

National Institute of Standards and Technology U.S. Department of Commerce

December 1–6, 2019 | Boston, Massachusetts

Tutorial EL04: Introduction to Chalcogenide Discovery and Design

Bulk Crystal Growth and Phase Diagrams for Metal Chalcogenides

Albert Davydov Material Science & Engineering Division

Goal and Outline

- Metal chalcogenides: focus on van-der-Waals layered materials
- Synthesis overview: thin film and bulk crystal growth
 - Advantages of bulk single crystals
 - Two primary growth methods for bulk: i) melt solidification, ii) vapor transport (CVT)
- Growth from melt:
 - Direct solidification (Bridgman-Stockbarger)
 - Solidification from flux
- Growth from vapor (CVT)
- Concluding remarks

Goal: Design growth of metal chalcogenide single crystals with defined properties.

Take-home message: "Phase diagram can serveas a map for materials processing"

Acknowledgement for crystal growth: Sergiy Krylyuk (MSED, NIST)

Phase diagrams are from ASM Alloy Phase Diagram Database 2

Metal chalcogenides family

Perio

Η

Li

Na

K

Rb

Cs

Fr

NIS

Group

Be

Mg

Ca

₃₈Sr

Ba

Ra

2D Josephson Junction

3

Growth Methods: from vapor, melt and solutions

Focus on bulk crystal growth: CVT and Solidification

NLE

Advantages of single crystals vs. thin films

- Large crystals to measure basic properties: structural, optical, electrical
- Nearly-perfect state of material: purity, no grain boundaries, less structural defects, stress, etc.
- Tunability of bulk properties: control of phase stoichiometry, doping level, alloy composition
- Exfoliation and stacking of heterostructures ("twistronics", optoelectronics) at ~room temperature

Key Disadvantage – manufacturability issue

• *Ex situ* fabrication of device layers => inter-layer contamination possible

• Limited scalability (however: site-specific exfoliation and 3D printing under development)

Melt Solidification

Not suitable

Materials:

- 1) Quartz tubing, ceramic crucibles
- 2) metal, chalcogen \geq 3 9's purity
- 3) Vacuum system (few mTorr) w/ backfill Ar-gas and O_2/C_3H_8 torch
- 4) Two-zone vertical furnace w/ motor (speed ~ 0.5 mm/h; temp. gradient ~ 50 C/cm) p.s. For further details, see APS 2019 comprehensive tutorial on crystal growth by Michael McGuire (ORNL)

Growth of congruently melting phase vs. Flux-growth

• Congruent melting point: $T_m^{congr} = 584 \,^{\circ}C \,(x_{melt} = x_{solid} = 60 \text{ at. }\% \text{ Te}) => \text{ growth from stoichiometric composition}$

• Other single crystals with congruent melting point, grown in our lab: Bi₂Se₃, GaSe, InSe

N٩

What if phase does not melt congruently? e.g., $Bi_2 Te^{T_m^{incongre} = 421^{\circ}C} = BiTe + L$

=> Flux growth window: $x \approx 10-20$ at.% Te and T= $314 - 421^{\circ}C$

Flux growth of 1T'-MoTe₂ from Te-rich melt

From <u>Rhodes (J. Hone's group) 2019</u>:

- Placed powders of Mo:Te=1:20 (95% Te) in evacuated ampoule
- Heated to 1100 °C for 24 h
- Cooled to 880 °C and held for 17 days
- Decanted melt from MoTe₂ crystals

Growth of MnBi₂Te₄, magnetic topological insulator (TI)

Qubits in superconductor/TI junction

ĒF

FM/AFM TI

VB

Cr-doped (Bi,Sb)₂Te₃

TI

VB

Bi₂Te₃

Zhang 2019

• **Needed:** (anti)ferromagnetism at higher temperatures and larger bandgap

Quantum anomalous Hall

(2013)

Candidates: Mn(Bi,Sb)₂(Se,Te)₄ family

Magnetic order

Cont.: Growth of MnBi₂Te₄ from melt

 $MnBi_2Te_4$ Mn:Bi:Te = 1:2:4 = 14.3 : 28.6 : 57.1 at. %

10

Cont.: Growth of MnBi₂Te₄ from melt

Attempt #3 (in-progress): use Bi_2Te_3 -rich flux: Bi_2Te_3 : MnTe \approx 5:1 @ T \approx 530 °C

Summary: Congruent melting => Bridgman growth

 Congruent melting => bulk crystal growth possible for other layered chalcogenides : SnSe₂ (647°C), SnS₂ (865°C), MoO₃ (795°C); ZrS₂ (1450 °C), VS₂ (≈1750°C), VSe₂*(≈1700°C), WS₂ (1800°C)

Summary: Incongruent melting => Flux Growth

13

Edelberg 2018

NIST single crystal library: NbSe₂, WSe₂, MoTe₂, Mo_{1-x}W_xTe₂, WTe₂, WTe₂, W_{1-x}Nb_xSe₂, WSe_{2(1-x)}Te_{2x}, GaSe, GeSe

Important issues in CVT:

- Choice of transport agent affects electrical properties
- Vapor-solid growth => P-T-x diagrams define stability limits

Transport Agents (TA) in CVT

- Usual Transport Agents: I₂, Br₂ (SeBr₄), Cl₂ (SeCl₄, TeCl₄)
- TA incorporates into crystal lattice and affects electrical properties (!)

2H-MoTe₂ growth using TeCl₄ vs. I₂ (our work in progress)

MoS₂ growth using TeCl₄, Br₂ and I₂

Other references (e.g., *Legna 1993*) also indicate that MoSe₂ and WSe2, grown with *CI*- and *Br*- were **n-doped**, while growth with *I*- resulted in **p-doping**.

CVT growth: verify the phase and composition!

Key point: CVT reactions complicated

• Phases sublime (in)congruently ____ • Components' partial pressures and transfer rates vary

- 'Wrong' phase can grow: e.g., new *spin-triplet superconductor* **UTe**₂ was originally intended to be **U**₇**Te**₁₂
- We found that doping level can be orders of magnitude lower than prescribed, e.g. in Nb-doped WSe₂
- Alloy composition is hard to control: e.g., **Mo_{1-x}W_xTe₂**, WSe_{2(1-x)}Te_{2x}, W_{1-x}Nb_xSe₂ and Mo_{1-x}Nb_xSe₂

NI

W-content is always less in crystal (~ factor of x2)

(T-x)- Phase Diagram for CVT growth: Mo-Te case

- Growth is affected by ampoule size
- P_{Te} inside of ampoule is different
- P-T-x diagram maybe useful (in a long run)

Step III

2H

Step II

1T'

Step I 2H

300

18

Full phase diagram: P-T-x

NIST

P-T-x Diagram for Mo-S System

Concluding thoughts

- When planning a crystal growth, see if phase diagram is available:
 - It helps to define growth window & phase stability (in terms of *Pressure-Temperature-composition*)
- Growth from melt (Bridgman and flux methods) produces large single crystals
 - Congruently melting phase => use Bridgman growth
 - Otherwise grow from flux (identify "melt + solid" area on a phase diagram)
- CVT growth: complex process with many variables => check identity and composition of the phases

Further reading, courtesy of Michael A. McQuire (ORNL)

Additional resources

- General synthesis, phase diagrams
 - A.R. West, Basic Solid State Chemistry and Solid State Chemistry and its Applications
 - P. Hagenmuller (ed.), Preparative Methods in Solid State Chemistry
 - A. Brown and J.H. Westbrook, "Formation Techniques", in Intermetallic Compounds, (J.H. Westbrook, ed.) [container material selection in particular]
 - FactSage FTSalt phase diagrams: http://www.crct.polymtl.ca/fact/documentation/FTsalt/FTsalt_Figs.htm
 - ASM Alloy Phase Diagram Database https://matdata.asminternational.org/apd/
- Flux growth

CAK RIDGE

- Kanatzidis, Pöttgen, Jeitschko "The metal flux: A preparative tool for the exploration of intermetallic compounds" Angew. Chem. Int. Ed. 44, 6996 (2005). Canfield and Fisk "Growth of single crystals from metallic fluxes" Phil. Mag. B 65, 1117 (1992).
- M. Tachibana "Beginner's Guide to Flux Crystal Growth"
- Vapor transport reactions
 - H. Schäfer "Chemical transport as a preparative procedure", in Preparative Methods in Solid State Chemistry (P. Hagenmuller, ed.)
 - Binnewies, Glaum, Schmidt, Schmidt, Chemical Vapor Transport Reactions

Acknowledgements

- Sergiy Krylyuk CVT growth Jim Maslar CVD growth
- Huairuo Zhang, Alina Bruma, Leo Bendersky TEM
- Gheorghe Stan AFM, KPF
- Berc Kalanyan, Stephen McDonnell XPS
- Irina Kalish XRD
- Shinichiro Muramoto, Joe Bennett, Greg Gillen SIMS
- Angela Hight Walker, Heather Hill, Amber McCreary, Sean Oliver, Patrick Vora, Ryan Beams – Raman
- Ben Burton ab-initio modeling
- Asha Rani, Kyle DiCamillo, Ratan Debnath, Zheng Sun FET fabrication & measurements

