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Pulse instabilities can shape virus-immune coevolution
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Adaptive immune systems engage in an arms race with evolving viruses, trying to generate new responses to
viral strains that continually move away from the set of genetically varying strains that have already elicited a
functional immune response. It has been argued that this dynamical process can lead to a propagating pulse of an
ever-changing viral population and concomitant immune response. Here, we introduce a new stochastic model
of viral-host coevolution, taking into account finite-sized host populations and varying processes of immune
“forgetting”. Using both stochastic and deterministic calculations, we show that there is indeed a possible pulse
solution, but for a large host population size and for finite memory capacity, the pulse becomes unstable to
the generation of new infections in its wake. This instability leads to an extended endemic infection pattern,
demonstrating that the population-level behavior of virus infections can exhibit a wider range of behavior than
had been previously realized.
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I. INTRODUCTION

Viruses form a convenient forum for studying Darwinian
evolution [1]. They reproduce quickly, giving rise to large
populations, and are therefore more deterministic in their
dynamics than populations of macroscopic living creatures
[2]. Although their reproduction is asexual, nevertheless they
can even exhibit rudimentary forms of genetic recombina-
tion when different viral strains with multicompartmented
genomes invade a common cell [3].

A powerful conceptual approach for studying viral evo-
lutionary dynamics involves projecting the dynamics onto a
low-dimensional fitness space [4–6]. This approach led to the
discovery of the possibility of a propagating solitary wave of
viral strains on a linear fitness landscape, propelled by the
more rapid growth of the advancing edge as compared to
the out-competed variants at the decaying tail. Interestingly,
determining the velocity of this wave turned out to be a
challenging statistical physics problem, as the naive contin-
uum partial differential equation (PDE) governing the viral
fitness density exhibits a finite time singularity [5] and hence
necessitates a more nuanced treatment of this limit [6,7].
More specifically, a modified PDE approach [5,6,8] led to the
prediction of logarithmic scaling of the advancing speed with
viral population size, a result in agreement with simulations
of stochastic versions of the model and with the exact result
for a specific model variant [9].
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Most recently, a series of papers [10–12] have generalized
this framework to study the coevolution of the viral population
with the immune system. Here, individual hosts generate im-
mune responses that target the virus even as the virus tries to
mutate away from immune recognition. Of particular impor-
tance in this class of models is the extent to which the immune
response, mediated for example via antibody recognition of
the viral particle, decays as a function of mutational dis-
tance [13]. One possible simple assumption is that recognition
falls off as an exponential of the Hamming distance between
D-dimensional viral genomes; one can also imagine nonsym-
metric falloffs [10], but the reasoning behind this assumption
is not obvious. As pointed out in these papers, the immune
response to previous infections can create an effective gradient
in viral fitness; the further away from the bulk of the popula-
tion, the weaker the immune suppression and hence the faster
the growth. This means that the propagation of a single pulse
along some direction in this D-dimensional space is in the
same class [14,15] as the aforementioned pure viral evolution
problem. The fact that such a pulse solution is localized in the
direction transverse to the propagation [11] makes this type of
one-dimensional solution semiquantitatively relevant even for
an arbitrary number of phenotypic dimensions. Thus, predic-
tions from this modeling framework can be very informative
regarding general patterns of viral dynamics.

In this paper, we focus our attention on the one-
dimensional case and study a generalized version of the model
of Ref. [11]. Our study considers the stochastic dynamics
together with the modified PDE approach wherein the leading
effects of stochasticity (here, demographic noise) are taken
into account by a small-population cutoff of the interaction
dynamics. In the deterministic version, we show that a stable
single pulse solution exists for smaller host populations but
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that it becomes (nonlinearly) unstable above some critical
population size. This instability leads, immediately beyond
the critical size, to a patterned tail and eventually, at even
larger sizes, to a featureless tail. Both of these are forms of
endemic infections. These expanding tails cause the front to
slow down with time as they exhaust the number of available
hosts for new variants to infect. Stochastic dynamics blurs
the distinction between the patterned and unpatterned tail, but
otherwise exhibits a similar transition from a stable pulse to
an endemic state exhibiting a slowly widening and eventu-
ally stationary band of active variants. Thus, the long-time
behavior is often a nonspreading statistically steady infection
pattern. This new type of behavior for viral-host coevolution-
ary dynamics, possibly relevant both for human respiratory
diseases and for the infection of bacteria by phages, is the
major result of this paper.

II. STOCHASTIC MODEL

A. Formulation

The basic process we propose to study involves an evolv-
ing virus that infects individual hosts in a population. Hosts
respond to infection by launching an immune response, best
thought of as selecting antibodies that effectively neutralize
viral particles emitted by infected individuals. Of specific in-
terest is the fact that such antibodies will also, to some extent,
neutralize mutant strains. This extent depends on exactly how
far the mutant has strayed from the original.

The actual problem of determining the expected falloff of
immune effectiveness is rather complex and undoubtedly con-
text dependent. However, interesting insights into the behavior
of viral immune coevolution have been obtained by making
simplified assumptions about this feature of “shape space”
[16]. The simplest assumption is that there is a monotonic
mapping of immune effectiveness falloff as a function of how
many relevant mutations have been accumulated by a partic-
ular viral strain [11,13]. Using this approach, we can define
a cross-reactivity function g(|�x − �x′|), where the fall-off func-
tion g is the ratio of effectiveness at a distance d = |�x − �x′|)
to that at zero distance; g obviously approaches unity at small
distances and vanishes at large distances. This assumption is
reminiscent of that used in ecological models of competing
species [17,18], where niche selectivity is assumed to give rise
to a nonlocal but decaying interaction between specialists op-
timized to grow in specific environments. In what follows, we
will assume that g takes the form of an exponential of width w.
As noted above, we here consider a discrete one-dimensional
shape space, with position (i.e., strain) labeled by the index i.

Our model assumes that there are a total of Nh individual
hosts, each of which can be infected by at most one viral
strain at a time. The number of infected hosts is NI (t ), which
obviously cannot exceed Nh. The possible events at some
given moment are the recovery of one of the infected hosts
(at total rate rNI ) or the release by one of the hosts of a new
virion at rate rNI R0. Here the base reproduction rate R0 is the
mean total number of “effective” virions, namely virions that
are directly able to infect new individuals, released by a single
infected host during its duration of being infected before re-
covery. Given the total rate of events, we choose the time step

according to the standard Gillespie algorithm and then pick
which event occurs with the relative probabilities 1/(1 + R0)
for clearance and R0/(1 + R0) for virion release, and for both
event types the host in question is chosen at random from the
infected pool. Clearance is effected by removing the chosen
host from the infected list, reducing NI by one, and updating
its immune memory (see below). The release of a virion is
accompanied by its attempt to infect a new host. We allow
this released virion to be slightly modified from the strain
that caused the infection in question; specifically, we allow its
index i in shape space to mutate either up or down by one with
equal probabilities given by μ/2. If the randomly chosen new
host is currently uninfected, then infection will occur with a
probability pinf that depends on the degree to which that host
has immunity to that particular virion strain.

The model is completed by describing how the immune
state of an individual host is updated and how that state de-
termines the infection probability. We will assume that the
host carries multiple immune “memories”, corresponding to
its previous infection history. The immune memory is realized
in the matrix mem( j, i), storing the memory of host j having
been infected by viral strain i. There is no rule that memories
need to be distinct, as hosts can have been multiply infected
in the past by the same strain, with each exposure bolstering
the cell’s immunity to that strain. In our update scheme, every
time a host recovers, it stores a memory of the strain from
which it has just recovered. In the usual case where the num-
ber of existing memories for that host is equal to the memory
capacity, this new memory overwrites a randomly chosen
previous memory. Finally, we have the explicit formula for
the probability of infecting host j by viral strain k

pinf ( j, k) =
M∏

i=1

(1 − p0g(|mem( j, i) − k|)). (1)

Finally, we choose p0 = (1 − p1/M
00 ), which therefore gives a

bare infection rate of p00 for any hosts all of whose memories
are equal to that of the strain with which it is being challenged.
A brief description of the variables and parameters in our
model is presented in Table I and a schematic is presented
in Fig. 1.

There are obviously many parameters in this model and it
would be impossible to exhaustively vary all of them. As our
interest here is in revealing the types of behavior that can oc-
cur, we will initially stick to the choices p00 = 0.015, M = 6,
giving p0 ≈ 0.50. We will consider two values for the muta-
tion rate, a high value (0.5) which creates relatively smooth
profiles and hence allows comparison to our deterministic
PDE approach, and a perhaps more biologically reasonable
value (0.025). In Sec. IV, we turn to a closer investigation of
the impact of the number of memories, and the details of the
memory loss mechanism, on the dynamics.

B. Simulation results

Let us start with a simulation with w = 40, μ = 0.5 and
Nh = 2 × 104. We assume that initially some number of in-
dividuals are infected by a single viral strain and there is a
completely blank slate of memories for each of the hosts.
Starting with 40 initial infecteds, the time evolution of the
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TABLE I. Brief description of the model constituents.

Parameter/Symbol Meaning (Default value)

x Viral strain
n(x) Number of infecteds with strain x
I (x) Production rate of new infecteds with variant x
V (x) Rate of emission of virion strain x
E (x) Rate of virion emission by infecteds with strain x
fε (n(x)) Cutoff function preventing infection when the number of infecteds when the local number of infecteds is too low
pinf ( j, x) The infection probability for host j exposed to strain x becoming infected
g(�x) The function governing the cross immunity between strains at a distance �x
mem(k, i) The ith memory of host k
pin f (x) The probability that a random host will become infected if exposed to strain x
ρm(x) The population density of memories of strain x
Q(x) An auxiliary field used to compute pinf (x) from ρm

NI The total number of infecteds
Nh The total number of hosts
R0 The expected number of exposed hosts directly due to a single infection (3.8)
μ Probability of an emitted virion being a different strain than its parent (0.025, 0.5)
M Number of memories per host (6)
w Width of cross immunity
ε Cutoff local density below which infections do not occur
α Exponent entering in the cut-off function fε (4)
p0 A parameter quantifying the degree of partial immunity for the initial infecting strain (0.5)
χ Fraction of noninfected hosts ≡ 1 − NI/Nh

Lm Length of mound
nB Density of infecteds in central region of mound
QB Auxiliary field in central region of mound

system shows three distinct possibilities. One possibility is
that the infected population collapses almost immediately;
this happened for ten out of 50 independent simulations.
This behavior occurs because viral phenotypic diffusion, as
characterized by μ, does not occur fast enough to overcome
immune suppression. The dynamics at short times resembles
that of a pure single-variant Susceptible-Infected-Recovered
(SIR) model, where the number of infecteds rises quickly and
then falls to extinction, unless enough phenotypic diffusion
occurs to escape the immune shadow of the initial variant. The
percentage of immediate failures can be reduced by starting
from a more spread-out initial state, but this is not the typical
circumstance in realistic situations.

The other two behaviors are more interesting. One type is a
relatively stable single propagating pulse [5,11]; this state was
reached in approximately 50% of the simulations, but again
this number depends on the detailed initial conditions. A snap-
shot of this behavior is shown in Fig. 2(a) along with the time
history of the mean infection position along the phenotypic
axis [Fig. 2(b)] and the history of NI (t ) [Fig. 2(c)]. For this
parameter set, the pulse, once formed, is very stable, lasting
at least for many tens of thousands of simulation steps. This
stability is due to the fact that the range of fluctuation as ex-
hibited in Fig. 2(c) keeps the infected population number quite
far from the absorbing state at NI = 0. Thus, while the fluc-
tuations are indeed relatively large, the qualitative behavior
seen here is similar to what would be seen in a deterministic
model exhibited, for example, in the work of Ref. [11]. Note
that the average value of NI is much smaller than Nh and so,
for this state, model variants such as the cited ones that neglect
the finite size host pool may be reasonable simplifications of

our more complete formulation. The properties of this pulse
behavior has been studied extensively [10,12] so we will not
focus on it here.

Why does this pulse behavior arise in only 55% of the
nonextinction runs? This arises from the fact that, in the ab-
sence of fluctuations, the single-variant initial condition gives
rise to two counterpropagating pulses. If these two pulses
grow to maturity, they eventually lead the way to a different
dynamics, as we will explain directly below. Only if one
and only one of the incipient pulses dies in infancy due to
a fluctuation does a stable propagating pulse result.

So, what happens in the 40% of runs where two robust
counterpropagating pulses are generated? The answer lies in
an instability to the generation of new infections between
the pulses. Since the two pulses consume twice as much of
the memory as a single pulse, the degree of immune shad-
owing in the wake of the pulse is much reduced. Then, due
to phenotypic diffusion, new infections generated behind the
pulses are very likely to grow, in turn generating addition new
pulses behind. This leads eventually to a broadly distributed
infection pattern, as seen for example in Fig. 3(a). As more
and more infecteds are generated between the original pulses,
the number of susceptibles in the population is substantially
reduced and the leading pulses at either edge slow down.
The overall width of the pattern increases more and more
slowly [Fig. 3(b)] until eventually saturating, even as the total
infected population number remains relatively constant. As
Nh is increased, an increasing percentage of runs result in
this novel extended type of dynamical behavior. For example,
for Nh = 3 × 104, the number of runs leading to extinction is
reduced to 4%, due to the reduction in the fluctuations leading
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FIG. 1. A schematic view of the processes considered in our model. The space of allowed virions is taken to be one-dimensional, labeled
by coordinate x. There is a release of virions by an infected person, some of which can be mutated by moving one unit in x. These virions
then go on to infect other people, depending on the state of their immunity. Upon recovery, a previously infected person stores a memory of
the infecting virus. Memories can be lost in a variety of ways, as discussed in the text. Finally, immune protection against one virus by the
memory of another wanes as the distance between them increases.

to premature extinction. More dramatically, the number of
runs leading to a single propagating pulse falls precipitously,
to 24%, as fluctuation are what kill off one of the two pulses,
leaving a single stable pulse. Thus, 72% of the runs produce a
“mound” pattern.

What happens to the pulse solution if Nh is lowered? Car-
rying out simulations at Nh = 12 000 reveals the fact that the

pulse solution is in fact metastable. In Fig. 4(a) we plot NI (t )
for a pulse that spontaneously collapsed after a significant
amount of time. Clearly, going to a lower host population
size has lowered the mean value of NI for the pulse, thereby
putting the absorbing state within the range of large but not
excessively large fluctuations. The population depicted in the
figure survived close calls at t ∼ 1900, 2800, and 4000 before

FIG. 2. A stochastic traveling pulse, for w = 40, μ = 0.5, Nh = 2 × 104. Left panel: An instantaneous snapshot of the viral strain density
profile n(x, t ) and the memory density ρm(x); Center panel: The mean of the positions (phenotypes) of the infected individuals, as a function
of time t . Right panel: The total number of infected individuals, NI (t ), as a function of time.
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FIG. 3. The mound pattern for w = 40, μ = 0.5 and Nh = 2 × 104. Left panel: An instantaneous snapshot of the viral phenotype densities
n(x, t ), showing an extended tail in the wake of an originally propagating pulse. Right panel: The mound width, namely the distance between
the largest and small positions of individuals in the mound, as a function of t .

finally succumbing at t ∼ 4400. Our data is consistent with
a constant rate of decay of the probability of survival of the
pulse, which of course implies an exponential distribution of
survival times. The decay rate appears to be a strongly de-
creasing function of Nh accounting for the lack of observations
of the long-time pulse collapse in our simulations at Nh =
20 K. The main conclusion to be drawn from these simulations
is that while long-lived stable pulses are a possible outcome
with a localized initial infection, they are by no means the
only outcome, together with extinction and mounds, with
extinction dominant for smaller Nh and mounds for larger Nh.
Hence, investigating the nature of the mound pattern in more
detail is a worthwhile task, to which we shortly turn.

Before proceeding, though, let us make a few observations
about multipulse solutions. Given that at sufficiently large N ,
a single pulse solution exists and is linearly stable, one might
expect multipulse solutions with either counter-propagating or
copropagating infected host populations which are far enough
apart to minimize cross reactivity. Figure 3(b) shows an ex-
ample of a counterpropagating pair, at the much lower value
of Nh = 5000. Interestingly, this pattern is not typically se-
lected from generic localized initial conditions, unlike what
is observed in excitable media with purely local inhibition
where each edge of the initial data generates an independent
and oppositely propagating pulse. Furthermore, no matter how

far apart the pulses are, they continue to interact via the lim-
itations on immune memory; a host becoming infected by a
far-away virion will degrade its immune response to the near
virion by which it was most recently infected. In other words,
the model has long-range coupling in phenotypic space. This
tends to diminish the ability of the pulse wake to remain stable
and thereby lowers the range of the overall host population
size for which the two-pulse solution is stable.

We also carried out calculations at values of the parameters
which may be more physiological and which more strongly
emphasize stochasticity. Specifically, we set w = 10 which
makes the immune shadow of an infection pattern much
less spatially extended. To partially compensate, we set μ =
0.025; note that this is close to the naive estimate that one can
change these parameters while maintaining the dimensionless
ratio μ̃ = μ/w2 constant and expect only a limited change
of behavior. The key finding is that the basic phenomenology
is unchanged, and so the basic range of behaviors presented
is independent of the details of the parameter choice. Thus,
for Nh = 2 × 104, we get mound patterns in 74% of the runs
and pulses in the rest. For N = 1.5 × 104, we get mounds in
52% of the runs and pulses in the rest, one of which dies at
t = 650 due to a fluctuation. Reducing Nh further to Nh = 104,
we encounter 12% immediate (before t = 100) extinctions,
22% mound patterns, and the rest pulses, 1/3 of which die

FIG. 4. Left panel: The total number of infected hosts, NI (t ), showing the collapse of a traveling pulse for Nh = 1.2 × 104. Right panel:
Two counterpropagating pulses for Nh = 5000, showing the viral phenotype profile n(x) in black and the (unnormalized) memory profile
ρM (k) ≡ ∑

i, j δmem(i, j),k in red. For both panels, w = 40 and μ = 0.5.
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FIG. 5. Stochastic simulation for w = 10, μ = 0.025, Nh = 104. Left panel: Infection profile n(x). Center panel: Distribution of patch
(defined as a set of strains without a gap of 2w separating them, so that it constitutes an effective phenotype) population sizes P(m). Right
panel: Distribution of gap sizes, P(g), between effective phenotypes, showing an approximate P(g) ∼ g−2 power law.

due to a fluctuation before t = 1000. Thus, the general trend
that decreasing Nh gives rise both to more immediate ex-
tinctions as well as fully developed pulses, whose average
lifetime decreases with decreasing Nh. In the next subsection,
we will discuss the mound pattern in more detail, examining
its development in time and its internal structure.

C. More on mounds

As already mentioned, simulations at large Nh typically
lead to extended patterns, with localized patches of infection
separated by gaps, i.e., ranges of phenotypes not present in the
population. As has already been seen in Fig. 3(b), the width
of the overall structure increases slowly over time and takes a
long time to reach a very noisy steady state. Since the over-
all population remains roughly constant (at approximately
2/3Nh), this implies that either the patch size must be de-
creasing or the typical gap must be widening during this long
transient. Now, just as we saw for isolated pulses, patches can-
not remain stable for long times when their size becomes too
small. Hence, as patches shrink, they will disappear and lead
to larger gaps between neighboring patches. This is balanced
initially by the creation of new patches in the wake of existing
ones (see below), but this effect diminishes as the number of
patches becomes large and NI reaches its steady-state value
much above that of a single pulse. Also, patches have a small
repulsive interaction due to residual immune memory effects.
All this means that over the transient period, the major effect
is a spreading apart of the patches. This will only cease when
the rate at which the outermost patches disappear matches the
average rate at which they move outward. This behavior leads
to a very diffuse pattern in the very long time limit.

In Fig. 5(a), we present a second example of this structure,
at Nh = 104,w = 10 and μ = 0.025, now focusing on simula-
tion times long enough to have reached the very noisy steady
state. As advertised, the basic structure is that of relatively
isolated patches of infected host density separated by gaps
that are much larger than w. In Figs. 5(b) and 5(c) we plot,
respectively, the distribution of patch populations and of the
gaps. The patch population size exhibits a peaked distribution
and hence the patches can be characterized by a typical popu-
lation size. On the other hand, the gap distribution is a power
law, corresponding to an extremely disordered pattern. The

exponent in the power varies as a function of parameters, i.e.,
is not universal (data not shown).

As the pulse pattern and the extended endemic pattern can
both occur at the same set of parameters, the emergence of the
latter cannot be directly due to a linear instability of the for-
mer. Instead, there appears to be a finite amplitude instability
wherein a nascent peak appears in the wake of a propa-
gating pulse and manages to overcome the immune system
inhibition. Once this occurs for the leading peak, the system
cascades into the full extended pattern; this presumably occurs
because the effective immune “shadow” decreases with the
number of patches as they compete for immune memory slots,
as explained above for a two-pulse solution. This behavior
gives rise to a rapid expansion phase, which only reaches the
slow transient behavior described above when NI has reached
its asymptotic value and the creation of new pulses becomes
much less common.

It is of course quite difficult to devise analytic approaches
to a complex multifield nonlinear spatially extended stochas-
tic dynamical system. To make further progress, we next
introduce a deterministic approximation to the dynamics, as
already has been proven useful for the stable pulse solution in
related models [5,6,11]. Our emphasis therefore will be on the
extended pattern, whose existence and properties constitute
the major new results of this work.

III. DETERMINISTIC EQUATIONS

A. Derivation

We now proceed to derive a mean-field deterministic model
that will allow us to gain some analytic insight into the coevo-
lutionary dynamics. We will work in the spatial continuum
limit where differences and sums are replaced by derivatives
and integrals. The equation for the density of infected hosts
is just

ṅ(x) = − rn(x) + I (x), (2)

where r is the recovery rate and I is the rate of new infections
of type x. The I field in turn is given as the product of three
factors,

I (x) = V (x)pinf (x)

(
1 − NI

Nh

)
. (3)
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Here, V (x) is the rate of virion emission including the effects
of mutation, while pinf (x) determines the immune inhibition.
The last factor accounts for the fact that currently infected
people cannot acquire a new infection. In our stochastic
model, the mean rate of virion emission by infected hosts of
type x is given by rR0n(x). In constructing a deterministic
model, we have also to incorporate the well-established idea
[4,5,19–21] that the production of new virions needs to be
cut off at small n as an approximate way to incorporate the
discreteness of individual hosts. Thus the rate of emission by
infected hosts carrying strain x is taken to be

E (x) = rR0n(x) fε (n(x)), (4)

where fε is a function that goes from 0 to 1 as its argument
increases and whose natural width depends on the cutoff pa-
rameter ε. In particular, we choose the cutoff function

fε (n) = 1 − e−( n
ε

)α . (5)

This function vanishes as nα for n � ε and approaches 1
exponentially for n > ε.

In our stochastic model, newly created virions can, with
probability μ, represent a strain mutated with respect to their
parent virus strain x, with their new phenotype being with
equal probability either x − 1 or x + 1. This translates to a
total viral emission rate for strain x of

V (x) = E (x) + μ

2
E ′′. (6)

Note that in this continuum formulation, the only two quanti-
ties with dimensions of length are

√
μ and w, which were in

the stochastic, lattice formulation, measured in units where
the mutational change in x was unity. Thus, the relevant
dimension-free parameter is the ratio μ/w2.

The remaining challenge is to devise a deterministic
treatment of the immune memory and the concomitant con-
struction of pinf . We assume that there is no correlation
between memories in the different slots of a given host or
between hosts, so that the state of the memory is characterized
simply by the memory density function ρM (x, t ). With this
assumption,

pinf (x) =
(∫

dx′ ρM (x′)(1 − p0g(|x − x′|))
)M

, (7)

where, as before, g is an exponential with width w. Our
stochastic simulations show that this is a quite good as-
sumption, at least for M = 6. Finally, we need to update the
memory density. This occurs whenever a host recovers, and
the resultant equation is

ρ̇M (x) = −ρM (x)

MNh

∫
dx′ rn(x′) + rn(x)

MNh

= − rρM (x)NI

MNh
+ rn(x)

MNh
. (8)

The first term accounts for the overwriting of old memories, as
each memory accounts for a fraction 1/(MNh) in the density.
The second term refers to the writing of a new memory; note
that the memory density remains normalized

∫
ρM (x)dx = 1,

as the time derivative of this sum automatically vanishes.
The fact that the infection probability is a nonlocal function

of the memory density is an annoyance when it comes to

both numerical calculation and analysis. It is, therefore, more
convenient to define an auxiliary field Q via

Q′′ − Q

w2
= − 2

w
ρM, (9)

supplemented by the boundary conditions that ensure that

Q(x) =
(∫

dx′ρM (x′)g(|x − x′|)
)

, (10)

in terms of which

pinf (x) = (1 − p0Q(x))M . (11)

Q has no independent physical significance, as indicated by
the fact that it has no actual dynamics; it is merely a way to
track the factor by which infectivity is reduced at position x
by the integrated effect of all the current memories.

We thus obtain the two dynamical equations in their final
form

ṅ = −rn + I = −rn + V (1 − p0Q)M, (12a)

ρ̇M = − r

NhM
(ρMNI − n) (12b)

with the auxiliary equations

E = rR0n

(
1 − NI

Nh

)
fε (n), (13a)

V = E + μ

2
E ′′, (13b)

Q′′ − Q

w2
= − 2

w
ρM . (13c)

Finally, an explicit global coupling in the model is through
the dependence on NI , the total number of infected individuals
at a specific time, which enters into the above determination
of the emitted virion field E . Of course, there is also global
coupling through the Q field.

B. Pulse solution

As a warm-up exercise, we first proceed to understand why
the deterministic equation allows for an isolated pulse solu-
tion, moving with a steady-state shape at a specific constant
velocity c and containing a precise number of infected hosts.
To see this, we need to analyze the deterministic equation in
the two asymptotic regimes; the tail behind the front and the
leading edge ahead of it. We can thereafter employ the idea
of counting the number of parameters that need to be adjusted
to satisfy matching conditions in order to determine the di-
mension of the space of allowed solutions. As the derivation
is fairly involved, we sketch it here and relegate the details to
Appendix A.

The lack of new infections in the tail implies that the
infected host density decays exponentially to the left (assum-
ing a rightward propagating pulse), with an undetermined
magnitude. From Eq. (13a), we get that E likewise decays
exponentially, with a magnitude set by that of n. From E we
can uniquely determine V from Eq. (13b). Also ρm as given
by Eq. (12b) has a homogeneous exponentially decaying solu-
tion, with an arbitrary amplitude as well as an inhomogeneous
term driven by n. Lastly, Q has a homogeneous term, with
undetermined amplitude, that can be added to the particular
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FIG. 6. Infection profile n(x) and memory density (rescaled by
a factor of 2500) ρM (x) for a deterministic pulse, with w = 40, μ =
0.5, Nh = 15000, ε = 1, α = 4.

solution driven by ρm. Thus the most general solution in the
tail has three unknown constants, the amplitudes of n and the
homogeneous pieces of ρm and Q.

The situation is considerably more complicated at the lead-
ing edge, as here we have new infections occurring. The cutoff
in Eq. (12a) plays a key role here, as mentioned above. Since
the cutoff not only multiplies the E term in V , but also the
“diffusion” term E ′′, we effectively have a case of nonlinear
diffusion. Hence we might expect (and will verify below) that
solutions exist for which the infected host population becomes
precisely zero after some value of x. This is analogous to
what has been seen in the Fisher equation with nonlinear
diffusivity [22–24]; in particular, it has been shown there that
the fronts that form from localized initial conditions have this
specific property. Thus, we have to first find the specific form
of this nonlinear solution and then determine, by linearizing
away from that solution, the number of unknowns govern-
ing the fields in this region. This calculation is presented in
Appendix A, with the result that there is one unknown in this
region, specifically Q evaluated at the leading edge.

So, our two asymptotic solutions have a total of four un-
knowns, and adding in the velocity c makes five. This needs
to be compared to the number of matching conditions if the
equations are integrated separately from the two edges to
some common point in the middle. Q satisfies a second-order
equation and hence both Q and Q′ must be continuous. ρM

satisfies a first-order equation and hence it needs to be contin-
uous. Since I depends on two derivatives of n, the n equation is
effectively second-order; hence we must impose that n and n′
are continuous. This gives a total of five equations, showing
that in general there will be a discrete set of pulse solutions.
Numerically, there appears to be only one stable solution of
this type. A simulation starting from a localized source will
indeed converge to such a solution. An example of a pulse
solution is shown in Fig. 6, where both the infected host
population n and the memory density ρM are presented. We
can explicitly check that this solution quantitatively agrees
with the exponential behavior in the tail. The situation at the

leading edge is trickier because of the singular behavior there.
One must be careful to avoid effects due to the discrete nature
of the phenotypic space (and of the simulation algorithm)
in order to see the structure predicted by our spatially con-
tinuous treatment. A simple approach yields qualitative but
not extremely quantitative agreement. We will carry out this
comparison in the next section, for a different type of solution.

As already mentioned, the single pulse solution in this
model is similar in many respects to pulses found in other
evolutionary dynamics problems. There are of course residual
questions that are worth investigating, especially the depen-
dence of the total infected number NI on the host population
size Nh. However, the major point of this work is to understand
the more exotic dynamical behavior found in the stochastic
simulations, namely the extended patterns that emerge due
to the ineffectiveness of the immune system in suppressing
fluctuations that arise in the wake of a propagating pulse. This
happens for large Nh, which translated in the deterministic
model should correspond to small ε. We now turn to a dis-
cussion of this behavior.

C. Mounds

In Fig. 7, we present a series of snapshots from a simulation
of the deterministic model at a low cutoff value. Initially a
pulse is formed, but relatively quickly a second peak of the
infected population density appears in the wake of the original
pulse. This process can be seen in Fig. 7(a), where the second
peak has appeared due to the failure of the immune “shadow”
to adequately suppress its growth. This instability leads to a
new type of static solution which we refer to as the mound.
For these values of the parameters, this is a finite amplitude
instability, as a careful preparation of the pulse state allows it
to propagate indefinitely without this type of instability.

After the initial instability, the system settles into a slowly
expanding pattern [Figs. 7(b) and 7(c)] with two counter-
propagating peaks on the outside leaving behind a constant
infected host density region between them, the “bulk” re-
gion, which we denote by nB. Similarly, in this region, the
memory density is also essentially constant, ρM ≈ ρMB , and
so is the associated auxilliary field Q ≈ QB. Let us assume
that we can ignore for the moment the slow spreading of
this constant region. Then, the bulk state obeys the time- and
space-independent equations

rnB = E (1 − p0QB)Mχ,

QB

w2
= 2

w
ρM,B,

ρM,B = I (x)

IT
= nB

NI
, (14)

E = rR0nB fε (nB),

where for convenience we have introduced χ ≡ 1 − NI/Nh,
the fraction of uninfected hosts. The solution of this set of
equations determines the bulk infected density nB via the
implicit condition(

1 − 2w
nB

NI
p0

)M

= 1

R0χ
. (15)
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FIG. 7. Time development of a deterministic mound solution, for w = 20, μ = 0.125, Nh = 5000, ε = 0.05, α = 4. Left panel: Infection
profile n(x) (blue) and rescaled Memory profile ρM (x) (red), at time t = 40. Center panel: Infection profile n(x) for t = 250. Right panel:
Infection profile n(x) for t = 400.

This is valid in the case where nB is large enough such that
the cutoff function can be taken to equal unity. Now, while the
solution is expanding, we clearly have NI ≈ nBLm, where L −
m is the instantaneous length of the mound (or, more precisely,
of the bulk region), so that χ ≈ 1 − nBLm/Nh. Thus, the above
equation gives rise to the simple predictions,

nB(t ) = Nh

LmR0

[
R0 −

(
1 − 2w

Lm(t )
p0

)−M
]

QB(t ) = 2w

Lm(t )
, (16)

so that nB slowly decreases as the mound expands. Once we
have this result, we can qualitatively understand the spreading
dynamics. The pair of pulses delineating the bulk regime will
each move at a velocity v that can be found from the type
of two-pulse solution we have seen in the stochastic model,
Fig. 4(b); with dLm

dt = 2v. Here, however, the parameter χ ,
which is related to the total number of infected hosts, and
the global field Q are no longer determined by the pulse
solution itself, but instead are dominated by the bulk region.
The reduction of χ as NI increases will slow the pulse, so that
the velocity is time varying. A comparison of these predictions
with our numerical results is presented in the first two panels
of Fig. 8. In the leftmost panel, our above prediction for nB

based on the measured Lm(t ) is compared to the measured

value of n(t ) at the center of the mound. In the middle panel,
our prediction for QB based on the measured Lm(t ) is tested
against the direct measurement of Q(x) at the mound center.
Both these panels show good agreement at large t . The right-
most panel shows the falloff of the velocity at large times.

If there were no cutoff, the above argument suggests that
the pulse would spread forever and would never reach a time-
independent solution. This is of course not what we found
for the stochastic model, where the system does eventually
reach a statistical steady state. The cause of this stopping is
that eventually the cutoff becomes important in letting the
pulse velocity go to zero. To understand this in more de-
tail, we can consider the slightly simplified problem of an
infinitely-long static “half-mound” which connects the afore-
mentioned static solution as x → −∞ with a nonpropagating
pulse which completely vanishes at some particular x value
(again chosen to be x = 1), as did the propagating pulse solu-
tion studied above. In this solution, the parameter χ is taken
to be a free parameter and it directly determines NI through
NI = Nh(1 − χ ). Once the solution is found, however, it can
be reinterpreted as a large but finite solution where the length
Lm is determined by the consistency requirement which is
approximately NI = n0Lm or more exactly that the assumed
value of NI is actual equal to 2

∫ 1
1−Lm/2 n(x)dx.

As with the pulse solution, we need to analyze separately
the two asymptotic regimes, the semi-infinite bulk and the

FIG. 8. Comparison of numerical simulation with asymptotic theory from Eq. (16). The left block shows n(xmid, the infected population at
xmid, the middle of the mound, the middle shows Q(xmid,the auxiliary field Q at xmid, and the right is a plot of the decreasing velocity, showing
the decay of the mound front velocity toward zero.
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FIG. 9. Left panel: The half-infinite mound infection profile n(x) as found by shooting for μ/w2 = 2.5 × 10−4, Nh = 5000, ε = 0.22, α =
4. Right panel: A blow-up of the leading edge of the half-mound profile, along with the tip region of the stationary mound obtained from a
dynamical simulation on a discrete lattice and also the predicted

√
1 − x behavior.

front, determining the degrees of freedom in both regions. We
first consider the bulk region, considering spatially dependent
deviations from the constant bulk solution. Restoring the spa-
tial derivatives and expanding around the solution, we have
for the deviations of the various fields from their asymptotic
limits,

δn = δn

(
1 + μ

2
k2

)
− p0n0M(1 − p0Q0)−1δQ,

δQ

(
k2 − 1

w2

)
= − 2

wNI
δn. (17)

This yields the dispersion relation

(w2k2 − 1)k2 = − p0n0Mw

μNI (1 − p0Q0)
. (18)

In general, this gives rise to four complex modes of the form
e±ax±ibx. Thus, as x → −∞, there are two bad and two good
modes, implying that the solution for large negative x has two
unknown parameters, namely the coefficients of the two good
modes.

We must next turn to the leading edge. This is presented in
detail in Appendix B. The result is the same as before, namely
that the only new degree of freedom is the value of Q. We
then are finally in a position to count degrees of freedom and
compare to the continuity conditions that must be imposed to
connect the two asymptotic regimes, say at x = 0. As com-
pared to the propagating pulse, there is one fewer matching
condition, namely four here, as the order of the n equation has
been reduced by 1. The number of unknowns is similarly four;
two coefficients at large negative x, Q(1) and χ . Thus there is
expected to be a unique solution, or perhaps a discrete set of
solutions. Our simulations strongly suggest that there is only
one such solution that is dynamically stable, as the system is
always attracted to a unique mound state.

D. Shooting method

We have implemented a shooting method to solve for the
half-infinite mound. Based on the above analysis, we shoot

forward from an arbitrarily chosen xb, where we choose a
small amplitude perturbation of the bulk solution. The per-
turbation is characterized by two matching parameters, the
phase of the growing fluctuation and NI . The fourth-order
set of ordinary differential equations is integrated forward to
the point where n′(x) vanishes and n is sufficiently large that
we are out of the tail region. In parallel, we shoot backward
from the point x = 1 where the density vanishes. Here, the
matching parameters are Q(1) and NI . Again, we integrate
until n′(x) first vanishes. At this point, the other three fields
have to agree, giving us three equations in three unknowns.

The resulting numerical solution is plotted in Fig. 9 and
matches exactly that produced by the time-dependent sim-
ulation. In particular, the behavior of the simulated system
at the x = 1 singular point exactly matches that predicted
by the analytical treatment. To make this occur, we had to
choose a very large value of μ so as to limit the effects of
phenotypic discreteness (i.e., the spatial lattice with constant
one) introduced by the finite difference simulation strategy. At
smaller values of μ, the numerical solutions become affected
by the lattice and the quantitative (but not qualitative) level of
agreement degrades.

E. Combs

There is one additional pattern that is possible in the deter-
ministic system. Figure 10 shows what we will call a “comb”
configuration. This is a time-independent solution of the gov-
erning equations that again emerges via an instability of the
tail of an originally propagating pulse. Here, however, the
immune shadow behind each peak is large enough to prevent
the full mound from forming, thereby leaving behind a pattern
of isolated peaks.

Comparing the deterministic findings to the stochastic
simulations, we see rough congruence. Of course, the de-
terministic system can never exhibit a complete collapse of
the infected population; this collapse is a fluctuation-induced
effect that ultimately depends on the absorbing state nature of
the n = 0 solution. Aside from this, we saw that both models
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FIG. 10. The deterministic comb pattern infection profile n(x)
for w = 40, μ = 0.5, Nh = 5500, ε = 1, α = 4.

exhibit two types of states, a propagating local pulse versus
an extended, eventually statistically steady, configuration. The
difference between the deterministic mound and comb states
has been obfuscated in the stochastic dynamics. The time
average of the stochastic simulation is clearly consistent with
the mound state even though a single snapshot is perhaps more
analogous to a comb structure with its isolated peaks. For both
cases, the number of infected hosts is a significant percentage
of the total number of those present, unlike the case of the
pulse solution with NI much less than Nh.

IV. THE ROLE OF MEMORY DECAY

In the previous sections, we have demonstrated the exis-
tence of a tail instability that often leads to the formation of an
endemic state of infection. This was shown initially in the full
stochastic model and then analyzed in detail using a determin-
istic PDE approximation thereof. We note in passing that this
instability was eliminated by hand in Ref. [10] by choosing
a highly nonsymmetric infectivity profile which for a pulse
never forgets previous infections. The physical justification
for such a kernel is not clear and in any case does not appear
to accurately describe respiratory infections (see below). A
similar ad hoc modification of the model was responsible for
eliminating the instability in Ref. [12]. This instability arises
from the decay of memories in our model due to the finite size
of the memory buffer. We have checked that there can be no
such instability if we allow an unbounded set of memories.
We also checked that increasing the memory size will push
the instability to larger values of Nh, assuming that all other
parameters remain unchanged. In other words, there needs to
be more available hosts to support the endemic state if each
host has a more effective immune memory system.

The assumption that the new memory induced by the re-
covery from a new infection must replace an existing one is
perhaps most closely realized in the CRISPR-based bacte-
rial immune context [25]. There, virus information is stored
in a DNA array which remains roughly at fixed size even
as new viruses need to be remembered [26]. There is still

some uncertainty as to the precise molecular mechanism that
enables this behavior and whether there is any bias in which
memory is deleted to allow room for a new one to be stored.
We have therefore checked that one finds an analogous tail
instability (leading again to an endemic state) if one changes
our model so as to drop the oldest rather than a randomly
chosen memory. An example of the still-evolving endemic
state along with the relevant infectivity profile is presented in
Fig. 10. Going to this new model variant lowers the memory
size threshold above which the tail instability vanishes. This
occurs because dropping the oldest memory makes the im-
mune system more potent to the variants currently dominant
in the system.

What about the human adaptive immune system and other
similar ones? There is significant evidence that at least for
some respiratory viruses such as the SARS family, there is
indeed a decay of immune response over extended times
[27,28]. This decay apparently involves the reduction of the
number of long-lived antibodies, as has been shown for SARS
directly and more recently for COVID-19 [29]. It does not ap-
pear to be true for other viral diseases such as measles. Thus,
diseases with memory loss typically lead to the SEIRS class of
models [30], corresponding to susceptible, exposed, infected,
recovered, and returning to susceptible subpopulations. Our
model is of course a variant-resolved version of SEIRS, albeit
with a more complex return to susceptibility depending (in our
case) on the degree of mutations.

To test whether the precise form used above, involving
memory replacement as opposed to simple loss, is essential,
we can instead introduce memory decay as a simple stochastic
process. Here, we eliminate memory replacement and in its
place introduce a rate at which an individual memory de-
cays. This additional stochastic process becomes part of the
overall Gillespie algorithm, which now chooses appropriately
between individual host recovery, new infection of a host, and
decay of a randomly chosen memory. In Fig. 11, we present
simulation snapshots from this new variant model, first at the
ratio of memory decay to host recovery of 0.005 (showing no
tail instability) and then at 0.03 (showing a tail instability).
These results clearly indicate that the precise form of memory
decay is not an essential aspect of the new endemic state. We
can therefore expect that both respiratory viruses in mammals
as well as phages in bacteria might exhibit this possibility.

For this set of parameters, a ratio of 0.01 is at the margin,
which means that some runs result in extended states and
some do not. Interestingly, this value seems to be in the rel-
evant physiological range for COVID-19 [29], several years
versus a week or two. Basically, the issue is the extent to
which individuals left behind the main pulse remain infected
long enough for their viral loads to take advantage of memory
decay in the population and ignite a new burst. This new burst
must rely on increased infectivity and if we compare the two
subfigures of Fig. 12, we see the difference in the infectivity
(roughly 0.3 versus 0.1) in the unstable versus stable cases. We
also point out that we study the case of two counterpropagat-
ing pulses due to convenience, as this is the state that is easiest
to produce starting from a localized infected host population
as an initial condition. All of our findings equally apply to one
propagating pulse, albeit with some change (i.e., lowering) in
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FIG. 11. Simulation of a case where the oldest memory is replaced upon new infection. Here, a snapshot of the nascent mound state is
shown, for Nh = 30 K, w = 20, μ = 0.5 and a memory buffer of size 3.

the stability threshold due to the elimination of the require-
ment for hosts to remember two separate coexisting strains.

V. DISCUSSION

Understanding the never-ending battle between viruses and
our adaptive immune system is clearly a critical issue in
modern-day statistical physics and biomedicine. The problem
and its importance have been amply demonstrated by our
experience with COVID-19. A new virus emerges, and the
immune response is constantly challenged by the ability of the
virus to mutate to new variant strains that are beyond the range
of immune coverage. We certainly need to do a better job of
understanding the resultant dynamics and devising possible
ways to mitigate the corresponding consequences.

Viral evolution has been effectively modeled by devising
equations that govern population propagation in a fitness land-
scape. These ideas have been successfully applied both to
artificial evolution in laboratory experiments as well as to HIV
infections. However, most of these works have assumed that
the aforementioned fitness landscape, however complex, was
not able to adapt to changing viral populations. This is ex-
plicitly not the case when considering the role of the immune
system in responding to viral infection. Thus, several recent
papers on coupling viral evolution to dynamic immune system
response represent a welcome expansion of the applicability
of fitness evolution modeling.

This work has presented a new formulation of viral-
immune coevolution, including the effects of a finite host
population and the dynamics of a (possibly) finite immune

FIG. 12. Simulations of the memory decay variant where there is no a priori limit on memory size, but individual memories decay with
variable rates. Other parameters are the same as in Fig. 11. In the left two panels, the ratio of memory decay rate to infection recovery rate is
0.005, and in the right two panels it is 0.03. Note the difference in infectivity for the two different cases.
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memory capacity. We have shown that in addition to the pulse-
type solution discussed at length in previous works, there
are other radically different possible behaviors. Specifically,
there can be an extended state in which the host population
remains infected by a very broad range of viral strains. This
state initially appears via a finite-amplitude instability of the
pulse solution and leads to a pattern of endemic infection
whose spread is only limited by the total host population and
the ensuing demographic noise. We have studied this novel
pattern both by direct simulation and also by a semianalytic
approach relying on a cutoff mean-field deterministic version
of the governing stochastic process. Our model contains, of
course, many parameters, but our results suggest that a key
determinant of the observed behavior is the range of immune
coverage, here characterized by the ratio of the width w of
the exponential falloff in immune efficacy to the phenotypic
distance covered by viral evolution during a typical host in-
fection time, here c/r where c is the pulse speed. Once the
system reaches an extended configuration, its eventual size is
determined by the effective cutoff, which here scales as 1/Nh.

We have already discussed how adaptive systems with
effective memory decay should generically exhibit the phe-
nomenology described in this work. We wish to add that such
a decay can occur at the individual level as in the variety of
models considered above, each exploring a different specific
mechanism, or could occur also at the population level. For
example, imagine that we are considering populations with
birth and death, the latter being necessary to address questions
regarding disease virulence and its possible evolution. Then,
new individuals would constitute a nonimmunized reservoir
which could drive our tail instability. Another possibility is an
infection that is spreading geographically, reaching previously
uninfected hosts. Taken all together, we expect that many
real-life situations could lead to the type of endemic states
discussed here.

It is important to note that the tail instability provides a
temporal pattern distinct from what would be seen in a sys-
tem exhibiting the type of oscillatory state found by Sasaki
and coworkers [13]. There, the pulse exhibits a “near-death”
episode and only survives when small numbers of individuals
at the leading edge start growing rapidly. In this scenario, a
new strain would appear only after a period of time with no
obvious infection; based on our preliminary investigations,
this behavior is in fact very sensitive to the form of the cross-
reactivity function and is not at all seen in models with the
exponential decay used here (data not shown; results to be
published). In our case, the basic infection continues to evolve
continuously but spawns reinfection by strains that naively
appeared to be vanquished.

There are many additional directions that could be studied
in future work. The reduction of the problem to a one-
dimensional phenotypic equation relies on the localization of
the viral population in orthogonal dimensions, namely neutral
genomic variations that do not contribute to fitness changes.
This localization has been seen in simulations of the pulse
solution ([11] and unpublished data) but has not to date been
considered in the context of extended states. From the pure
theory perspective, proving that the pulse instability is always
finite-amplitude is a tractable problem. There is also the need
to better understand the Nh dependence of the various patterns,

possibly finding an explicit way to take the limit Nh → ∞
for the pulse solution. It should also be possible to relate the
“comb” solution to similar structures that can appear in the
type of nonlocal Fisher equations used in the modeling of
species diversity [17,18,31].

The real challenge for this line of research is making more
quantitative contact with actual experimental data. This will
require a detailed analysis of the cross-reactivity function. In
the context of COVID-19, there is data and analysis regarding
how antibodies effective against one strain lose effectiveness
when confronted with other strains [32]. In the context
of CRISPR-based phage immunity, there is a reasonable
understanding of how changes in the viral sequence can alter
the immune response [25]. Once this is accomplished, one
should be able to look for the temporal signature of the tail
instability. One might imagine comparing the spreading of
the mound solution (before it reaches a steady state) with
data on the dynamics of viral variants in a host population.
A pulse solution corresponds to a replacement theory; a new
strain takes over and no one gets infected by previous strains.
A mound state on the other hand suggests the possibility that
old variants can reappear even as old variants remain active.
On the applied side, one could use our theoretical framework
to design vaccine treatments that would interfere with the
natural dynamics and increase the chances of collapse of the
infected population.
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APPENDIX A: PULSE SOLUTION: DETAILS

In this Appendix, we present more of the details of the
argument arguing for at most a discrete set of propagation
velocities for the isolated pulse solution, each with a specific
number of infected hosts. As outlined in the main text, the
essence of the argument is to analyze the number of adjustable
parameters characterizing the solution of the deterministic
equation in each of the two asymptotic regimes; the tail behind
the front and the leading edge ahead of it.

Starting with the tail, we immediately conclude that the
lack of new infections there means that the infected host den-
sity decays exponentially. Specifically, replacing ṅ by −cn′
(i.e., going to the moving frame and assuming the pulse is
moving to the right) and dropping I , we find from Eq. (2) that
n ≈ nberx/c where nb is an as yet unknown constant. Next we
substitute this form into the definition of E in Eq. (13a); using
the aforementioned form of the cutoff we arrive at

E ≈ rR0ε
−αe−(α+1)rx/cnα+1

b . (A1)

From E we can uniquely determine V from Eq. (13b). Finally
we note that ρm has a homogeneous solution and Q has a
homogeneous term that can be added to the particular solution
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driven by ρm,

ρm ≈ ρm,beβx − nb

NhM
erx/c,

Q ≈ 2ρm,b

1/w − wβ2
eβx + Qbex/w, (A2)

where we have defined β = NI/(cMNh). The inhomoge-
neous term is an exponentially suppressed relative to the
inhomogeneous term, since β < r/c. Thus the most general
solution in the tail has three unknown constants, nb, ρM,b

and Qb.
The situation is considerably more complicated at the lead-

ing edge, as here we have new infections occurring. The cutoff
in Eq. (12a) plays a key role here, as mentioned above. Since
the cutoff not only multiplies the E term in V , but also the
“diffusion” term E ′′, we effectively have a case of nonlinear
diffusion. Hence we might expect (and will verify below) that
solutions exist for which the infected host population becomes
precisely zero after some value of x. This is analogous to what
has been seen in the Fisher equation with nonlinear diffusivity
[22–24]; in particular, it has been shown there that the fronts
that form from localized initial conditions have this specific
property. Thus, we have to first find the specific form of this
nonlinear solution and then determine, by linearizing away
from that solution, the number of unknowns governing the
fields in this region.

To accomplish this, we assume that

n(x) ≈ n f (1 − x)γ , (A3)

where we have used translation invariance to fix the singular
point to occur at x = 1. The left-hand side of the n evolution
equation, Eq. (12a) is then cn f γ (1 − x)γ−1. This term is larger
than the −rn term on the right-hand side and therefore it
must be balanced by the infection piece I . As x approaches
1 from below, the leading term in I arises from the E ′′ term
in V . Using the asymptotic form of the cutoff for small n, we
have

E ≈ rR0ε
−αnα+1 ≈ rR0ε

−αnα+1
f (1 − x)(α+1)γ ,

V ≈ μ

2εα
rR0nα+1

f (α + 1)γ [(α + 1)γ − 2](1 − x)(α+1)γ−2.

(A4)

To get I , we just have to multiply by the as yet un-
determined factor χ ≡ 1 − NI

Nh
and by pinf (x) ≈ pinf (1) =

(1 − p0Q(1))M , since Q is determined globally and is not
singular. Thus, the matching of the two sides of Eq. (12a)
requires the powers of (1 − x) to be equal to each other, which
yields γ = 1/α. Then the coefficients must also match, fixing
n f to satisfy

n−α
f = μrR0χ (1 + α)

2cεαα
(1 − p0Q(1))M . (A5)

This result shows that Q(1) is an unknown number, adding to
the list of parameters that need to be determined. Note that
the integral formula for Q, Eq. (10) directly determines that
Q′(1) = −Q(1)/w and hence this is not an additional degree
of freedom.

We now consider the linearized equation around this base
solution so as to determine how many unknowns need to be

specified in order to integrate the equations from the leading
edge to the pulse center. Denoting the shifted values of n, E ,
and I as, respectively, δn = An(1 − x)p, δE = AE (1 − x)p+1

and δI = AI (1 − x)p−1, we have the following equations to
leading order in (1 − x):

cpAn = AI , AI = (1 − p0Q(1))M μ

2
p(p + 1)AE ,

AE = rR0nα
f (α + 1)Anε

−α = An
2cα

μ(1 − p0Q(1))M
.

Combining these equations leads to the very simple condition,
p = p(p + 1)α, which yields the two possibilities p = 0 and
p = 1/α − 1. The second of these just corresponds to a trans-
lation of the base solution (recall that γ = 1/α) and neither
of these are allowed. Thus there are no additional unknown
constants in the leading edge solution. We also should men-
tion that χ is an unknown parameter, but this will have to
be determined self-consistently by the fact that it is directly
related to NI ; picking any arbitrary value of χ will lead to this
constraint being violated.

These results are used in the main text to show that the
number of unknown parameters (including the velocity as one
of these) equals the number of matching conditions. Thus,
constructing a global solution will fix the velocity, leading to
there being at most a discrete set of allowed pulses. In fact, we
never find more than one such solution.

APPENDIX B: MOUND SOLUTION: DETAILS

In the main text, we considered the dimension of the so-
lution space emerging when considering spatially dependent
deviations from the constant bulk solution. We showed that
there are two bad and two good modes, implying that the
solution for large negative x has two unknown parameters,
namely the coefficients of the two good modes.

We here turn to the front edge. Unlike what was the case
for the propagating front, the time-independent equation for
n is purely algebraic and hence n can be formally eliminated,
leaving us with a two-field problem in terms of E and Q. In
detail, we will eliminate n via Eq. (13a); since the right-hand
side is a monotonically increasing function of n, we can define
g(x) such that

n(E ) = g(E/rR0), (B1)

so that Eq. (13a) translates to

g(ζ )(1 − e−(g(ζ )/ε)α ) = ζ . (B2)

Then the coupled differential equations read

E + μ

2
E ′′ = rn(E )

(1 − p0Q(x))Mχ
,

Q′′ − Q

w2
= − 2

w

n(E )

NI
.

We now have to count degrees of freedom, and to do this we
have to investigate the behavior of E near x = 1. Writing E ≈
E1(1 − x)γ , we first need the small argument expansion of g:

g(ζ )α+1/εα ≈ ζ ⇒ g(ζ ) ≈ εα/(α+1)ζ 1/(α+1), (B3)
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so that

μ

2
γ (γ − 1)E1(1 − x)γ−2

≈ rεα/(α+1)

(
E1(1 − x)γ

rR0

)1/(α+1) 1

(1 − p0Q(1))Mχ
.

(B4)

From this, we can read off γ :

γ − 2 = γ

α + 1
⇒ γ = 2(α + 1)

α
. (B5)

This implies that n ∼ (1 − x)γ−2 = (1 − x)2/α . Solving now
for E1 yields

Eα/(α+1)
1 = 2r

μγ (γ − 1)
εα/(α+1)

(
1

rR0χ

)1/(α+1)

× 1(
1 − p0

immQ(1)
)NM

, (B6)

so that

E1 =
(

α2

μ(α + 1)(α + 2)(1 − p0Q(1))Mχ

)(α+1)/α

× rε

(
1

R0

)1/α

. (B7)

This implies that

n ≈
(

α2

μ(α + 1)(α + 2)(1 − p0Q(1))MR0

)1/α

ε(1 − x)2/α.

(B8)

As for the pulse, we now need to investigate the behav-
ior of the linearized equations about this nonlinear solution.
Writing

E ≈ E1(1 − x)γ + δE ; Q ≈ Q(1) + δQ, (B9)

we have the linearized system [to leading order in [1 − x)]

μ

2
δ′′

E = δE
rn′(E )

(1 − p0Q(1))M
= rδE

n(E )

E (1 + α)(1 − p0Q(1))M

≈ δE
μ(E ′′)

2E (1 + α)
= δE

μ(α + 2)

α2(1 − x)2
,

δ′′
Q = − 2

w
δE

n′(E )

NI
= − 2

w

n(E )

(1 + α)ENI
δE

= − μE ′

rwE (1 + α)NI
δE ≈ − 2μ(α + 2)

rw(1 − x)2NI
δE . (B10)

The assumption δE ∼ (1 − x)p is consistent with the spatial
dependence of these two equations. Substituting this into the
first equation, we get the indicial equation for the exponent p,

p(p − 1) = 2(α + 2)

α2
⇒ p =

{
α + 2

α
,−2α

}
. (B11)

The first of these choices, being γ − 1, corresponds to trans-
lations (i.e., moving the location of the singular point), and so
is ruled out. The second is singular and is also forbidden, so in
fact the solution for E is unique. Q satisfies the boundary con-
dition Q′(1) = −(1/w)Q(1), so the only degree of freedom at
the edge is Q(1).
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