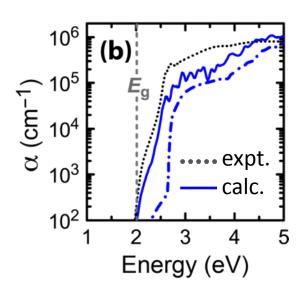

- Dispersion of *d* states
- Hybridization of *d* and *sp*
- d and sp states on same footing
- Band gap, effective masses
- Doping, defects, compensation
- Band vs small polaron transport

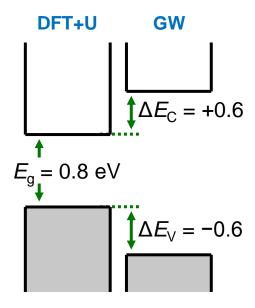
Band gap prediction: GW scheme for transition metal oxides

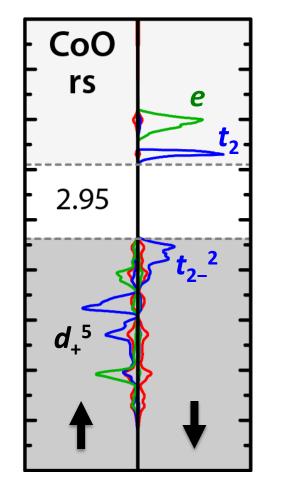
- GW method is computationally expensive and converges slowly
- Transition metal oxides are even more challenging due to localized d-electrons
- Standard GW(RPA) scheme that works well for main group compounds overestimates gaps for TM oxides (TiO₂, ..., Cu₂O)
- Approach: GW with additional potential term for d-orbital energies (GW+ V_d)

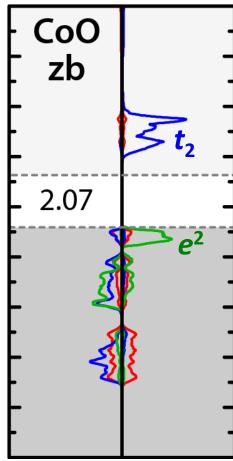

$$\hat{V} = \sum_{i,j} |p_i\rangle \langle \phi_i^{AE} | V_{d} | \phi_j^{AE} \rangle \langle p_j |$$


 One empirical parameter per TM atom, but applicable for (semi-) high-throughput band gap prediction for 100s of materials


SL, Phys. Rev. B **87**, 085112 (2013)


Example: $GW+V_d$ for copper oxides


- Cu-d: V_d = -2.4 eV; good band gaps for both Cu_2O (direct-forbidden 2.04 eV) and CuO (indirect 1.24 eV) note: expt. E_g = 1.6 eV is direct
- Correct Γ_1 Γ_{12} band ordering in Cu_2O (wrong in GW-RPA)
- Absorption coefficient in near-quantitative agreement with experiment
- Band-edge shifts useful for defect calculations, band-offsets, IP/EA



Coulomb gap in CoO

- Mott insulators often defined by breakdown of band theory
- CoO has large gap between occupied and unoccupied t₂ spin-dn crystal field levels (Coulomb gap)
- Quasi-closed shell configuration: crystal field splitting (t_2, e) spin exchange splitting only occ. or empty spin/cf levels
- Tetrahedral Co^{+II} QCS; Co₃O₄, ZnO:Co zinc-blende CoO lowest E in GGA+U Co-E like CBM, $m_e^* = 0.5 m_0$ (DOS-effective mass)

Semiconducting Transition Metal Oxides (Topical Review) SL, J. Phys. Cond. Mat. **27**, 283203 (2015)

NREL materials Database http://materials.nrel.gov

	*NID	ET.						mputing		
NATK	ONAL RENEWABLE ENERG	Y LABORATORY			Mat	eria	als D	atal	oase	9
Номе	Query I	HELP								
NRE	EL MatDB	Query	,							Disclaim
	red elements sul		t most the	se elemei	nts (Exactly	y these ele	ements 💿 .	At least all	these eler	nents (
Requir	red elements:		F	orbidder	Elements:					
Restric	ctions:									
bandga	ection info: ener p, eV), netchar ple: gap > 0.2 an	ge (net ch	arge), pres	sure (fina	al pressure, K	bar), stab				
Standa	ards: gwvd			(Examp	oles: fere, gw	vd, post-le	opt) Sta	ndards hel	<u>p</u>	
Keywo	ords:			(Examp	les: bandgap	, enthalpy	, ggau, gga	auwf, gwyd	l, hse, hse	fere, hsewf, vex
View: General Thermochemistry • GW_Bandgap (Changing the View and clicking Submit will reset the standards and columns.) Show columns: \checkmark id \checkmark sorted formula \Box ΔH_f (eV/atom) \Box Stb \Box Stb \Box ΔH_{Gnd} \Box ΔH_{Decomp} \Box ICSD SG \checkmark final SG \Box										
Output	t format: 💿 HT	ML	⊖ CSV	Subi	mit Que	ry				
Total n	natches: 238	Page ler	gth: 100	Page:	0 1 2					
id	sorted formu	la final S	G ∆Ecbm	ΔEvbm	ε _e (TDDFT)	E _σ (eV)	E _{a.d} (eV)	numSpin	parents	Family
8298		227	1.138	-1.420	2.960	5.716	5.716	1	[8982]	family 8027
9404	Al2 Co O4	227	1.602	-1.455	2.913	6.240	6.334	2	[7725]	family 8595
8686	Al2 Cu O4	141	-0.297	-1.422	3.308	2.291	2.810	2	[8699]	family 6992
<u>7915</u>	Al2 Mg O4	227	1.404	-2.004	2.530	8.896	8.905	1	[8837]	family 8983
8048	Al2 Mn O4	227	1.259	-1.719	2.831	6.157	6.157	2	[8622]	family 9022
<u>8404</u>	Al2 Ni O4	74	1.840	-1.205	3.047	5.676	5.676	2	[9310]	family 8217
<u>9497</u>	Al2 O3	167	1.619	-1.883	2.681	9.753	9.753	1	[7984]	(4
<u>8146</u>	Al2 O4 Zn	227	1.393	-1.696	2.767	7.554	7.554	1	[8767]	family 8682
8783	Al2 S3	167	0.248	-1.317	5.836					family 8682
8038						4.042	4.392	1	[8923]	
0000	Al2 Se3	9	0.504	-1.141	4.821	4.042 3.720	4.392 3.733	1	[8923] [9181]	family 9110
	Al2 Se3 Al As	9 216	0.504 -0.080	-1.141 -0.674	4.821 7.764			-		family 9110

DFT level (atomic structure and total energy)

V. Stevanovic

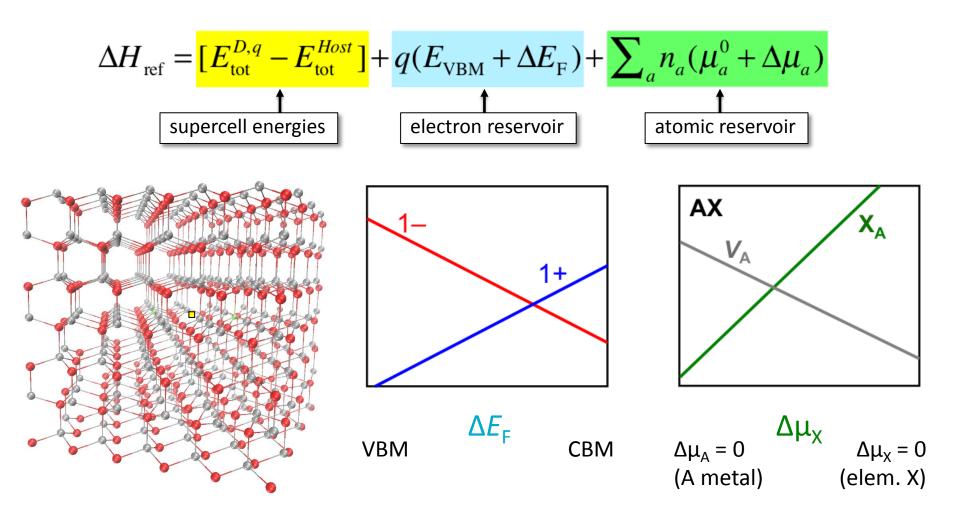
about 20,000 crystalline ordered materials

- Repository of atomic and magnetic structures
- Thermochemistry and stability

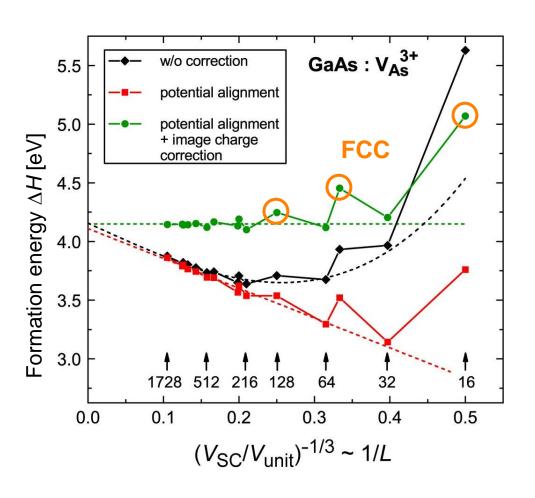
GW level (electronic structure)

about 300 semiconducting and insulating materials

- Limited up to 20-30 atoms/cell
- Mostly oxides, chalcogenides, nitrides
- Group 2-15 cations (plus few Li, Na, K)
- Including 3d transition metals and La (4d/5d planned)
- Low energy AFM magnetic configurations
- Polymorphism for II-VI


Supercell defect calculations

Defect equilibrium is determined by defect formation enthalpy


$$c_{\rm D} = s \cdot \exp^{-\Delta H_{\rm D}/kT}$$

Compound stoichiometry
Doping and electrical properties
Defect levels, recombination centers

Defect formation energy

Supercell corrections vs. finite-size scaling

Finite-size scaling

$$\Delta H(L) = \Delta H(\infty) + \gamma_1/L + \gamma_3/L^3$$

$$\Delta H(L) = \Delta H(\infty) + \gamma_1/L$$

$$\Delta H(L) = \Delta H(\infty)$$

Conclusions

- image charge + pot. alignment correction give accurate ∆H
- Avoid FCC symmetries!
- Simple but accurate corrections available

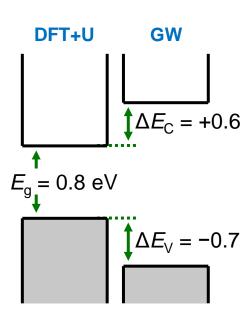
- S. Lany, A. Zunger, Phys. Rev. B **78**, 235104 (2008); Modelling Simul. Mater. Sci. Eng. **17** 084002 (2009)
- C. Freysoldt, J. Neugebauer, C.G. van de Walle, Phys. Rev. Lett. 102, 016402 (2009)

Band edge shifts from GW quasi-particle calculations

- Semiconductor materials:
 Cu₃N, Zn₃N₂, AlN, Cu₂O, ZnO, Al₂O₃
- Projector augmented wave implementation of GW in VASP [Shishkin & Kresse, PRB 74, 035101 (2006)]
- GW corrected defect formation energies for

GGA+U: $U_{Cu-d} = 5$, $U_{Zn-d} = 6$ eV

HSE06: standard parameter $\alpha = 0.25$


Non-local Fock exchange in hybrid functional

$$V_{nl}(\mathbf{r}, \mathbf{r}') = -\alpha \sum_{i} \frac{\psi_{i}^{*}(\mathbf{r}')\psi_{i}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} \operatorname{erfc}(\mu |\mathbf{r} - \mathbf{r}'|)$$

GW self-energy

$$\Sigma(\mathbf{r}, \mathbf{r}', \omega) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{i\omega'} \delta G(\mathbf{r}, \mathbf{r}', \omega + \omega') W(\mathbf{r}, \mathbf{r}', \omega') d\omega'$$

Example: Cu₂O

Reference energies for defect formation energies

Defect formation enthalpy for reference states ($E_F = E_{VBM}$; $\mu = \mu^{elem}$)

$$\Delta H_{\text{ref}} = [E_{\text{tot}}^{D,q} - E_{\text{tot}}^{Host}] + q \cdot E_{\text{VBM}}^{\text{ref}} + \sum_{a} n_a \mu_a^{\text{ref}}$$

- "Band gap problem of DFT" affects E_{VBM}
- Proposed solution:

Anchor ΔH_D at the average potential, use band edge shifts from GW

$$\delta E_{
m VBM} = e_{
m VBM}^{\it GW} - e_{
m VBM}^{\it DFT}$$

 Compare standard DFT (GGA+U) with hybrid functional (HSE06) calculations

Reference energies for defect formation energies

Defect formation enthalpy for reference states ($E_F = E_{VBM}$; $\mu = \mu^{elem}$)

$$\Delta H_{\text{ref}} = [E_{\text{tot}}^{D,q} - E_{\text{tot}}^{Host}] + q \cdot E_{\text{VBM}}^{\text{ref}} + \sum_{a} n_a \mu_a^{\text{ref}}$$

- Compound formation enthalpies not very accurate in DFT
- Origin: Incomplete error cancellation between compounds and elements
- Proposed solution: Fitted elemental reference energies (FERE) $\delta \mu_a = \mu_a^{\text{FERE}} - \mu_a^{\text{DFT}}$
- RMS error reduced in GGA from 0.24 to 0.07 eV/atom Consistency of DFT within cation-anion compounds
- Expected to improve thermodynamic boundary conditions for ΔH_D calculations

$$\Delta H_{\mathrm{f}}^{\mathrm{SC}} = E_{\mathrm{tot}}^{\mathrm{SC}} - \sum m_a \, \mu_a^{\mathrm{ref}}$$

$$\uparrow$$
Semiconductor Metals compound Molecules

$$\sum m_a \delta \mu_a = \Delta H_{\rm f}^{\rm DFT} - \Delta H_{\rm f}^{\rm ex}$$
 least square fit for $\delta \mu_a$

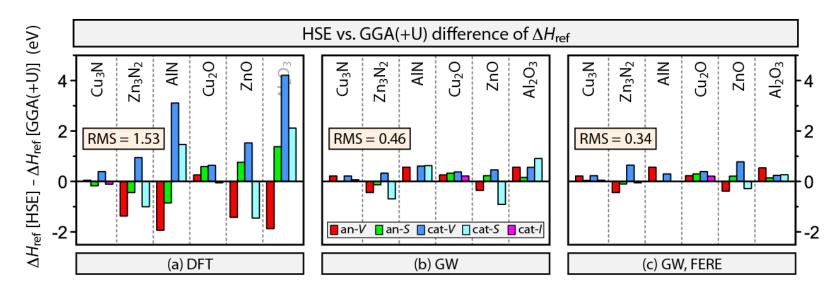
Example:

$$\Delta H_f(Al_2O_3) = E_{tot}(Al_2O_3) - 2\mu_{Al} - 3\mu_{Ol}$$

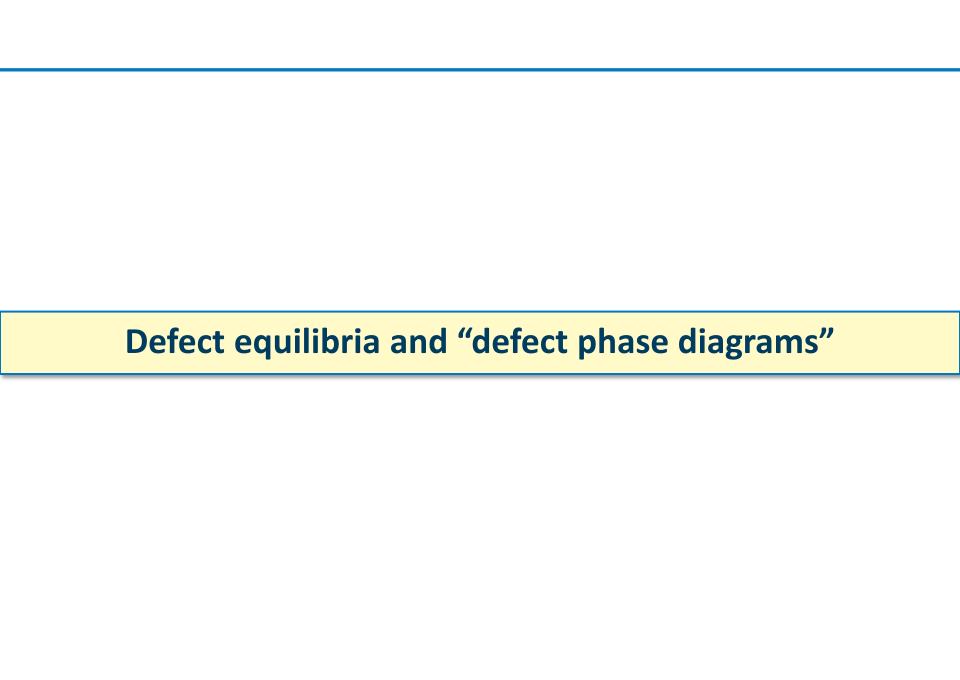
= -14.9 eV (GGA)
= -17.4 eV (expt.)
= -17.3 eV (FERE)

Comparison of density and hybrid functionals

Band gaps


E g	PBE+U eV	HSE eV	GW eV
Cu ₃ N	0.8	1.0	1.0
Zn_3N_2	0.2	0.9	1.1
AIN	4.2	5.6	6.4
Cu ₂ O	0.8	2.0	2.2
ZnO	1.5	2.5	3.5
Al_2O_3	6.3	8.1	9.9

VBM energy


ΔE _{VBM}	PBE+U eV	HSE eV	
Cu ₃ N	-0.4	-0.3	
Zn_3N_2	-0.4	-0.1	
AIN	-1.3	-0.5	
Cu ₂ O	-0.7	-0.4	
ZnO	-1.1	-0.6	
Al_2O_3	-1.9	-0.7	

Elemental energy

FERE δμ	PBE+U eV	HSE eV
Cu	-0.02	±0.00
Zn	-0.08	+0.24
Al	+0.66	+0.35
N	-0.03	-0.04
0	+0.34	+0.32

H. Peng, D.O. Scanlon, V. Stevanovic, J. Vidal, G.W. Watson, S. Lany, *Convergence of density and hybrid functional defect calculations for compound semiconductors*, Phys. Rev. B **88**, 115201 (2013).

Thermodynamic modeling

Defect formation energy	$\Delta H = \Delta H_{D,q} (\mu, E_F)$
Defect concentration	$c_{D} pprox \textit{N}_{site} \!\! imes \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
Electron/hole density	$c_e = \int f_{FD}(E - E_F) g(E) dE$
Charge neutrality	$-c_e + c_h + \Sigma [q \cdot c(D^q)] = 0$
Self-consistent solution	$\Delta H(\mathbf{E}_{F}) \longrightarrow c_{D}(\Delta H) \longrightarrow \mathbf{E}_{F}$
$p{ m O}_2$ dependence of ${ m \mu}_{ m O}$	$\Delta\mu_{\mathcal{O}}(\boldsymbol{T}, P_0) = \frac{1}{2} [H_0 + \Delta H(\boldsymbol{T})] - \frac{1}{2} \boldsymbol{T} \cdot [S_0 + \Delta S(\boldsymbol{T})]$
(ideal gas)	$\Delta \mu_{\mathcal{O}}(T, \mathbf{P}) = \Delta \mu_{\mathcal{O}}(T, \mathbf{P}_0) + \frac{1}{2} k T \ln(\mathbf{P}/\mathbf{P}_0)$

Temperature dependence of band gap (CBM)

Dopant-defect association / dissociation within law of mass action

K. Biswas and S. Lany, Phys. Rev. B 80, 115206 (2009)

Example: *n*-type doping in ZnO

Formation energies of dopants, defects and defect pairs

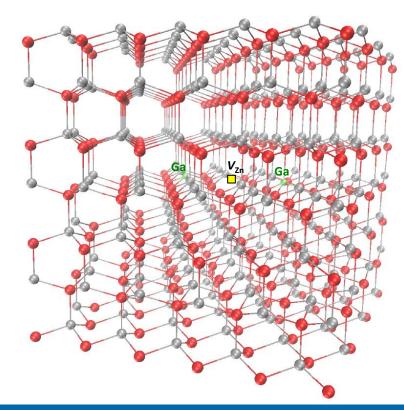
192 atoms supercells, GGA+U, ΔE_{V} (GW), fitted elemental reference energies (FERE) [1]

$$\Delta H_{\mathrm{D},q}(\mu,E_{\mathrm{F}}) = \underbrace{\begin{bmatrix} E_{\mathrm{D},q} - E_{\mathrm{host}} \end{bmatrix}}_{\text{host}} + \underbrace{\begin{bmatrix} \mu_{\mathrm{host}} - \mu_{\mathrm{D}} \end{bmatrix}}_{\text{host}} + \underbrace{q \cdot E_{\mathrm{F}}}_{\text{host}}$$
Supercell total energies Atomic chemical potentials Electron chem. potential

Active players:

Isolated dopants/defects: Ga_{Zn}^{1+} , V_{Zn}^{2-} , $V_{O}^{0/2+}$

Pairs and complexes: $(Ga_{7n} - V_{7n})^{1-}$


 $(2Ga_{Zn} - V_{Zn})^0$

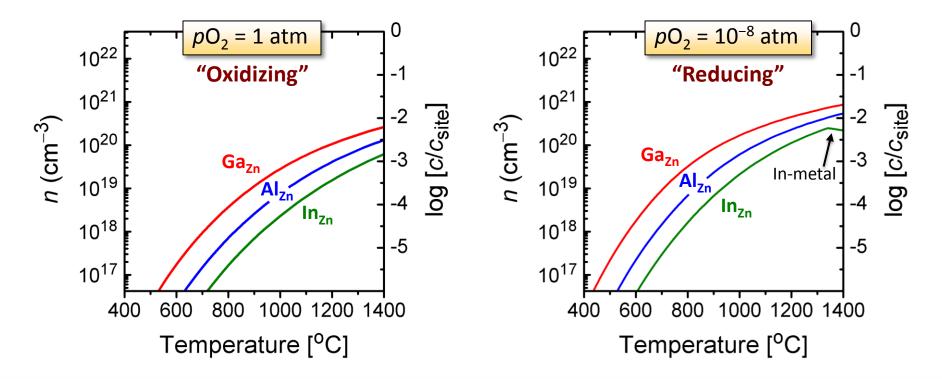
Law of mass action

$$[(Ga_{Zn}-V_{Zn})] = [Ga_{Zn}] \times [V_{Zn}] \times \exp(-E_{b1}/kT)$$

$$E_{b1} = -1.1 \text{ eV}$$

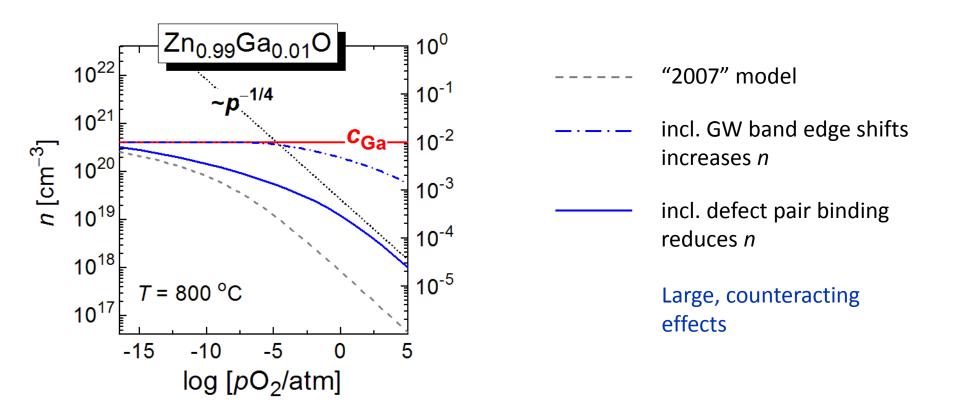
$$[(2Ga_{Zn}-V_{Zn})] = [Ga_{Zn}]^2 \times [V_{Zn}] \times exp(-E_{b2}/kT)$$

 $E_{b2} = -1.8 \text{ eV}$



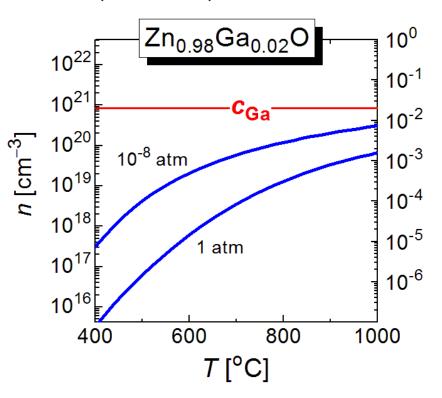
Solubility limit of Al, Ga, In in ZnO

Equilibrium of ZnO: $\Delta \mu_{Zn} + \Delta \mu_{O} = \Delta H_f(ZnO)$

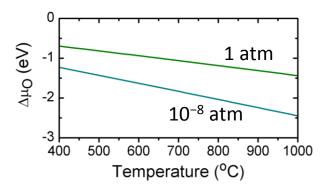

dopant: $2\Delta\mu_{AI} + \Delta\mu_{Zn} + 4\Delta\mu_{O} = \Delta H_f(AI_2ZnO_4)$

Solubility in the per cent range only at high temperatures above 1000°C At equilibrium conditions, moderate compensation (up to ~10%)

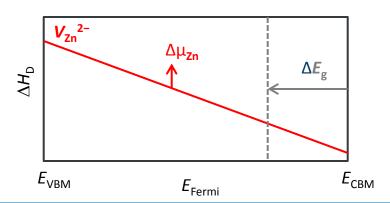
Influence of band edge shift and defect pairs


Constrained equilibrium: $c(Ga_{2n})$ is constant, but compensation by V_{2n} is equilibrated

Strong compensation at high (supersaturated) Ga dopant concentrations, most compensating defects (V_{Zn}) occur as fully passivated complexes ($2Ga_{Zn} - V_{Zn}$)


Temperature dependence of *n*

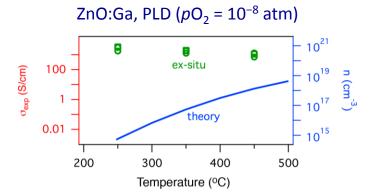
Constrained equilibrium (2% cat. Ga)


Why does *n* increase with *T*?

- reduction of $\Delta\mu_{\rm O}$ with T at given $p{\rm O}_2$ respective increase of $\Delta\mu_{\rm Zn}$ and $\Delta H_{\rm D}(V_{\rm Zn})$

- reduction of band gap (E_{CBM}) $\Delta E_g/\Delta T = 0.6 \text{ meV/K}$

F.J. Manjon et al, Sol. Stat. Comm. 128, 35 (2003)

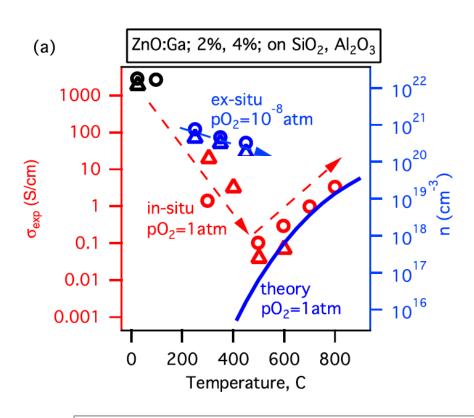


Comparison with as-grown doped ZnO

Highly doped ZnO:Al, ZnO:Ga only as thin-films

Typical literature growth methods and results

- PLD, Sputtering, MOCVD
- $T_{\text{sub}} \approx 200-300 \, ^{\circ}\text{C}$
- $pO_2 \le 10^{-6}$ atm
- c(Al,Ga) up to 5% cat.
- $n \approx 10^{21} \text{ cm}^{-3}$



As-grown films have much higher *dopant* concentration than predicted *equilibrium solubility* limit (not so surprising)

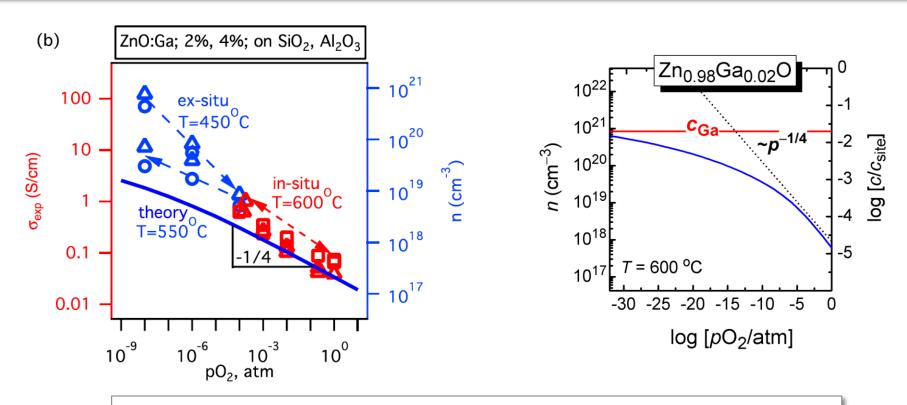
As-grown films have much higher *carrier* concentration than predicted for *constrained equilibrium* at moderate *T* (surprising?)

Temperature dependence of *n*

In-situ measurement of conductivity (NU): Direct monitoring of the equilibration process

Mobility

initially $\mu = 20 \text{ cm}^2/\text{Vs}$

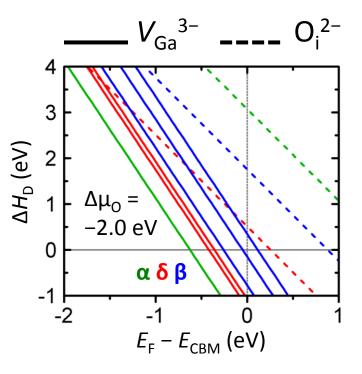

at room temperature

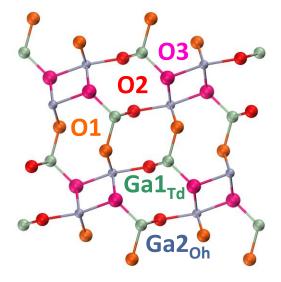
in-situ lower $\mu = 1 \text{ cm}^2/\text{Vs}$

(plot scaling)

- Conductivity decreases 3 orders of magnitude already at 300°C (1 atm pO_2)
- Minimum of σ around 500°C
- Conductivity increase at higher T in agreement with prediction

pO_2 dependence of n

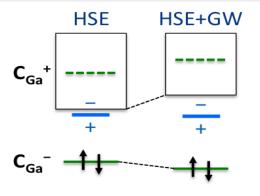


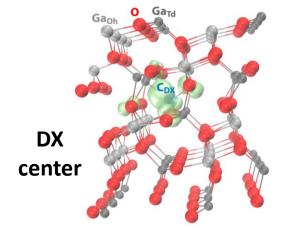

- Fast equilibration at high pO_2 (1 atm) around 500°C
- Slow equilibration at low pO_2 (10⁻⁸ atm)
- Observation of expected $p^{-1/4}$ dependence at high pO_2

A. Zakutayev, N.H. Perry, T.O. Mason, D.S. Ginley, S. Lany, *Non-equilibrium origin of high electrical conductivity in gallium zinc oxide thin films*, Appl. Phys. Lett. **103**, 232106 (2013).

Compensating defects in Ga₂O₃ polymorphs

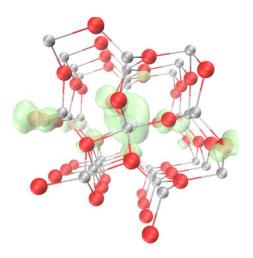
Ga ₂ O ₃ polymorphs	β (GS)	$\alpha (Al_2O_3)$	δ (In ₂ O ₃)
$E - E_{GS}$ (meV/at.) - DFT	0	+28	+30
E _g (eV) - GW	4.96	5.28	4.89

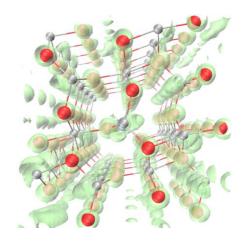



5 non-equivalent sites in β -Ga₂O₃

- Similar band gaps in all polymorphs
- Ga vacancies are the dominant defect (unlike O_i in In₂O₃)
- PAS experiments
 [Korhonen et al. APL
 106, 242103 (20150]
- Highest ΔH_D in ground state β -Ga₂O₃

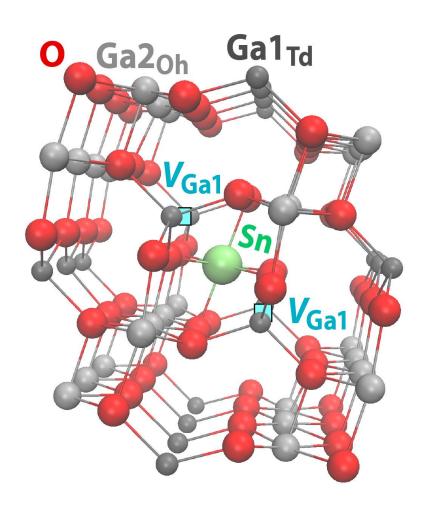
Which dopant releases free carriers?





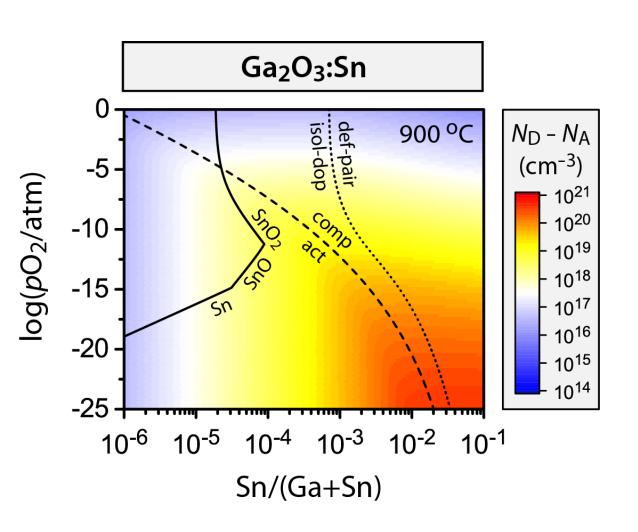
C_{Ga1}: deep level ⊗

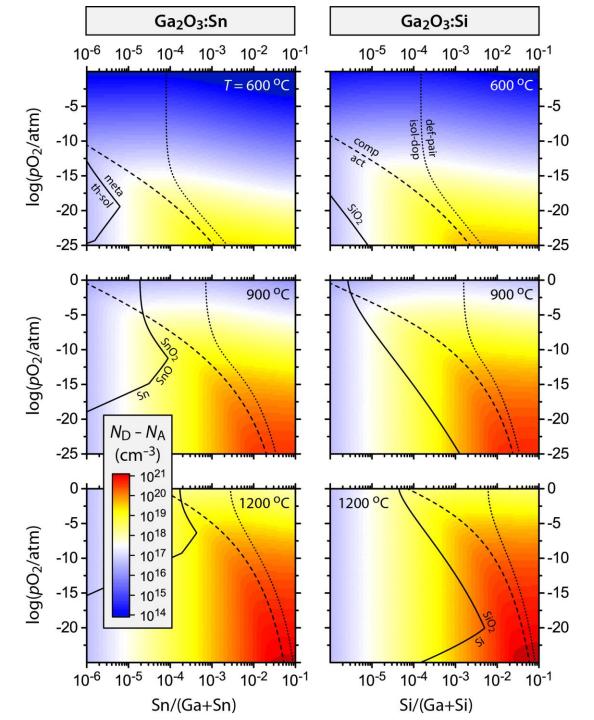
	E _{Oh-Td} (eV)	ε(+/−) HSE	ε(+/−) GW
C_{Td}	+1.15	-0.04	-0.81
Si _{Td}	+0.73	+1.19	+0.80
Ge_{Td}	+0.11	+0.56	-0.14
Sn _{Td}		+0.27	-0.41
Sn _{Oh}	-1.10	+0.58	-0.19



Sn_{Ga2}: so-so

Si_{Ga1}: shallow level ©


Dopant – defect interactions


- Supercells
 Standard DFT (GGA)
 160 atom cells for defect pairs
- Site-preference
 Sn_{Ga} @ Ga2_{Oh}
- "Split-vacancy" $V_{Ga} \rightarrow (Ga_i + 2V_{Ga1})$
- Defect pairs

$$Sn_{Ga1} + V_{Ga} -> (Sn_i + 2V_{Ga1})$$

 $\Delta E_b = -1.2 \text{ eV wrt } Sn_{Ga2}$
 $(Sn_i + 2V_{Ga1}) + Sn_{Ga2}$
 $\Delta E_b = -0.6 \text{ eV}$
 $(Sn_i + 2V_{Ga1}) + 2Sn_{Ga2}$
 $\Delta E_b = -0.2 \text{ eV}$

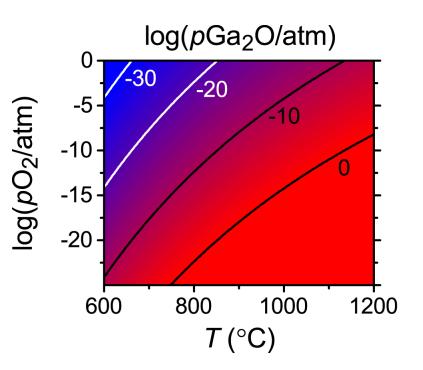
Defect equilibria

- Net doping (N_D N_A)
 vs. pO₂ and c(Sn)
- Solubility limits
- Activated vs.
 compensated doping
- Isolated defects vs. defect-pairs

Sn vs Si and temperature trends

Dopant choice

 Si slightly less compensated than Sn

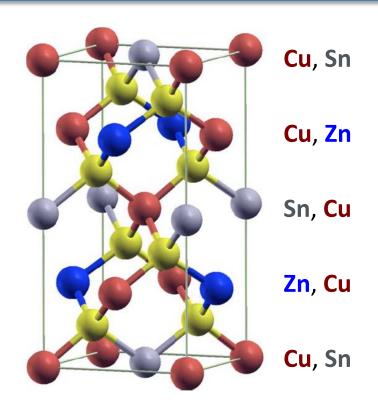

Increasing T causes

- Higher solubility limits
- Lower compensation ratio
- Higher limit of dopant conc.
- Higher $N_D N_A$

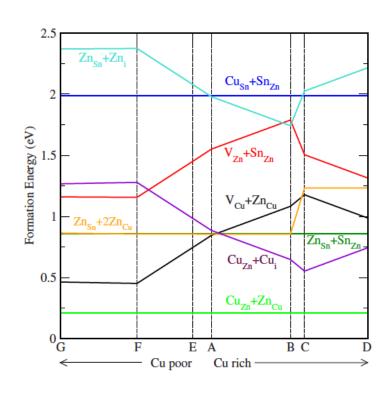
Optimizing experimental conditions

DPD: High T, low pO_2 , optimal dopant conc.

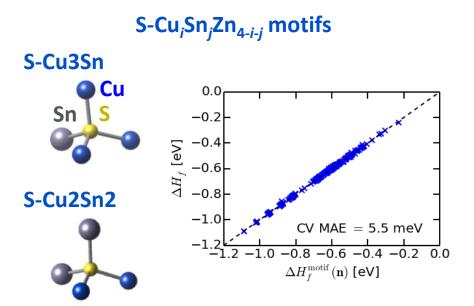
Thermodynamics: High pGa_2O causes material loss



T (°C)	log(pO ₂) (atm)	$N_{\rm D} - N_{\rm A}$ (10 ²⁰ cm ⁻³)	Si/Si+Ga (10 ²⁰ cm ⁻³)	in Si cat%
600	-29.2	1.4	11.0	2.9%
700	-22.6	1.0	6.9	1.8%
800	-17.4	0.8	4.5	1.2%
900	-13.0	0.6	3.0	0.8%
1000	-9.2	0.4	2.2	0.6%


Maximal doping: Lower T, optimize pO_2 and Si conc.

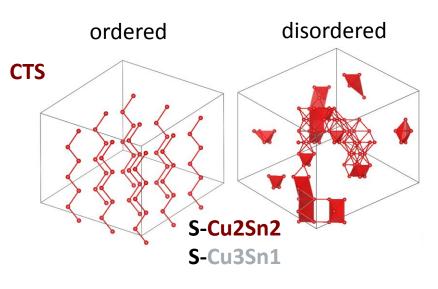
Multinary compounds: Cu₂ZnSnS₄ (CZTS) and Cu₂SnS₃ (CTS)

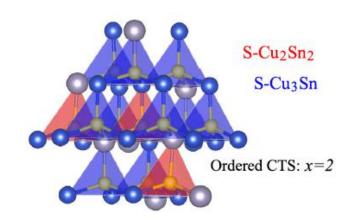

A. Nagoya, PRB **79**, 115126 (2009)

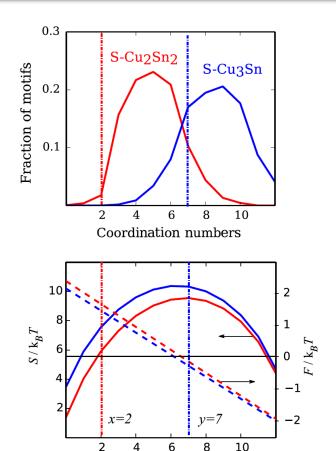
S. Chen et al., PRB **81**, 245204 (2010)

- Experiment: Order disorder phenomena
- Theory: Cu_{Zn} Zn_{Cu} defect pair
- Description beyond the defect model?

Model Hamiltonian: CZTS and Cu₂SnS₃ (CTS)

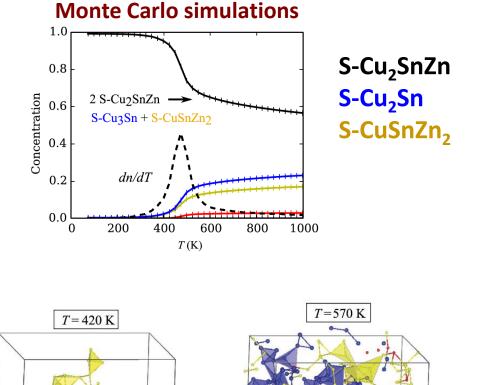

$D_f H$	$=2\sum e_f(i,j)n($	i, j)
	(i,j)	

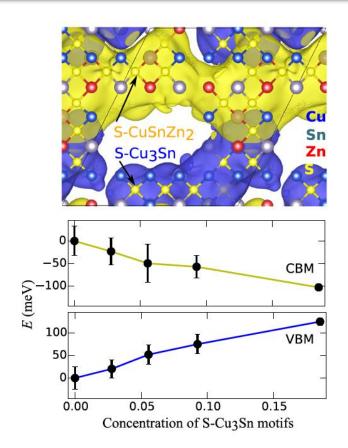

j	0	1	2	3	4
0	-1.083	-0.914	-0.679	-0.404	-0.238
1	-0.880	-0.790	-0.663	-0.492	
2	-0.565	-0.563	-0.463		SnZn ₂
3	-0.379	-0.254	S-Cu ₂ SnZn S-Cu ₃ Sn S-Cu ₂ Sn ₂		
4	-0.026				


- Motif based Hamiltonian emphasizes local order and octet rule
- Good fit even thought long range order effects are excluded
- Simple Hamiltonian allows efficient Monte-Carlo simulations

Entropy-driven clustering in CTS

Monte Carlo simulations

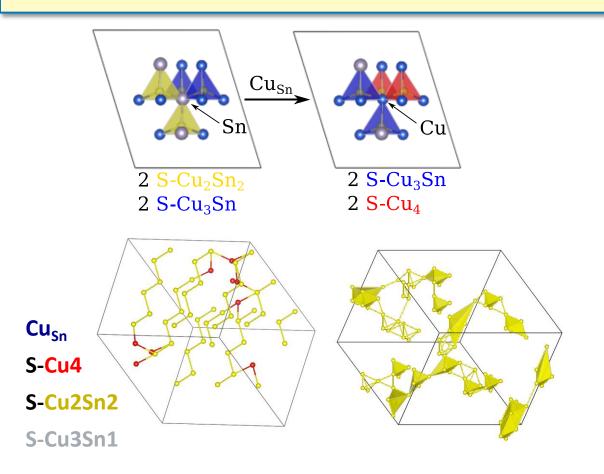


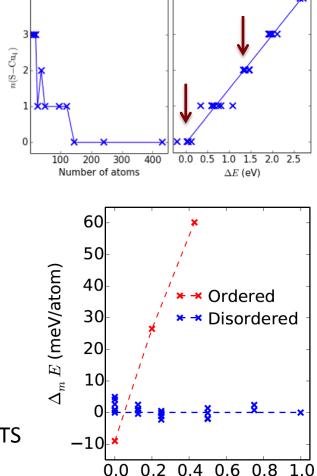

Coordination numbers

- Disorder induced clustering
- Weakly temperature dependent

P. Zawadzki, A. Zakutayev, and S. Lany, *Entropy-driven clustering in tetrahedrally bonded multinary materials*, Phys. Rev. Appl. **3**, 034007 (2015).

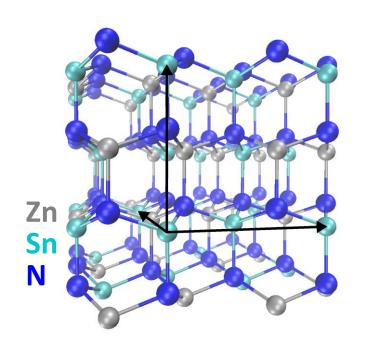
Order-disorder transition in CZTS



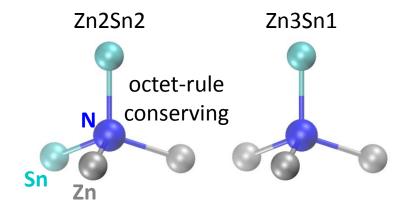

 Entropy driven clustering amplifies potential fluctuations

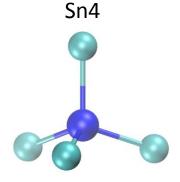
P. Zawadzki, A. Zakutayev, and S. Lany, *Entropy-driven clustering in tetrahedrally bonded multinary materials*, Phys. Rev. Appl. **3**, 034007 (2015).

Implication for point defects: "Extended anti-sites"


- Formation energy of Cu_{Sn} reduced by 1.5 eV in disordered CTS
- Point defect model in ordered crystal does not capture energetics of off-stoichiometry

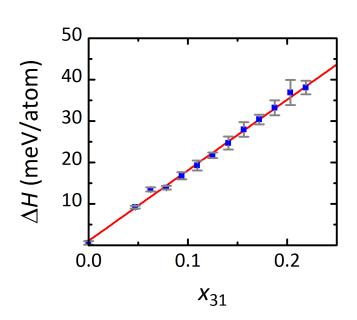
Alloy composition x


P. Zawadzki, A. Zakutayev, S. Lany, *Extended antisite defects in tetrahedrally bonded semiconductors*, Phys. Rev. B **92**, 201204(R) (2015)


Cation ordering in ZnSnN₂

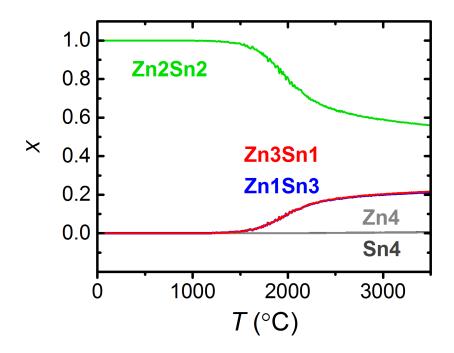
Crystal structure of ordered ZnSnN₂ (ZTN)

- Orthorhombic (ORC) cell is supercell of Wurtzite (WZ)
- All N atoms coordinated by 2 Zn and 2 Sn



$$\Delta H = \sum_i n(i) \, e(i)$$

ZTN disorder: Phase transition and energies


Energies (DFT)

- Disordered octet-conserving: Essentially degenerate, $\Delta H = 0.5$ meV/atom, occurs at any temperature
- Average energy is linear in concentration $x_{31} = x_{13}$ of Zn3Sn1 motifs

Disorder vs temperature (model H)

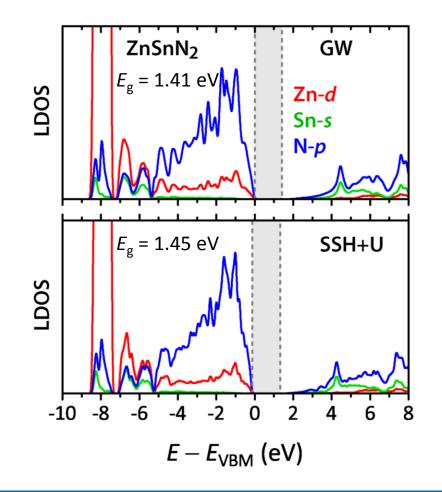
- Ordered ground state: only Zn2Sn2 motifs (octet)
- Around 2000°C transition to phase with 40% of Zn3Sn1+Zn1Sn3 motifs
- Zn4 and Sn4 stay below 1%

Band gap calculations

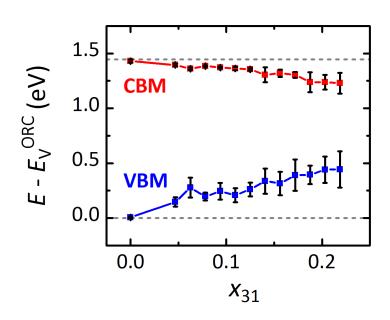
Approach

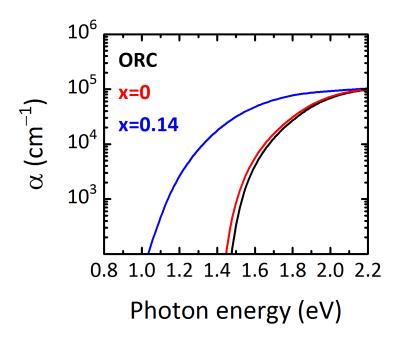
- Need to avoid "DFT band gap error"
- Full-fledged GW calculations not feasible for supercells of disordered ZTN
- Use "single-shot" hybrid functional, plus on-site potential U for Zn-d
- Fitting to GW calculation for ZnSnN₂, Zn₃N₂, and Sn₃N₄

$$e_n^{GW} = e_n^{DFT} + \text{Re} \left\langle \psi_n^{DFT} \left| \Sigma(e_n^{GW}) - V_{xc}^{DFT} \right| \psi_n^{DFT} \right\rangle$$


Screening in GW: $W = W(\mathbf{r}, \mathbf{r'}, \omega)$

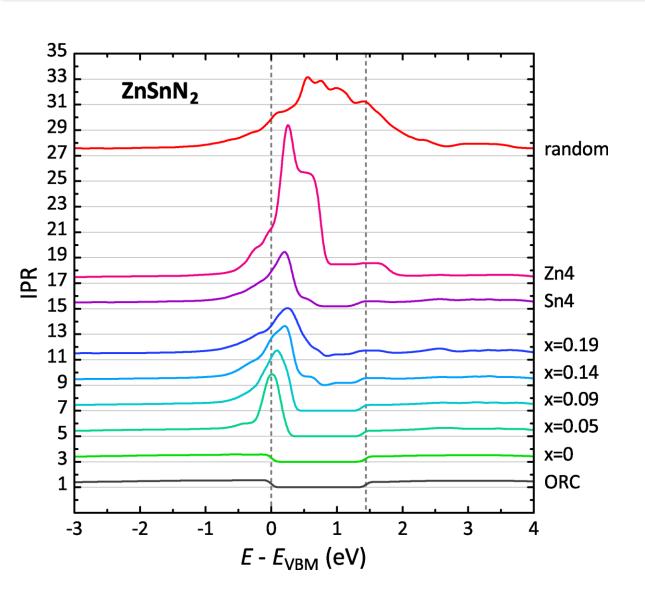
Hybrid functional: scaling by α < 1


Fit result: α = 0.14, $U_{\text{Zn-d}}$ = 4 eV


 $E_{\rm g}$ within 0.1 eV,

VBM, CBM, Zn-d within 0.2 eV

Disorder effects on electronic structure



Band gaps and optical properties

- Valence conserving disorder (only Zn2Sn2 motifs) has virtually no effect, as compared to the perfectly ordered ORC structure
- Band gap shrinks with increasing x₃₁
- Absorption edge becomes less steep

Inverse Participation Ratio: Measure of localization

$$IPR(E) = \frac{N \sum_{i} p_{i}(E)^{2}}{\left(\sum_{i} p_{i}(E)\right)^{2}}$$

 $p_i(E)$: atomic density of states

For example, IPR=10 means DOS is localized on 1 out of 10 atoms

- Octet-rule conserving disorder is benign
- "31" disorder causes only moderate localization
- Zn4 motifs create localized
 VB derived gap states
- Total random disorder fills gap with localized defect states

Conclusions

Electronic structure

Many-body perturbation theory in GW approximation Bandgaps, band-structure, optical properties

Defects

Defect formation energies, dopant-defect pair interaction Thermodynamic modeling, "defect phase diagrams"

Disorder

Model-Hamiltonian for total energy: Motif expansion Monte-Carlo simulations for atomic structure Electronic structure for disordered compounds

http://materials.nrel.gov
 Database for DFT and GW calculations

