

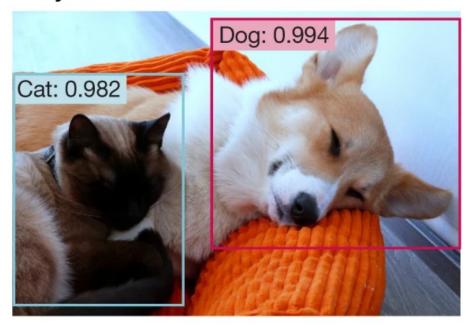
Causal Inference from Time Series Data

Prof. Dr. Jakob Runge Chair of Al in the Sciences University of Potsdam

CausalInferenceLab.com @ UP (and TUB)

Machine learning tasks

Object classification and localization

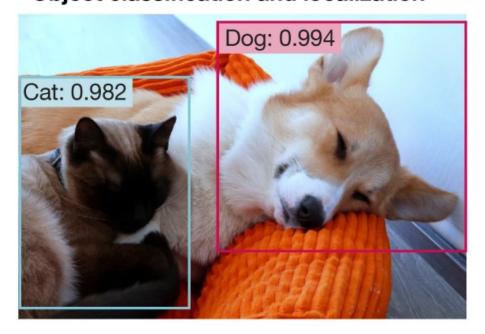


Turing-Award 2018 LeCun, Hinton, Bengio

Reichstein et al. 2019

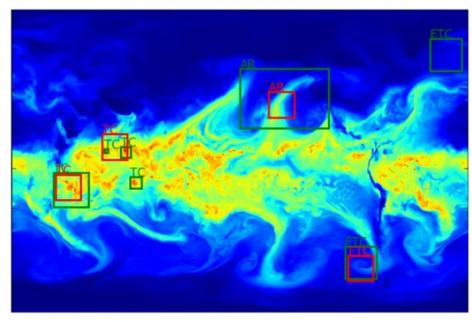
Machine learning tasks

Object classification and localization



Earth science tasks

Pattern classification



Turing-Award 2018 LeCun, Hinton, Bengio

Reichstein et al. 2019

PERSPECTIVE

https://doi.org/10.1038/s41586-019-0912-1

Deep learning and process understanding for data-driven Earth system science

Markus Reichstein^{1,2*}, Gustau Camps-Valls³, Bjorn Stevens⁴, Martin Jung¹, Joachim Denzler^{2,5}, Nuno Carvalhais^{1,6} & Prabhat⁷

Enhancing computational fluid dynamics with machine learning

Ricardo Vinuesa^{1,2 ™} and Steven L. Brunton ¹03

Turing-Award 2018 LeCun, Hinton, Bengio

PERSPECTIVE

https://doi.org/10.1038/s41586-019-0912-1

Deep learning and process understanding for data-driven Earth system science

Markus Reichstein^{1,2*}, Gustau Camps-Valls³, Bjorn Stevens⁴, Martin Jung¹, Joachim Denzler^{2,5}, Nuno Carvalhais^{1,6} & Prabhat⁷

Enhancing computational fluid dynamics with machine learning

Ricardo Vinuesa^{1,2} and Steven L. Brunton © 3

npj computational materials

www.nature.com/npjcompumats

LeCui

Turin

REVIEW ARTICLE OPEN

Machine learning in concrete science: applications, challenges, and best practices

Zhanzhao Li 60^{1 ⋈}, Jinyoung Yoon 60^{1,2}, Rui Zhang 1, Farshad Rajabipour 1, Wil V. Srubar III 3,4, Ismaila Dabo 5 and Aleksandra Radlińska 60¹

Deep neural networks for the evaluation and design of photonic devices

Jiaqi Jiang, Mingkun Chen⊚ and Jonathan A. Fan⊚™

PERSPECTIVE

https://doi.org/10.1038/s41586-019-0912-1

Deep learning and process understanding for data-driven Earth system science

Markus Reichstein^{1,2*}, Gustau Camps-Valls³, Bjorn Stevens⁴, Martin Jung¹, Joachim Denzler^{2,5}, Nuno Carvalhais^{1,6} & Prabhat⁷

Enhancing computational fluid dynamics with machine learning

Ricardo Vinuesa^{1,2 ™} and Steven L. Brunton ¹

computational materials

REVIEW ARTICLE

Machine learning in concrete science and best practices

PERSPECTIVE https://doi.org/10.1038/s41467-022-27980-y

Perspectives in machine learning for wildlife conservation

etworks for and design of

Devis Tuia o 1,17 ⋈, Benjamin Kellenberger 1,17, Sara Beery 2,17, | Jiaqi Jiang, iviingkun Chen⊚ ana Jonathan A. Fan⊚⊠ Zhanzhao Li 📵 🖾, Jinyoung Yoon 📵 1.2, Rui Zhang 1, Farshad Rajabipour 1, Wil V. Srubar III 3.4, Ismaila Dabo 5 and Aleksandra Radlińska 📵

Prof. Dr. Jakob Runge

Check for update

Turin

LeCui

Obtaining genetics insights from deep learning via explainable artificial intelligence

Gherman Novakovsky[®] ^{1,2,7}, Nick Dexter[®] ^{3,4,7}, Maxwell W. Libbrecht[®] ^{4,8} Wyeth W. Wasserman 6 1.8 \imp and Sara Mostafavi 6 5.6.8 \imp 1.8 \imp and Sara Mostafavi 1.8 \imp 1.8 \imp 1.8 \imp and Sara Mostafavi 1.8 \imp 1.8 \im

nature neuroscience

> computational materials

A deep learning framework for neuroscience

Blake A. Richards^{1,2,3,4,42*}, Timothy P. Lillicrap^{6,6,42}, Philippe Beaudoin⁷, Yoshua Bengio^{1,4,8},

PERSPECTIVE https://doi.org/10.1038/s41467-022-27980-y

Perspectives in machine learning for wildlife conservation

Devis Tuia o 1,17 ⋈, Benjamin Kellenberger 1,17, Sara Beery 2,17, Zhanzhao Li 📵 🖼, Jinyoung Yoon 📵 1.2, Rui Zhang 1, Farshad Rajabipour 1, Wil V. Srubar III 3.4, Ismaila Dabo 5 and Aleksandra Radlińska 🚯

PERSPECTIVE

https://doi.org/10.1038/s41586-019-0912-1

Deep learning and process understanding for data-driven Earth system science

Markus Reichstein^{1,2*}, Gustau Camps-Valls³, Bjorn Stevens⁴, Martin Jung¹, Joachim Denzler^{2,5}, Nuno Carvalhais^{1,6} & Prabhat⁷

Enhancing computational fluid dynamics with machine learning

Ricardo Vinuesa^{1,2 ™} and Steven L. Brunton ¹

REVIEWS

etworks for and design of

| Jiaqi Jiang, iviingkun Chen⊚ ana Jonathan A. Fan⊚⊠

Turin

LeCu



PERSPECTIVE

https://doi.org/10.1038/s41586-019-0912-1

Obtaining genetics insights from deep learning via explainable artificial

intelligence

Gherman Novakovsky (1) 1,2,7 Wyeth W. Wasserman_{1,8} ⋈

medicine

PERSPECTIVE https://doi.org/10.1038/s41591-019-0548-6

Corrected: Author Correction 0264-7

Deep learning and process understanding for data-driven Earth system science

, Gustau Camps-Valls, Bjorn Stevens, Martin Jungl, Joachim Denzler, Nuno Carvalhais, & Prabhat,

nature computational science

nature neuroscience

Do no harm: a roadmap for responsible machine learning for health care

nputational fluid dynamics

A deep learning | Finale Doshi-Velez¹⁰

Jenna Wiens 1,20*, Pilar N. Ossorio16, Sc

medicine

https://doi.org/10.1038/s41591-021-01614-0

REVIEWS

Blake A. Richards^{1,2,3,4,42*}, Timothy P. Lillicrap^{6,6,42}, Pl

computational

materials

AI in health and medicine

Pranav Rajpurkar ^{1,4}, Emma Chen^{2,4}, Oishi Banerjee^{2,4} and Eric J. Topol ³ □

Check for updates

Turin LeCu

REVIEW ARTICLE

Machine learning in concrete science and best practices

PERSPECTIVE nttps://doi.org/10.1038/s41467-022-27980-y

Perspectives in machine learning for wildlife conservation

etworks for and design of

Devis Tuia o 1,17 ⋈, Benjamin Kellenberger 1,17, Sara Beery 2,17, Zhanzhao Li 📵 🖼, Jinyoung Yoon 📵 1.2, Rui Zhang 1, Farshad Rajabipour 1, Wil V. Srubar III 3.4, Ismaila Dabo 5 and Aleksandra Radlińska 🚯

| Jiaqi Jiang, iviingkun Chen⊚ ana Jonathan A. Fan⊚⊠



PERSPECTIVE

https://doi.org/10.1038/s41586-019-0912-1

Obtaining genetics insights from deep learning via explainable artificial

Deep learning and process understanding for data-driven Earth system science

Gherman Nov Wyeth W. Was

Machine learning excels at extracting association patterns from (very complex) data

A deep le

neuroscie

Pilar N. Ossorio16, Sc

Blake A. Richards^{1,2,3,4,42*}, Timothy P. Lillicrap^{6,6,42}, Pl

nttps://doi.org/10.1036/s41591-021-01614-0

Check for updates

ACHINE LEARNING

REVIEWS

AI in health and medicine

Pranav Rajpurkar ¹⁴, Emma Chen⁴, Oishi Banerjee⁴ and Eric J. Topol ³ [∞]

Check for updates

Turin

LeCu

REVIEW ARTICLE

materials

computational

OPEN

Machine learning in concrete science and best practices

PERSPECTIVE

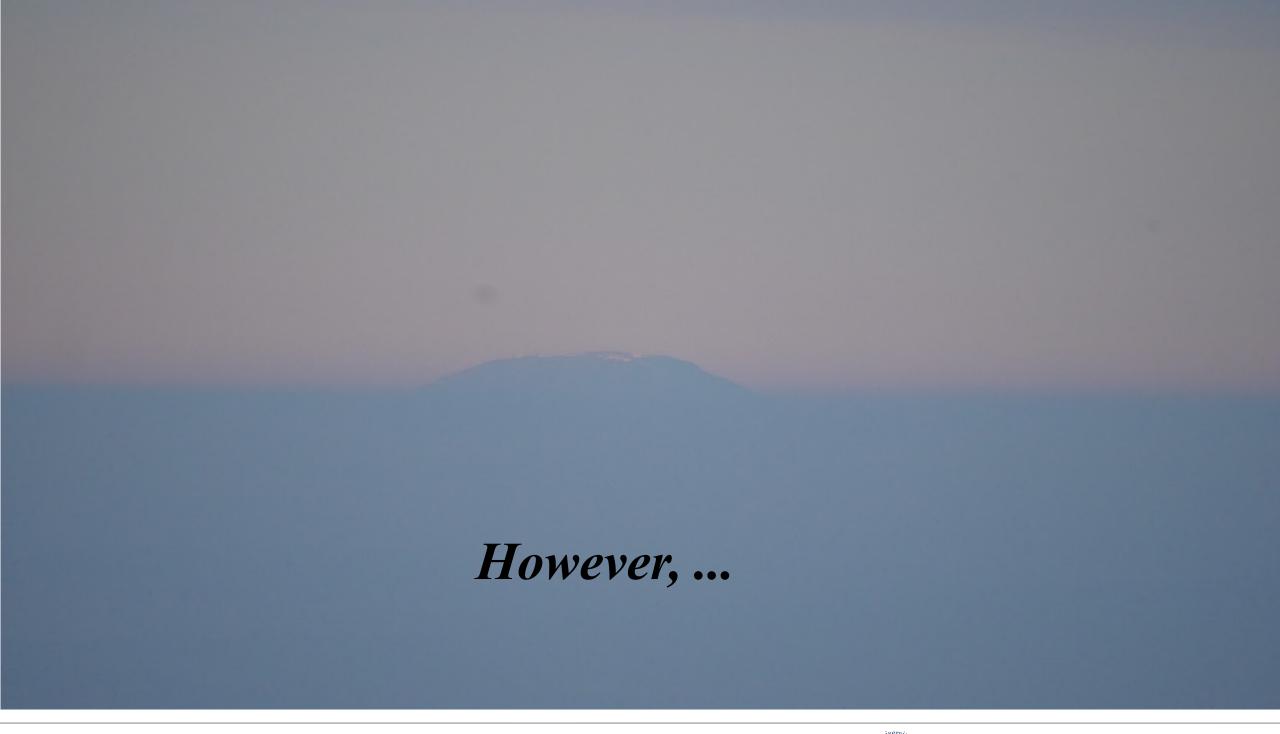
nttps://doi.org/10.1038/s41467-022-27980-y

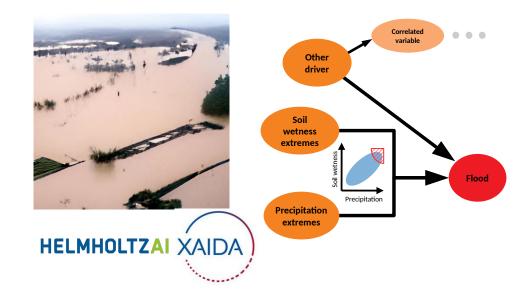
Perspectives in machine learning for wildlife conservation

etworks for and design of

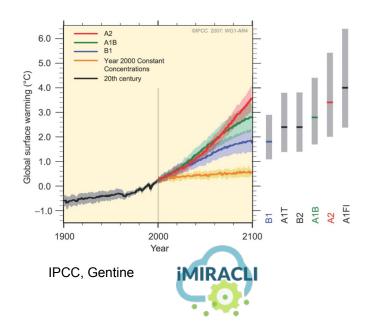
| этадгэтану, тингукин спен<mark>т</mark> ана Jonathan A. Fan⊚⊠

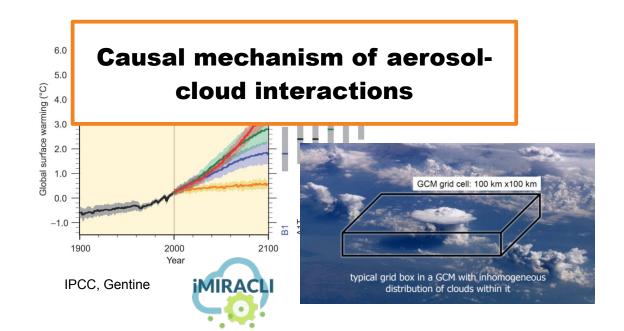
Devis Tuia 1,17 M, Benjamin Kellenberger 1,17, Sara Beery 2,17, Zhanzhao Li 1,18 M, Jinyoung Yoon 1,2 Rui Zhang 1, Farshad Rajabipour 1, Wil V. Srubar III 1,4, Ismaila Dabo 3 and Aleksandra Radlińska 1,18 M, Ismaila Dabo 5 and Aleksandra Radlińska 1,18 M, Ismaila Radlińska 1,18

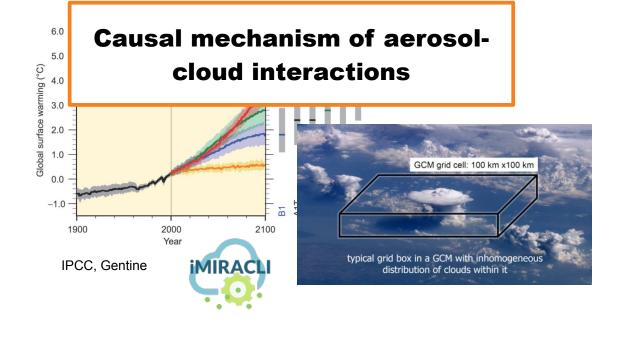


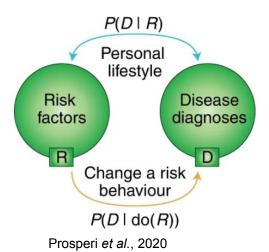


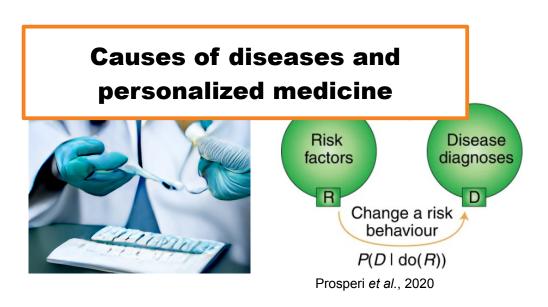


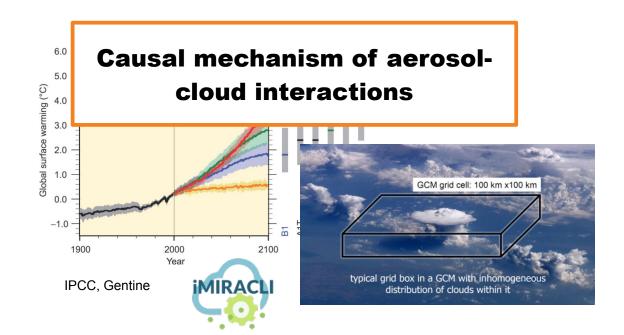


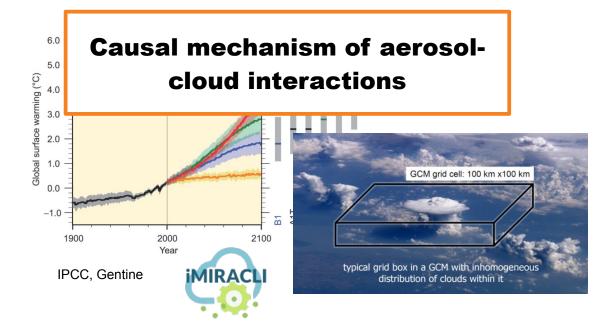


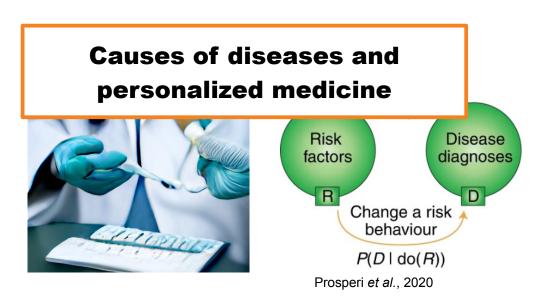


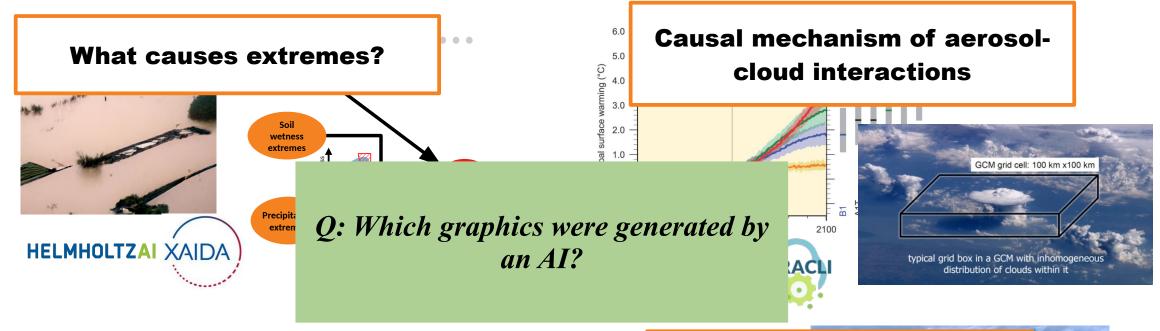


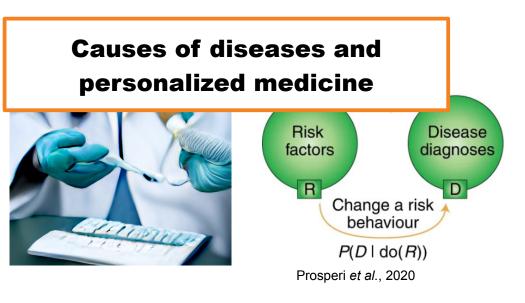


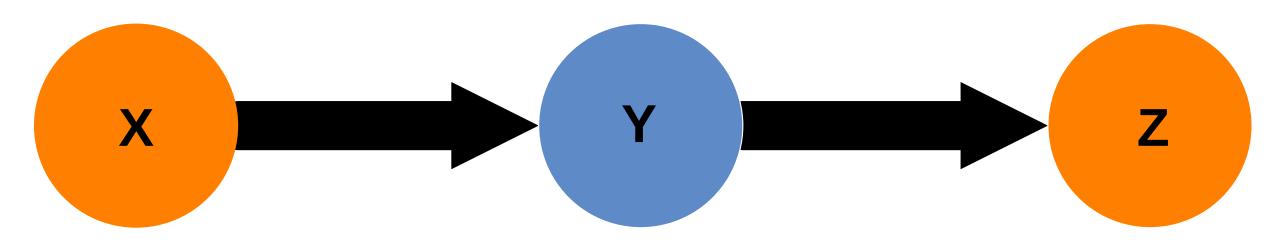


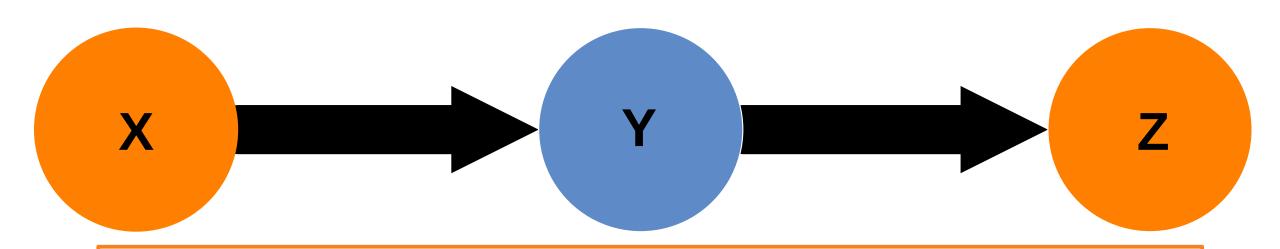








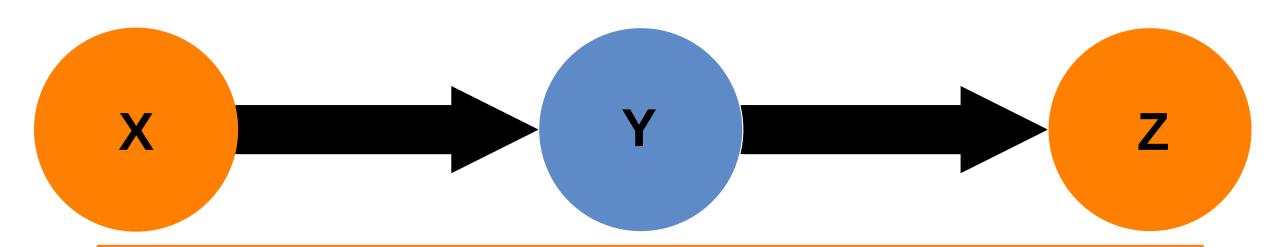




Which model predicts **Y** more accurately?

1.
$$Y = f(X)$$

2.
$$Y = f(X,Z)$$

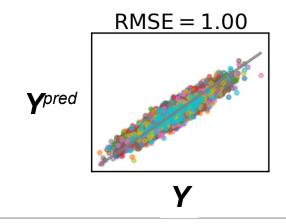


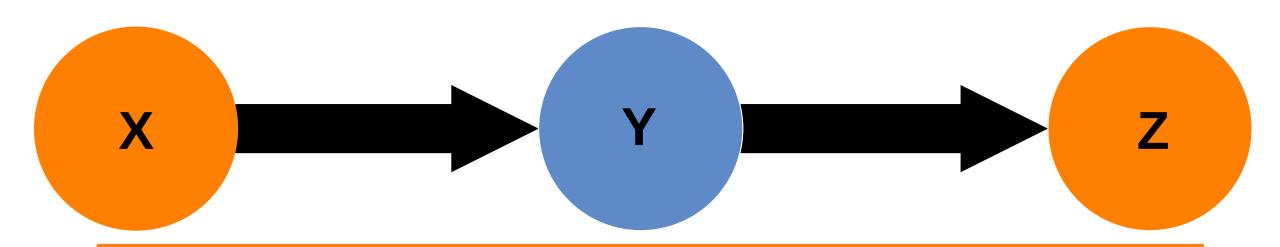
Which model predicts Y more accurately if you train on data from one region and

predict on the same region

$$1. Y = f(X)$$

2.
$$Y = f(X,Z)$$



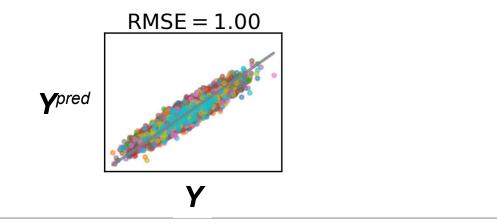


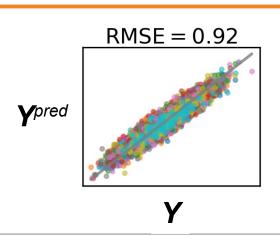
Which model predicts Y more accurately if you train on data from one region and

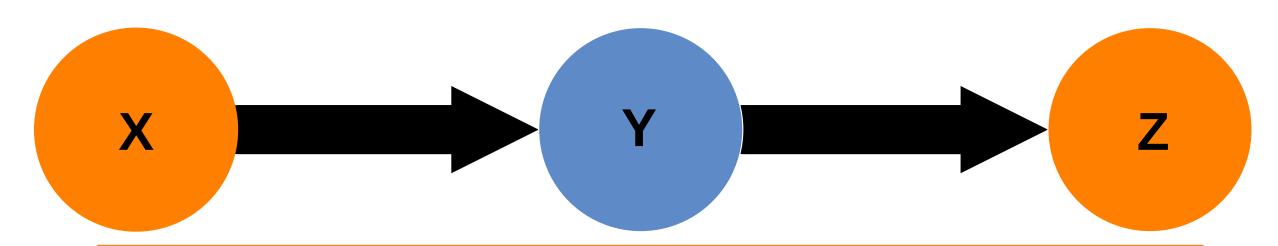
predict on the same region

$$1. Y = f(X)$$

2.
$$Y = f(X,Z)$$



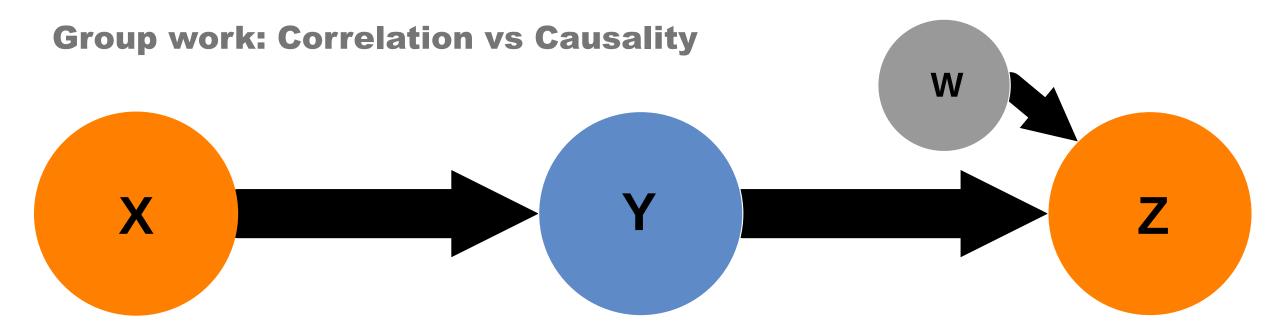




- predict on the same region
- predict on another region?

1.
$$Y = f(X)$$

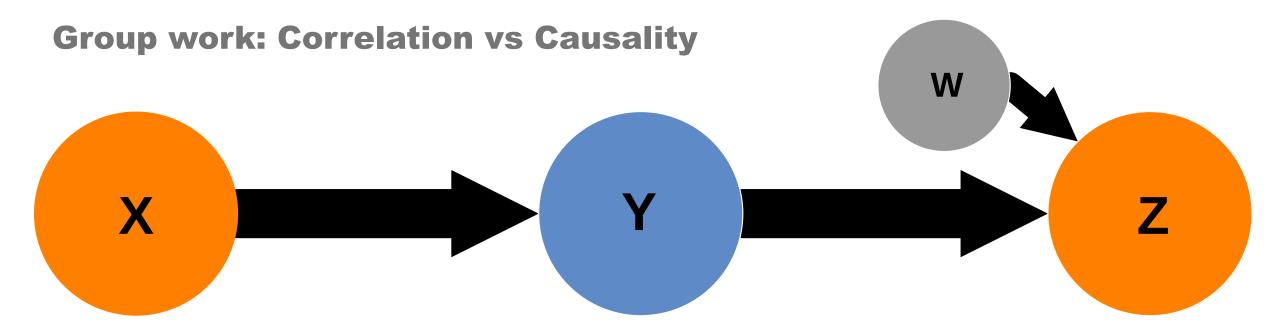
2.
$$Y = f(X,Z)$$



- predict on the same region
- predict on another region?

1.
$$Y = f(X)$$

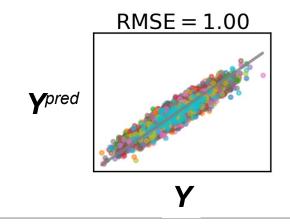
2.
$$Y = f(X,Z)$$

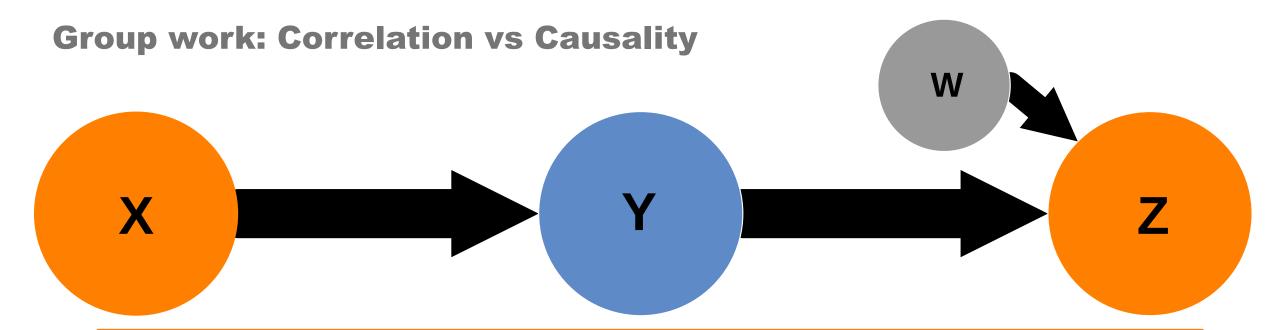


- predict on the same region
- predict on another region?

1.
$$Y = f(X)$$

2.
$$Y = f(X,Z)$$

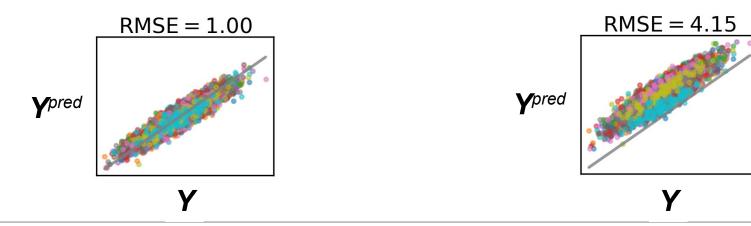


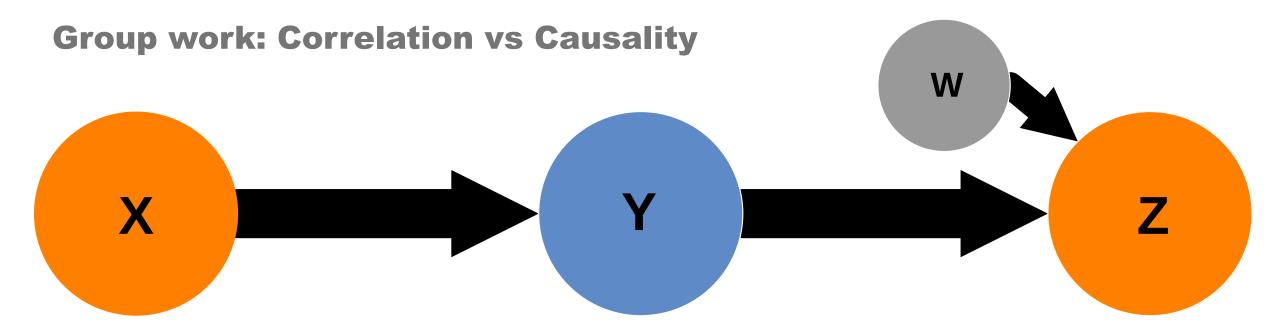


- predict on the same region
- predict on another region?

1.
$$Y = f(X)$$

2.
$$Y = f(X,Z)$$

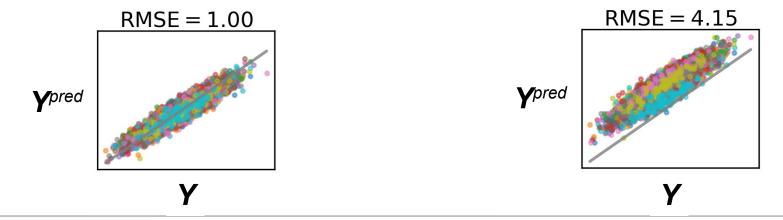




- predict on the same region (in-distribution)
- predict on another region? (out-of-distribution)

$$1. Y = f(X)$$

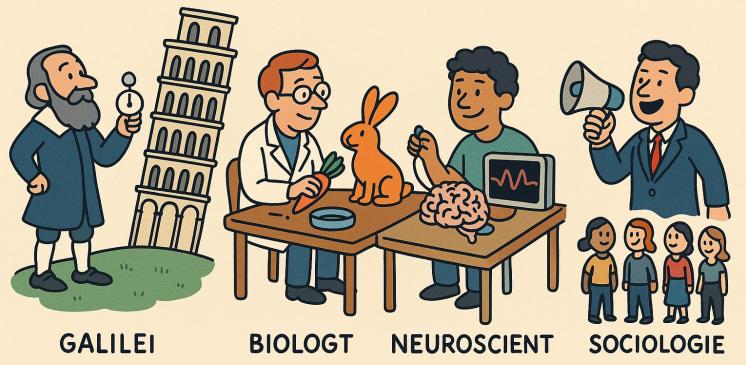
2.
$$Y = f(X,Z)$$

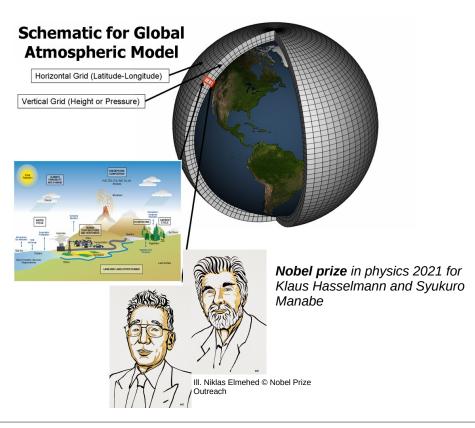




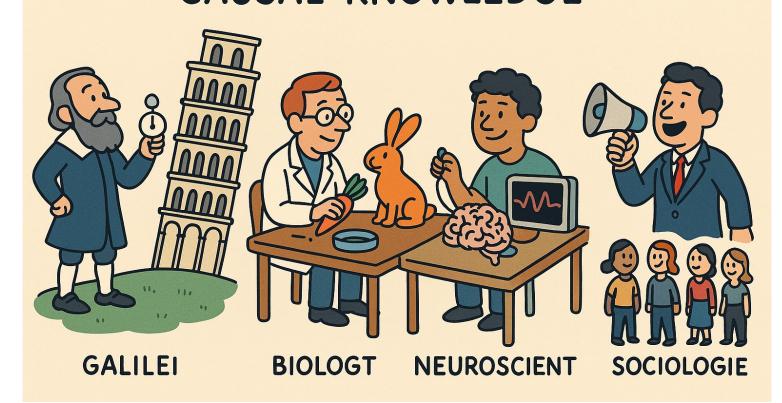
© ChatGPT40 EXPERIMENTAL APPROACH TO CAUSAL KNOWLEDGE GALILEI **BIOLOGT NEUROSCIENT** SOCIOLOGIE

EXPERIMENTAL APPROACH TO
CAUSAL KNOWLEDGE



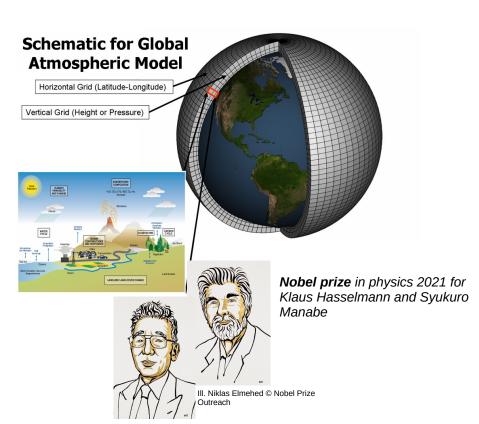


EXPERIMENTAL APPROACH TO CAUSAL KNOWLEDGE

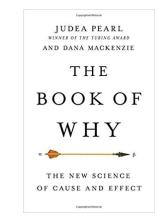


Expensive, time consuming, ethical issues, ...

© ChatGPT40



Causal inference

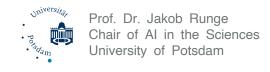


J Pearl **Turing-Award 2011**and his group

Spirtes, Glymour, Scheines

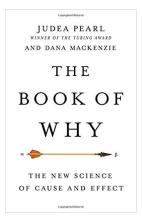
JD Angrist and GW Imbens

Nobel prize 2021



Causal inference

Causal inference enables to utilize domain knowledge to answer causal questions from data.



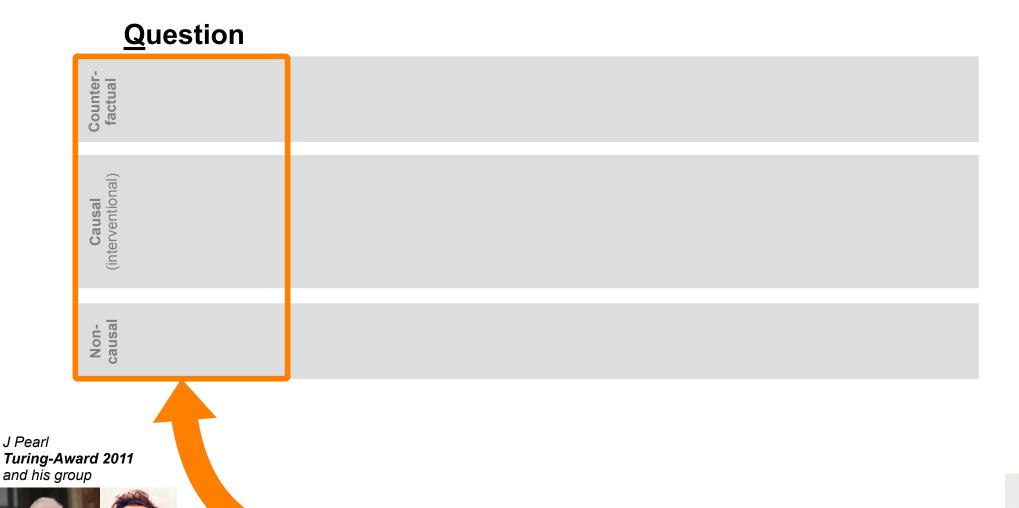
J Pearl **Turing-Award 2011**and his group

Spirtes, Glymour, Scheines

Spirtes,

Glymour,

Causal inference enables to utilize domain knowledge to answer causal questions from data.



Underlying system

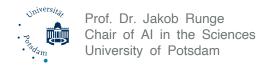
JD Angrist and GW Imbens Nobel prize 2021

JUDEA PEARL WINNER OF THE TURING AWARD AND DANA MACKENZIE THE

BOOK OF

WHY

THE NEW SCIENCE OF CAUSE AND EFFECT



J Pearl

Spirtes,

Glymour,

Causal inference enables to utilize domain knowledge to answer causal questions from data.

Question Causal (interventional) Detecting extreme event patterns p(y|x)and correlated variables **Turing-Award 2011** and his group

Underlying system

JUDEA PEARL AND DANA MACKENZIE THE

BOOK OF

WHY

THE NEW SCIENCE OF CAUSE AND EFFECT



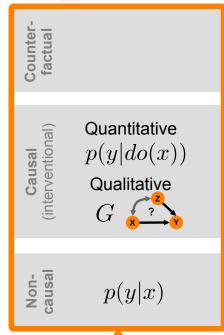
JD Angrist and GW Imbens

Nobel prize 2021

III. Niklas Elmehed © Nobel Prize Outreach

Causal inference enables to utilize domain knowledge to answer causal questions from data.

Question



Will climate change cause more extreme events in the future?

Detecting extreme event patterns and correlated variables

J Pearl

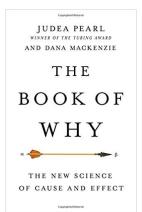
Turing-Award 2011

and his group

Spirtes, Glymour,

Underlying system

JD Angrist and GW Imbens Nobel prize 2021



III. Niklas Elmehed

Nobel Prize Outreach

Causal inference enables to utilize domain knowledge to answer causal questions from data.

Question

Gonnte $p(y'_{x'}|y_x)$

What would have been the probability of this extreme event without climate change?

Causal iterventional) Quantitative p(y|do(x))

Qualitative

 $G \overset{?}{\underset{\mathsf{X}}{\longleftarrow}}$

Non-

p(y|x)

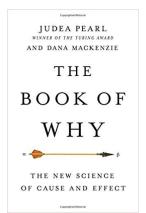
Will climate change cause more extreme events in the future?

Detecting extreme event patterns and correlated variables

J Pearl **Turing-Award 2011**and his group

Spirtes, Glymour, **Underlying system**

JD Angrist and GW Imbens **Nobel prize 2021**



III. Niklas Elmehed

Nobel Prize Outreach

Causal inference enables to utilize domain knowledge to answer causal questions from data.

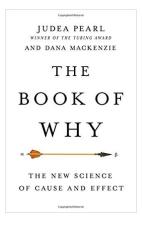
Detecting extreme event patterns and correlated variables

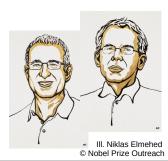
Observational data

Spirtes, Glymour, **Underlying system**

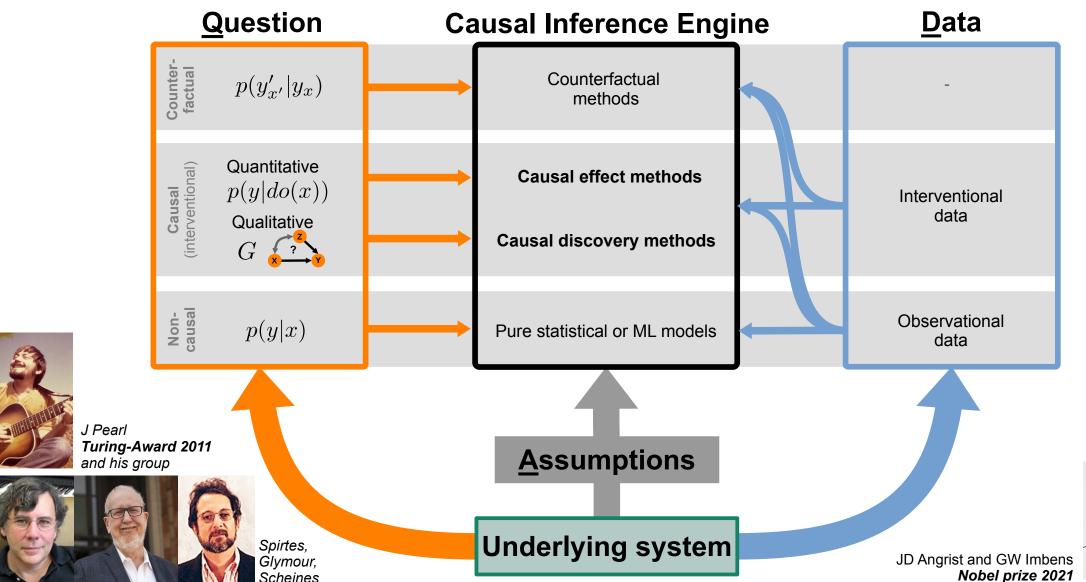
JD Angrist and GW Imbens

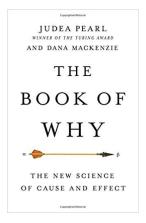
Nobel prize 2021

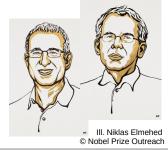




Causal inference enables to utilize domain knowledge to answer causal questions from data.







Assumes an underlying observational structural causal model (SCM):

$$X_{A} := f_{A}(X_{E}, \eta_{A})$$

$$X_{C} := f_{C}(X_{A}, X_{E}, \eta_{C})$$

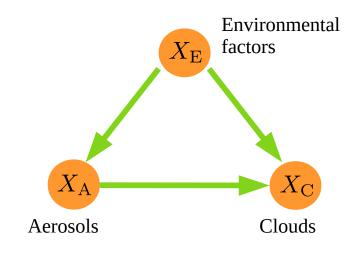
$$X_{E} := f_{E}(\eta_{E})$$

Independent noise terms: η_A, η_E, η_C

Entailed observational distribution:

$$p(\mathbf{X}) = p(X_{\mathrm{C}}|X_{\mathrm{A}}, X_{\mathrm{E}}) \cdot p(X_{\mathrm{A}}|X_{\mathrm{E}}) \cdot p(X_{\mathrm{E}})$$

Associated graph:



Assumes an underlying observational structural causal model (SCM):

$$X_{A} := f_{A}(X_{E}, \eta_{A})$$

$$X_{C} := f_{C}(X_{A}, X_{E}, \eta_{C})$$

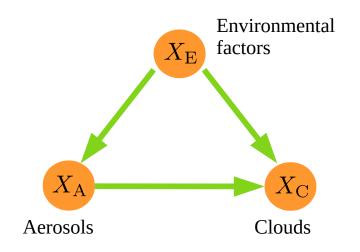
$$X_{E} := f_{E}(\eta_{E})$$

Independent noise terms: η_A, η_E, η_C

Entailed observational distribution:

$$p(\mathbf{X}) = p(X_{\mathrm{C}}|X_{\mathrm{A}}, X_{\mathrm{E}}) \cdot p(X_{\mathrm{A}}|X_{\mathrm{E}}) \cdot p(X_{\mathrm{E}})$$

Associated graph:



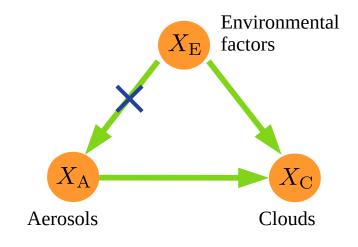
Experiments are represented by **interventional SCM**:

$$X_{\mathrm{A}} := x'$$
 $X_{\mathrm{C}} := f_{\mathrm{C}}(X_{\mathrm{A}}, X_{\mathrm{E}}, \eta_{\mathrm{C}})$
 $X_{\mathrm{E}} := f_{\mathrm{E}}(\eta_{\mathrm{E}})$

Interventional distribution:

$$p(\mathbf{X} \mid do(X_{\mathbf{A}} = x'))$$

Interventional graph:



Assumes an underlying observational structural causal model (SCM):

$$X_{\mathrm{A}} := f_{\mathrm{A}}(X_{\mathrm{E}}, \eta_{\mathrm{A}})$$

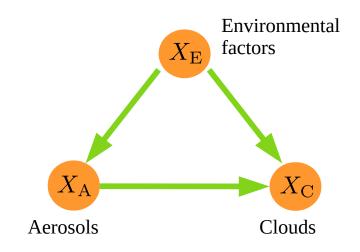
 $X_{\mathrm{C}} := f_{\mathrm{C}}(X_{\mathrm{A}}, X_{\mathrm{E}}, \eta_{\mathrm{C}})$
 $X_{\mathrm{E}} := f_{\mathrm{E}}(\eta_{\mathrm{E}})$

Independent noise terms: η_A, η_E, η_C

Entailed observational distribution:

$$p(\mathbf{X}) = p(X_{\mathrm{C}}|X_{\mathrm{A}}, X_{\mathrm{E}}) \cdot p(X_{\mathrm{A}}|X_{\mathrm{E}}) \cdot p(X_{\mathrm{E}})$$

Associated graph:



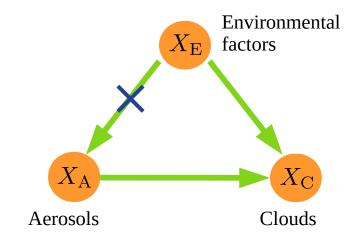
Experiments are represented by **interventional SCM**:

$$X_{\mathrm{A}} := x'$$
 $X_{\mathrm{C}} := f_{\mathrm{C}}(X_{\mathrm{A}}, X_{\mathrm{E}}, \eta_{\mathrm{C}})$
 $X_{\mathrm{E}} := f_{\mathrm{E}}(\eta_{\mathrm{E}})$

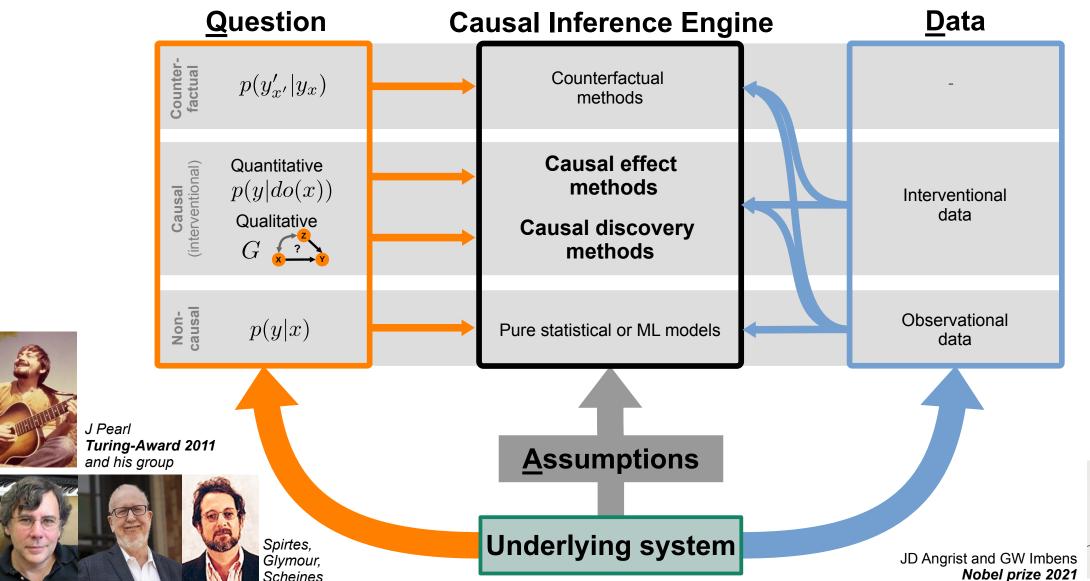
Interventional distribution:

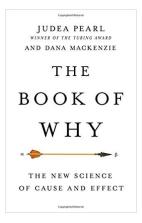
$$p(\mathbf{X} \mid do(X_{\mathbf{A}} = x')) \neq p(\mathbf{X} \mid X_{\mathbf{A}} = x')$$

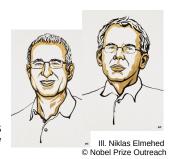
Interventional graph:

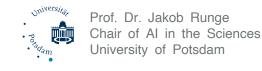


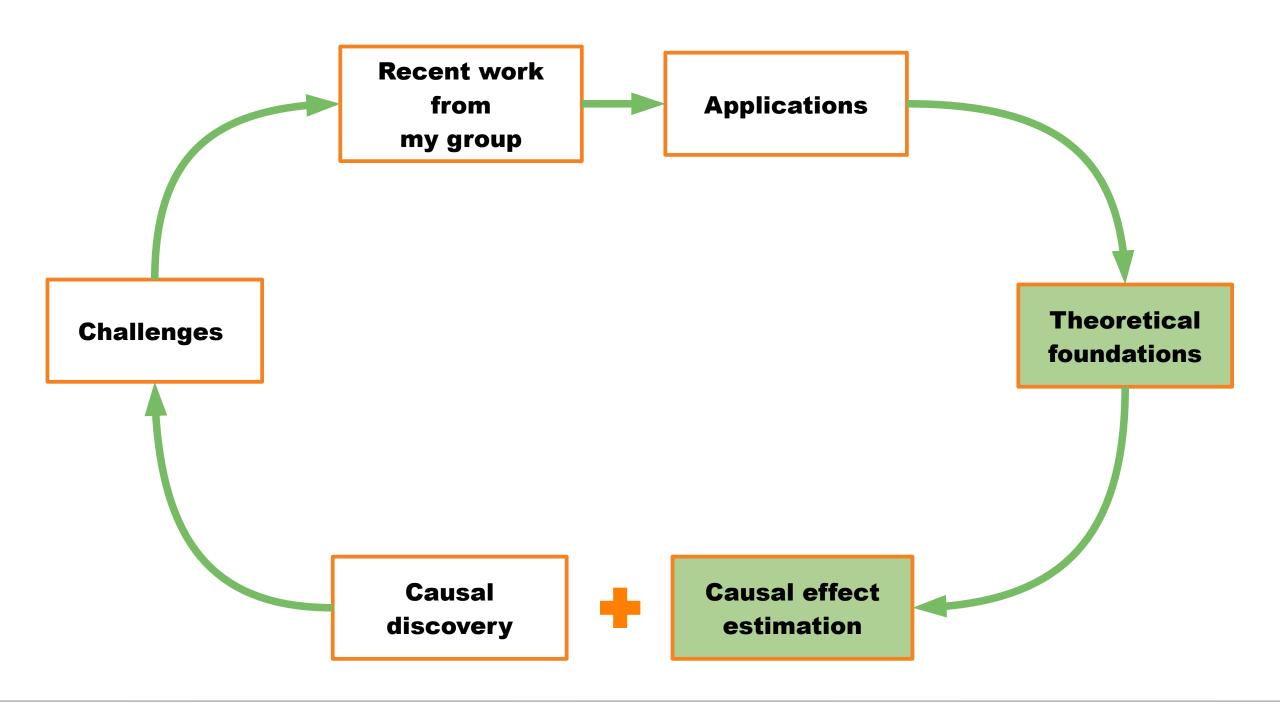
Causal inference enables to utilize domain knowledge to answer causal questions from data.

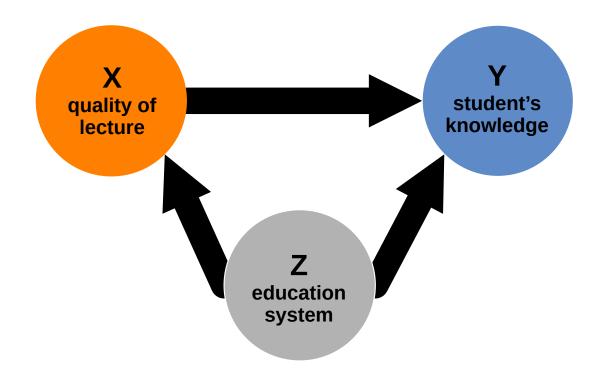




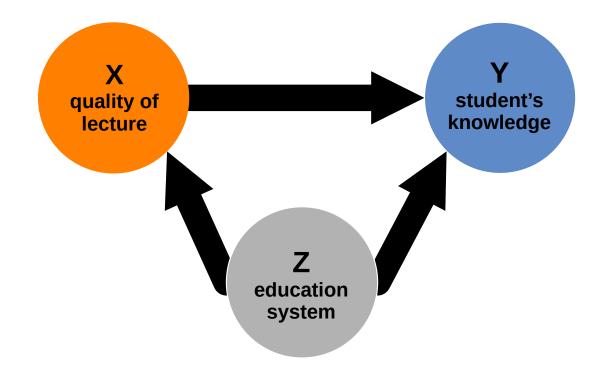




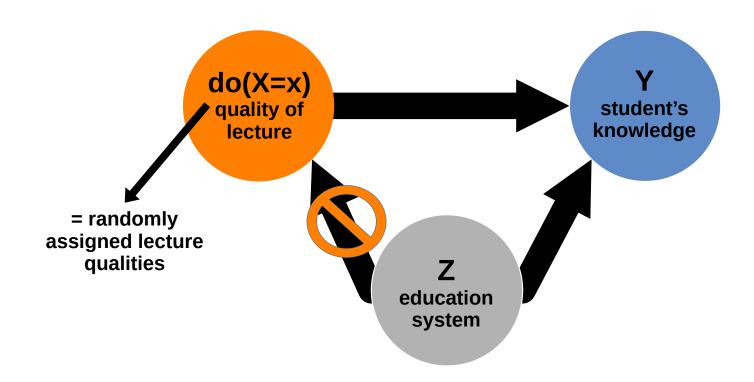




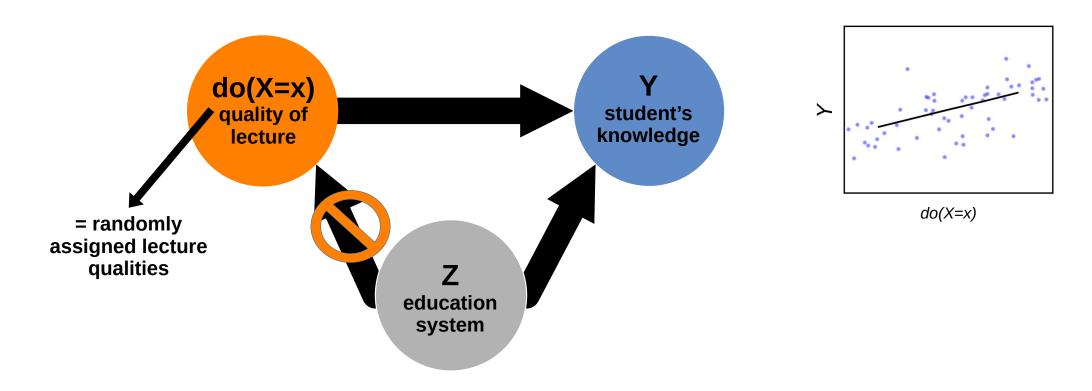
Causal effect is based on the distribution of Y in a system where X was intervened upon:



Causal effect is based on the distribution of Y in a system where X was intervened upon:

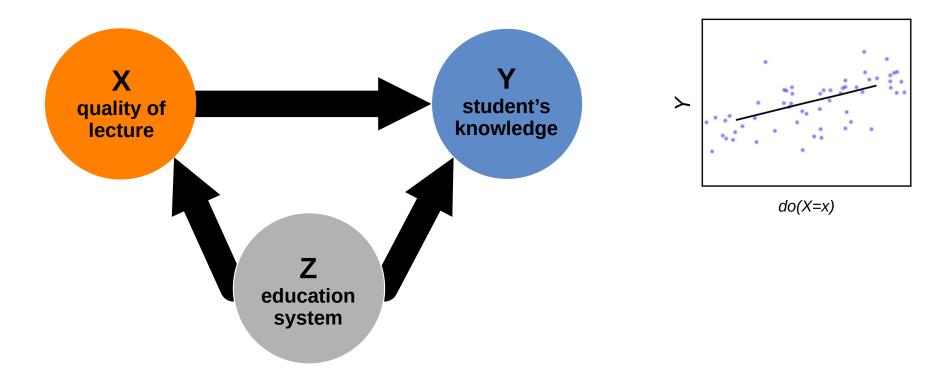


Causal effect is based on the distribution of Y in a system where X was intervened upon:



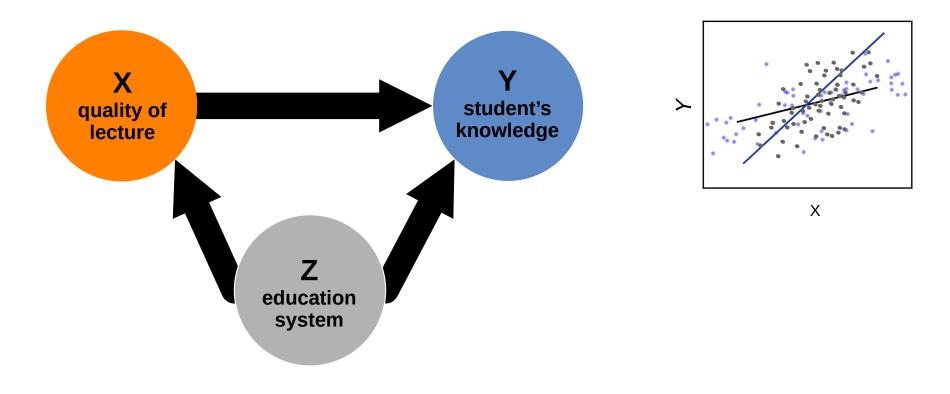
Wrong: Correlation regression

$$Y = \left\lceil \beta_{YX} \right\rceil X$$

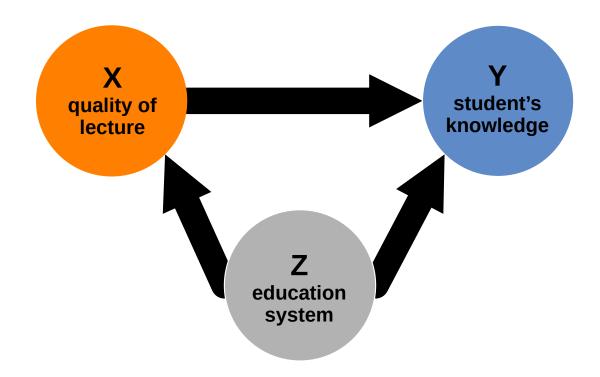


Wrong: Correlation regression

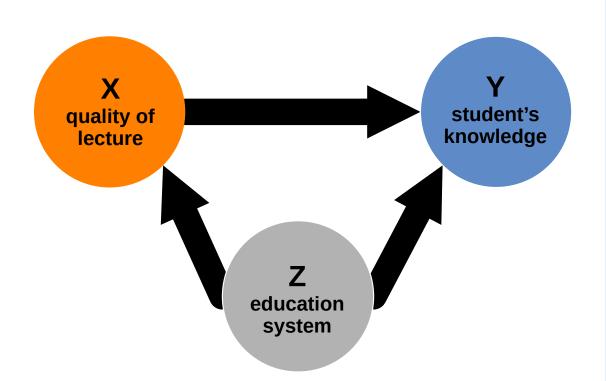
$$Y = \left\lceil \beta_{YX} \right\rceil X$$



$$p(y|do(X=x)) = \text{function of observational distribution}$$

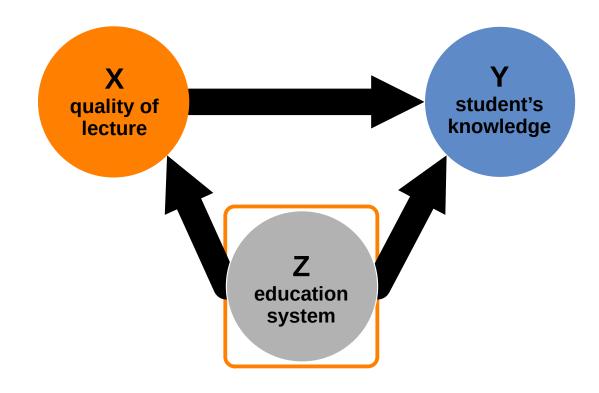


$$p(y|do(X=x)) = \text{function of observational distribution}$$

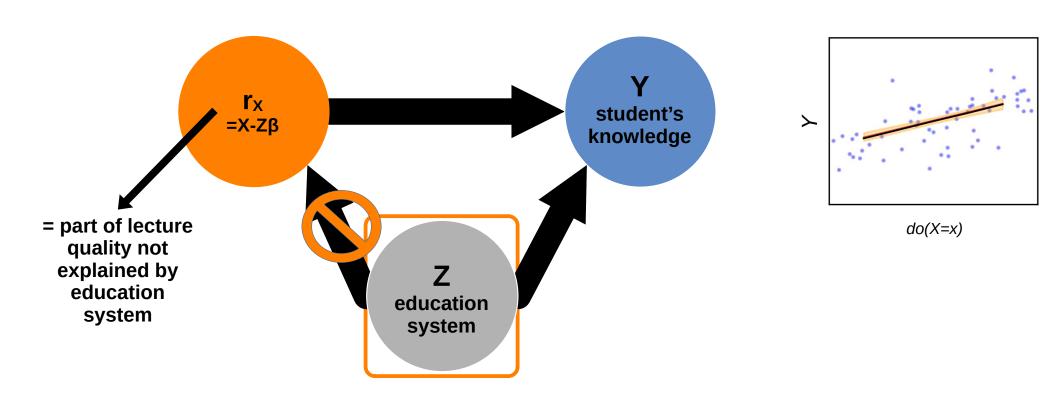


- (Generalized) backdoor adjustment
- front-door adjustment
- do-calculus identification
- propensity score matching
- instrumental variables
- difference-in-differences
- regression discontinuity
- ...

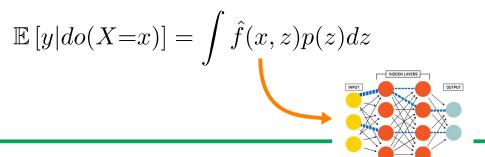
$$p(y|do(X=x)) = \int p(y|x,z)p(z)dz$$
 (adjustment identification)



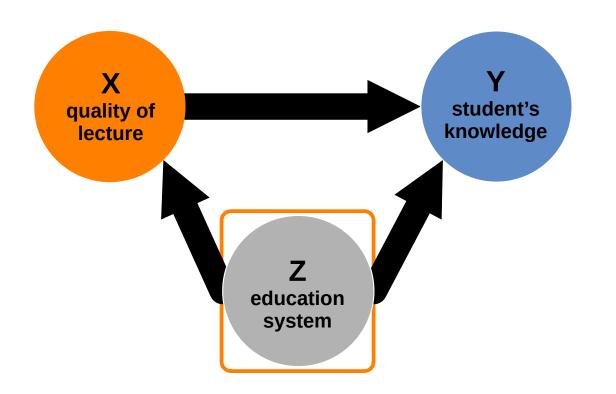
$$Y = \beta_{YX \cdot Z} X + \beta_{YZ \cdot X} Z$$
 (linear adjustment identification)

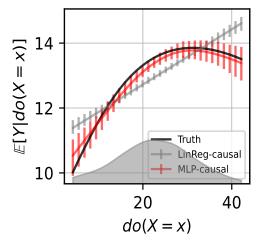


Given causal graph and data, identify causal effect of intervention from observational distribution



(general adjustment identification)

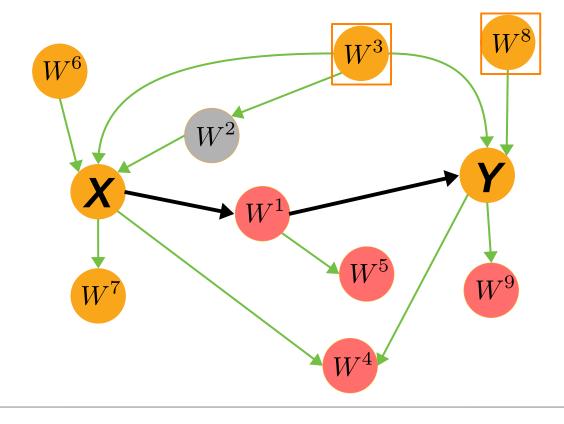




Given causal graph and data, identify causal effect of intervention from observational distribution



(general adjustment identification)



 (Generalized) backdoor adjustment

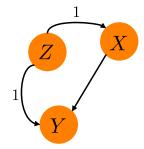
(Perkovic et al. (2018))

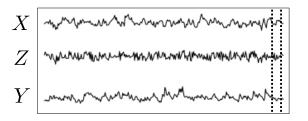
Z is a valid adjustment set if:

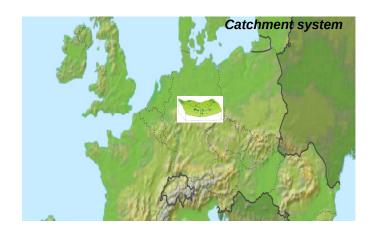
- 1) **Z** blocks non-causal paths
- 2) **Z** does not induce colliderbias

Causal effect estimation for time series

Given causal graph and time series data, *identify* causal effect of intervention from observational distribution

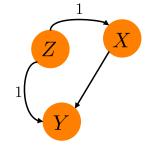


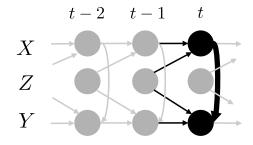


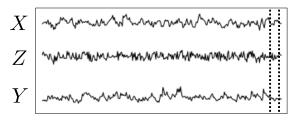


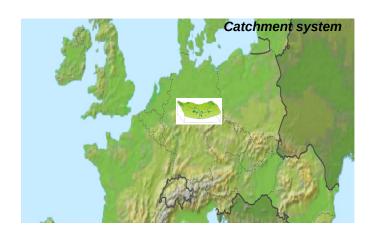
Causal effect estimation for time series

Given causal graph and time series data, *identify* causal effect of intervention from observational distribution

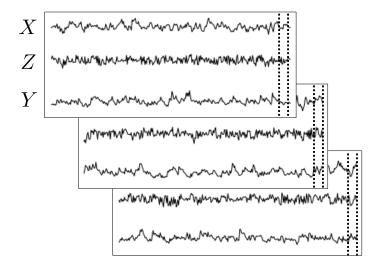


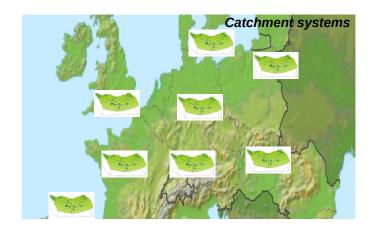




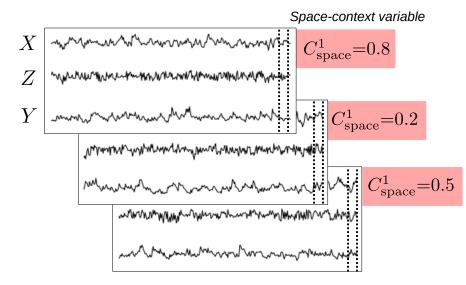


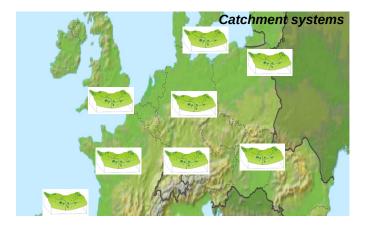
Given causal graph and multiple datasets of the same system variables, as well as **context data**, *identify* causal effect of intervention from observational distribution



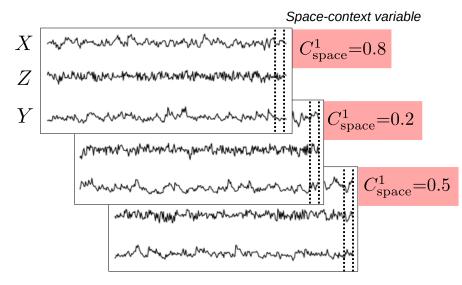


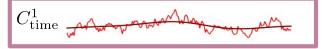
Given causal graph and multiple datasets of the same system variables, as well as **context data**, *identify* causal effect of intervention from observational distribution

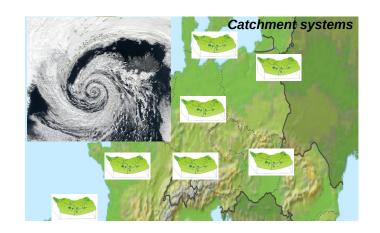




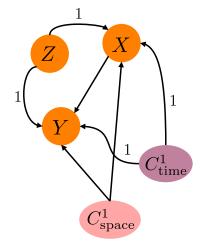
Given causal graph and multiple datasets of the same system variables, as well as **context data**, *identify* causal effect of intervention from observational distribution

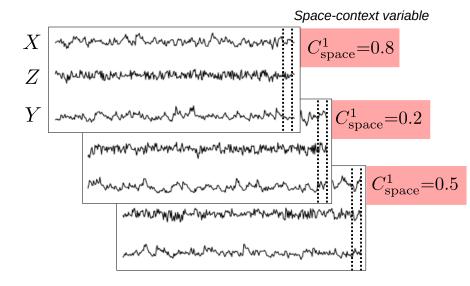


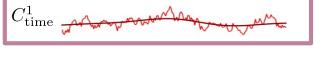


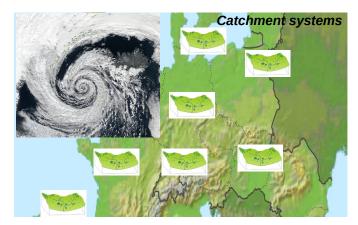


Given causal graph and multiple datasets of the same system variables, as well as **context data**, *identify* causal effect of intervention from observational distribution

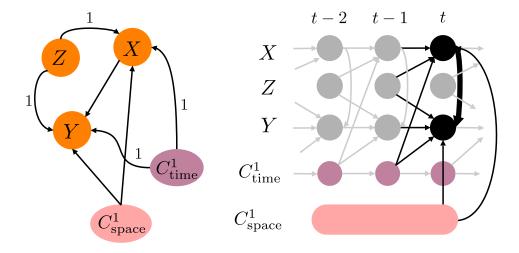


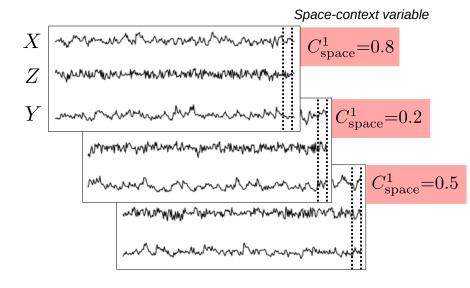


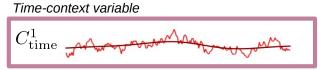




Given causal graph and multiple datasets of the same system variables, as well as **context data**, *identify* causal effect of intervention from observational distribution

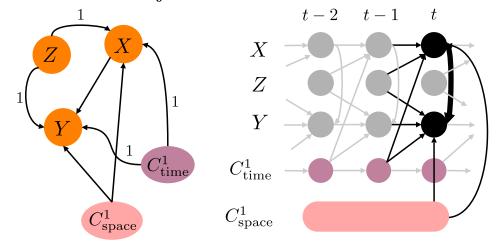


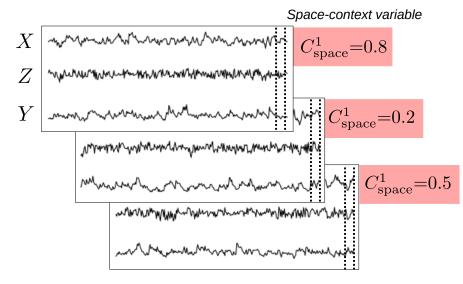


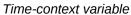


Given causal graph and multiple datasets of the same system variables, as well as **context data**, *identify* causal effect of intervention from observational distribution

$$\mathbb{E}\left[y|do(X=x)\right] = \int \hat{f}(x, z, c_{\text{space}}^1, c_{\text{time}}^1) p(z, c_{\text{space}}^1, c_{\text{time}}^1) d(\cdots)$$



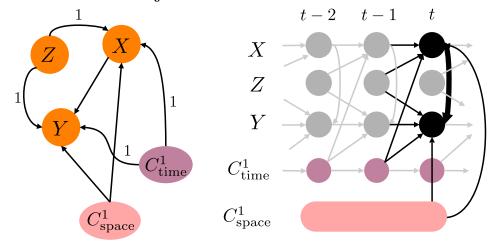


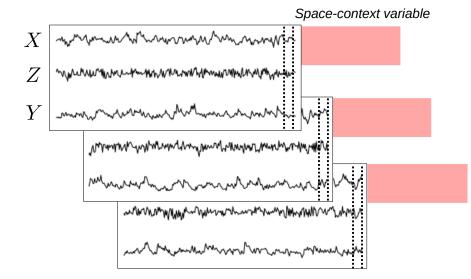


Causal effect estimation for time series from multiple datasets with hidden context-confounders

Given causal graph and multiple datasets of the same system variables, as well as **context data**, *identify* causal effect of intervention from observational distribution

$$\mathbb{E}\left[y|do(X=x)\right] = \int \hat{f}(x, z, c_{\text{space}}^1, c_{\text{time}}^1) p(z, c_{\text{space}}^1, c_{\text{time}}^1) d(\cdots)$$





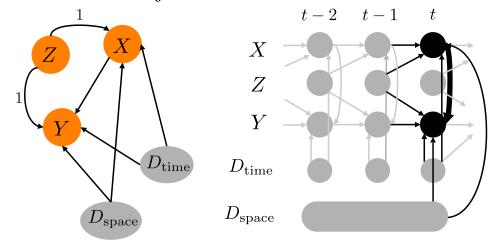
Time-context variable

 $C_{
m time}^1$

Causal effect estimation for time series from multiple datasets with hidden context-confounders

Given causal graph and multiple datasets of the same system variables, as well as **context data**, *identify* causal effect of intervention from observational distribution

$$\mathbb{E}[y|do(X=x)] = \int \hat{f}(x, z, d_{\text{space}}, d_{\text{time}}) p(z, d_{\text{space}}, d_{\text{time}}) d(\cdots)$$



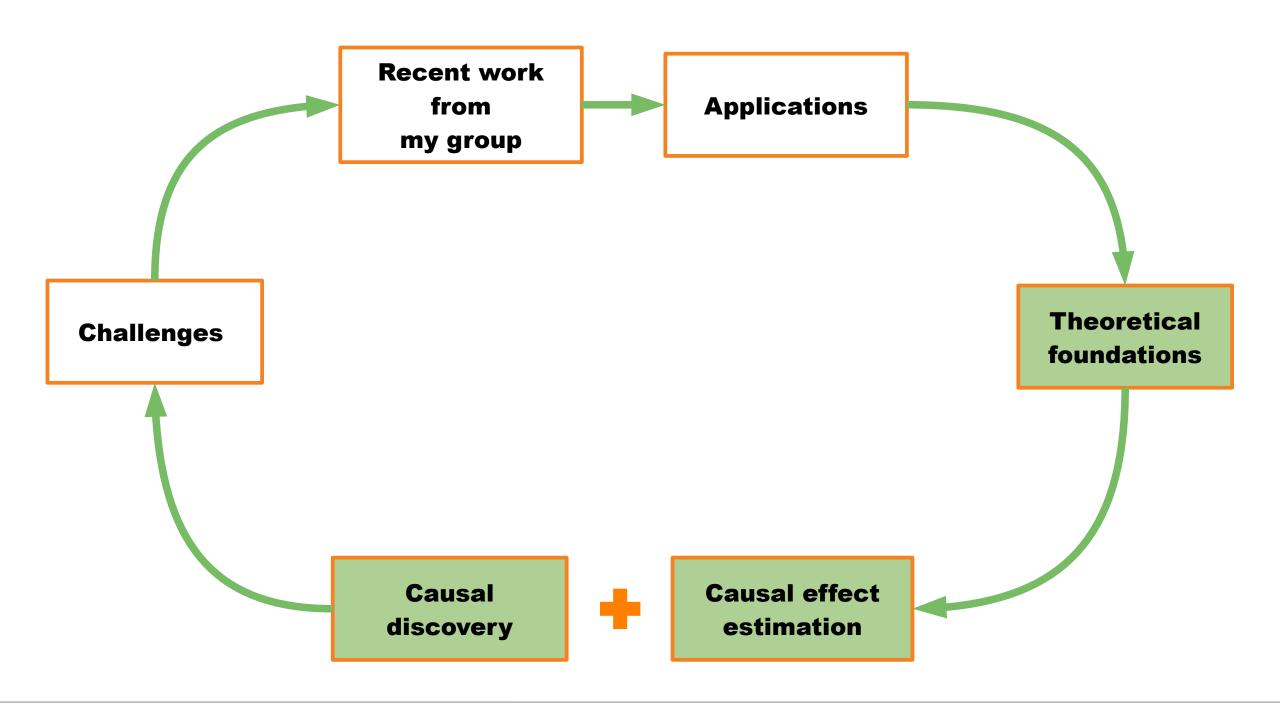
 $X = D_{\text{space}} = \mathbf{1}_1$ $Z = D_{\text{space}} = \mathbf{1}_2$ $Y = D_{\text{space}} = \mathbf{1}_2$ $D_{\text{space}} = \mathbf{1}_2$ $D_{\text{space}} = \mathbf{1}_3$

Time-context variable

 $D_{
m time}$

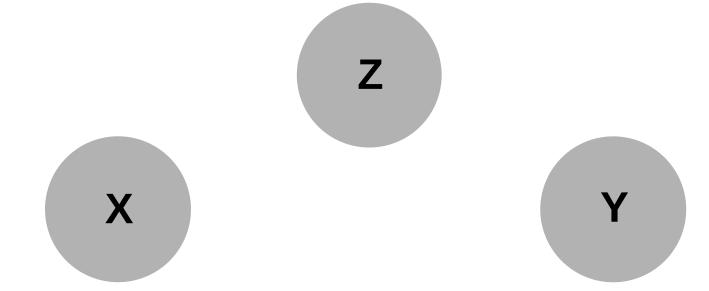


... aka fixed-effects panel regression (eg Angrist & Pischke, 2009)

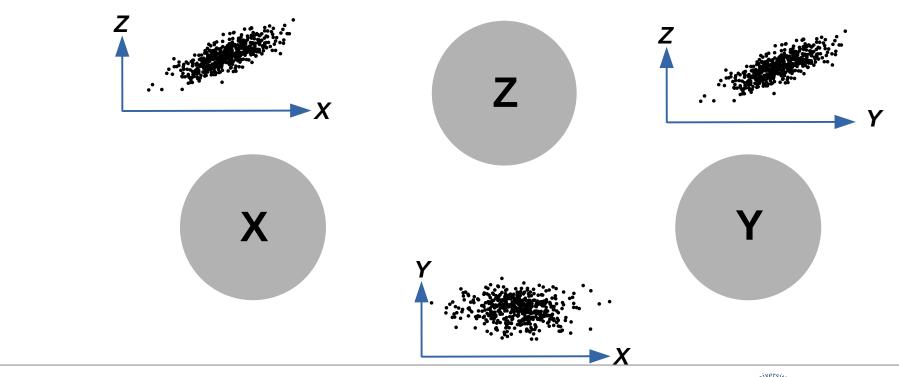


Causal discovery

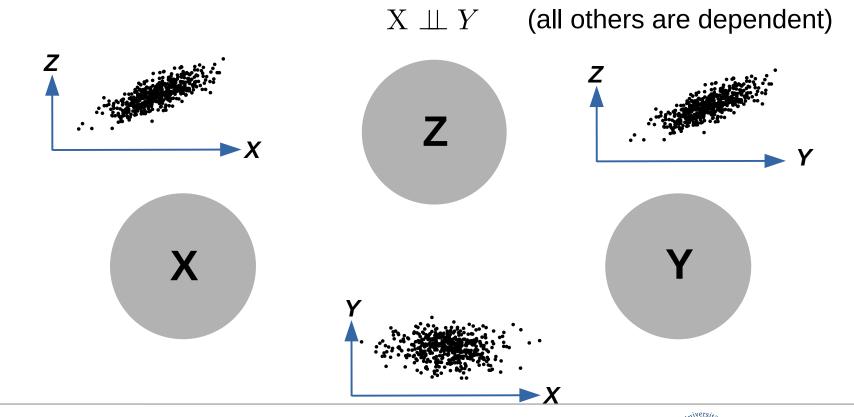
Given data and general assumptions, estimate causal graph from observational distribution



Given data and general assumptions, estimate causal graph from observational distribution

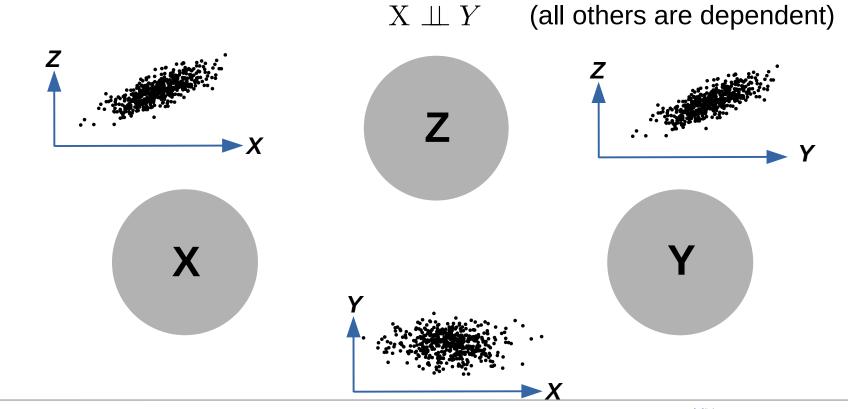


Given data and general assumptions, estimate causal graph from observational distribution



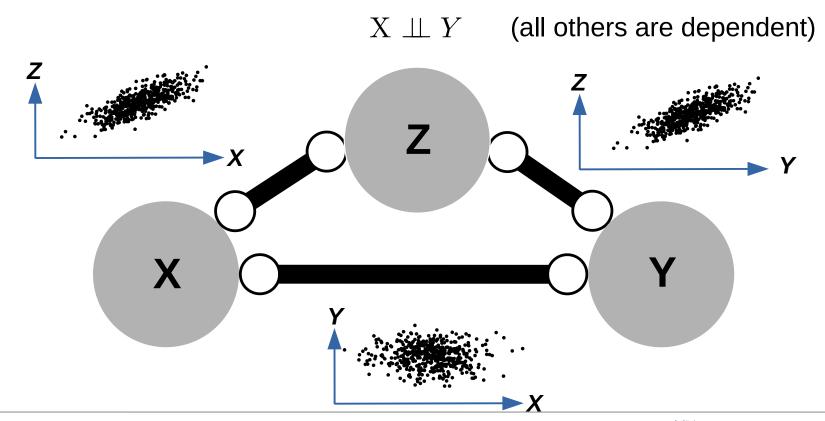
Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution



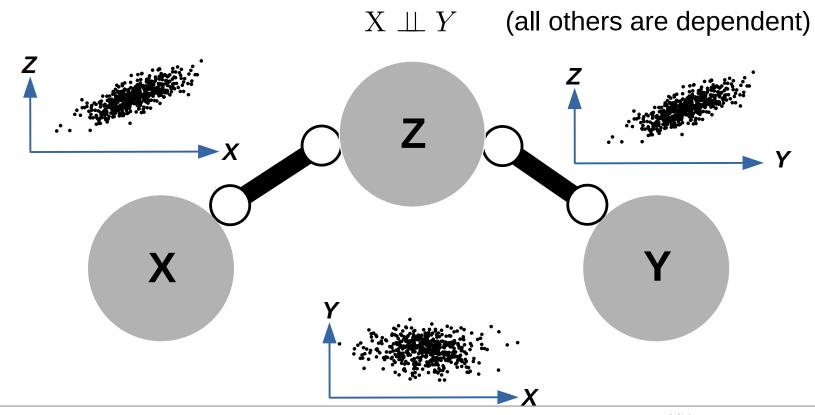
Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution



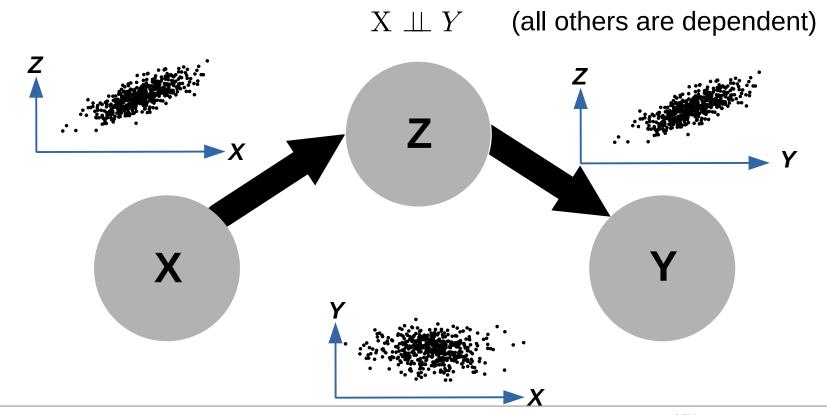
Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution



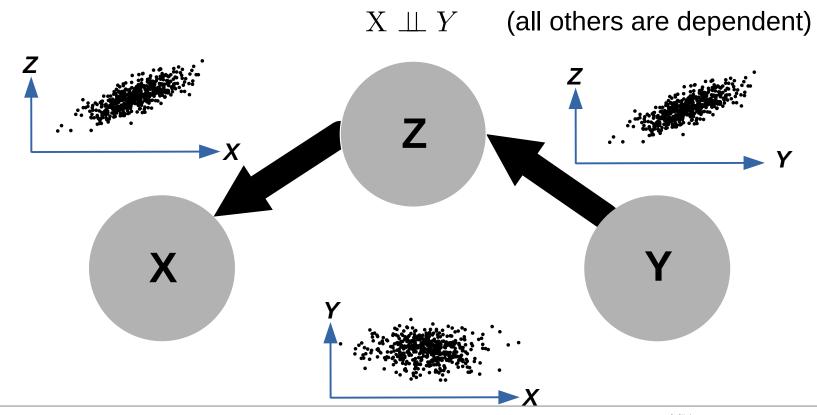
Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution



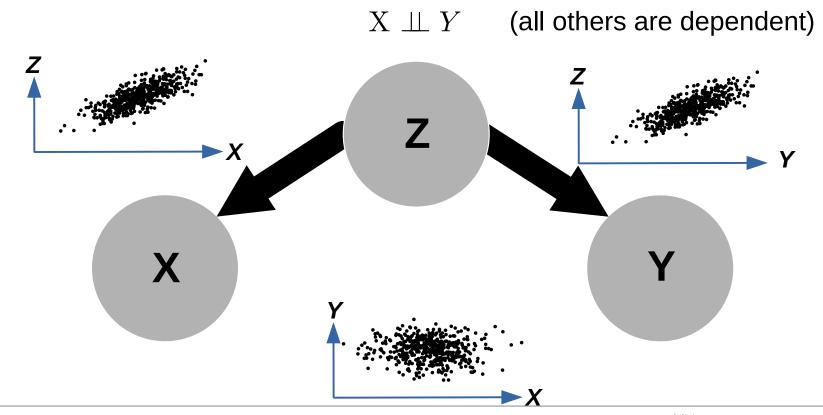
Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution



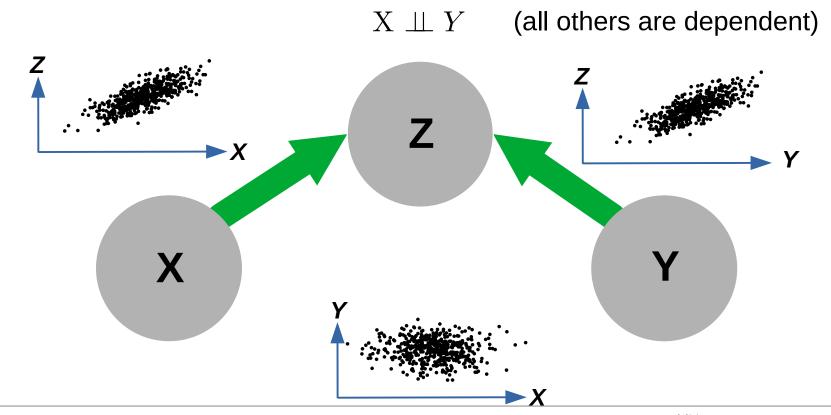
Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution



Given data and general assumptions, estimate causal graph from observational distribution

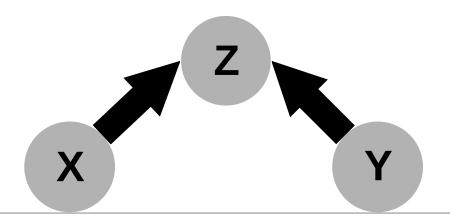
(Conditional) independence in the data distribution



Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution

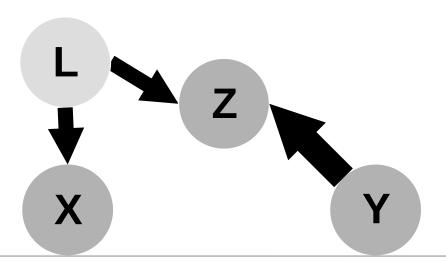
No open path, whether (in)direct or confounded, in the causal graph



Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution

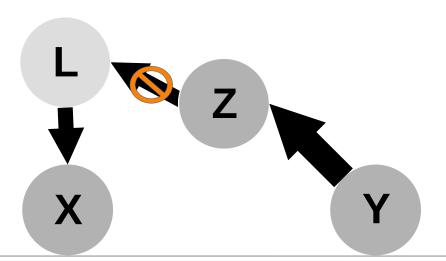
No open path, whether (in)direct or confounded, in the causal graph



Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution

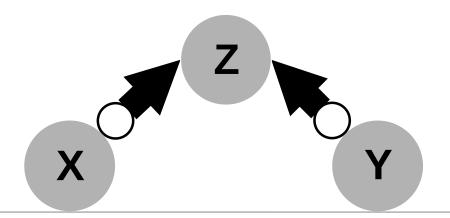
No open path, whether (in)direct or confounded, in the causal graph



Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution

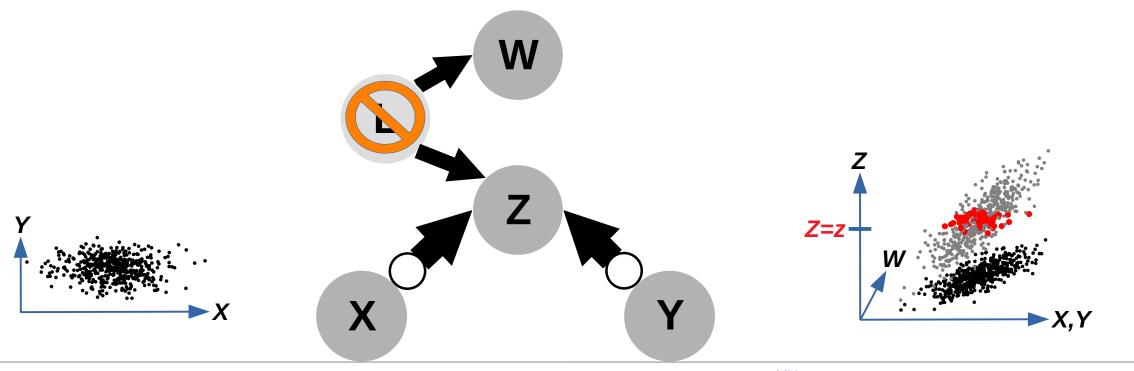
No open path, whether (in)direct or confounded, in the causal graph



Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution

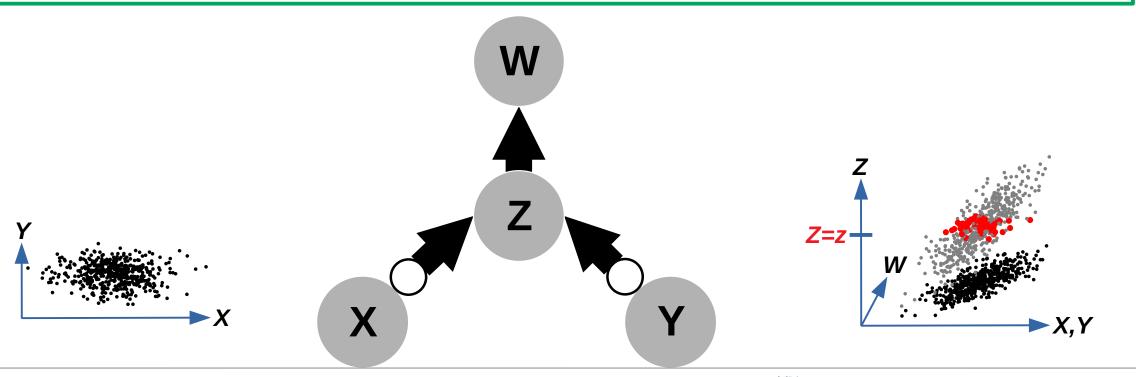
No open path, whether (in)direct or confounded, in the causal graph



Given data and general assumptions, estimate causal graph from observational distribution

(Conditional) independence in the data distribution

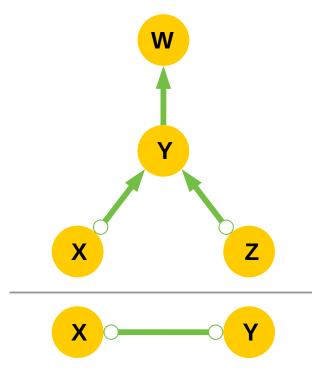
No open path, whether (in)direct or confounded, in the causal graph



Given data and *general assumptions*, estimate causal graph from observational distribution

Example assumptions:

- Markov & Faithfulness assumption:
 Conditional (in-)dependence in distribution ⇔ (dis-)connection in graph
 Causal sufficiency: No unobserved confounders
 - → Constraint-based causal discovery (Spirtes et al. 2000)

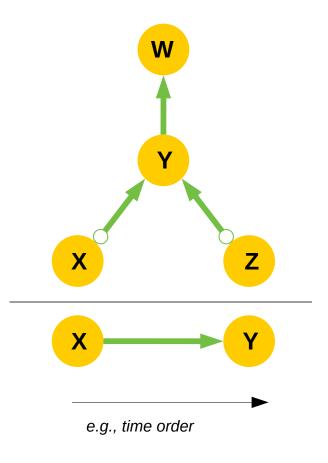


Given data and *general assumptions*, estimate causal graph from observational distribution

Example assumptions:

- Markov & Faithfulness assumption:
 Conditional (in-)dependence in distribution ⇔ (dis-)connection in graph
 Causal sufficiency: No unobserved confounders
 - → Constraint-based causal discovery (Spirtes et al. 2000)

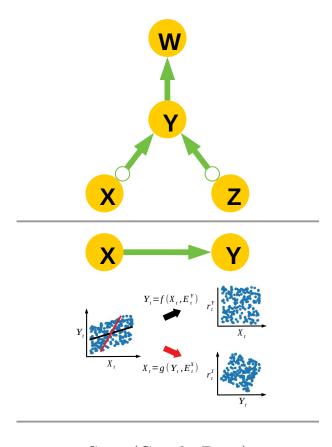
Add domain knowledge...



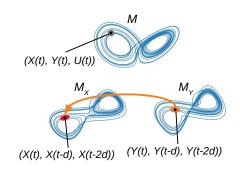
Given data and *general assumptions***,** estimate causal graph from observational distribution

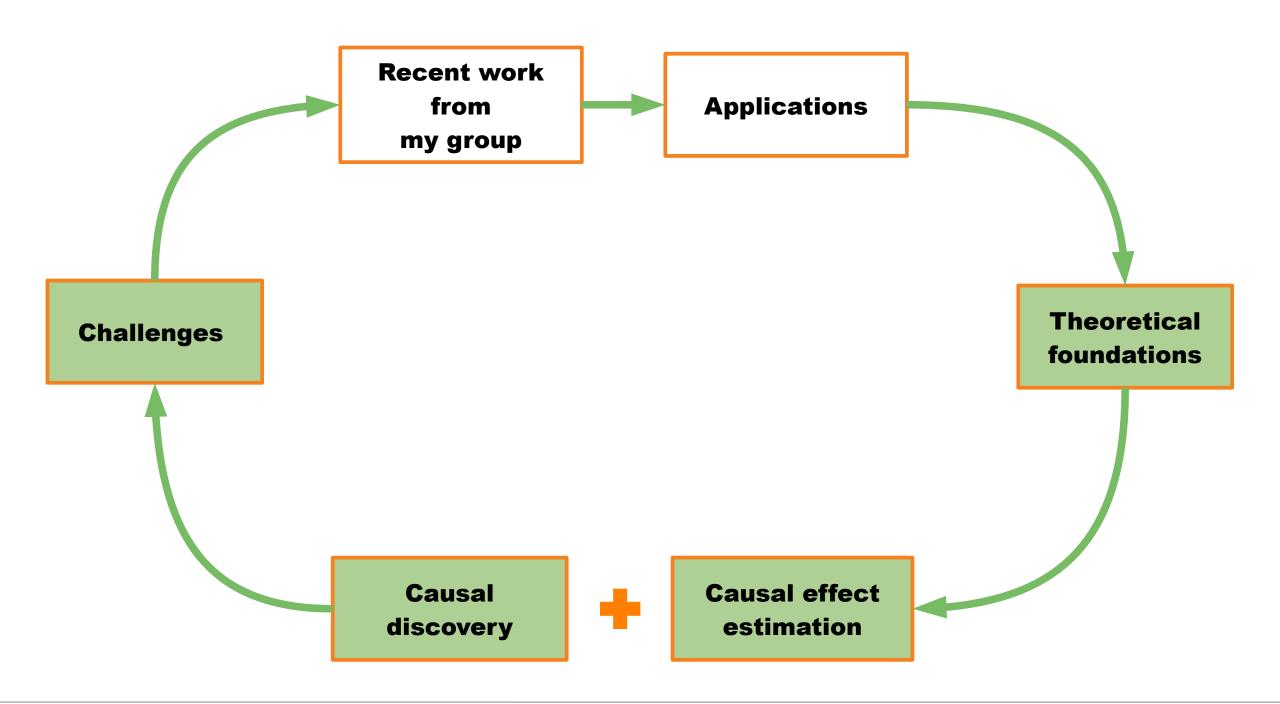
Example assumptions:

- Markov & Faithfulness assumption:
 Conditional (in-)dependence in distribution ⇔ (dis-)connection in graph
 Causal sufficiency: No unobserved confounders
 - → Constraint-based causal discovery (Spirtes et al. 2000)
- Assumptions on functional dependencies and noise distributions
 - → Restricted structural causal modeling (Peters et al. 2018)
- Assumptions through likelihood functions and interventional data
 - → Score-based causal network learning
- Assumption of an underlying nonlinear dynamical deterministic system
 - → State-space methods



Score(Graph; Data)





Challenges

Runge et al. (2019)

PERSPECTIVE

https://doi.org/10.1038/s41467-019-10105-3

OPEN

Inferring causation from time series in Earth system sciences

sciences **Challenges** 15 t-5 t-4 t-3 t-2 t-1**Process:** 16 **1** Autocorrelation **2** Time delays 10 3 Nonlinear dependencies Chaotic state-dependence 5 Different time scales 8 6 Noise distributions Data: 11 12 7 months 17 **7** Variable extraction **8** Unobserved variables **9** Time subsampling 10 Time aggregation11 Measurement errors **12** Selection bias 13 Discrete data **14** Dating uncertainties 7 Computational / statistical: **15** Sample size **16** High dimensionality 17 Uncertainty estimation 6

Challenges

Runge et al. (2019)

PERSPECTIVE

https://doi.org/10.1038/s41467-019-10105-3

Inferring causation from time series in Earth system sciences

Challenges

Process:

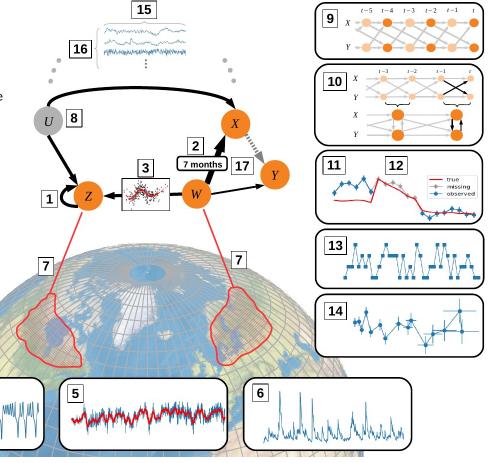
- Autocorrelation
- Time delays
- Nonlinear dependencies
- Chaotic state-dependence
- Different time scales
- Noise distributions

Data:

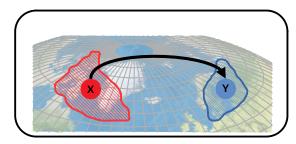
- Variable extraction
- Unobserved variables
- **9** Time subsampling
- **10** Time aggregation
- **11** Measurement errors
- 12 Selection bias
- 13 Discrete data
- **14** Dating uncertainties

Computational / statistical:

- **15** Sample size
- **16** High dimensionality
- 17 Uncertainty estimation



Variables not well-defined



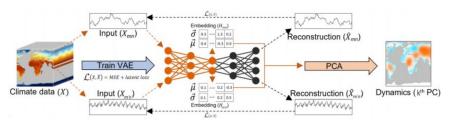
Toward Causal Representation Learning

This article reviews fundamental concepts of causal inference and relates them to crucial open problems of machine learning, including transfer learning and generalization, thereby assaying how causality can contribute to modern machine learning research.

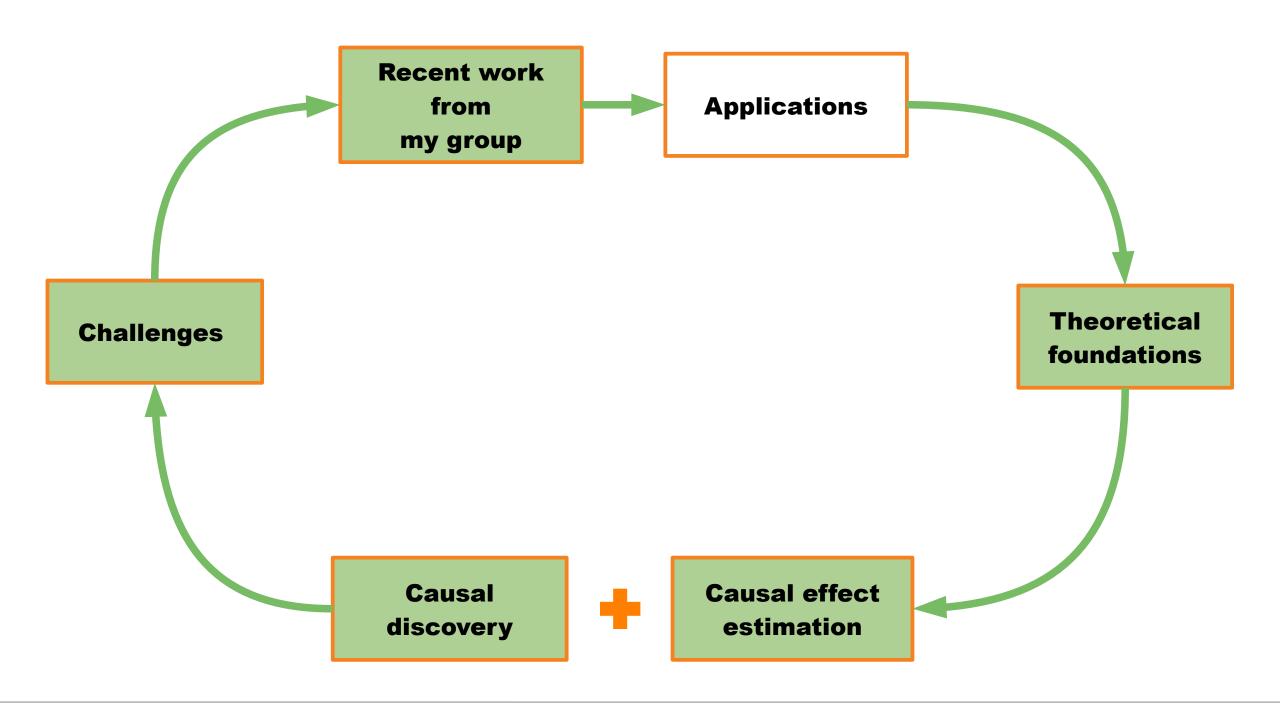
By Bernhard Schölkopf[®], Francesco Locatello[®], Stefan Bauer[®], Nan Rosemary Ke, NAL KALCHBRENNER, ANIRUDH GOYAL, AND YOSHUA BENGIO

ABSTRACT | The two fields of machine learning and graphical I. INTRODUCTION is, now, cross-pollination and increasing interest in both fields applies in the opposite direction; we note that most work in causal representation learning, that is, the discovery of highlevel causal variables from low-level observations. Finally, we delineate some implications of causality for machine learncommunities.

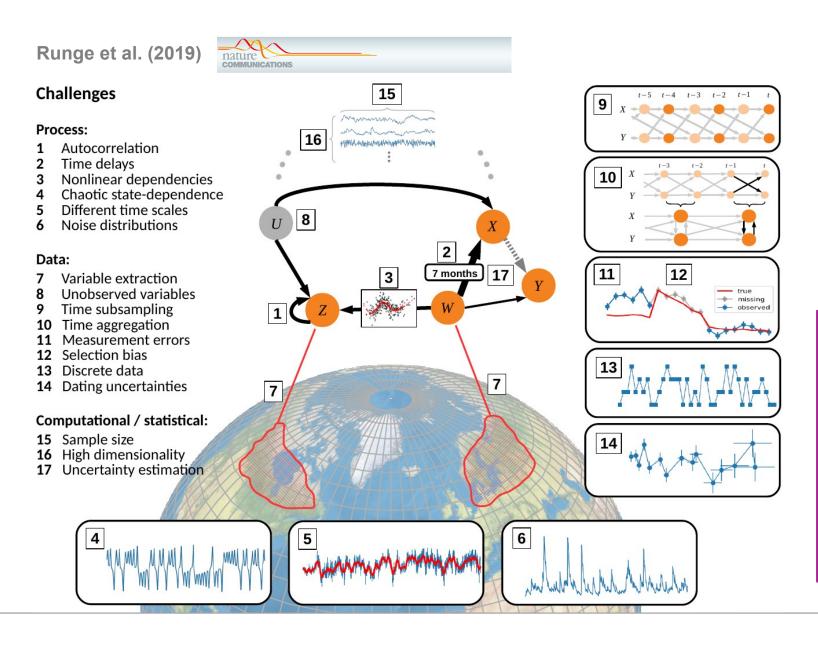
causality arose and are developed separately. However, there If we compare what machine learning can do to what animals accomplish, we observe that the former is rather to benefit from the advances of the other. In this article, limited at some crucial feats where natural intelligence we review fundamental concepts of causal inference and relate excels. These include transfer to new problems and any them to crucial open problems of machine learning, including form of generalization that is not from one data point transfer and generalization, thereby assaying how causality to the next (sampled from the same distribution), but can contribute to modern machine learning research. This also rather from one problem to the next—both have been termed generalization, but the latter is a much harder form thereof, sometimes referred to as horizontal, strong, or outof-distribution generalization. This shortcoming is not too surprising, given that machine learning often disregards information that animals use heavily: interventions in the world, domain shifts, and temporal structure-by and ing and propose key research areas at the intersection of both large, we consider these factors a nuisance and try to engineer them away. In accordance with this, the majority of current successes of machine learning hoil down to large

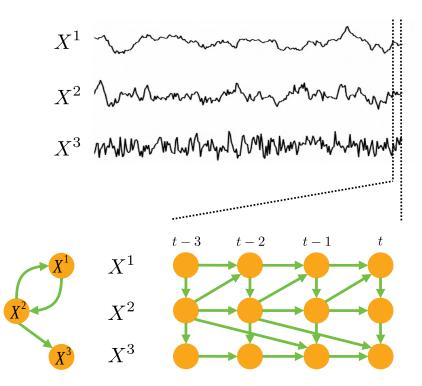


Tibau et al. 2018



My group's work: Causal inference for time series data





Time series case:

• PCMCI causal discovery framework

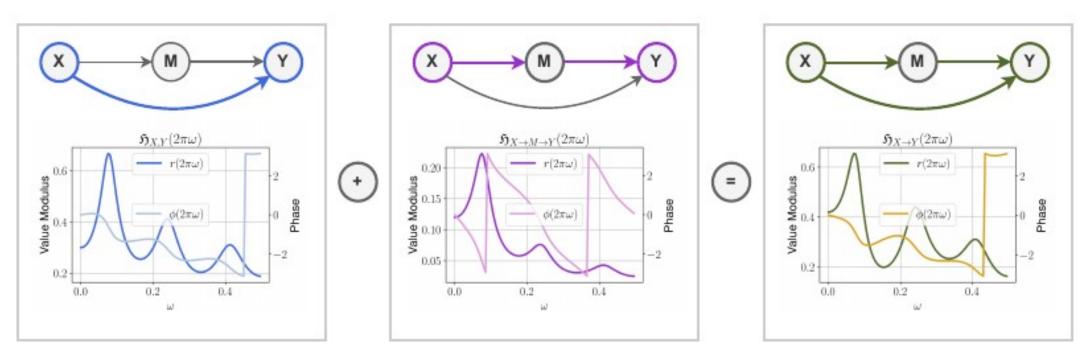
	Instantaneous causality	Hidden confounders	Multiple datasets / further aspects
PCMCIRunge et al 2019	×	×	/ / -
PCMCI+Runge 2020	~	×	/ / -
L-PCMCIGerhardus & Runge 2020	~	•	v / -
J-PCMCI+Günther et al. 2023	~	(context-related)	✓ / context-links
R-PCMCI ^{Saggioro} et al 2020	×	X	<pre>/ regimes- learning</pre>

Causal inference in frequency space

Nicolas Reiter

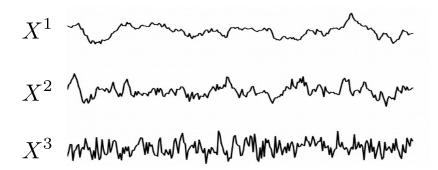
Goal: Develop causal inference foundations at the level of process graphs in frequency space (assuming underlying linear models).

Causal transfer functions



Paper submitted to Bernoulli

Given data and *general assumptions*, estimate causal graph from observational distribution

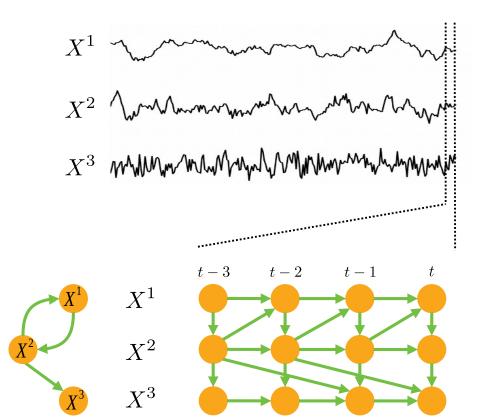


Given data and *general assumptions*, estimate causal graph from observational distribution

Time series case:

PCMCI causal discovery framework

	Instantaneous causality	Hidden confounders
PCMCIRunge et al 2019	×	×
PCMCI+Runge 2020	✓	×



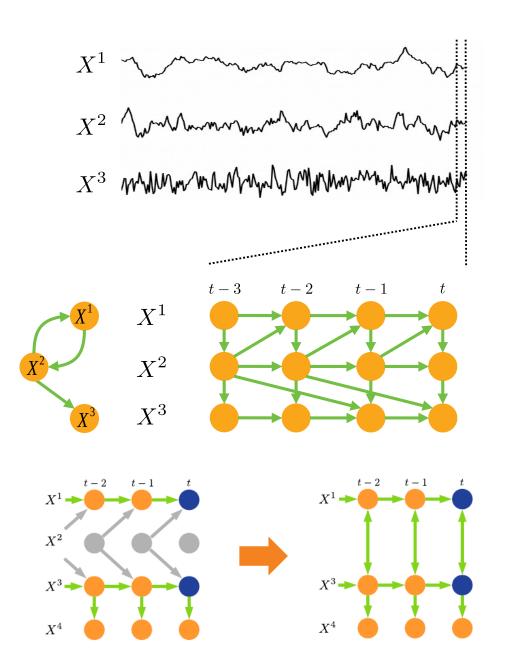
Given data and *general assumptions*, estimate causal graph from observational distribution

Time series case:

PCMCI causal discovery framework

	Instantaneous causality	Hidden confounders
PCMCIRunge et al 2019	×	×
PCMCI+Runge 2020	V	×
LPCMC Gerhardus & Runge 2020	~	✓

Basic idea: include learned parents in cond. indep. tests for increased effect size and well-calibrated tests (Theorem 1 in LPCMCI paper)

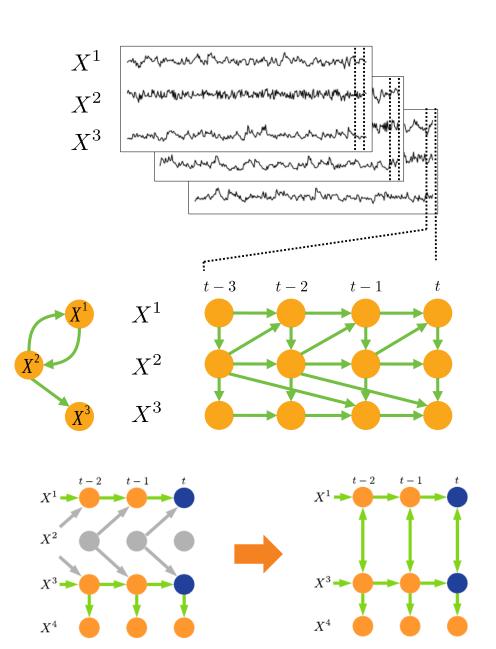


Given data and *general assumptions*, estimate causal graph from observational distribution

Time series case:

PCMCI causal discovery framework

	Instantaneous causality	Hidden confounders	Multiple datasets / further aspects
PCMCI ^{Runge et al 2019}	×	×	v / -
PCMCI+Runge 2020	~	×	/ / -
L-PCMCIGerhardus & Runge 2020	~	~	√ / -

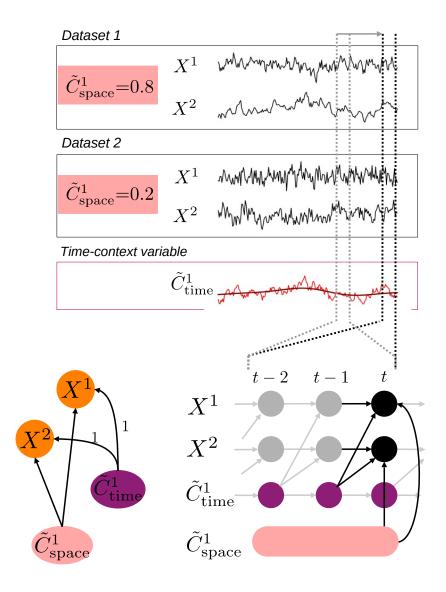


Given data and *general assumptions*, estimate causal graph from observational distribution

Time series case:

• PCMCI causal discovery framework

	Instantaneous causality	Hidden confounders	Multiple datasets / further aspects
PCMCI ^{Runge} et al 2019	X	X	/ / -
PCMCI+Runge 2020	✓	X	/ / -
L-PCMCIGerhardus & Runge 2020	~	✓	√ / -
J-PCMCI+ ^{Günther} et al. 2023 cf. Huang et al (2020), Mooij et al (2020)	~	(context-related)	✓ / context-links

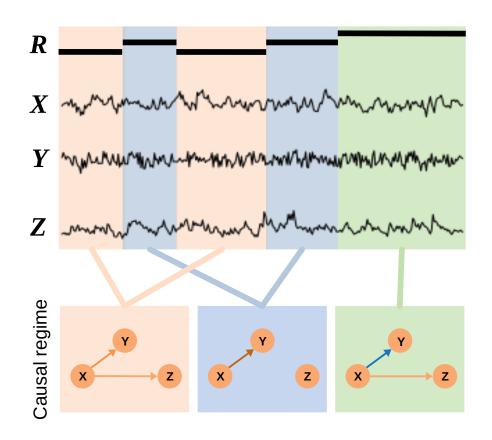


Given data and *general assumptions*, estimate causal graph from observational distribution

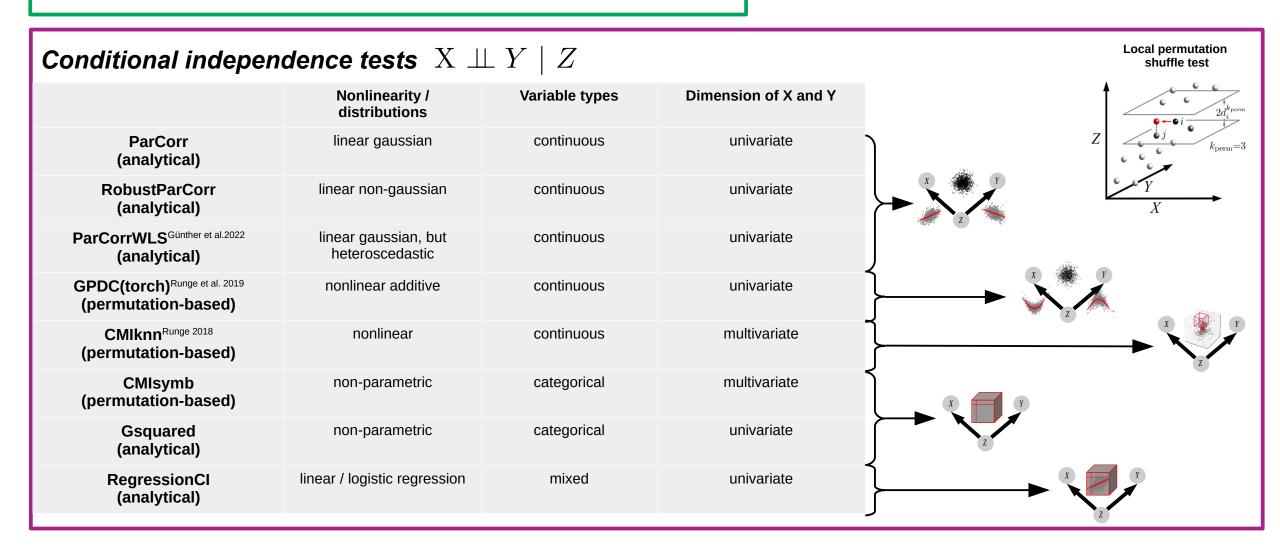
Time series case:

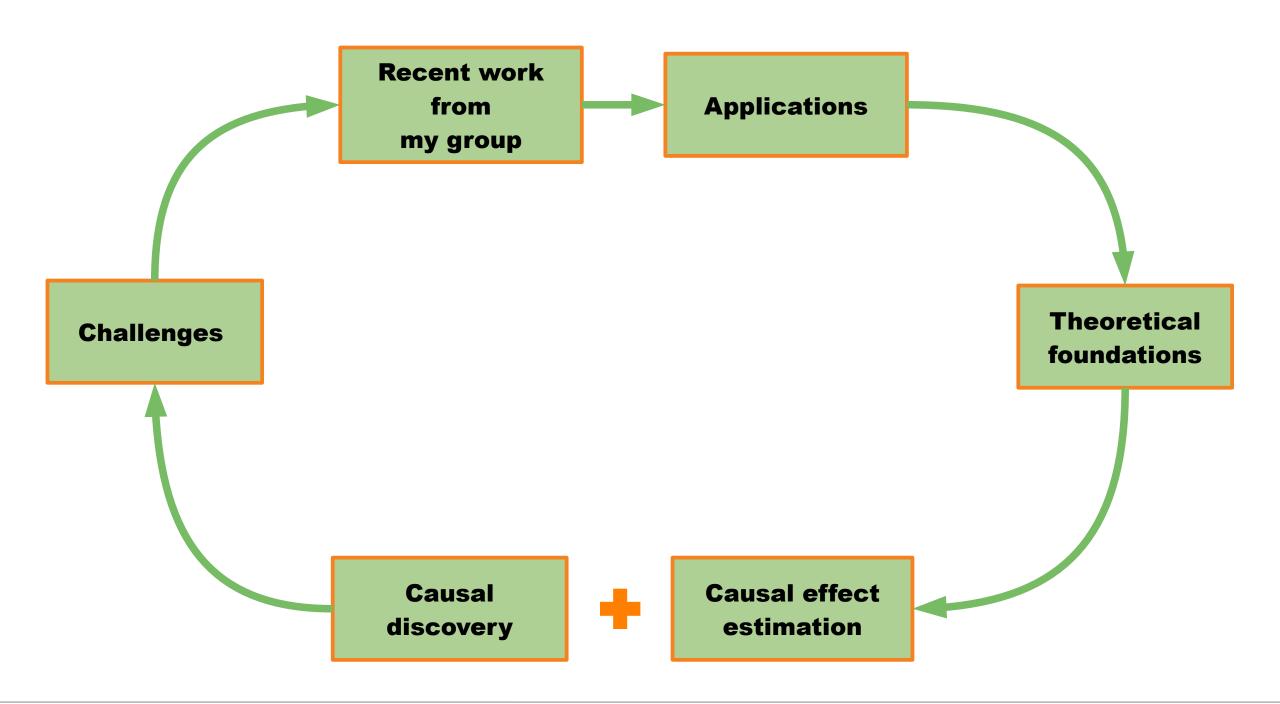
PCMCI causal discovery framework

	Instantaneous causality	Hidden confounders	Multiple datasets / further aspects
PCMCI ^{Runge} et al 2019	×	×	√ / -
PCMCI+Runge 2020	✓	×	/ / -
L-PCMCIGerhardus & Runge 2020	✓	✓	/ / -
J-PCMCI+Günther et al. 2023	✓	(context-related)	✓ / context-links
R-PCMCI ^{Saggioro} et al 2020	×	×	✓ / regimes



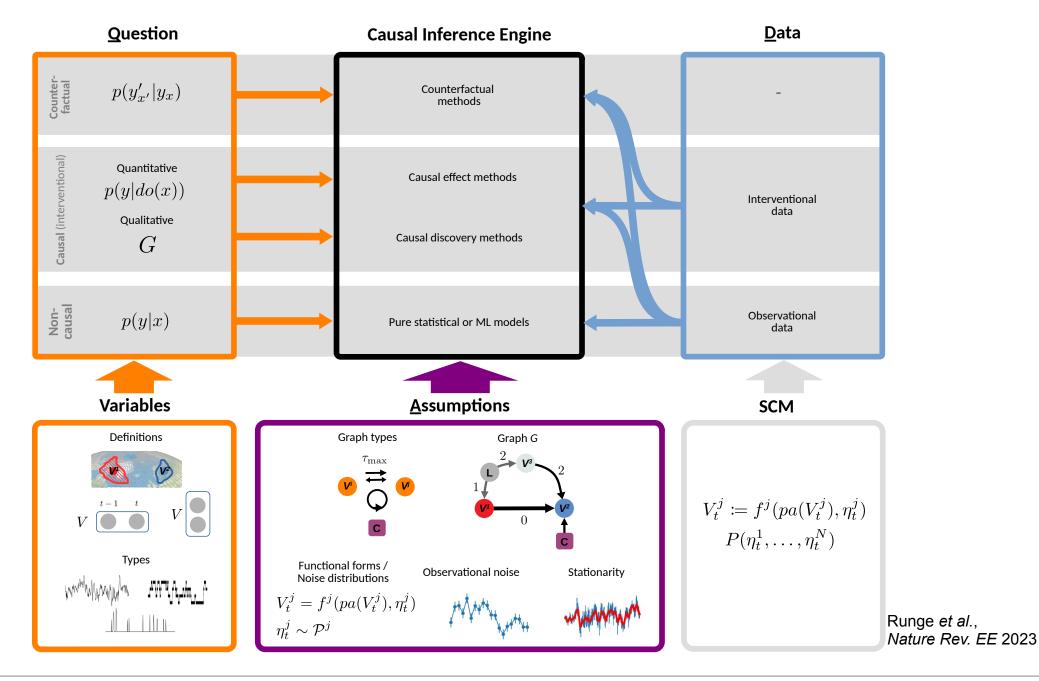
Given data and *general assumptions***,** estimate causal graph from observational distribution



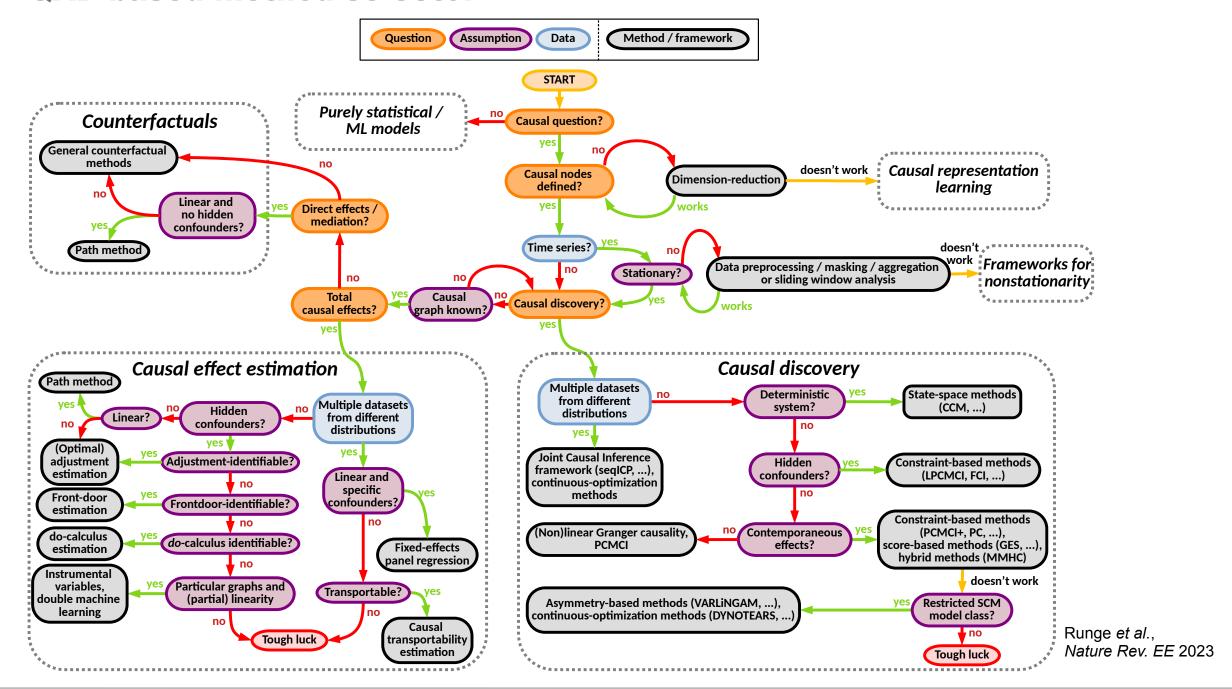


Applications

State your problem: Questions – Assumptions – Data



QAD-based method selector



Causal mediation analysis

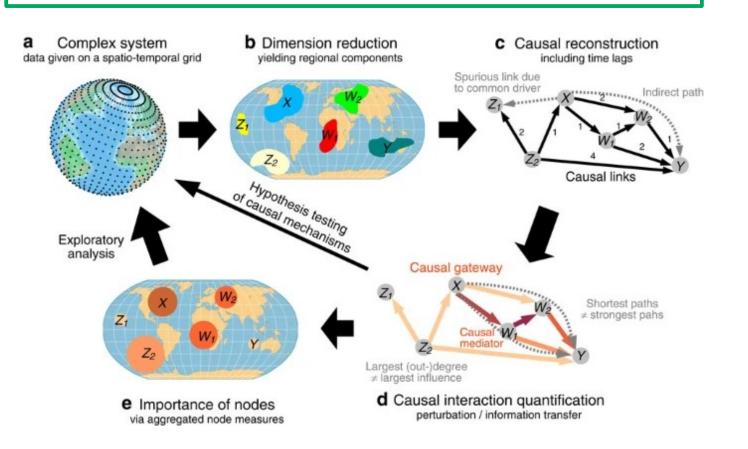
 Pathway mechanisms between El Nino and Indian monsoon through sea-level pressure system

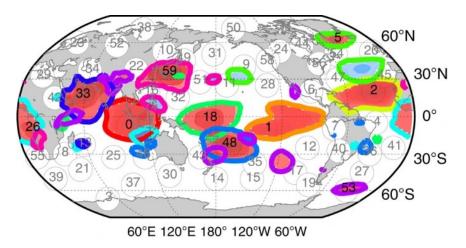


Runge et al., NatComm 2015

Causal mediation analysis

 Pathway mechanisms between El Nino and Indian monsoon through sea-level pressure system

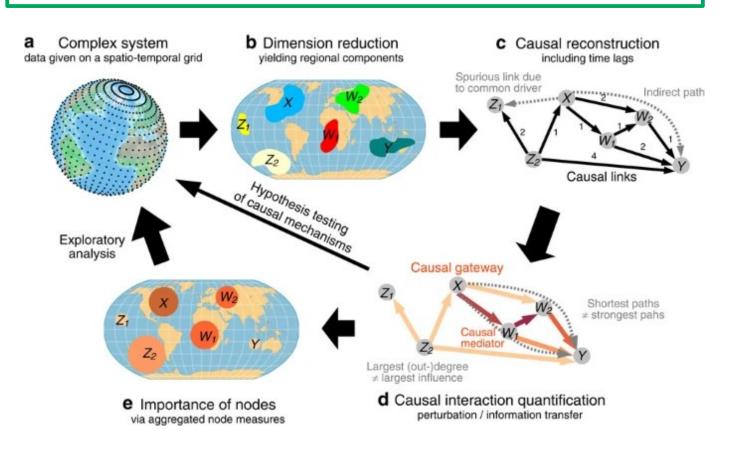


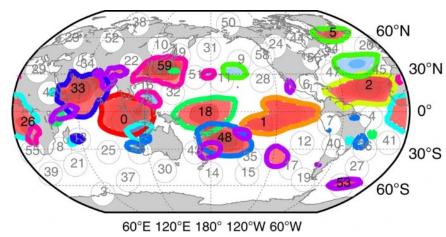


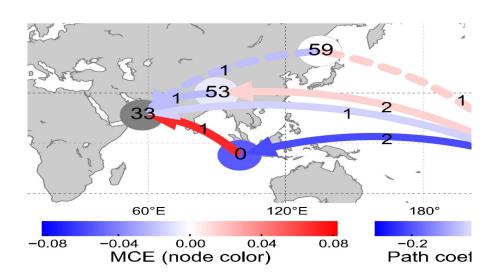
Runge et al., NatComm 2015

Causal mediation analysis

 Pathway mechanisms between El Nino and Indian monsoon through sea-level pressure system







Runge et al., NatComm 2015

Context

- Car commuting is a major contributor to urban congestion and GHG emissions
- Built environment (BE) influences car travel distance per capita (VKT)
- Understanding of how BE affects VKT is required for sustainable urban planning

Prior work

- only correlation based neglecting causal effect mechanisms between BE and VKT
- mostly city specific unclear if relationships hold across various cities around the globe
- not spatially explicit neglecting effect differences within a city

Context

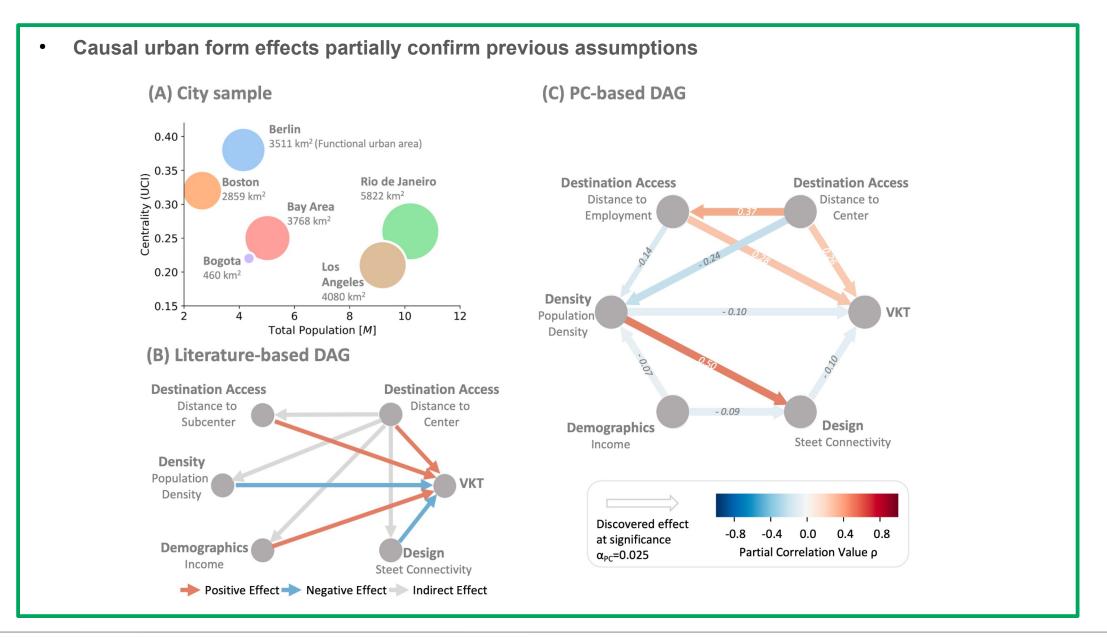
- Car commuting is a major contributor to urban congestion and GHG emissions
- Built environment (BE) influences car travel distance per capita (VKT)
- Understanding of how BE affects VKT is required for sustainable urban planning

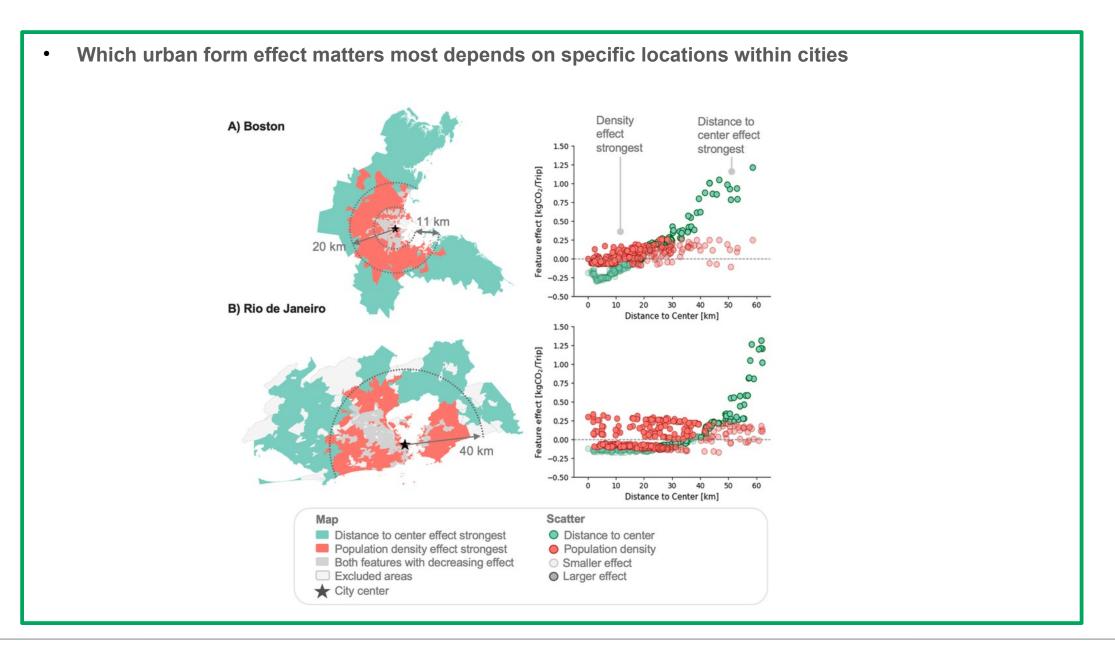
Prior work

- only correlation based neglecting causal effect mechanisms between BE and VKT
- mostly city specific unclear if relationships hold across various cities around the globe
- not spatially explicit neglecting effect differences within a city

Approach

- 1. Gather BE and VKT *data for six cities* across 3 continents
- 2. Develop BE **features**, defining:
 - 1. Distance to center
 - 2. Distance to jobs
 - 3. Population density
 - 4. Street connectivity
 - 5. Mean household income
- 3. Find *causal graph*, describing relationships between BE Features and VKT
- 4. Use graph to *inform ML model* and feature importance measure (causal shapley values)
- Analyse causal effects of BE features on VKT across all cities and spatially





• Causal inference: Framework to answer causal questions from empirical data

nature reviews earth & environment

https://doi.org/10.1038/s43017-023-00431-y

Technical review

Check for update

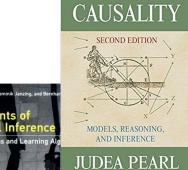
Causal inference for time series

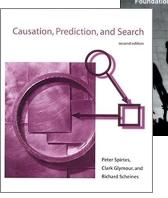
Jakob Runge **©** ^{1,2} ⊠, Andreas Gerhardus¹, Gherardo Varando **©** ³, Veronika Eyring^{4,5} & Gustau Camps-Valls³

https://rdcu.be/dfs5X

Jakob Runge

Causal Inference for Time Series Data





- Causal inference: Framework to answer causal questions from empirical data
- Two settings:
 - 1) Assume graphs and learn causal effects
 - 2) Learning causal graphs

nature reviews earth & environment

https://doi.org/10.1038/s43017-023-00431-y

Technical review

Check for update

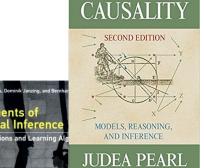
Causal inference for time series

Jakob Runge **©** ^{1,2} ⊠, Andreas Gerhardus¹, Gherardo Varando **©** ³, Veronika Eyring^{4,5} & Gustau Camps-Valls³

https://rdcu.be/dfs5X

Jakob Runge

Causal Inference for Time Series Data



- Causal inference: Framework to answer causal questions from empirical data
- Two settings:
 - 1) Assume graphs and learn causal effects
 - 2) Learning causal graphs
- State Question Assumptions Data to choose suitable method and make assumptions transparent

nature reviews earth & environment

https://doi.org/10.1038/s43017-023-00431-y

CAUSALIT

echnical review

Check for update

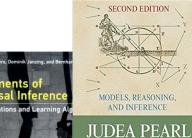
Causal inference for time series

Jakob Runge **©** ^{1,2} ⊠, Andreas Gerhardus¹, Gherardo Varando **©** ³, Veronika Eyring^{4,5} & Gustau Camps-Valls³

https://rdcu.be/dfs5X

Jakob Runge

Causal Inference for Time Series Data



- Causal inference: Framework to answer causal questions from empirical data
- Two settings:
 - 1) Assume graphs and learn causal effects
 - 2) Learning causal graphs
- State Question Assumptions Data to choose suitable method and make assumptions transparent
- Causal inference + Al & ML = Causal Al

nature reviews earth & environment

https://doi.org/10.1038/s43017-023-00431-y

CAUSALIT

echnical review

Check for update

Causal inference for time series

Jakob Runge **©** ^{1,2} ⊠, Andreas Gerhardus¹, Gherardo Varando **©** ³, Veronika Eyring^{4,5} & Gustau Camps-Valls³

https://rdcu.be/dfs5X

Jakob Runge

Causal Inference for Time Series Data

- Causal inference: Framework to answer causal questions from empirical data
- Two settings:
 - 1) Assume graphs and learn causal effects
 - 2) Learning causal graphs
- State Question Assumptions Data to choose suitable method and make assumptions transparent
- Causal inference + Al & ML = Causal Al

Software and benchmark platform:

- github.com/jakobrunge/tigramite + causeme.net
- pcalg, TETRAD, causalfusion

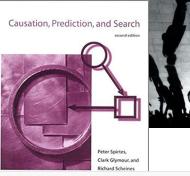
al review

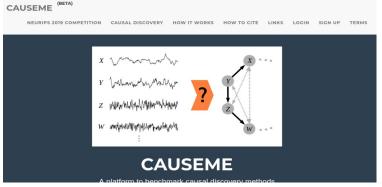
Causal inference for time series

Jakob Runge **©** ^{1,2} ⊠, Andreas Gerhardus¹, Gherardo Varando **©** ³, Veronika Eyring^{4,5} & Gustau Camps-Valls³

https://rdcu.be/dfs5X

Jakob Runge
Causal Inference
for Time Series Data





Thank you! Questions?

