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traffic network social network brain network

networks are mathematically represented by graphs
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from graphs to graph-structured data




Learning with graph-structured data
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graph-level classification node-level classification

(supervised) (semi-supervised)
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graph clustering
(unsupervised)
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Exciting possibilities enabled by graph ML e

fake news detection
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Monti et al., “Fake news detection on social media using geometric deep learning,” ICLR Workshop, 2019.
Stokes et al., “A deep learning approach to antibiotic discovery,” Cell, 2020.
Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021.
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( regular domain ) 4 )

(real line, 2D grid)

f(X) time series

forecasting

Classical ML
Image
classification
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( irregular domain ) ( \

(graphs) node classification

| link prediction
Graph ML E —
" graph classification
g X

graph clustering
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How to incorporate graphs into learning? %g finecon: [

e Traditional machine learning on graphs
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Limitations

- hand-crafted features or optimised embeddings, often focused on graph structure
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e Traditional machine learning on graphs

traditional ML
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e Limitations
- hand-crafted features or optimised embeddings, often focused on graph structure

- respect notion of “closeness” in the graph, but do not adapt to downstream tasks
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How to incorporate graphs into learning? [ fingen

e Traditional machine learning on graphs

Sl traditional ML
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graph embeddings features

e Limitations
- hand-crafted features or optimised embeddings, often focused on graph structure

respect notion of “closeness’ in the graph, but do not adapt to downstream tasks

- can incorporate additional node features, but in a mechanical way
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e Graph machine learning
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graph node features learned embeddings tasks

e Advantages
- naturally combine graph structure and node features in analysis and learning

= new tools: graph signal processing, graph neural networks
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How to incorporate graphs into learning? I e [

e Graph machine learning

=S graph ML
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graph node features learned embeddings tasks

e Advantages
- naturally combine graph structure and node features in analysis and learning

= new tools: graph signal processing, graph neural networks

- embeddings can adapt to downstream tasks and be trained in end-to-end fashion

- offers more flexibility and enables “deeper” architectures and embeddings
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e Graph-structured data can be represented by graph signals

G={VE&} RN f:V—-R

v1 U2 j z 5 +02% =

takes into account both structure (edges) and data

(values at nodes)
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1D signal 2D signal graph signal

how to generalise classical signal processing tools on
irregular domains such as graphs?




Graph signal processing
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classical signal processing

- complex exponentials provide
“building blocks” of 1D signal
(different oscillations or frequencies)

- leads to Fourier transform

- enables convolution and filtering




Graph signal processing
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classical signal processing
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igenvector u; eigenvector u,

)

complex exponentials provide
“building blocks” of 1D signal
(different oscillations or frequencies)

leads to Fourier transform

enables convolution and filtering

0 graph signal processing

0.2

0.0 -

Laplacian eigenvectors provide
“building blocks” of graph signal
(different oscillation or frequencies)

leads to graph Fourier transform

enables convolution and filtering
on graphs
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Graphs and graph Laplacian
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weighted and undirected graph:

g = {V75}
D = diag(d(v1), -+ ,d(vn))

L=D—-—W equivalent to G!
Loorm = D™ 2(D —W)D™ 2

0 O .

0 0\ e sSymmetric

-1 0

0 0] e off-diagonal entries non-positive
-1 0

3 _1/ e rows sum up to zero

-1 1
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graph signal f : ) — R

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004.
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graph signal f : ) — R
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0 -1 4 -1 0 -1 -1 0 f(3)
0 0 -1 2 -1 0 0 O f(4)
0 0 0 -1 2 -1 0 0 f(5)
0 -1 -1 0 -1 4 -1 0 £(6)
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Lf(i) =Y Wi(f(i)— ()
j=1

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004.
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graph signal f : ) — R

1 -1 0 0 0 0 0 O £(1) £(1) T/1 10 0 0 0 0 o £(1)
(—1 3 -1 0 0 -1 0 o\ f(2)\ /f(2)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
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0 0 -1 2 -1 0 0 O f(4) £(4) 0 0 -1 2 -1 0 0 O £(4)
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J=1 i,j=1

a measure of “smoothness”

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004.




Graph Laplacian

frLf=1
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e L has a complete set of orthonormal eigenvectors: L = yAx”

| ] o 0 1[— Xo—"
L =1Xy XN-1 ‘
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X A X
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e L has a complete set of orthonormal eigenvectors: L = yAx”

| ] o 0 1[— Xo—"
L = XO XN—I ‘
| | ] Lo Avo] [ — oy —
X A X"

o Eigenvalues are usually sorted increasingly: 0 = A\g < A1 < ... < An_1
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.
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low frequency high frequency

>
X%LXO =N =0 X0 LX50 = As0

Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.
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low frequency high frequency S
XgLXO =X =0 XgoLXm = As0

graph Fourier transform:
- AT

FOO = e, ) [Xo - Xy /

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.
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Graph Fourier transform ) iz [

low frequency high frequency S
ngxO = A =0 XgoLXm = As0
graph Fourier transform:
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.
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e The Laplacian L admits the following eigendecomposition: Lxs = Apxy
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Graph Fourier transtorm [ iinezang [

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

one-dimensional Laplace operator: —V/?

$

eigenfunctions: e’/“"

Classical FT:

_ / (&%) f(x)da

fla)= o / F(w)e™= duw
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Graph Fourier transtorm ) iz [

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

graph Laplacian: L

$

eigenvectors: X/

one-dimensional Laplace operator: —V/?

$

eigenfunctions: e/%*

Classical FT: — / (&%) f(x)dz + Graph FT: f(£) = (xe, f) = ZXE (2) f(2)
fa) = o [ Fw)erds i) =3 FOneld
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Graph Fourier transtorm T e [

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

graph Laplacian: L

i

eigenvectors:

‘ f:V-RY

Graph FT: f(£) = (xe, ) =[>_xi 0 ()

1=1
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one-dimensional Laplace operator: —V/?

$

eigenfunctions: e’/“"

Classical FT:
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Example on synthetic signals

GFT: _‘

A

f(8) = (xe, )+ [Xo

eigenvector u, eigenvector u,
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Example on movie ratings ;
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Example on movie ratings ;
P & L/ e
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Classical FT:  f(w) :/(ej“‘”)*f(x)dx f(z) = —/f(w)eijdw




Classical frequency filtering

Classical FT:
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Classical frequency filtering

Classical FT:
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GFT: f(0) = {xe, ) = D_xi(Df (D) (@) = 3 f(O)xe(0)
GFT g(Ae) IGFT i
fo| = | fo) = | g\ f(0) = i) = 3 40 f(Ex




Graph spectral filtering %g ENGINEERING

SCIENCE OXFORD

........




Graph spectral filtering %ﬂ ENGINEERING

SCIENCE OXFORD

N N-—-1

GFT: f(0) = {xe, ) = D_xi(Df (D) (@) = 3 f(O)xe(0)

[ T o g(ATf m| xg(A)XT S
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[G(Mo) 0 g(L): function of L!
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Graph spectral filtering ﬂ”ﬁﬁ“&iﬂ?&”ﬁmn
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GFT: f(€)=<xf,f>=ZxZ(i)f(i) FG@) = f(O)xe(i)

GFT @ IGFT

fo| = xTf GAXTf | = | Gg(A)XTf

g(Xo) 0 g(L): function of L!
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Example on movie ratings ;
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Example on movie ratings ;
P & L/ e

2 Q—O= 2Q—0O=
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o Filters can be designed as functions of graph Laplacian

GFT g(A) IGFT
fo e xf = G(A)xTf | = xg(A)xf

g(L): function of L!

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003.
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o Filters can be designed as functions of graph Laplacian

GFT g(A) IGFT
fo e xf = G(A)xTf | = xg(A)xf

g(L): function of L!

e Important properties can be achieved by properly defining §(L) , such
as localisation of filters

e Closely related to kernels and regularisation on graphs

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003.
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Convolution on graphs

classical convolution

time domain

Tro0= [ T f(t = T)g(r)dr

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018.
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Convolution on graphs

classical convolution

time domain

Tro0= [ T f(t = T)g(r)dr

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018.
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Convolution on graphs

classical convolution

time domain
(f*g)(t / ft —71)g(T)dr

4

frequency domain

(f*9)(w) = f(w) - §(w)

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018.
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Convolution on graphs *
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classical convolution convolution on graphs

time domain
(f*g)(t / ft —71)g(T)dr

4

frequency domain graph spectral domain

/\

(f*9)(w) = f(w) - §(w) (F+9)N) = (" £ og)(N)

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018.
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Convolution on graphs *
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classical convolution convolution on graphs

time domain spatial (node) domain

frg=xgN)x"f=9(L)f

1)

graph spectral domain

(f*g)(t / f(t—7)g(r)dr

4

frequency domain

/\

(f*9)(w) = f(w) - §(w) (F+9)N) = (" £ og)(N)

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018.




Convolution on graphs

classical convolution

time domain
(f*g)(t / ft —71)g(T)dr

4

frequency domain

(f*9)(w) = f(w) - §(w)
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convolution on graphs

spatial (node) domain

f*xg= Xﬁ(A)XTf _o(D)f convolution

1)

graph spectral domain

= filtering

/\

(fxg)N) = (X" feog)(N)

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018.
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Frg=xgN)x"f=9(L)f

4

0.8 1

learning a non-parametric filter:

0.6
0.4 4

Go(A) = diag(9), 0 € RN - 0,

0.0 4

Bruna et al., “Spectral networks and deep locally connected networks on graphs,” ICLR, 2014.
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A non-parametric filter ;
P /e e

Frg=xgN)x"f=9(L)f

4

0.8 1

learning a non-parametric filter:

go(A) = diag(0), 0 € R - >0,

0.0 4

- convolution expressed in the graph spectral domain
- no localisation in the spatial (node) domain

- computationally expensive

Bruna et al., “Spectral networks and deep locally connected networks on graphs,” ICLR, 2014.
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A parametric filter i
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Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 6,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
go(\) =3 0,), g e REH! —> go(L) =) 0,

j=0 j=0

what do powers of graph Laplacian capture?

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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Powers of graph Laplacian cineean [N
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L* defines the k-neighborhood

LO Lt L2 L3 L4
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(source: M. Deferrard)

Localization: dg(v;, v;) > K implies (LX); =0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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A parametric filter i
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Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 0,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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AR

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =) _0;M, 0 € RFH! ) Go(L) = 0,1
J=0

i=0

- localisation within K-hop
neighbourhood

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =) _0;M, 0 € RFH! ) Go(L) = 0,1
J=0

i=0

- localisation within K-hop
neighbourhood

- Chebyshev approximation enables
efficient computation via recursive
multiplication with scaled Laplacian

2

AN—1

I = L—1

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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N (0),43(0)23D)]

f A(A) Tf A(L)f qormalised Laplacian
k p— p—
g=x9(\)x"f=4g L pirp-b

‘ — D 3(D-W)D"

—J—-D WD 2 =1 Wi
_ ")

simplified parametric filter K1

K | normalised Laplacian
go(L) = ZQjLJ — =60yl — 0, (D" 2WD™2)
j=0

(localisation within 1-hop neighbourhood)

K=1

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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! A(A) Tf A(L)f fnormalised Laplacian B
b S — p—
9=x9M\)x" f =9 R
‘ — D 3(D-W)D" 2

. =1-DEWDE=1-Waomm

simplified parametric filter K1

K | normalised Laplacian
go(L) = ZQjLJ — =60yl — 0, (D" 2WD™2)
j=0

(localisation within 1-hop neighbourhood)

K=1

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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- . . "
. T . normalised Laplacian
fxg=xgN)x" f=4g(L)f 12
Lyorm = D 2LD™ 2
‘ — D 3(D-W)D" 2
. . \_ :I_D_%WD_%:I_Wnormj
simplified parametric filter K1

normalised Laplacian

K
go(L) = ZQij — =00l — (D ZWD?)
j=0

(localisation within 1-hop neighbourhood)

K=1

renormalisation

— = oz(f)_%l/f/f)_%)

renormalisation
W=W+I D=D+1I

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Frg=xgN)x"f=9(L)f

4

simplified parametric filter

ja(L) =a(I+D WD 3)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+ D 2WD"2)

#

Yi = of; \/— Z) 1

.7

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.




A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+D WD 3)

1 1
?Jz'ZOémeOé\/dfi Z wz‘jﬁfj

7:(4,)€E

‘ unitary edge weights

1
?Jz':Oéfz'+ZOé Z fi

j:(3,5)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter

ja(L) = a(l + D 2WD™?)

‘ unitary edge weights

1
inOéfi+ZOé Z fi

g:(4,7)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Convolution on graphs - Remarks *
grap L e g

e Convolution is defined via the graph spectral domain..

frg=xgMN)x" f=g(L)f
e ..but can be implemented in the spatial (node) domain
- simplified filter: y = go(L)f = a([)—%vf/[)—%)f

- interpretation: at each layer nodes exchange information in 1-hop neighbourhood

- more generally: receptive field size determined by degree of polynomial
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e Convolution is defined via the graph spectral domain..

frg=xgMN)x" f=g(L)f
e ..but can be implemented in the spatial (node) domain
- simplified filter: y = go(L)f = a([)—%vf/[)—%)f

- interpretation: at each layer nodes exchange information in 1-hop neighbourhood

- more generally: receptive field size determined by degree of polynomial

e Other possibilities exist (e.g., a direct spatial approach)
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G =G

o
3

Graph
Ex: social, biological,
telecommunication graphs

reR"
I
.’L‘ZZO = R"t=0

Input signal
on graphs

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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)Y,

O(K) parameters :P‘ . /?
O(E.K) operations (GPUs) (: &O f

52

Spectral Filters g

Graph
Ex: social, biological, :,\n (>0
telecommunication graphs .<:—g>0 1
x € R" ) g)e:
|
. ) =0 o F 1
.’L'I'_O e R™=0 x, eR
91 =1 = RK 1 FY
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.




A

CNNs on graphs: ChebNet ﬂ“ﬁﬁ“&i“ﬁﬂ”ﬁma
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Relu activation =2

+ Gl:l
Spectral Filters 3 Graph coarsening

A
/\
N
/
« >

O(K) parameters :/\‘ )b“ Factor 2P
O(E.K) operations (GPUs) dg;o Pre-computed

Y ) i +
G = =0 1 bﬁpﬂ Pooling (Gpus)
o : 9ox:

o] Q
/\ /\
R N
Y X Vi \

\

7\
V"

/

/N 7T\ /1N

Graph \ =
Ex: social, biological, :\’\ [0 e
telecommunication graphs 0<:g>0/
|
. ‘ =0 n0F1 =1 anl ~ ]7
xl—O c R™M=o0 x, eR % eR ~
9!=1 ¢ RE1 11 ny = ng/2"
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.




CNNs on graphs: ChebNet

Relu activation

+ Gl:1
Spectral Filters Graph coarsening
O(K) parameters }\‘ 1 \;EJ Factor 2°
O(E.K) operations (GPUs) Pre-computed

N > 9 7)
L& %
¥

/ ), i
bﬁ}w Pooling (Gpus)

2 -

Graph \
Ex: social, biological, ‘:\l\_ $
telecommunication graphs .<:ig>o/

/N 7T\ /1N
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Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)
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Output signal
Class labels

y € R"
9126 E Rn{')n(:

',L,l:5 6 R715F5
9[25 E RKSFI-'-FS

Fully connected layers

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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Go+v) (L) (RGLU(%(m (L)f))

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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CNNs on graphs: GCN

gou-rn (L) (ReLU (GRNEND)

Hidden layer
o
Input ® o
’. IS} “',Z"'.
L P . - \ \\‘ ®
X =H" A
¢! \ .\. ‘

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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CNNs on graphs: GCN

Hidden layer

Input ® o
. .. g I ReLU
¢ * ° o)
X =H .

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.



CNNs on graphs: GCN

Hidden layer

Ve

\ 4

~

Hidden layer

-~

~

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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CNNs on graphs: GCN

LN

Hidden layer Hidden layer
4 N\ 4 N\
® o
o * o *
Input ® o ® o Output
s N s “
b °
. ° RelLU RelLU »
S . ® " e ‘ o : - e . ®
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X =HW . 0 7 — g™
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® L
® \ ® \
® ®
o / - /

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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CNNs on graphs: GCN
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Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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e Node-level task

- cross-entropy loss function for (semi-supervised) node classification

F
[::— Ylfanlf

/

set of labelled
(training) nodes

label prediction (final layer
node representation)
label groundtruth

- training by minimising loss function and making predictions on testing nodes

e Factors influencing model behaviour
- what label distribution favours GCN in this task?

- what about perturbation of input graph topology?
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GNN Spectral CNN PATCHY-SAN GCN GraphSAGE GAT CayleyNet GIN
Gori et al. Bruna et al. Niepert et al. Kipf and Welling Hamilton et al. Velickovi¢ et al. Levie et al. Xu et al.

2005 2009 2014 2016 2016 2016 2017 2017 2017 2017 2018 2018 2019 2019 2019 2019

ChebNet MPNN MoNet GN CNNs on graphs SGN

GNN Gated GNN
Monti et al. Battaglia et al. Gama et al. Wu et al.

Scarselli et al. Li et al. Defferrard et al. Gilmer et al.

B spectral (GSP) perspective [l spatial perspective




(More generally) Graph neural networks o 8

GNN Spectral CNN PATCHY-SAN GCN GraphSAGE GAT CayleyNet GIN
Gori et al. Bruna et al. Niepert et al. Kipf and Welling Hamilton et al. Velickovi¢ et al. Levie et al. Xu et al.

2005 2009 2014 2016 2016 2016 2017 2017 2017 2017 2018 2018 2019 2019 2019 2019

GNN Gated GNN ChebNet MPNN MoNet GN CNNs on graphs SGN
Scarselli et al. Li et al. Defferrard et al. Gilmer et al. Monti et al. Battaglia et al. Gama et al. Wu et al.

B spectral (GSP) perspective [l spatial perspective

more recently: graph transformers and LLM-powered models
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Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021.
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Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021.
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Application |l: Weather forecasting

AR

a) Input weather state b) Predict the next state c) Roll out a forecast

GraphCast

Lam et al., “Learning skillful medium-range global weather forecasting,” Science, 2023.
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DeepTrace Algorithm

P, «---| Maximum-likelihood Estimator |
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. I . A « prediction for each node
y - i g A
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Contact Tracing ~ Input Graph Neural Network

Tan et al., “DeepTrace: Learning to optimize contact tracing in epidemic networks with graph neural networks,” IEEE TSIPN, 2025.
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e Fast-growing field that extends data analysis to non-Euclidean domain

e Highly interdisciplinary: machine learning, signal processing, harmonic
analysis, applies statistics, differential geometry

e Promising directions
- going beyond convolutional models (e.g., graph transformers)
- expressive power of graph ML models
- robustness & generalisation & scalability
- interpretability & causal inference
- construction/refinement of initial graphs

- applications (particularly in urban science)
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any scientfic fields study data with an underlying
structure that is non-Euclidean. Some examples

tional networks in brain imaging, regulatory networks in
‘genetics, and meshed surfaces in computer graphics. In
many applications, such geomelric data are large and com-
plex (in the case of social networks, on the scale of billions)
and are natural targets for machine-learing techniques.
In particular, we would like o use deep neural networks,

which have recently proven (o be powerful tools for a broad

range of problems from computer vision, natural-language
procssing, an auio amlysi. Howeve, e ools ave

gmHlkz structure and in cases wtme the invariances of these
structures are built into networks used to model them.
Geometric deep learning is an umbrella term for emerging

mod- /o
el to non-Euclidean domains, such as graphs and manifolds. The S @
purpose of this artile is to overview different examples of geomeric /
deep-learning problems and present available sofutions, key J /
ties, applications, and future research directions in this nas

Overview of deep lear ¢

Deep learning refers to learning complicated concepts by building them from
simpler ones in a hierarchical or multilayer manner. Artificial neural networks are

popular realizations of such deep multlayer hierarchies. In the past few years, the growing

‘computational power of modern graphics processing unit (GPU)-based computers and the avail-

bty ofarge g dt st e alowed slmccssfully g et ntvorks with manybyes

and degrees of freedom (DoF) [1] led to qualitative breakihroughs on a wide variety of ta

specch recogaition [2], (3] and machine lunslalmn 4] to image analysis and computer vision [SI-{11] (s:e 1)

Geometric Deep Learning

Going beyond Euclidean data
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Abstract

Machine lerning o graphs i an important and ubiguits sk with applications rangin from drug
vorks. The primary challenge in this domain s finding
@ way (0 represent, or encode, graph structure so that it can be easily exploited by machine learning
‘models. Traditionally, machine learning approaches relied on user-defined heuristics o extract features
encoding structural information about a graph (e.g., degree statistics or kernel functions). However,
recent years have seen a surge in approaches that automatically learn o encode graph structure into
low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality
reduction. Here we provide a conceptual review of key advancements in this area of representation
learning on graphs, including matrix based methods, rand k based algorithms, and
‘graph convolutional networks. We review methods to embed individual nodes as well as approaches
10 embed entire (subjgraphs. In doing so, we develop a unified framework to describe these recent
approaches, and we highlight a number of important applications and directions for future work.

1 Introduction

Graphs are a ubiquitous data structure, employed exiensively within computer science and related filds. Social
networks, molecular graph structures, biological protein-protein networks, 1 of these
domains and many more can be readily modeled as graphs, which capture interactions (ic., edges) between
individual units (i.e., nodes). As a consequence of their ubiquity, graphs are the backbone of countless systems,

allowing relational knowledge about interacting entities to be efficiently stored and accessed [2].

‘However, graphs are not only useful as structured knowledge repositories: they also play a key role in
modern machine learning. Machine learning applications seek to make predictions, or discover new patterns,
using graph-structured data as feature information. For example, one might wish to classify the role of a prron.m

in a biological interaction graph [28], predict the role of a person in a collaboration network, recommend n

friends to a user in a social network [3], or predict new therapeutic applications of existing drug molecules,

whose structure can be represented as a graph [21]

Copyright 2017 IEEE. Personal use of ihis material is permitted. However, permission to reprint/republish this material for
adverising or promoional purposes or for creating new collective works for resal or redistribution 0 servers or lists,or 10 reuse any
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A Comprehensive Survey on Graph
Neural Networks

Zonghan Wu®, Shirui Pan®, Member, IEEE, Fengwen Chen, Guodong Long®,
Chenggi Zhang"™', Senior Member, IEEE, and Philip S. Yu, Life Fellow, IEEE

bstract—Deep learning has revolutionized many machine
learning tasks in recent m.rs. ra
and video processing to speecl
understanding. The data in vt pically represcnied
in the Euclidean space. However, there is an increasing number
of applications, where data are generated from "on-Euclidean

machine learning algorithms. Recently, many studies on extend-
ing deep learning approaches for graph data have emerged.
In this article, we provide a comprehensive overview of graph
neural networks (GNNs) in data mining and machine learning
fields. We propose a new taxonomy to the state-of-the-art
GNN fnto four caegories, namely, recurrent GNNs, convolu-
sl NN, graph sutoencoders, and spatisl temporl
We further polications of GNNs acrom various
o wad sty ‘open-source codes, benchmark data
st and model evaluation of GNNs. Finally, we propose potetial
wreh directions in this rapidly growing field.

Index Terms—Decp earning graph sutoencoder (GAE),graph
convolutional networks ( aph neural networks (G
Eraph represcntation learning, nctwork embeddin;

1. INTRODUCTION

HE recent success of neural networks has boosted

rescarch on pattem recognition and data mining. Many
machine learning tasks, such as object detection [1], (2]
machine translation [3], [4], and speech recogaition (5], which
once heavily relied on handerafted feature engineering to
extract informative feature sets, have recently been revolu-
tionized by various end-to-end deep learning paradigms, e.g.,
convolutional neural networks (CNNs) [6], recurrent neural
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networks (RNNs) (7], and autoencoders [8]. The success
of deep learning in many domains is partially atributed to
the rapidly developing computational resources (e.g., GPU),
the availability of big training data, and the effectiveness
of deep learning to extract latent representations from the
Euclidean data (e.g.. images, text, and videos). Taking image
ata as an example, We can represent an image as a regular
grid in the Euclidean space. CNN is able to exploit the shift-
invariance, local connectivity, and compositionality of image
ata [9]. As a resull, CNNs can extract local meaningful
features that are shared with the entire data sets for various
image analyses.

Vhile deep learning effectively captures hidden patterns of
Euclidean data, there are an increasing number of applica-
tions, where data are represented in the form of graphs. For
example, in e-commerce, a graph-based learning system can
exploit the interactions between users and products to make
highly accurate recommendations. In chemistry, molecules
are modeled as graphs, and their bioactivity needs to
identified for drug discovery. In a citation network, articles
are linked t0 each other via citationships, and they need to be
categorized into different groups. The complexity of graph data
has imposed significant challenges on the existing machine
learning algorithms. As graphs can be irregular, a graph may
have a variable size of unordered nodes, and nodes from a
graph may have a different number of neighbors, resulting in
some important operations (e.g.. convolutions) being easy to
compute in the image domain but difficult to apply to the graph
domain. Furthermore, a core assumption of existing machine
learning algorithms is that instances are independent of each
other. This assumption no longer holds for graph data because
each instance (node) is related 1o others by links of various
types. such as citations, friendships, and interactions.

Recently, there is increasing interest in extending deep
learning approaches for graph data. Motivated by CNI
RNNs, and autoencoders from deep leaming, new generaliza
tions and definitions of important operations have been rapidly
developed over the past few years to handle the complexity
of graph data. For example, a graph convolution can be
generalized from a 2-D convolution. As illustrated in Fig. 1,
an image can be considered as a special case of graphs,
where pixels are connected by adjacent pixels. Similar t0 2-D
convolution, one may perform graph convolutions by taking
the weighted average of a node’s neighborhood information.

There are a limited number of existing reviews on the
topic of graph neural networks (GNNs). Using the term
‘geometric deep learning, Bronstein ef al. [9] give an overview
sepublicationreditrbution requires IEEE pe
hindex bl for more inforaion
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Abstract

There has been a surge of recent interest in graph representation learning (GRL). GRL
methods have generally fallen into three main eategories, based on the availability of la-
beled data. The first, network embedding, focuses on learning unsupervised representations
of relational structure. The second, graph regularized neural networks, leverages graphs to
augment neural network losses with a regularization objective for semi-supervised learning.
"The third, graph neural networks, sims to learn differentiable functions over discrete topolo-
ies with arbitrary structure. However, despite the popularity of these areas there has been
surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap
between network embedding, graph regularization and graph neural networks. We
pose a comprehensive taxonomy of GRL methods, aiming to unify several disparate bodics
of work. Specifically, we propose the GrapEDM framework, which generalizes popular
algorithms for semi-suj learning (c.g. GraphSage, GCN, GAT), and unsupervised
learning (e.g. DeepWalk, node2vee) of graph representations into a single consistent ap-
proach. To illustrate the generality of GraprEDM, we fit over thirty existing methods
into this framework. We believe that this unifying view both provides a solid foundation
for understanding the intuition behind these methods, and enables future rescarch in the
area.

Keywords:  Network thcddmg. (;mnh Neural Networks, Geometric Deep Learning,
Manifold Learning, Relation;
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