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Machine learning meets physics: A two-way street
Herbert Levinea ID and Yuhai Tub,1 ID

This article introduces a special issue on the interaction
between the rapidly expanding field of machine learning
and ongoing research in physics. The first half of the papers
in this issue deals with the question, what can machine
learning do for physics? The second part asks the reverse,
what can physics do for machine learning? As we will see,
both of these directions are being vigorously pursued.

Physics is, of course, a very broad discipline, and almost
every part of it has been exploring the possible use of
machine learning (ML). We obviously cannot cover all of
these developments systematically. Instead, we will present
various examples, and try to propose some tentative gen-
eral insights. Given the tremendous buzz of activity, we are
sure that our perspective will need to be constantly revised
in the light of accumulating experience. Nevertheless, we
proceed.

1. ML and the Protein Folding Problem

The paradigmatic example of machine learning solving an
important physics problem is the performance of AlphaFold
(1) and its successors in determining protein structure from
sequence. This is a problem that has been studied in the
biophysics discipline for many years (2–4), with the com-
munity actively participating in a biannual contest known
as CASP (the Critical Assessment of Structural Prediction)
in which methods are evaluated versus known but as yet
unrevealed data. A milestone was reached in 2018 when
AlphaFold placed first in the overall rankings, and this was
repeated in 2020. By 2022 in CASP15, most of the entrants
had adopted some form of AlphaFold-based ideas for use
in their methods. The method has become so pervasive
that the word has begun to be used as a verb, as in “Can
we AlphaFold our way out of the next pandemic?” (5). The
paper in this special issue by Park et al. (6) provides a useful
guide as to how to effectively use AlphaFold2 on modern
computing systems.

It is quite interesting to consider the lessons one can
garner from the history of the protein folding application.
Both of us were at UCSD in the late 1980s when Terry
Sejnowski presented a seminar on his paper using neural
networks to study the secondary structure of globular
proteins (7). The performance of his algorithm was rather
mediocre, and many of us left that talk wondering why
would anyone forgo traditional methods in biochemistry in
favor of what we now call ML. So, what happened in the
30 y from then to 2018? There appear to have been four
factors at work. First, the computational power able to be
brought to bear on this problem has increased at an almost
unimaginable rate. For example, the Cray 2 supercomputer
circa 1985 reached 1.9 gigaflops as the world’s fastest in that
era; it is now roughly the equivalent of the iPhone 4. The
current supercomputer leader reaches 109 gigaflops. What

was computationally impossible then is totally trivial now.
One could provide similar data regarding memory capacity.
It is fair to say that progress would have been greatly
hampered had the computing power not been available to
the relevant researchers.

Hardware improvements are necessary but not suffi-
cient. The second factor is the invention of a wide variety of
ML techniques for learning predictive models from available
data. In the 1980s, the field of neural networks was still
in the throes of despair, brought about by the lack of
understanding of the severe limitations of the famous
“no-go” results of Minsky and Papert in their work on
perceptrons (8). The idea that building “deep networks” with
hidden layers would create a new path forward was just
beginning to be realized, initially with constructs such as
the Boltzmann machine (9) and then the formulation of the
backpropagation training algorithm (10). Nowadays, ideas
such as the transformer architecture (11), autoencoders
(12), and adversarial networks (13) have revolutionized
how one understands the ML process. For our example of
AlphaFold, the transformer idea appears to be absolutely
essential. A brief guide to how transformers fit in with more
general machine learning concepts dating all the way back
to the Hopfield associative memory model (14) is discussed
in the paper by Martin et al. (15).

The next factor is data availability for training. The protein
databank (PDB) was established in 1971 to store information
regarding protein structure (16). Again, there has been
an absolute explosion in the amount of structural data
available to all researchers. The number of structures has
doubled approximately every 6 to 8 y; at the beginning
of 2024, the PDB archive surpassed 200K structures as
compared to roughly 1000 in 1990; see Fig. 1. But this is not
the only important source of data. As described in the article
by Martin et al. (15), much of the progress in protein folding
arose from the recognition that comparing sequences of
the same protein in different organisms could enable one
to obtain important information regarding the contact
map. The contact map is a matrix representation of the
chance that residues located some distance apart along the
backbone were likely in the folded structure to be nearby
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Fig. 1. A 2019 report on the growth of the PDB Core Archive. Total height
of each bar indicates aggregate released structures, made up of subbars
labeled by the experimental technique (MX (Crystallography)–green, 3DEM–
yellow, NMR–blue) Taken from ref. 16.

in three-dimensional space. The essential idea here, arising
from work in algorithms such as direct coupling analysis
(DCA) (17, 18), is that a pair of residues in contact will have to
coevolve to maintain that contact, as one goes from species
to species. Thus, the observation of correlated evolution
can help identify these contacts. The last decade has seen a
tsunami of growth in comparative genomics data due to the
amazing technological advances in the sequencing field.

Finally, we reach perhaps the most interesting factor-
related question, one with important consequences for the
ML research program moving forward. The question is,
how essential was three decades of extensive theoretical
research into protein folding using more traditional tech-
niques? Put more simply, in an alternate universe where
no one had paid attention to protein folding computations
until the era of AlphaFold, how far behind our current state
of affairs would we be? It is of course impossible to know
the answer, but our sense is that the theory did play an im-
portant role in enabling current progress. We have already
mentioned that the idea of using comparative genomics
data arose in the theory community. It is also important to
note the formulation of the idea of encoding structural data
into standard biophysical models (19), taking advantage
both of physical insight and measured information. Also,
we should not confuse advancing the engineering use of
protein folding in predicting structures from sequence,
with obtaining a better understanding of protein folding
through concepts such as minimal frustration (20) and
the folding funnel (21). These latter concepts are globally
important ideas that have found use in other contexts, both
at the molecular (22, 23) and cellular (24) levels. And, it is
sometimes nice to have “human interpretable” methods,
even if it is they are unnecessary from a purely practical
perspective.

What are the current challenges for this line of research?
One can point to systems where there is not one unique
structure, but instead, the folding problem translates to
finding an ensemble of structures and the concomitant
dynamics of transitions among them. These systems include
intrinsically disordered proteins (25) as well as folding of
the genome (26, 27). Another direction concerns the study
of interacting biomolecules, where the pure ML approach
of Alpha-Multimer has not yet proven reliable enough for
many applications. The paper by Lupo et al. (28) attempts to
address this problem by applying a language model to better

align relevant interacting sequences at the protein–protein
interface. One should also note the problem of antigen
recognition by T cell receptors as a critical part of the adap-
tive immune system. Here, recent works (29, 30) approach
this problem by the use of language models, competing with
mixed approaches that incorporate structural data (31) and
are therefore limited by the lack of extensive such data.

2. The Spreading of ML

Biological physics is a natural avenue for exploring the use of
ML. Unlike many other areas of physics, most experimental
systems related to the living world are exceedingly complex
and hence the ability to form first-principles models rather
limited. To pick an example from a larger scale than molec-
ular, there are no first-principles models of collective cell
motion (32) that can possibly do justice to the full complexity
of the cell machinery employed for this behavior. There is no
Navier–Stokes equation rushing to the rescue and one can
therefore naturally wonder whether hand-crafted models
(33, 34) could perhaps be usefully replaced by purely data-
driven ones. This question is being actively investigated for a
number of experimental cell motility systems (35, 36) and of
course is under intense study in many biomedical contexts,
see e.g. work on digital pathology (37). It is worth noting
that one could try to derive better hand-crafted models
themselves by ML (see e.g. ref. 38); it is not clear why this is
better than just directly using the predictions from a learned
neural network.

Given the above, it is perhaps more surprising that
ML methodology is infiltrating into the study of physical
systems which nominally do have reliable computational
frameworks. An excellent summary of these varied systems
is given in the paper by Yu and Wang (39). One idea posits
that ML can speed up computations even when a first-
principles model is available. One such claim is presented by
Kochkov et al. (40), focusing explicitly on the aforementioned
Navier–Stokes equation for fluid dynamics. Perhaps a more
convincing case can be made for cases when the physics is
knowable in principle but may be too complex to implement;
one can think of cloud models in climate simulators as
perhaps one such example. From a general perspective, it
seems like there is much progress to be made in figuring out
the optimum way of combining the interpretability of tradi-
tional modeling with the generalizability of ML methods.

If one is interested in a model of a very specific physical
system, one can often afford to do the necessary large-scale
computations to obtain meaningful results; and, this gets
easier as computing power continues to grow exponentially.
However, as emphasized in the paper in this issue by
King et al. (41) in the context of material assembly, this
becomes much more difficult when the task is to design
something new. This challenge requires an iterative pro-
cess of picking interactions at a microscopic scale which
ultimately gives rise to some functional behavior at a much
large scale. This iterative process often involves some type of
gradient-descent using some functionality measure, but the
“forward” problem must be computed many times as part
of the convergence process. As discussed in this paper, this
problem can be greatly assisted by machine learning ideas,
including the concept of automatic differentiation (42) which
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enables the “backpropagation” of large-scale errors to the
necessary changes in microscopic degrees. Of course, this
idea was at the heart of the training algorithm for hidden
layers in neural network models, but now, this idea can be
applied automatically to any large-scale computation.

When one thinks about ML and its applications to physics,
it is unlikely that string theory is something that comes
immediately to mind. Yet, the string theory community
is actively exploring whether ML methods can be useful
(43). String theory, of course, is an attempt at formulating
the “theory of everything,” explaining all the elementary
particles and their interactions in terms of “strings” (quan-
tum objects extended in one dimension) living in 11 dimen-
sions. ML is being used to find ways of compacting this
11-dimensional space into the 4-dimensional world that we
experience and searching for a reasonable compactification
is a very hard computational problem that can be amelio-
rated by ML ideas. Who knew?

There is one last direction being investigated at the ML-
Physics interface. Some groups are attempting to use ML
methods to automatically discover new equations from
data; imagine taking planetary data and trying to learn
Newton’s laws of motion together with the inverse square
law of gravitational force. This idea is briefly sketched in
the paper by Yu (39), with relevant references. One can
think of this endeavor as attempting to ultimately replace
theoretical physicists with AI versions thereof. Until we see
a machine that can look at astrophysical data and figure out
that the correct framework for understanding is Riemannian
geometry in 4-dimensional space-time, we are not worried
about our jobs.

3. What Can Physics Do for ML?

Of course, the impact of ML goes well beyond its use in
advancing physical science. Deep learning neural network
(DLNN) models (44, 45) have enjoyed a long string of
rapid and tremendous successes in image recognition (46),
machine translation (47), games (48), and as we have already
discussed, even solving long-standing grand challenge sci-
entific problems such as protein folding (1). For better or
worse, the most recent generative models such as ChatGPT,
are fundamentally changing the social, economical, and
political landscapes of our time.

However, one of the side-effects of the incredible success
recently demonstrated by DLNNs has been to lose sight
of its theoretical motivations and underpinning in favor of
rapid narrowly focused application-driven developments.
This is slowly resulting in increasingly suboptimal practices,
including massive wastes in compute cycles and time to
tune the large numbers of hyperparameters admitted by
unprincipled optimization and regularization procedure,
inefficient utilization of high-precision encoded parameters,
inefficient utilization of costly labeled data, lack of repro-
ducibility of end results, and the possibility of misuse of
this powerful technology. The development of a principled
theoretical foundation of overparameterized connectionist
machine learning models like deep learning neural networks
would help avoid such problems, thereby streamlining
their optimization and allowing for robust models trained

on less data. At the same time, the predictions provided
by a prescriptive theory could guide the development of
improved future architectures and training paradigms.

Artificial neural network (ANN) models originated from
the marriage of two natural science disciplines—statistical
physics and neuroscience. At their core, ANNs describe
the emergent (collective) behaviors of a group of highly
abstracted “neurons” interacting with each other in an
adaptive way in a network that bears a certain resemblance
to the real neural network in the brain. The model dynamics
allow the ANNs to associate and learn. Historically, both
statistical physics and neuroscience played a seminal role
in the inception and early developments of ANNs. The
linear–nonlinear artificial neurons and the synaptic weights
between neurons as first introduced by McCulloch and
Pitts (49) in 1943 for modeling a biological neural network
are still the fundamental building blocks of the modern-
day deep learning neural networks. Statistical physics also
played an important role in the initial development of artifi-
cial neural networks and their theoretical understanding in
the late 80s and 90s, motivating critical developments such
as the Hopfield model (14), the Boltzmann machine (9), and
applications of spin-glass theory to neural networks (50).

What is different at the current time? At the elemental
level, not much, the McCulloch–Pitts neurons are still the
building blocks of all deep learning algorithms, and the
linear summation and nonlinear activation is still the basic
computing process at the single neuron level. However, the
scale is vastly different. As already discussed above in the
protein folding context, we now have a huge amount of data
with which to train large ANN models; in turn, these models
can absorb the information in these large datasets by using a
huge number of parameters. The architecture of these large
models is much more sophisticated than that of the original
perceptron model by Rosenblatt (51), e.g., the transformer
architecture is critical for modern large language models
(LLM). And of course, the performance of these large ANNs
far exceeds our expectations based on looking at individual
neurons.

This reminds us of the famous quote by P. W. Anderson:
“More is different” (52), where he advocated the idea that the
whole system is not only more than the sum of its parts but
emergent (different) behaviors can arise due to interactions
of the individual parts in the system. Just as the Anderson
quote has encouraged generations of physicists to study
emergent behaviors of complex many-body systems, we
would like to use it as a rallying cry for physicists to
study this fascinating emergent behavior called learning in
the (sometimes) large but always well-structured artificial
neural networks. These studies would have to answer
general questions on how learning arises from interactions
of neurons in DLNNs, what the networks learn, and whether
they can generalize their learned knowledge.

Indeed, we believe that the next breakthroughs in deep
learning may come from developing a solid theoretical
foundation, based on concepts and methods from statistical
physics. This will occur in conjunction with the introduction
of ever-more advanced DLNN algorithms, algorithms that
will accelerate the rate of scientific discovery in the physical
and biological world. These two interconnected emerging
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topics of research, fundamental theory and sophisticated
applications, will greatly advance both science and AI tech-
nology. In the following, we present a general framework for
describing the machine learning process before delving into
a few promising directions where progress may be made.
Our discussion contains brief sketches of papers published
in this special issue that are relevant to these directions.

3.1. The Central Dogma of Machine Learning. In the book
“How learning works?” by Ambrose et al. (53), learning is
defined as “a process that leads to change, which occurs
as a result of experience and increases the potential for
improved performance and future learning”. The book was
written in the context of human (student) learning, but
this succinct definition of learning can be used to describe
machine learning as well. In Fig. 2, we illustrate the key
components and the workflow of machine learning such
as neural-network-based deep learning, which we call the
“Central Dogma” of Machine Learning. The goal of the
machine learning process is to learn a model that captures
the intrinsic properties of the external world represented
by the observed data. The model has certain structure, i.e.,
functional form, and is parameterized by its parameters
(weights in the context of neural network models). Following
the definition given by Ambrose et al, during the training
phase of the learning process, the parameters in the model
change, which occurs as a result of training over experience
or equivalently training data as called in machine learning.
Once trained, the quality of learning can be evaluated by
the performance of the trained model on unseen test data
and whether the trained model forms a good basis (starting
point) for future learning.

The workflow of machine learning as illustrated in Fig. 2
immediately suggests two important problems in machine
learning. The first problem focuses on learning dynamics.
More specifically, how do the parameters of the model
change given the training data? The usual learning process is
carried out by minimizing a loss function that characterizes
how well the model fits the training data. Starting with an
initial set of parameter values, the parameters are updated
iteratively through the high-dimensional parameter space,
guided by the loss function until they reach a minimum

Fig. 2. Illustration of the main steps and workflow in machine learning.
Highlighted in red are three directions that may be addressed by physics-
based approaches.

thereof. The model with its parameters given at such a
minimum is a solution to the problem. The optimization
process, i.e., the sequence of parameter updates, can be
considered as dynamics of learning with an update step
taken as time. The second problem deals with generaliza-
tion. Typically, DLNNs are overparameterized. As a result,
there are many possible solutions (minima) to the problem
of fitting the training data. The question is which solution
has better generalization, i.e., performs better on test data
that the training process did not use. If we know what type
of solutions has better generalizability, a related question
concerns what regularization term can we use (in addition
to the loss function) to nudge the system toward those more
generalizable solutions. In the next two sections, we delve
into these two general problems in more detail and highlight
some of the most recent developments in these directions.

3.2. Stochastic Learning Dynamics: Descending Down a Fluctu-
ating Loss Landscape. The general optimization strategy in
ANNs consists of updating the weights by following the gra-
dient of the loss function, a method called gradient descent
(GD). Given the feedforward architecture of DLNNs, GD can
be carried out efficiently by backpropagation. However, GD
is computationally prohibitive for large datasets if one uses
the overall loss function averaged over all the training data.
The stochastic gradient descent (SGD) method has been
used instead to circumvent the large dataset problem by
updating the weights according to a subset (minibatch)
of samples randomly chosen at each iteration (54, 55).
Remarkably, it was subsequently discovered that SGD is also
crucial for finding more generalizable solutions in DLNNs.

However, despite the tremendous successes of deep
learning, the reason why SGD is so effective in learning good
solutions in a high-dimensional nonconvex loss function
(energy) landscape remains poorly understood. The random
element seems key for SGD, yet also makes it harder
to understand. Fortunately, many physical and biological
systems include such random elements, e.g., Brownian
motion and stochastic biochemical reactions, and powerful
tools have been developed for understanding collective
behaviors in stochastic systems with many degrees of
freedom. Indeed, concepts and methods from statistical
physics and stochastic dynamical system theory have been
used recently to investigate the SGD dynamics, the loss
function landscape, and their relationship in DLNNs.

To demonstrate the utility of such a physics-based
approach for understanding DLNNs, we briefly describe a
theoretical framework for studying SGD learning dynamics
and some interesting insights gained from it. We start by
considering the SGD-based learning process as a stochastic
dynamical system. A learning system such as a neural
network (NN) and especially a DNN has a large number
(N) of weight parameters wi (i = 1,2, ..., N). For supervised
learning, there is a set of M training samples each with
an input X⃗k and a correct output Z⃗k for k = 1,2, ..., M.
For each input X⃗k , the learning system predicts an out-
put Y⃗k = G(X⃗k , w⃗), where the output function G depends
on the architecture of the NN as well as its weights w⃗.
The goal of learning is to find the weight parameters
to minimize the difference between the predicted and
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correct output characterized by an overall loss function
(or energy function):

L(w⃗) = M−1
M∑
k=1

d(Y⃗k , Z⃗k ), [1]

where d(Y⃗k , Z⃗k ) is a measure of distance between Y⃗k and Z⃗k .
Here, a typical distance measure is the cross-entropy.

Specifically, the change of weight wi (i = 1,2, ..., N) for
iteration t in SGD is given by:

Δwi (t) = −�
∂L�(t)(w⃗)

∂wi
, [2]

where � is the learning rate and �(t) represents the random
minibatch used for iteration t. The minibatch loss function
(MLF) for minibatch � of size B is defined as:

L�(w⃗) = B−1
B∑
l=1

d(Y⃗�l , Z⃗�l ), [3]

where �l (l = 1,2, .., B) labels theB randomly chosen samples.
Here, we introduce the key concept of a minibatch loss

function (MLF) ensemble {L�(w⃗)}, i.e., an ensemble of energy
landscapes each from a random minibatch. The overall loss
function L(w⃗) is just the ensemble average of MLFs: L ≡
〈L�〉� . The SGD noise comes from the variation between
a MLF and its ensemble average: �L� ≡ L� − L. By taking
the continuous time approximation and keeping the first-
order time derivative term in Eq. 2, we obtain the following
stochastic partial differential equation for SGD:

∂w⃗
∂t = −� ∂L

∂w⃗
+ �⃗(w⃗), [4]

where time t and all timescales in this study are measured in
the unit of minibatch iteration time Δt = 1. The continuous
time limit amounts to consider time scales that are much
larger than Δt, e.g., one epoch time is M/ B(� 1). Eq. 4 is
analogous to the Langevin equation in statistical physics.
The first term −� ∂L

∂w⃗ is the deterministic gradient descent
governed by the overall loss function L analogous to the
energy function in physics. The second term is the SGD noise
term �⃗ ≡ −�∇w⃗�L

�(w⃗) with zero mean 〈�⃗〉 = 0 and an equal
time covariance matrix

Cij (w⃗) ≡ 〈�i�j〉 = �2
× 〈

∂�L�
∂wi

∂�L�
∂wj
〉� , [5]

which depends explicitly on w⃗, i.e., gives rise to a com-
plex form of multiplicative noise. For a given network
architecture, the learning dynamics can thus be mapped
to the stochastic motion of a “learner particle” whose
coordinates are the weights of the network. In particular,
the SGD learning algorithm corresponds to the learner
particle descending down a fluctuating energy landscape,
which is governed by the Langevin equation (Eq. 2) with a
deterministic GD term and a noise term with covariance
matrix given by Eq. 5.

The most unusual and interesting part of the SGD learn-
ing dynamics comes from the noise term. As first pointed out
by Chaudhauri and Soatto (56), unlike equilibrium physical
systems where the noise has a constant strength given

by the thermal temperature, the SGD dynamics is highly
nonequilibrium as the SGD noise is neither isotropic nor
homogeneous. From its definition, the SGD noise depends
on the loss landscape itself. One of the most interesting
findings is that the SGD noise covariance matrix is highly
correlated with the Hessian matrix of the loss function: Their
eigen-directions are highly aligned and the corresponding
eigenvalues are highly correlated (57, 58). In particular, in
sharper directions in the loss landscape (larger eigenvalues
in the Hessian matrix), the SGD noise is also larger. This
results in a robust inverse relation between the weight
variance and the flatness of loss landscape in all direc-
tions, which is the opposite to the fluctuation–response
relation (aka the Einstein relation) in equilibrium statistical
physics.

There is increasing empirical evidence in support of the
notion that “good” (generalizable) solutions exist at the flat
(shallow) minima of the loss function (59–65); however,
there is still little understanding of how SGD-based algo-
rithms can find these flat minima in the high-dimensional
weight space. The “inverse Einstein relationship” (57) ob-
tained within the stochastic learning dynamics framework
suggests that SGD serves as a landscape-dependent an-
nealing algorithm. The effective SGD temperature decreases
with the landscape flatness so the system seeks out (prefers)
flat minima over sharp ones. As shown in a recent paper (58)
using a Fokker–Planck equation to study the weight dis-
tribution of the SGD learning dynamics, SGD introduces a
flatness-dependent term in the effective loss function that
regularizes the system to prefer flatter minima.

An important class of ANN models are the generative
models that are able to generate new samples by being
trained on existing samples. A well-known early example is
the generative adversarial network (GAN) model (66) whose
learning dynamics has been studied by using a stochastic
dynamical systems approach (67). Indeed, some of the
most successful generative models such as the diffusion-
based models (68) have their origin in physics and thus
provide a rich area for physics-based research. In this
special issue, Zdeborova et al. (69) make a comprehensive
comparison among different generative models based on
a spin-glass perspective, which sheds light on a theoretical
understanding of the capabilities and limitations of these
powerful generative models.

3.3. Generalization: The Blessing and Curse of High Dimension-
ality. Most of the problems in physics are overconstrained
(or underparameterized). For example, in a protein folding
problem with N amino acids, even if we only consider the
pair-wise interaction energies, we have ∼ N2 constraints,
which is much higher than the ∼ 2N degrees of freedom,
i.e., the independent coordinates of amino acids on a 1D
chain. Typically, an overconstrained problem has a unique
solution. This situation is illustrated in Fig. 3A where the en-
ergy landscape has a unique minimum, which corresponds
to the native structure of the folded protein. Solving the
overconstrained problem by minimizing the overall energy
function, e.g., ab initio protein folding is a notoriously hard
problem. On the other hand, DLNNs are overparameterized.
The number of parameters (weights) is much larger than

PNAS 2024 Vol. 121 No. 27 e2403580121 https://doi.org/10.1073/pnas.2403580121 5 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 N
O

R
T

H
E

A
ST

E
R

N
 U

N
IV

E
R

SI
T

Y
 o

n 
O

ct
ob

er
 9

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
73

.4
7.

64
.1

97
.



Fig. 3. The difference of landscape and solutions in overconstrained and underconstrained problems. (A) The free energy landscape in protein folding (an
overconstrained problem) where there is a unique global minimum, which is typically very hard to find. The image is adopted from Dill and Maccallum (70). (B)
The loss landscape in an overparameterized (underconstrained) deep learning model, which can have many global minima. The challenge is to find out which
solution is more generalizable.

the internal degrees of freedom in the data. The blessing
of having a large number of parameters in DLNNs is that it
makes finding a solution (a minimum in the loss landscape)
relatively easy. However, the curse of high dimensionality
in the parameter space is that there are many solutions
(minima of the loss function), as shown in Fig. 3B. Thus,
the important question becomes which one of the many
solutions performs better for the test data, i.e., which
solution has better generalizability.

Indeed, generalization is one of the most important
problems in machine learning. This problem becomes more
pressing given the overwhelming number of parameters
(weights) used in DLNNs. There has been much work on
generalization in DLNN based on various theoretically and
empirically motivated complexity measures (VC-dimension,
norm of parameters, sharpness, path norms, etc.). As
summarized in a recent review by Jiang et al. (71), although
empirical evidence suggests a strong correlation between
sharpness-based measures and generalization (72), many
other (theoretically motivated) measures such as the norm-
based measures do not serve as robust indicators for
generalization (71). Even for the sharpness-based measures,
we do not understand why and how they are effective in
predicting generalization. Furthermore, there is recent work
challenging the validity of using loss landscape sharpness
alone for determining generalization, based on a general
scaling invariance in DLNN as pointed out by Dinh et al. (73).
Indeed, a comprehensive understanding of generalization
in DLNN remains elusive.

One key question in generalization is what properties of
a given solution determine its generalizability. The difficulty
in answering this problem is that while learning is guided
by the training loss, the generalization performance is
evaluated by the testing loss, and it is difficult to make the-
oretical progress without access to the test loss landscape.
Recently, this problem was tackled by using an equivalence
(duality) between changes in data and changes in weight

parameters (74). The general idea is that if the change of
the input between a training data (x) and a testing data (x′)
is equivalent to a corresponding change of the weights from
the solution (W ) to a new weight (W′), we can then use this
duality relation to map a distribution in the input space to a
distribution in the weight space, where we can evaluate the
generalization loss. Remarkably, an infinite family of such
exact duality relations in any densely connected layer has
been found. By using the “minimal” duality relation with the
smallest weight change, the generalization loss can be de-
composed to contributions from different eigen-directions
of the Hessian matrix of the loss function at the solution in
the weight space. The form of these contributions reveals
two distinct factors (determinants) for generalization—one
is governed by the sharpness of the loss landscape and the
other corresponds to the norm of the solution weighted
by the covariance of the relative differences between the
training and testing data. One of the main insights gained
from this study is that these two determinants multiply
together to determine generalization, which resolves the
puzzle regarding flatness raised by Dinh et al. (73).

In underconstrained (or overparameterized) learning
systems such as DLNNs, regularization is an important
component added to the loss function in order to push the
system toward those solutions that have higher general-
izability. Despite its importance, however, regularizations
are typically based on some intuitions of what properties
of a more generalizable solution should have. From the
perspective of having two contributing factors (sharpness
and size) affecting the generalization loss, the mechanisms
behind the ability of SGD and weight decay as two effective
regulation schemes become clear. Clearly, designing regu-
larization schemes based on properties of the underlying
system (e.g., symmetry and conservation law in physical
systems) and/or certain general factors affecting the gen-
eralizability of a solution would make an interesting future
research direction.
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As an extreme case of overfitting, DLNN can “memorize”
all the training samples even if their labels are replaced
by pure noise (75). Such overfitted (memorization) solution
has no generalizability. Remarkably, DLNN avoids overfitting
and testing error follows the so called “double descent”
curve (76). As the model capacity (complexity) increases,
the test error follows the usual U-shaped curve at the
beginning, first decreasing and then peaking near the
interpolation threshold when the model achieves vanishing
training error. However, it descends again as model capacity
exceeds this interpolation threshold, with the test error
reaching its (global) minimum in the overparameterization
regime where the number of parameters is much larger
than the number of samples. Rapid progress has been
made in understanding this double descent behavior by
using simple models. For example, both optimization and
generalization guarantees for overparameterized simple
two-layer networks are proven with leaky ReLU activation
on linearly separable data (77). This result has subse-
quently been extended to 2-layer networks with ReLU ac-
tivation (78) and 2&3-layer networks with smooth activation
functions (79). In a different approach by using the Neural
Tangent Kernel (80), which connects large (wide) neural nets
to kernel methods, it was shown that the generalization
error decreases toward a plateau value in a power-law
fashion as N−1 / 2

p with Np the number of parameters in
the overparameterized regime (81). In simple synthetic
learning models such as the random features model with
ridge regression loss function, the double descent behavior
has been shown analytically (82). This analytical result has
been extended to other synthetic learning models (e.g.,
the random manifold model) and for more general loss
functions by using the replica method (83).

In fact, one of the most exciting empirical findings in
large models such as large language models (LLMs) is that
the generalization loss keeps decreasing with an apparent
power-law dependence on the model size and the data
size when they increase together in a proportional fashion.
Physicists are naturally drawn to behaviors described by
power-laws and have developed powerful tools such as
renormalization group theory to explain scaling laws in crit-
ical phenomena. Therefore, we believe that understanding
the “power law” dependence of generalization on data size
and model size in large complex learning systems is one
of the most tantalizing and highly important directions to
pursue for physicists. In this special issue, Bahri et al (84)
investigated the possible origins behind such “scaling laws”
and provided a taxonomy for different scaling regimes.

3.4. Inspiration from Realistic Neural Networks and Real
Neurons. As we stated above, artificial neural networks
benefited from two natural science disciplines, namely neu-
roscience and statistical physics. However, other than the
initial inspiration drawn from neuroscience that is embodied
in the McCulloch–Pitts neurons and the layered feedforward
neural network (perceptron) architecture, there has not
been much neuroscience insight incorporated in DLNNs.
Even though this special issue is mostly about the cross
talk between physics and machine learning, the need for
novel concepts arising from neuroscience is greater than

ever. There are several specific limiting architectural aspects
of DLNN that could benefit from a stronger grounding
in neuroscience principles. For example, the successes of
deep learning have been limited mostly to static tasks with
static datasets and furthermore require huge amounts of
explicitly labeled data. Since many researchers have noted
that biological brains are exquisitely adapted to dynamic
tasks in dynamic environments, we think it is plausible that a
better understanding of how brains perform dynamic tasks
will lead to new concepts that will drive improvements in ML
performance on such tasks. Novel brain-inspired algorithms
could come from exploring major differences between
actual computations in brains and DLNN algorithms and
architectures. In this special issue, Haim Sompolinksy et
al. (85) present a novel perspective and in-depth comparison
between artificial and brain neural networks in terms of their
representations and generalization.

In addition to representations and generalization, we list
two other differences between artificial and brain networks
with the hope of stimulating future work as they can be
both studied with the physics-based approach outlined in
the previous sections:

• Brains learn with a local learning rule and little supervision.
First and foremost, DLNNs focus mostly on supervised
learning, where there are explicit labels denoting the
correct output for a given input pattern, whereas brains
appear to do very little supervised learning. Instead,
theory and experimental data suggest that neural learning
employs mostly unsupervised, temporal-predictive, and
reinforcement learning (RL) techniques. At the algorithmic
level, learning in DLNNs is carried out by backpropagation,
which is a global learning rule, whereas learning in brains
is achieved by local learning rules such as the Hebbian
rule.

• Brains are highly dynamic and constantly interact with
environments. Most DLNNs use static feed-forward archi-
tectures, or they have relaxational properties leading to
stationary states. By contrast, brains exhibit complex dy-
namic behavior (e.g., different brain rhythms/oscillations)
enabled by massive recurrent connections. Furthermore,
current DLNNs are almost exclusively devoted to static
perception-only tasks, whereas the overarching purpose
of the brain is to generate behavior in a continual
perception-action loop with the environment.

Novel inspiration from neuroscience can also be gained
at the single neuron level as presented in this special issue
by Chklovskii et al. (86). The authors introduce the concept
of neurons as feedback controllers of their environments,
a role far beyond the traditional McCulloch–Pitts neurons.
This innovative approach not only explains various exper-
imental findings that previously seemed unrelated, it may
also point the way for the creation of more sophisticated,
biologically inspired artificial intelligence systems.
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23. R. D. Hills Jr, C. L. Brooks III, Insights from coarse-grained gō models for protein folding and dynamics. Int. J. Mol. Sci. 10, 889–905 (2009).
24. S. Tripathi, D. A. Kessler, H. Levine, Biological networks regulating cell fate choice are minimally frustrated. Phys. Rev. Lett. 125, 088101 (2020).
25. K. M. Ruff, R. V. Pappu, Alphafold and implications for intrinsically disordered proteins. J. Mol. Biol. 433, 167208 (2021).
26. M. Di Pierro, B. Zhang, E. L. Aiden, P. G. Wolynes, J. N. Onuchic, Transferable model for chromosome architecture. Proc. Natl. Acad. Sci. U.S.A. 113, 12168–12173 (2016).
27. M. A. Marti-Renom, L. A. Mirny, Bridging the resolution gap in structural modeling of 3D genome organization. PLoS Comput. Biol. 7, e1002125 (2011).
28. U. Lupo, D. Sgarbossa, A. F. Bitbol, Pairing interacting protein sequences using masked language modeling. Proc. Natl. Acad. Sci. U.S.A. 121, e2311887121 (2024).
29. B. Meynard-Piganeau, C. Feinauer, M. Weigt, A. M. Walczak, T. Mora, Tulip-a transformer based unsupervised language model for interacting peptides and T-cell receptors that generalizes to unseen epitopes.

bioRxiv [Preprint] (2023). https://www.biorxiv.org/content/10.1101/2023.07.19.549669v1 (Accessed 10 January 2024).
30. B. P. Kwee et al., STAPLER: Efficient learning of TCR-peptide specificity prediction from full-length TCR-peptide data. bioRxiv [Preprint] (2023). https://www.biorxiv.org/content/10.1101/2023.04.25.538237v1

(Accessed 10 January 2024).
31. A. T. Wang et al., RACER-m leverages structural features for sparse T cell specificity prediction. bioRxiv [Preprint] (2023). https://www.biorxiv.org/content/10.1101/2023.08.06.552190v1 (Accessed 3 January

2024).
32. B. A. Camley, W. J. Rappel, Physical models of collective cell motility: From cell to tissue. J. Phys. D: Appl. Phys. 50, 113002 (2017).
33. M. Basan, J. Elgeti, E. Hannezo, W. J. Rappel, H. Levine, Alignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing. Proc. Natl. Acad. Sci. U.S.A. 110, 2452–2459 (2013).
34. V. Hakim, P. Silberzan, Collective cell migration: A physics perspective. Rep. Progr. Phys. 80, 076601 (2017).
35. J. LaChance, K. Suh, J. Clausen, D. J. Cohen, Learning the rules of collective cell migration using deep attention networks. PLoS Comput. Biol. 18, e1009293 (2022).
36. S. U. Hirway, S. H. Weinberg, A review of computational modeling, machine learning and image analysis in cancer metastasis dynamics. Comput. Syst. Oncol. 3, e1044 (2023).
37. S. Al-Janabi, A. Huisman, P. J. Van Diest, Digital pathology: Current status and future perspectives. Histopathology 61, 1–9 (2012).
38. D. B. Brückner et al., Stochastic nonlinear dynamics of confined cell migration in two-state systems. Nat. Phys. 15, 595–601 (2019).
39. R. Yu, R. Wang, Learning dynamical systems from data: An introduction to physics-guided deep learning. Proc. Natl. Acad. Sci. U.S.A. 121, e2311808121 (2024).
40. D. Kochkov et al., Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. U.S.A. 118, e2101784118 (2021).
41. E. M. King, C. X. Du, Q.-Z. Zhu, S. S. Schoenholz, M. P. Brenner, Programming patchy particles for materials assembly design. Proc. Natl. Acad. Sci. U.S.A. 121, e2311891121 (2024).
42. R. E. Wengert, A simple automatic derivative evaluation program. Commun. ACM 7, 463–464 (1964).
43. F. Ruehle, Data science applications to string theory. Phys. Rep. 839, 1–117 (2020).
44. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436 EP (2015).
45. I. Goodfellow, A. Courville, Y. Bengio, Deep Learning (MIT Press, 2016), vol. 1.
46. K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778.
47. Y. Wu et al., Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv [Preprint] (2016). http://arxiv.org/abs/1609.08144 (Accessed 3 January 2024).
48. D. Silver et al., Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016).
49. W. Mcculloch, W. Pitts, A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5, 127–147 (1943).
50. D. J. Amit, H. Gutfreund, H. Sompolinsky, Spin-glass models of neural networks. Phys. Rev. A 32, 1007 (1985).
51. F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).
52. P. W. Anderson, More is different. Science 177, 393–396 (1972).
53. S. Ambrose, M. Bridges, M. Lovett, How Learning Works: 7 Research-Based Principles for Smart Teaching (John Wiley and Sons, San Francisco, 2010).
54. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951).
55. L. Bottou, “Large-scale machine learning with stochastic gradient descent” in Proceedings of COMPSTAT 2010, Y. Lechevallier, G. Saporta Eds. (Physica-Verlag HD, Heidelberg, 2010), pp. 177–186.
56. P. Chaudhari, S. Soatto, “Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks” in 2018 Information Theory and Applications Workshop (ITA) (2018). http://dx.doi.

org/10.1109/ita.2018.8503224.
57. Y. Feng, Y. Tu, The inverse variance-flatness relation in stochastic gradient descent is critical for finding flat minima. Proc. Natl. Acad. Sci. U.S.A. 118 (2021).
58. N. Yang, C. Tang, Y. Tu, Stochastic gradient descent introduces an effective landscape-dependent regularization favoring flat solutions. Phys. Rev. Lett. 130, 237101 (2023).
59. G. E. Hinton, D. van Camp, “Keeping the neural networks simple by minimizing the description length of the weights” in Proceedings of the Sixth Annual Conference on Computational Learning Theory, COLT 1993

(ACM, New York, NY, USA, 1993), pp. 5–13.
60. S. Hochreiter, J. Schmidhuber, Flat minima. Neural Comput. 9, 1–42 (1997).
61. C. Baldassi et al., Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes. Proc. Natl. Acad. Sci. U.S.A. 113, E7655–E7662 (2016).
62. P. Chaudhari et al., Entropy-SGD: Biasing Gradient Descent into Wide Valleys (ICLR, 2017).
63. Y. Zhang, A. M. Saxe, M. S. Advani, A. A. Lee, Energy-entropy competition and the effectiveness of stochastic gradient descent in machine learning. Mol. Phys. 116, 3214–3223 (2018).
64. S. Mei, A. Montanari, P. M. Nguyen, A mean field view of the landscape of two-layer neural networks. Proc. Natl. Acad. Sci. U.S.A. 115, E7665–E7671 (2018).
65. C. Baldassi, F. Pittorino, R. Zecchina, Shaping the learning landscape in neural networks around wide flat minima. Proc. Natl. Acad. Sci. U.S.A. 117, 161–170 (2020).
66. I. Goodfellow et al., “Generative adversarial nets” in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger, Eds. (Curran Associates, Inc., 2014),

vol. 27.
67. S. Durr, Y. Mroueh, Y. Tu, S. Wang, Effective dynamics of generative adversarial networks. Phys. Rev. X 13, 041004 (2023).
68. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics” in Proceedings of the 32nd International Conference on Machine Learning,

Proceedings of Machine Learning Research, F. Bach, D. Blei, Eds. (PMLR, Lille, France, 2015), vol. 37, pp. 2256–2265.
69. D. Ghioa, Y. Dandi, F. Krzakala, L. Zdeborova, Sampling with flows, diffusion and autoregressive neural networks from a spin-glass perspective. Proc. Natl. Acad. Sci. U.S.A. 121, e2311810121 (2024).
70. K. Dill, J. Maccallum, The Protein-Folding Problem, 50 Years on (Science New York, N.Y., 2012), vol. 338, pp. 1042–1046.
71. Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, S. Bengio, Fantastic generalization measures and where to find them. ICLR (2020).
72. N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy , P. T. P. Tang , On large-batch training for deep learning: Generalization gap and sharp minima. ICLR (2017).
73. L. Dinh, R. Pascanu, S. Bengio, Y. Bengio, “Sharp minima can generalize for deep nets” in Proceedings of 34th International Conference Machine Learning (2017), vol. 70, pp. 1019–1028.
74. Y. Feng, W. Zhang, Y. Tu, Activity-weight duality in feed-forward neural networks reveals two co-determinants for generalization. Nat. Mach. Intell. 5, 908–918 (2023).
75. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning requires rethinking generalization. ICLR (2017).
76. M. Belkin, D. Hsu, S. Ma, S. Mandal, Reconciling modern machine-learning practice and the classical bias–variance trade-off. Proc. Natl. Acad. Sci. U.S.A. 116, 15849–15854 (2019).
77. A. Brutzkus, A. Globerson, E. Malach , S. Shalev-Shwartz , SGD learns over-parameterized networks that provably generalize on linearly separable data. ICLR (2018).
78. Y. Li, Y. Liang, Learning overparameterized neural networks via stochastic gradient descent on structured data. Adv. Neural Inf. Process. Syst. 31, 8157–8166 (2018).
79. Z. Allen-Zhu, Y. Li, Z. Song, “A convergence theory for deep learning via over-parameterization” in International Conference Machine Learning (2019), pp. 242–252.
80. A. Jacot, F. Gabriel, C. Hongler, Neural tangent kernel: Convergence and generalization in neural networks. Adv. Neural Inf. Process. Syst. 31, 8571–8580 (2018).
81. M. Geiger et al., Scaling description of generalization with number of parameters in deep learning. J. Stat. Mech.: Theory Exp. 2020, 023401 (2020).

8 of 9 https://doi.org/10.1073/pnas.2403580121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 N
O

R
T

H
E

A
ST

E
R

N
 U

N
IV

E
R

SI
T

Y
 o

n 
O

ct
ob

er
 9

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
73

.4
7.

64
.1

97
.

https://www.biorxiv.org/content/10.1101/2023.07.19.549669v1
https://www.biorxiv.org/content/10.1101/2023.04.25.538237v1
https://www.biorxiv.org/content/10.1101/2023.08.06.552190v1
http://arxiv.org/abs/1609.08144
http://dx.doi.org/10.1109/ita.2018.8503224
http://dx.doi.org/10.1109/ita.2018.8503224


82. S. Mei, A. Montanari, The generalization error of random features regression: Precise asymptotics and the double descent curve. Commun. Pure Appl. Math. 75, 667–766 (2022).
83. F. Gerace, B. Loureiro, F. Krzakala, M. Mézard, L. Zdeborová, Generalisation error in learning with random features and the hidden manifold model (ICML, 2020), pp. 3452–3462.
84. Y. Bahri, E. Dyer, J. Kaplan, J. Lee, U. Sharma, Explaining neural scaling laws. Proc. Natl. Acad. Sci. 121, e2311878121 (2024).
85. Q. Li, B. Sorscher, H. Sompolinsky, Representations and generalization in artificial and brain neural networks. Proc. Natl. Acad. Sci. U.S.A. 121, e2311805121 (2024).
86. J. Moore et al., The neuron as a direct data-driven controller. Proc. Natl. Acad. Sci. U.S.A. 2023–11893 (2024).

PNAS 2024 Vol. 121 No. 27 e2403580121 https://doi.org/10.1073/pnas.2403580121 9 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 N
O

R
T

H
E

A
ST

E
R

N
 U

N
IV

E
R

SI
T

Y
 o

n 
O

ct
ob

er
 9

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
73

.4
7.

64
.1

97
.


	ML and the Protein Folding Problem
	The Spreading of ML
	What Can Physics Do for ML?

