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● (Generalized) backdoor 
adjustment 
(Perkovic et al. (2018))

Z is a valid adjustment set if: 

1)  Z blocks non-causal paths

2)  Z does not induce collider-
bias
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

Faithfulness

Markov

No open path,
whether (in)direct or confounded,

in the causal graph

(Conditional) independence
in the data distribution

+ causal sufficiency
(no unobserved confounders)

  
Z

X Y
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

Faithfulness

Markov

No open path,
whether (in)direct or confounded,

in the causal graph

(Conditional) independence
in the data distribution

+ causal sufficiency
(no unobserved confounders)
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X Y

L
Z
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Causal discovery

Given data and general assumptions, estimate causal graph from observational distribution

Z

X Y

Faithfulness

Markov

No open path,
whether (in)direct or confounded,

in the causal graph

(Conditional) independence
in the data distribution

+ causal sufficiency
(no unobserved confounders)

W

W
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Z
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X
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Given data and general assumptions, estimate causal graph from observational distribution
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Learning causal graphs

W

Y

X Z

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    

X Y

Example assumptions: 
● Markov & Faithfulness assumption: 

      Conditional (in-)dependence in distribution ⇔ (dis-)connection in graph
Causal sufficiency: No unobserved confounders

→ Constraint-based causal discovery (Spirtes et al. 2000)
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    Example assumptions: 
● Markov & Faithfulness assumption: 

      Conditional (in-)dependence in distribution ⇔ (dis-)connection in graph
Causal sufficiency: No unobserved confounders

→ Constraint-based causal discovery (Spirtes et al. 2000)

Add domain knowledge...

    e.g., time order

W

Y

X Z

X Y
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    Example assumptions: 
● Markov & Faithfulness assumption: 

      Conditional (in-)dependence in distribution ⇔ (dis-)connection in graph
Causal sufficiency: No unobserved confounders

→ Constraint-based causal discovery (Spirtes et al. 2000)

● Assumptions on functional dependencies and noise distributions
→ Restricted structural causal modeling (Peters et al. 2018)

● Assumptions through likelihood functions and interventional data

→ Score-based causal network learning

● Assumption of an underlying nonlinear dynamical deterministic system
→ State-space methods

    

(X(t), Y(t), U(t))

(Y(t), Y(t-d), Y(t-2d))(X(t), X(t-d), X(t-2d))

M

M
X

M
Y

Yt=f (X t , E t
Y )

X t=g (Yt , E t
X )

r t
Y

r t
X

X t

Yt

X t

Yt

W

Y

X Z

X Y
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Applications

Theoretical 
foundations

Causal effect 
estimation

Causal 
discovery

Challenges 

Recent work 
from

my group
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Challenges

Runge et al. (2019)
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Challenges

Runge et al. (2019)

Variables not well-defined7

Tibau et al. 2018

X Y
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My group’s work: 
Causal inference for time series data

Time series case: 
● PCMCI causal discovery framework 

       

    

Instantaneous 
causality

Hidden 
confounders

Multiple datasets / 
further aspects

PCMCIRunge et al 2019 ✘ ✘ ✔ / -

PCMCI+Runge 2020 ✔ ✘ ✔ / -

L-PCMCIGerhardus & Runge 2020 ✔ ✔ ✔ / -

J-PCMCI+Günther et al. 2023 ✔ ✔
(context-related)

✔ / -context links

R-PCMCISaggioro et al 2020 ✘ ✘ ✘ / -regimes
learning

Runge et al. (2019)

X1

X 2

X 3
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Causal inference in frequency space
Nicolas Reiter

Goal: Develop causal inference foundations at the level of process 
graphs in frequency space (assuming underlying linear models).
       

    

Paper submitted to Bernoulli

Causal transfer functions
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    Time series case: 
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    Time series case: 
● PCMCI causal discovery framework 

       

    

Instantaneous causality Hidden confounders

PCMCIRunge et al 2019 ✘ ✘
PCMCI+Runge 2020 ✔ ✘

X 1

X 2

X 3
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    Time series case: 
● PCMCI causal discovery framework 

       

    

Instantaneous causality Hidden confounders

PCMCIRunge et al 2019 ✘ ✘
PCMCI+Runge 2020 ✔ ✘

LPCMCIGerhardus & Runge 2020 ✔ ✔

X 1

X 2

X 3

Basic idea: include learned parents in cond. indep. tests 
for increased effect size and well-calibrated tests

(Theorem 1 in LPCMCI paper)
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    Time series case: 
● PCMCI causal discovery framework 

       

    

Instantaneous 
causality

Hidden 
confounders

Multiple datasets / 
further aspects

PCMCIRunge et al 2019 ✘ ✘ ✔ / -

PCMCI+Runge 2020 ✔ ✘ ✔ / -

L-PCMCIGerhardus & Runge 2020 ✔ ✔ ✔ / -

X 1

X 2

X 3
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    Time series case: 
● PCMCI causal discovery framework 

       

    

Instantaneous 
causality

Hidden 
confounders

Multiple datasets / 
further aspects

PCMCIRunge et al 2019 ✘ ✘ ✔ / -

PCMCI+Runge 2020 ✔ ✘ ✔ / -

L-PCMCIGerhardus & Runge 2020 ✔ ✔ ✔ / -

J-PCMCI+Günther et al. 2023 ✔ ✔
(context-related)

✔ / -context links

Dataset 1

Dataset 2

Time-context variable

cf. Huang et al (2020), Mooij et al (2020)
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    Time series case: 
● PCMCI causal discovery framework 

       

    

Instantaneous 
causality

Hidden 
confounders

Multiple datasets / 
further aspects

PCMCIRunge et al 2019 ✘ ✘ ✔ / -

PCMCI+Runge 2020 ✔ ✘ ✔ / -

L-PCMCIGerhardus & Runge 2020 ✔ ✔ ✔ / -

J-PCMCI+Günther et al. 2023 ✔ ✔
(context-related)

✔ / -context links

R-PCMCISaggioro et al 2020 ✘ ✘ ✔ / regimes

X

Y

Z X

Y

Z

X

Y

Z

X

Y

Z

C
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Learning causal graphs

Given data and general assumptions, estimate causal graph 
from observational distribution
       

    
Conditional independence tests

       

    

Nonlinearity / 
distributions

Variable types Dimension of X and Y

ParCorr
(analytical)

linear gaussian continuous univariate

RobustParCorr
(analytical)

linear non-gaussian continuous univariate

ParCorrWLSGünther et al.2022

(analytical)
linear gaussian, but 

heteroscedastic
continuous univariate

GPDC(torch)Runge et al. 2019

(permutation-based)
nonlinear additive continuous univariate

CMIknnRunge 2018

(permutation-based)
nonlinear continuous multivariate

CMIsymb
(permutation-based)

non-parametric categorical multivariate

Gsquared
(analytical)

non-parametric categorical univariate

RegressionCI
(analytical)

linear / logistic regression mixed univariate

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

Local permutation 
shuffle test
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Applications

Theoretical 
foundations

Causal effect 
estimation

Causal 
discovery

Challenges 

Recent work 
from

my group
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Applications

Climate system

EcosystemsSolar system

Human body

Industry
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State your problem: Questions – Assumptions – Data

Question

Co
un

te
r-

fa
ct

ua
l

Ca
us

al
 (i

nt
er

ve
nti

on
al

)

Quantitative

Qualitative

N
on

-
ca

us
al

Data

Assumptions SCM

L

C
C

Causal Inference Engine

V1

Variables

Definitions

Functional forms /
Noise distributions

Graph types Graph G

Observational noise Stationarity
Types

Causal effect methods

Causal discovery methods

Counterfactual 
methods

Pure statistical or ML models

Interventional
data

– 

Observational
data

V2

Vi Vj

V1 V2

V3

Runge et al., 
Nature Rev. EE 2023
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Runge et al., 
Nature Rev. EE 2023

Method / frameworkQuestion Assumption Data

QAD-based causal inference method selector

Causal effect estimation Causal discovery

Counterfactuals

works

yes

yes

yes

yes

yes

yes

yes

yes

yes works
yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes
yes

no

no

no

no

no

no

no

no

no
no

no

no

no

no

no

no

no

no

no
no

no

doesn’t work

yes

no

doesn’t
work

Causal discovery?

Causal question?

Direct effects /
mediation?

Causal nodes 
defined?

Linear and 
no hidden

 confounders?

Total
causal effects?

Causal 
graph known?

Time series?

START

Path method

Path method

Instrumental 
variables,

double machine 
learning

do-calculus 
estimation

Causal 
transportability

estimation

Fixed-effects
panel regression

Adjustment-identifiable?

Front-door
estimation

Transportable?

Multiple datasets
from different
distributions

Asymmetry-based methods (VARLiNGAM, ...),
continuous-optimization methods (DYNOTEARS, ...)

Tough luck

(Non)linear Granger causality,
PCMCI

Restricted SCM
model class?

Contemporaneous
effects?

Constraint-based methods
 (PCMCI+, PC, ...), 

score-based methods (GES, ...),
hybrid methods (MMHC)

State-space methods
(CCM, ...)

Deterministic
system?

Constraint-based methods
(LPCMCI, FCI, ...)

Joint Causal Inference
framework (seqICP, ...),

continuous-optimization
methods

Dimension-reduction

Hidden 
confounders?

yes

Frameworks for
nonstationarity

Causal representation 
learning

Purely statistical / 
ML models

no

yes

doesn’t work

General counterfactual 
methods

Stationary? Data preprocessing / masking / aggregation 
or sliding window analysis

Hidden 
confounders?Linear?

(Optimal)
adjustment
estimation

Frontdoor-identifiable?

Particular graphs and
(partial) linearity

do-calculus identifiable?

Linear and 
specific 

confounders?

Tough luck

Multiple datasets
from different
distributions

QAD-based method selector



 240
. .  Prof Dr Jakob Runge
     Chair of AI in the Sciences

  University of Potsdam

Causal mediation analysis

Runge et al., NatComm 2015

● Pathway mechanisms between El Nino and Indian monsoon 
through sea-level pressure system
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Runge et al., NatComm 2015
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through sea-level pressure system
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Causal mediation analysis

Runge et al., NatComm 2015

● Pathway mechanisms between El Nino and Indian monsoon 
through sea-level pressure system
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Causal relationships between urban form and travel CO2 
emissions (Wagner et al., submitted)

● Context

– Car commuting is a major contributor to urban 
congestion and GHG emissions 

– Built environment (BE) influences car travel 
distance per capita (VKT)

– Understanding of how BE affects VKT is required 
for sustainable urban planning

● Prior work

– only correlation based - neglecting causal effect 
mechanisms between BE and VKT

– mostly city specific - unclear if relationships hold 
across various cities around the globe

– not spatially explicit - neglecting effect differences 
within a city
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● Approach

1. Gather BE and VKT data for six cities across 3 
continents

2. Develop BE features, defining:

1. Distance to center

2. Distance to jobs

3. Population density

4. Street connectivity

5. Mean household income

3. Find causal graph, describing relationships 
between BE Features and VKT

4. Use graph to inform ML model and feature 
importance measure (causal shapley values)

5. Analyse causal effects of BE features on VKT 
across all cities and spatially

Causal relationships between urban form and travel CO2 
emissions (Wagner et al., submitted)

● Context

– Car commuting is a major contributor to urban 
congestion and GHG emissions 

– Built environment (BE) influences car travel 
distance per capita (VKT)

– Understanding of how BE affects VKT is required 
for sustainable urban planning

● Prior work

– only correlation based - neglecting causal effect 
mechanisms between BE and VKT

– mostly city specific - unclear if relationships hold 
across various cities around the globe

– not spatially explicit - neglecting effect differences 
within a city
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Causal relationships between urban form and travel CO2 
emissions (Wagner et al., submitted)

● Causal urban form effects partially confirm previous assumptions
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Causal relationships between urban form and travel CO2 
emissions (Wagner et al., submitted)

● Which urban form effect matters most depends on specific locations within cities
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Take-home message
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Take-home message

● Causal inference: Framework to answer causal questions 
from empirical data

Jakob Runge
Causal Inference 

for Time Series Data
(release date: 2026)

https://rdcu.be/dfs5X

https://t.co/wzp7UvcvXX
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Take-home message

● Causal inference: Framework to answer causal questions 
from empirical data

● Two settings:

1) Assume graphs and learn causal effects

2) Learning causal graphs

Jakob Runge
Causal Inference 

for Time Series Data
(release date: 2026)

https://rdcu.be/dfs5X

https://t.co/wzp7UvcvXX
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Take-home message

● Causal inference: Framework to answer causal questions 
from empirical data

● Two settings:

1) Assume graphs and learn causal effects

2) Learning causal graphs

● State Question – Assumptions – Data to choose suitable 
method and make assumptions transparent

Jakob Runge
Causal Inference 

for Time Series Data
(release date: 2026)

https://rdcu.be/dfs5X

https://t.co/wzp7UvcvXX
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Jakob Runge
Causal Inference 

for Time Series Data
(release date: 2026)

https://rdcu.be/dfs5X

Take-home message

● Causal inference: Framework to answer causal questions 
from empirical data

● Two settings:

1) Assume graphs and learn causal effects

2) Learning causal graphs

● State Question – Assumptions – Data to choose suitable 
method and make assumptions transparent

● Causal inference + AI & ML = Causal AI

https://t.co/wzp7UvcvXX
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Jakob Runge
Causal Inference 

for Time Series Data
(release date: 2026)

https://rdcu.be/dfs5X

Take-home message

● Causal inference: Framework to answer causal questions 
from empirical data

● Two settings:

1) Assume graphs and learn causal effects

2) Learning causal graphs

● State Question – Assumptions – Data to choose suitable 
method and make assumptions transparent

● Causal inference + AI & ML = Causal AI

Software and benchmark platform: 
● github.com/jakobrunge/tigramite + causeme.net
● pcalg, TETRAD, causalfusion

    

https://t.co/wzp7UvcvXX
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Thank you! Questions?
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