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Causal questions everywhere

What causes extremes?
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Answering causal questions
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Causal inference

Causal inference enables to utilize domain knowledge to answer causal questions from data.
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Causal inference

Causal inference enables to utilize domain knowledge to answer causal questions from data.
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Causal inference framework
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Causal inference framework

Assumes an underlying observational structural causal model (SCM):

XA = fa(Xg,na)
Xc = fo(Xa, XEg,nc)
Xg = fe(nE)

Independent noise terms: 74, NE, NC
Entailed observational distribution:

p(X) = p(Xc|Xa, Xg) - p(Xa|XE) - p(XE)

Associated graph:

Environmental

‘ factors

Aerosols Clouds
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Causal inference framework

Assumes an underlying observational structural causal model (SCM):

XA = fa(Xg,na)
Xc = fo(Xa, XEg,nc)
Xg = fe(nE)

Independent noise terms: 74, NE, NC
Entailed observational distribution:

p(X) = p(Xc|Xa, Xg) - p(Xa|XE) - p(XE)

Associated graph:

Environmental

‘ factors

Aerosols Clouds

Experiments are represented by interventional SCM:

XA:: ZIZ/
Xc = fo(Xa, Xu,n0)
Xk = fe(E)

Interventional distribution:

p(X | do(Xx = "))

Interventional graph:

Environmental
‘ factors

Aerosols Clouds
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Causal inference framework

Assumes an underlying observational structural causal model (SCM):

XA = fa(Xg,na)
Xc = fo(Xa, XEg,nc)
Xg = fe(nE)

Independent noise terms: 74, NE, NC
Entailed observational distribution:

p(X) = p(Xc|Xa, Xg) - p(Xa|XE) - p(XE)

Associated graph:

Environmental

‘ factors

Aerosols Clouds

Experiments are represented by interventional SCM:

XA:: ZIZ/
Xc = fo(Xa, Xu,n0)
Xk = fe(E)

Interventional distribution:

P(X | do(Xa =2')) #p(X | Xp =2)

Interventional graph:

Environmental
‘ factors

* University of Potsdam

Aerosols Clouds
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i JUDEA PEARL
causal I nfe re“ce WINNER OF THE TURING AWARD

AND DANA MACKENZIE

THE
Causal inference enables to utilize domain knowledge to answer causal questions from data. @ BOOK OF
WHY
Question Causal Inference Engine Data

OF CAUSE AND EFFECT

———

Counterfactual
methods

(Yo |Yz)

Counter-
factual

= Quantitative Causal effect

C
§~§ p(y[do(x)) methods Interventional
3 o v . data
G ClelEhe Causal discovery

= G methods

Observational
data

Pure statistical or ML models

p(y|z)

Spirtes,
Glymour,
Scheines

Underlying system

JD Angrist and GW Imbens
Nobel prize 2021

« |Il. Niklas ElImehed
© Nobel Prize Outreach
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Recent work
from
my group

Applications

Challenges

Causal
discovery
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What is a causal effect?

oiversizy,

-y
2

'&dam
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What is a causal effect?

Causal effect is based on the distribution of Y in a system where X was intervened upon:

p(yldo(z))

y4

education
system

_°°-‘Ve%" Prof. Dr. Jakob Runge
.2 [ Chair of Al in the Sciences
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What is a causal effect?

Causal effect is based on the distribution of Y in a system where X was intervened upon:

p(yldo(z))

= randomly
assigned lecture
qualities

y4

education
system

™% prof Dr. Jakob Runge
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What is a causal effect?

Causal effect is based on the distribution of Y in a system where X was intervened upon:

p(yldo(z))

= randomly do(X=x)

assigned lecture
qualities

y4

education
system
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Observational causal effect estimation

Wrong: Correlation regression

p(y|z)

Y =

By x

X

do(X=x)

™% prof Dr. Jakob Runge
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Observational causal effect estimation

Wrong: Correlation regression

p(y|z)

Y =|Bvx | X

™% prof Dr. Jakob Runge
.2 [ Chair of Al in the Sciences

* University of Potsdam



Observational causal effect estimation

Given causal graph and data, identify causal effect of intervention from observational distribution

p (y|do(X=z)) = function of observational distribution

y4

education
system

_°°-‘Ve%" Prof. Dr. Jakob Runge
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Observational causal effect estimation

Given causal graph and data, identify causal effect of intervention from observational distribution

p (y|do(X=z)) = function of observational distribution

(Generalized) backdoor
adjustment

 front-door adjustment
* do-calculus identification

* propensity score
matching

e instrumental variables
ya o difference-in-differences

education * regression discontinuity
system .

_‘5“-“%”“’"’ Prof. Dr. Jakob Runge
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Observational causal effect estimation

Given causal graph and data, identify causal effect of intervention from observational distribution

p (yldo(X=z)) = / p(yle, )p(=)d=  (adjustment identification)

y4

education
system

_°°-‘Vem"’”’ Prof. Dr. Jakob Runge
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Observational causal effect estimation

Given causal graph and data, identify causal effect of intervention from observational distribution

Y =|0yxz X+ 0Byzx2 (linear adjustment identification)

= part of lecture do(X=x)
quality not
explained by y4
egu:?;:zn education
y system

AVers z..
00\‘1 SI[Q}

. Prof. Dr. Jakob Runge
.2 [ Chair of Al in the Sciences
Sy University of Potsdam
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Observational causal effect estimation

Given causal graph and data, identify causal effect of intervention from observational distribution

E[yldo(X=x)] = [ f(z,2)p(z)dz (general adjustment
K‘ identification)
@ =
go o
te e
“oe

=
N
L

’i
' 4
'!
.

ELY|do(X = x)]
=
N

~+ LinReg-causal
== MLP-causal

1047~
20 40
do(X =x)

y4

education
system
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Observational causal effect estimation

Given causal graph and data, identify causal effect of intervention from observational distribution

E[yldo(X=x)] = [ f(z,2)p(z)dz (general adjustment
identification)

* (Generalized) backdoor

adjustment
(Perkovic et al. (2018))

Z is a valid adjustment set if:
1) Z blocks non-causal paths

2) Z does not induce collider-
bias

™% prof Dr. Jakob Runge
- In Chair of Al in the Sciences
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Causal effect estimation for time series

Given causal graph and time series data, identify causal effect
of intervention from observational distribution

p (y|do(X=x)) = function of observational distribution

E

(™% prof. Dr. Jakob Runge
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Causal effect estimation for time series

Given causal graph and time series data, identify causal effect
of intervention from observational distribution

p (y|do(X=x)) = function of observational distribution

1 t—2 t—1 t
x @ ‘—/’ﬂ
1 z © o
y e e—e

E

ngersi,ék

. Prof. Dr. Jakob Runge
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Causal effect estimation for time series from multiple datasets

Given causal graph and multiple datasets of the same system
variables, as well as context data, identify causal effect of
intervention from observational distribution

p (y|do(X=x)) = function of observational distribution

E

™% prof Dr. Jakob Runge
] Chair of Al in the Sciences 91
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Causal effect estimation for time series from multiple datasets

Given causal graph and multiple datasets of the same system
variables, as well as context data, identify causal effect of
intervention from observational distribution

p (y|do(X=x)) = function of observational distribution

Space-context variable
C’Slpace—O.S
Y wwwwwmw W"‘ Clace=0.2
Mo AR i Ao BV O =05
Yo AN VL

=
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Causal effect estimation for time series from multiple datasets

Given causal graph and multiple datasets of the same system Y __ Space-context variable
: . . N T T L s
variables, as well as context data, identify causal effect of {1 Cipace=0-8

Y MM“W%MMWWM‘W Cslpa,ce:O'2
Mpastis AN At VA O =0.5

intervention from observational distribution

p (y|do(X=x)) = function of observational distribution

Time-context variable

|Ctlirne QAWAQMW#&: |
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Causal effect estimation for time series from multiple datasets

Given causal graph and multiple datasets of the same system
variables, as well as context data, identify causal effect of
intervention from observational distribution

p (y|do(X=x)) = function of observational distribution

1

space

Space-context variable
WA A v it [ 1

1| Chpace=0.8
Y t WO ace=0-2

=

Time-context variable
1
|Ctirne pawmﬁwvﬁm: |

catc

MMMW L}"'q}" C’Slpace:O.E)
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Causal effect estimation for time series from multiple datasets

Given causal graph and multiple datasets of the same system

Space-context variable

. . . X | s A S Ainrvipa N st [ a1
variables, as well as context data, identify causal effect of Cispace=0-8
intervention from observational distribution
, _ o Y | ometar s A AP A emn A b N o Clace=0.2
p (y|do(X=x)) = function of observational distribution St
1 i
P Anpiofo o AN bt an VN O =0.5
Y
Time-context variable
Ctlime |Ctlirne anwm‘ﬁwv#ﬁ: |
Cslpace Cslpace

catc
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Causal effect estimation for time series from multiple datasets

Given causal graph and multiple datasets of the same system

Space-context variable

variables, as well as context data, identify causal effect of 1| Copace=0-8
intervention from observational distribution I
Y MMWWMWM’ W Cs],‘ ace=0-2
[y|d0 X 33' /f Ly 2, cspace7 Ci}ime)p(’% Cipace? C%ime)d(' o ) Ry P
1 t—2 t—1 ¢ iy
MMMWW Cslpace_ 55
x —® AN
. ‘ §
Time-context variable
C’tlirne ‘ | time QAWAHMW#&: |
Cslpace
™% prof Dr. Jakob Runge
Chair of Al in the Sciences 96
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Causal effect estimation for time series from multiple datasets with

hidden context-confounders

Given causal graph and multiple datasets of the same system
variables, as well as context data, identify causal effect of
intervention from observational distribution

[y|d0 X 33' /f Ly 2, cspace? Ci}ime)p(zﬂ Cipace? C%ime)d(' o )

1 t—2 t—1 t
x O
1 z @ @ /o]
.
C1tlirne ‘
Cslpace

Space-context variable

=

Time-context variable

1
C(tnrne |
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Causal effect estimation for time series from multiple datasets with

hidden context-confounders

Given causal graph and multiple datasets of the same system
variables, as well as context data, identify causal effect of
intervention from observational distribution

E [y|d0(X:37)] = / fA(xa 2 dspacea dtime)p(z7 dspacea dtime)d(' o )
1 t—2 t—1 t

Space-context variable

=

Time-context variable

... aka fixed-effects panel regression (eg Angrist & Pischke, 2009)

\B&wrsit‘?k
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Challenges
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

X 1Y  (all others are dependent)

i V4 s ..;'.'
Y

X Y

"™ prof. Dr. Jakob Runge
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

 Faittuness No open path,
- whether (in)direct or confounded,

in the causal graph

(Conditional) independence
in the data distribution

X 1Y  (all others are dependent)

i V4 s ..;'.'
Y

X Y
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence Faithfulness No open path,
in the data distribution whether (in)direct or confounded,

Markov in the causal graph

X 1Y  (all others are dependent)

f V4 s ..;'.'
Y

Y
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence Faithfulness No open path,
in the data distribution whether (in)direct or confounded,

Markov in the causal graph

X 1Y  (all others are dependent)

i V4 s ..;'.'
Y

Y
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence Faithfulness No open path,
in the data distribution whether (in)direct or confounded,

Markov in the causal graph

X 1Y  (all others are dependent)

f V4 s ..;'.'
Y

Y
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence Faithfulness No open path,
in the data distribution whether (in)direct or confounded,

Markov in the causal graph

X 1Y  (all others are dependent)

f V4 s ..;'.'
Y

X Y
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence Faithfulness No open path,
in the data distribution whether (in)direct or confounded,

Markov in the causal graph

X 1Y  (all others are dependent)

f V4 s ..;'.'
Y

X Y

™% prof Dr. Jakob Runge
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

 Faittuness No open path,
- whether (in)direct or confounded,

in the causal graph

(Conditional) independence
in the data distribution

X 1Y  (all others are dependent)

i V4 s ..;'.'
Y

Y

"™ prof. Dr. Jakob Runge
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

 Faittuness No open path,
- whether (in)direct or confounded,

in the causal graph

(Conditional) independence
in the data distribution

+ causal sufficiency
(no unobserved confounders)

7N
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

p—

| suffici

No open path,
whether (in)direct or confounded,
in the causal graph

(Conditional) independence
in the data distribution

-

voow
X
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

p—

| suffici
(no unobserved confounders)

No open path,
whether (in)direct or confounded,
in the causal graph

(Conditional) independence
in the data distribution

y

N

Y

X
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

p—

| suffici
(no unobserved confounders)

No open path,
whether (in)direct or confounded,
in the causal graph

(Conditional) independence
in the data distribution

™
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence ‘
in the data distribution -

| suffici

No open path,
whether (in)direct or confounded,
in the causal graph

"™ prof. Dr. Jakob Runge
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence ‘
in the data distribution -

| suffici

No open path,
whether (in)direct or confounded,
in the causal graph
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.» [ Chair of Al in the Sciences 115
S University of Potsdam



Learning causal graphs

Given data and general assumptions, estimate causal graph
from observational distribution

Example assumptions:
* Markov & Faithfulness assumption:
Conditional (in-)dependence in distribution < (dis-)connection in graph

— Constraint-based causal discovery (Spirtes et al. 2000)

AVEISzz..
’\5‘\“’ S1[$f
0

o,

>

3
%am

‘e
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Learning causal graphs

Given data and general assumptions, estimate causal graph
from observational distribution

Example assumptions:
* Markov & Faithfulness assumption:
Conditional (in-)dependence in distribution < (dis-)connection in graph

— Constraint-based causal discovery (Spirtes et al. 2000)

Add domain knowledge...

|
X/ \Z

e.g., time order

AVerISsz..
OIS,
.0

o,

>
. %

%am
‘e
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Learning causal graphs

W
Given data and general assumptions, estimate causal graph
from observational distribution Y
X y4
Example assumptions:
« Markov & Faithfulness assumption: X Y
Conditional (in-)dependence in distribution « (dis-)connection in graph "o
GCausal-sufficiency- Ne-uncbserved-confounders VEIUGED )
— Constraint-based causal discovery (Spirtes et al. 2000) " %’33 - g
X, X,=g(v,,EY) - %;

* Assumptions on functional dependencies and noise distributions
— Restricted structural causal modeling (Peters et al. 2018)

Score(Graph; Data)

* Assumptions through likelihood functions and interventional data
— Score-based causal network learning

* Assumption of an underlying nonlinear dynamical deterministic system
— State-space methods

(& prof. Dr. Jakob Runge
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Recent work

from —

my group

Applications
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Challenges

COMMUNICATIONS

Runge et al. (2019)

PERSPECTIVE

Inferring causation from time series in Earth system
sciences

Challenges @ f@ -5 t—4 (-3 i-2 -1 ¢
) = N X

Process ( ’WW{MN

H B T L

. < ¥ (2] o

Autocorrelation . e b \.
Time delays s : ' . e : :
Nonlinear dependencies . ¥ x >
Chaotic state-dependence
Different time scales
Noise distributions

S

T
T
/\®

NN B WNE

o«
VAN

Data:

7 Variable extraction

8 Unobserved variables
9 Time subsampling
10 Time aggregation

11 Measurement errors
12 Selection bias

13 Discrete data

14 Dating uncertainties

E\f
L &]|| e of

rue
4 missing
—— observed

=/

'\
Computational / statistical: <
15 Sample size
16 High dimensionality
17 Uncertainty estimati

T\ 1 x LW
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Challenges

Challenges

Process:

1 Autocorrelation

2 Time delays

3 Nonlinear dependencies
4  Chaotic state-dependence
5 Different time scales

6 Noise distributions

Data:

7 Variable extraction

8 Unobserved variables
9 Time subsampling
10 Time aggregation

11 Measurement errors
12 Selection bias

13 Discrete data

14 Dating uncertainties

Computational / statistical:
15 Sample size
16 High dimensionality

17 Uncertainty estimation

%,

75

COMMUNICATIONS

Runge et al. (2019)

PERSPECTIVE

Inferring causation from time series in Earth system

sciences

; i AN —~

I L

< iAoy
.

% _

7

OPEN

(" -5 -4 -3 (-2 t-1 t\
(0] x o 0_no
¥
N @ @ .j
(- -3 -2 -1 :\
:
) S5

—_—TUS
4+~ missing
—— observed

(& >/
N
[13]
vy
A
J

Climate data (X) "4 Input(X_) .-

Variables not well-defined

Toward Causal

Representation Learning

This article reviews fundamental concepts of causal inference and relates them to crucial

open problems of machine learning, including transfer learning and generalization,

thereby assaying how causality can contribute to modern machine learning research.

By BERNHARD SCHGLKOPFG, FRANCESCO LOCATE.LLO‘E. STEFAN BAUERE, NAN ROSEMARY KE,

NAL KALCHBRENNER, ANIRUDH GOYAL, AND YosHua Bengio™

ABSTRACT | The twa fields of machine learning and graphical
causality arose and are developed separately. However, there
is, now, cross-pollination and increasing interest in both fields
to benefit from the advances of the other. In this article,
we review fundamental concepts of causal inference and relate
them to crucial open problems of machine leaming, including
transfer and generalization, thereby assaying how causality
can contribute to modern machine learming research. This also
applies in the opposite direction: we note that most work in
causality starts from the premise that the causal variables
are given. A eentral problem for Al and causality is, thus,
causal representation learning, that is, the discovery of high-
level causal variables from low-level observations. Finally,
we delineate seme implications of causality for machine learn-
ing and propose key research areas at the Intersection of bath
communities.

<
.
o L(X.8) = MSE + latent loss

v

PN A0

LINTRODUCTION

If we compare what machine learning can do to what
animals accomplish, we observe that the former is rather
limited at some crucial feats where natural intelligence
excels, These include transfer to new problems and any
form of generalization that is not from one data point
to the next (sampled from the same distribution), but
rather from one problem to the next—both have been
termed generalization, but the latter is a much harder form
thereof, sometimes referred to as horizontal, strong, or out-
of-distribution generalization. This shortcoming is not too
surprising, given that machine learning often disregards
information that animals use heavily: interventions in the
waorld, domain shifts, and temporal structure—by and
large, we consider these factors a nuisance and try to engi-
neer them away. In accordance with this, the majority of
rrrent encracens af machina learning hail dowm ra laroa.

Kom)

F»

[ WA A |

*+._;Reconstruction (£,,) Dynamics (k" PC)

Tibau et al. 2018
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My group’s work:

Causal inference for time series data

Runge et al. (2019) e —

COMMUNICATIONS
Challenges @
P (P
rocess: B
1 Autocorrelation R ] b i
2 Time delays ° . ’
3 Nonlinear dependencies 9,
4 Chaotic state-dependence
5 Different time scales
6 Noise distributions
Data:

7 Variable extraction

8 Unobserved variables
9 Time subsampling
10 Time aggregation

11 Measurement errors
12 Selection bias

13 Discrete data

14 Dating uncertainties

Computational / statistical:

15 Sample size
16 High dimensionality
17 Uncertainty estimation

(| t-5 t—4 -3 (-2 -1 r\
8] x-00—n-0_o-9
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0] S

X &) g
\__ ' —® Y,
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true
. = missing
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4 ™
13

\. W,

-

J

T 1V VI

Time series case:
* PCMCI causal discovery framework

Instantaneous Hidden

causality confounders
PCMC'Runge etal 2019 x x
PCMC]|+Runge 2020 4 X
L-PCMC |Gerhardus & Runge 2020 v v
J-PCMC|+Gunther etal. 2023 4 v

(context-related)

R-PCMC|Saggioro et al 2020 X X

Multiple datasets /
further aspects

v/ -
v /-

v /-

v | contextlinks

X [ regimes-
learning
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Causal inference in frequency space

Nicolas Reiter

Goal: Develop causal inference foundations at the level of process
graphs in frequency space (assuming underlying linear models).

Causal transfer functions

W OO0—=0 Q00

Ayl 2w

Value Kodoles

,.;_/ JIIl.L.u:i:...:
A \U’/\a

LIRE] nl i

W

Phase

©

'._'l by 2mw|

Value Modules
g

=Ny |©

.F"I' '||':'|_|.-|

— |

Value Moduhes
=
1
Phasze

LL [ 0.4

Paper submitted to Bernoulli
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Learning causal graphs

Given data and general assumptions, estimate causal graph
from observational distribution

Time series case:

0““\’ ersjy.
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Learning causal graphs

Given data and general assumptions, estimate causal graph
from observational distribution

Time series case:
* PCMCI causal discovery framework

Instantaneous causality Hidden confounders

PCMClRunge et al 2019 x

PCM C|+Runge 2020

0‘\‘\\1 ersjy.
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Learning causal graphs

Given data and general assumptions, estimate causal graph
from observational distribution

Time series case:
* PCMCI causal discovery framework

Instantaneous causality Hidden confounders
PCMC'Runge et al 2019 x
PCMC|+Runge 2020
LPCMC|Gerhardus & Runge 2020 V V

Basic idea: include learned parents in cond. indep. tests
for increased effect size and well-calibrated tests
(Theorem 1 in LPCMCI paper)

Q) X! o
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Learning causal graphs

Given data and general assumptions, estimate causal graph
from observational distribution

Time series case:
* PCMCI causal discovery framework

Instantaneous Hidden Multiple datasets /

causality confounders further aspects
PCMC |Runge etal 2019 X X v / -
PCMC|+Runge 2020 v X v | -
L-PCMC |Gerhardus & Runge 2020 v v v / -

B

Xl ) t—3 :—2 :—1 i
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Learning causal graphs

Given data and general assumptions, estimate causal graph
from observational distribution

Time series case:

* PCMCI causal discovery framework

pC M C | Runge et al 2019

PCMCH_Runge 2020

L_pCMC|Gerhardus & Runge 2020

J_pCMC|+GUnther et al. 2023

cf. Huang et al (2020), Mooij et al (2020)

Instantaneous
causality

b 4

v

Hidden
confounders

b 4

b 4

4

4

(context-related)

Multiple datasets /
further aspects

v | -
v | -

v | -

v | contextlinks

Dataset 1
Xl
=1 _
Cspace—O.S
X2
Dataset 2
Xl
= _
C’Space—OQ
X2

< ~

space
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Learning causal graphs

Given data and general assumptions, estimate causal graph

from observational distribution

Time series case:
* PCMCI causal discovery framework

Instantaneous Hidden
causality confounders
PCMGC|Runge et al 2019 X X
PCMC|+Runge 2020 4 X
L_pCMC'Gerhardus & Runge 2020 V V
J-PCMC|+Gunther etal. 2023 4 v

(context-related)

R_pCMClSaggioro et al 2020 x x

Multiple datasets /
further aspects

v | -
v | -

v | -

v | contextlinks

v | regimes

Causal regime
x
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Learning causal graphs

Given data and general assumptions, estimate causal graph

from observational distribution

oy - Local permutation
Conditional independence tests X 1l Y | Z Shuffle test
¢
Nonlinearity / Variable types Dimension of X and Y ‘
distributions
ParCorr linear gaussian continuous univariate
(analytical)
RobustParCorr linear non-gaussian continuous univariate
(analytical)
ParCorrWLSGunther etal 2022 linear gaussian, but continuous univariate
(analytical) heteroscedastic
GPDC(torch)Rrunge etal. 2019 nonlinear additive continuous univariate
(permutation-based)
CMIknnRunge 2018 nonlinear continuous multivariate
(permutation-based)
CMIsymb non-parametric categorical multivariate
(permutation-based)
Gsquared non-parametric categorical univariate
(analytical)
RegressionCl linear / logistic regression mixed univariate
(analytical)

AVEIS7z.
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Applications

-
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State your problem: Questions — Assumptions — Data

©
=
o
5
=
(]
>
—
(]
9
=
(3]
w
3
(]
o

Question Causal Inference Engine Data

/
Py 1yo) Countefacha

Quantitative
Causal effect methods
p(y|d0(x)) Interventional

. data
Qualitative

Causal discovery methods

Pure statistical or ML models Obse(;\a/?:onal

Assumptions SCM

Graph types

oJe o
Vi = £ pa(VY). )
@

Functional forms / . . . .
Noise distributions Observational noise Stationarity

VP = (pa(V{),n})
77{ ~ P Runge et al.,

Nature Rev. EE 2023
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QAD-based method selector

SN NN NN NN NN NN NN NN EEEEEEEEN,

Counterfactuals
General counterfactual
methods

no

gSTEEEEEEEEEEEEEEEEEEEN,,

*
*

L 4

-

no

(Optimal)
adjustment
estimation

Instrumental
variables,
double machine
learning

GSEEEEEE R R EIEEEIENNENNEEENEEEEEEEEEEEEEEEENE,

.
*

confounders?

.
YaamsndBusnnnnnnfunnnnn®

*
SassmssEEEEEEEEEEEEEEEEEEEEEEEmEnsn?

*
L4

Front-door
estimation

do-calculus
estimation

Particular graphs an
(partial) linearity

¢SEEEEEEENEENEEEEEEEEEEEEEY,
*

Purely statistical /

esmEEEYy

Question Data

( Method / framework )

ML models

amn®

rf—

s

. .
YsssssssEEEEEEEEEEEEEEEEEERS

Grontdoor-identiﬁableD

(do-calculus identifiable?)

D

Tough luck

Total
causal effects?

Direct effects /
mediation?

no

no [Multiple datasets
from different
distributions

Linear and
specific
onfounders?,

no

Causal
transportability
estimation

no
Causal
graph known?,

$ SIS NN NI E NN NS NN EEEESEEEEEESEEEEEEEEEEEEEEER,,

Causal effect estimation

Hidden
confounders?

@justment-identiﬁabl@

Fixed-effects
panel regression

Transportable?
no

]
NN NN E NI EEEE NN NN EEEEEEE NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEmns®

*

L] [N g
N NI NN EEEEEEEE NN EEEEEEEEEEEEEEEEEEEEEEEEEE®

L 4

START

no .
Causal question?

no

Causal nodes
defined?

¢$UEEE I NI NI NN NN NN ENEEEEENEEEEEEEEEEEEEEEEEERG,

Time series?

‘no

Causal discovery?

no
Stationary?

- - . doesn’t work
Gmensmn-reductl@

¢SEEEEEEEEEENEENENEEEEEEEEEN,
*

Causal representation

RLLLELY

learning

‘I EEEEEEEEEEEEEEEEEEEEEEER®

®anmnns®

>

doesn't.‘lllllllllllllll..

*
YssssEsEEEEEEEERS

AL L L L L L LR L LR L LR LR LR LY

Causal discovery

Multiple datasets
from different
distributions

Joint Causal Inference
framework (seqICP, ...),
continuous-optimization

methods

on)linear Granger causali

N
PCMCI

Deterministic
system?

no

Hidden
confounders?
no

ty, No #/ Contemporaneo
effects?

Asymmetry-based methods (VARLINGAM, ...),
continuous-optimization methods (DYNOTEARS, ...)

*

*
»

us
S

tate-space method

(s
(ceM, ...)

)

(LPCMCI, FCl, ...)

Constraint-based method3

(PCMCI+, PC, ...),

Constraint-based methods

core-based methods (GES, ...),
hybrid methods (MMHC)

doesn’t work

Restricted SCM
model class?

Gata preprocessing / masking / aggregatioerork :Framewor ks for:

or sliding window analysis : nonstationarity:

.

.®

Runge et al.,

.~ Nature Rev. EE 2023
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Causal mediation analysis

* Pathway mechanisms between El Nino and Indian monsoon
through sea-level pressure system

b Dimension reduction € Causal reconstruction
yielding regional componeants including time lags

Spurous link due

a Complex system
data givan on a spatio-temporal grid

Causal links

Exploratory
analysis

Causal gateway

O g e AL vy,
pr o . . "\.\ 2 ey, i ,
4 _ ! " Shortest paths
4 1 \ Wa"-.
L2y |
N

- . ’ & £ strongest pahs
r « Causal* :
. Y .-J & |'nec'ia1:u?k"t-.,._-._- .

b Z ) v g
. ' - Largest (outl-)degres
. # largest influence

d Causal interaction quantiﬁcatmn
perturbation / information transfer

=i

€ Importance of nodes
via aggregated node measures

g = < to common driver o Yo, Indirect path
gy : . o, Z'I et \w“r
i = 1 ".l_._.
, . . - | h
L

Runge et al., NatComm 2015
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Causal mediation analysis

* Pathway mechanisms between El Nino and Indian monsoon
through sea-level pressure system

a Complex system b Dimension reduction C Causal reconstruction

data given on a spatio-temporal grid yialding regional componants including time lags

- Spurous link due
’_rg P o to common driver Iru:I rect path

{
fjnﬂ-=r 1lig‘€i\ IZ} gt -'x'\
. & fam \ / !

Causal links

__..;’f‘"-

Exploratory
analysis
Causal gateway

--;it x ""--..,_."
"ﬂ' ‘ \A W Sﬂl;:?o’ﬁjtgsea';ﬁs
ﬁﬂ ﬂ""!l ﬂlau « A \ i e

“' "Iffff

L e Largest [out-)degree
¥ aruest influence

Gausar‘“’ :
g adiat Ly
Z mediator 4\ %

@ Importance of nodes d Causal interaction quantification
via aggregated node measures perturbation / information transfer Ru n g e et al ]

60°E 120°E 180° 120°W 60°W

. NatComm 2015
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Causal mediation analysis

* Pathway mechanisms between El Nino and Indian monsoon
through sea-level pressure system

b Dimension reduction C Causal reconstruction
yielding regional componants including time lags

Spurous link due
to common driver

a Complex system
data givan on a spatio-temporal grid

B | g o, Indirect pat
1 TRL L 'r.'
1 1 K
- \L / Tl
u) \'
Causal links

Exploratory
analysis
Causal gateway
A Ko,
f,z‘fé‘ . ' . T Shorest paths
EBZEEn a0

\ W ™, +strongest pahs
Cadsa'r'iyf =
Za meadiator e,

GO E 120°E

—0.08 —0.04 O.bO 0.04 0.08

Largest oul-)degree MCE (node color) Path coel
# largest influence
@ Importance of nodes d Causal iﬂt_Efal‘.?tiﬂn qyaﬂtiﬁcatiﬂﬂ
via aggregated node measures PR oo el b Runge et al., NatComm 2015
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Causal relationships between urban form and travel CO2

emissions (Wagner et al., submitted)

* Context

— Car commuting is a major contributor to urban
congestion and GHG emissions

— Built environment (BE) influences car travel
distance per capita (VKT)

— Understanding of how BE affects VKT is required
for sustainable urban planning

*  Prior work

— only correlation based - neglecting causal effect
mechanisms between BE and VKT

— mostly city specific - unclear if relationships hold
across various cities around the globe

— not spatially explicit - neglecting effect differences
within a city

AVeTs;y
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Causal relationships between urban form and travel CO2
emissions (Wagner et al., submitted)

* Context

Car commuting is a major contributor to urban
congestion and GHG emissions

Built environment (BE) influences car travel
distance per capita (VKT)

Understanding of how BE affects VKT is required
for sustainable urban planning

*  Prior work

only correlation based - neglecting causal effect
mechanisms between BE and VKT

mostly city specific - unclear if relationships hold
across various cities around the globe

not spatially explicit - neglecting effect differences
within a city

Approach

1. Gather BE and VKT data for six cities across 3
continents

2. Develop BE features, defining:
1. Distance to center
2. Distance to jobs
3. Population density
4. Street connectivity
5

. Mean household income

3. Find causal graph, describing relationships
between BE Features and VKT

4. Use graph to inform ML model and feature
importance measure (causal shapley values)

5. Analyse causal effects of BE features on VKT
across all cities and spatially

AVeTs;y
\59‘\' S”r?}
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Causal relationships between urban form and travel CO2
emissions (Wagner et al., submitted)

Population .

Density

Destination Access
Distance to
Subcenter

Density

(A) City sample
Berlin
0.40 3511 km? (Functional urban area)
. 0.351 .
O Boston Rio de Janeiro
= 2859 km? 5822 km?
20.30 Bay Area
® 3768 km?
E 0.25
© Bogota
0.201 460 km? oy
Angeles
4080 km?
0.15 T T T T !
2 4 6 8 10 12

Total Population [M]

(B) Literature-based DAG

Destination Access

. . Distance to
Center

VKT

Demographics

Income

= Positive Effect=l» Negative Effect

Design
Steet Connectivity

Indirect Effect

* Causal urban form effects partially confirm previous assumptions

(C) PC-based DAG

Destination Access

Destination Access

Distance to Distance to
Employment <—xy Center

®
'Q'.W

Density
Population
Density

Demographics.

Income

Discovered effect
at significance
apc=0.025

o

o~

Q
N
o

-0.09
Design
Steet Connectivity

-0.8 -04 00 04 038
Partial Correlation Value p
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Causal relationships between urban form and travel CO2
emissions (Wagner et al., submitted)

Which urban form effect matters most depends on specific locations within cities

A) Boston

20k

B) Rio de Janeiro

Map

@9 Distance to center effect strongest

B8 Population density effect strongest
Both features with decreasing effect

vk City center

Feature effect [kgCO:/Trip]

Feature effect [kgCO,/Trip)

Density Distance to
effect center effect
150 strongest strongest
1251 : L &
1.00 1 0©®
o® 0
0.75 1 o0
0.50 4
0.25 -]
=0.25 1
-0.50 T T T T T T T
0 10 20 30 40 50 60
Distance to Center [km]
1.50 1
125 1 .3
1.00 A e
0.75 1 had
-0.50

0 10 20 30 4 50 60
Distance to Center [km]

Scatter

@ Distance to center
@ Population density
) Smaller effect

@ Larger effect

.
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Take-home message
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a ke h o m e m e s s a g e naturereviews earth & environment https://doi.org/10.1038/c43017.023-00431-y
I -

Technical review

Causal inference for time series

|®)| Check for updates

Jakob Runge @2, And rhardus’, Gt o do®3, Veronika Eyring™

Causal inference: Framework to answer causal questions
from empirical data

Camps-Vall

https:/irdcu.be/dfs5X

CAMBRIDGE :SECOND EDITION

UNIVERSITY PRESS

Jakob Runge
Causal Inference -
for Time Series Data EETFETEN

(release date: 2026) _ Causal Inference ~ MODELS, REASONING,
AND INFERENCE

— - JUDEA PEARL
ausation, Prediction, and Search =

AVErszz.
N2
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https://t.co/wzp7UvcvXX

Take-home message

from empirical data

* Two settings:

1) Assume graphs and learn causal effects

2) Learning causal graphs

Causal inference: Framework to answer causal questions

nature reviews earth & environment https:/jdoi.org/10.1038/s43017-023-00431y

Technical review

Causal inference for time series

|| Check for updates

Camps-Valls®

https:/irdcu.be/dfs5X

CAMBRIDGE ~ SECONDEDITION
UNIVERSITY PRESS &

Jakob Runge
Causal Inference
for Time Series Data [T if %

(release date: 2026) g Causal Inference [RERYSN IR TR T
e AND INFERENCE

JUDEA PEARL
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https://t.co/wzp7UvcvXX

a ke h o m e m e s s a g e nature reviews earth & environment https:/jdoi.org/10.1038/s43017-023-00431y
I -

Technical review | Check for updates

Causal inference for time series

* Causal inference: Framework to answer causal questions A Gt iV i
from empirical data https:/Irdcu.beldfs5X

* Two settings:

CAMBRIDGE
UNIVERSITY PRESS

1) Assume graphs and learn causal effects Jakob Runge

Causal Inference

2) Learning causal graphs for Time Series Data SN

X
(release date: 2026) Causal Inference [EEEYONIES REASONING,
il AND INFERENCE

JUDEA PEARL

* State Question — Assumptions — Data to choose suitable
method and make assumptions transparent

AVerISsz..
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https://t.co/wzp7UvcvXX

Take-home message

* Causal inference: Framework to answer causal questions
from empirical data

* Two settings:
1) Assume graphs and learn causal effects

2) Learning causal graphs

* State Question — Assumptions — Data to choose suitable
method and make assumptions transparent

* (Causal inference + Al & ML = Causal Al

naturereviews ea rth & environment https://doi.org/10.1038/s43017-023-00431-y

Technical review | Check for updates

Causal inference for time series

https:/irdcu.be/dfs5X

CAMBRIDGE
UNIVERSITY PRESS

Jakob Runge
Causal Inference

for Time Series Data Elements!of

X
(release date: 2026) Causal Inference [EEEYONIES REASONING,
il AND INFERENCE

JUDEA PEARL

AVerISsz..
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https://t.co/wzp7UvcvXX

Take-home message

* Causal inference: Framework to answer causal questions
from empirical data

* Two settings:
1) Assume graphs and learn causal effects

2) Learning causal graphs

* State Question — Assumptions — Data to choose suitable
method and make assumptions transparent

* (Causal inference + Al & ML = Causal Al

Software and benchmark platform:
* github.com/jakobrunge/tigramite + causeme.net
* pcalg, TETRAD, causalfusion

naturereviews ea rth & environment https://doi.org/10.1038/s43017-023-00431-y

Technical review (M| Check for updates

Causal inference for time series

Jakob Runge®'? -, And ‘hardus’, Gherard d40®°, Veronika Eyring**&

https:/irdcu.be/dfs5X

CAMBRIDGE
UNIVERSITY PRESS

Jakob Runge
Causal Inference
for Time Series Data Elements!of

X
(release date: 2026) Causal Inference [ERERYSNIR) REASONING,
WA AND INFERENCE

_ JUDEA PEARL

(BETA)
CAUSEME

CAUSEME
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https://t.co/wzp7UvcvXX

Thank you! Questions?

HELMHOLTZAI i
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