

SSL, JEPA, World Models and the Future of AI

Yann Le Cun

New York University

Meta – Fundamental AI Research

NYU CDS
2025-09-10

We Need Human-Level AI for Intelligent Assistant

- ▶ **In the near future, all of our interactions with the digital world will be mediated by AI assistants.**
- ▶ Intelligent assistants that can help us in our daily lives
- ▶ Smart glasses
 - ▶ Communicates through voice, vision, display, EMG...
- ▶ **We need machines with human-level intelligence**
 - ▶ Machines that understand how the world works
 - ▶ Machines that can remember
 - ▶ Machines that can reason and plan.

“Her”
(2013)

Meta Orion
(2024)

The Ubiquitous AI Assistant is Becoming A Reality

- ▶ Ray-Ban Meta (today)
- ▶ Cameras / microphone / speakers
- ▶ no display
- ▶ Voice interface to Meta AI assistant

But Machine Learning Sucks! (compared to humans and animals)

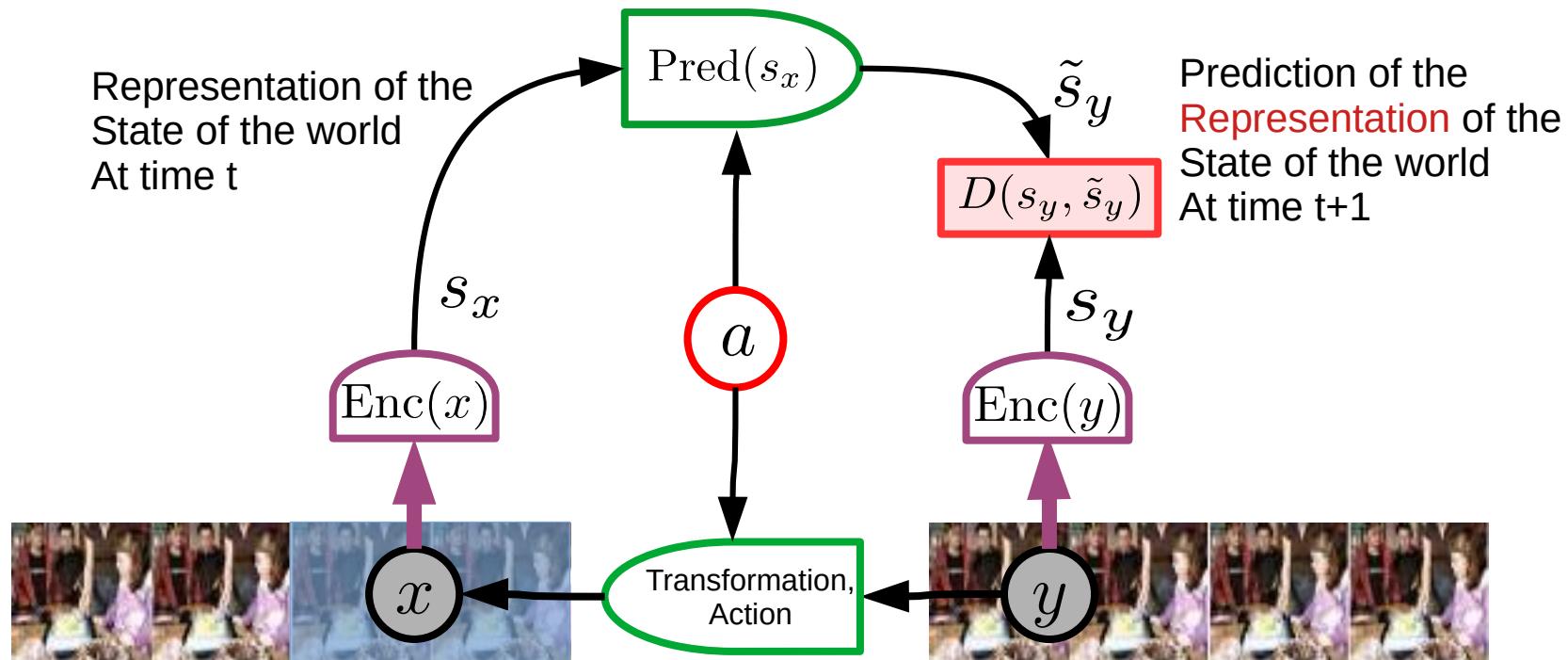
- ▶ **Supervised learning (SL) requires large numbers of labeled samples.**
- ▶ **Reinforcement learning (RL) requires insane amounts of trials.**
- ▶ **Self-Supervised Learning (SSL) works great but...**
- ▶ Generative prediction only works for text and other discrete modalities
- ▶ **Animals and humans:**
 - ▶ Can learn new tasks **very** quickly.
 - ▶ Understand how the world works
 - ▶ Can reason and plan
- ▶ **Humans and animals have common sense**
- ▶ **Their behavior is driven by objectives (drives)**

What's a universal foundation model architecture

- ▶ **Captures structure in the data**
 - ▶ Discovers dependencies in a task-independent way
- ▶ **Trained with Self-Supervised Learning (SSL)**
 - ▶ No need for labels
- ▶ **Learns abstract representations in the data**
 - ▶ Representations that allow to make predictions
- ▶ **Learns a predictive model**
 - ▶ Observation x , transformed observation $y = \text{Trans}(x, a)$
 - ▶ Encoding : representations $s_x = \text{Enc}(x)$, $s_y = \text{Enc}(y)$
 - ▶ Prediction of s_y : $p_y = \text{Pred}(s_x, a)$

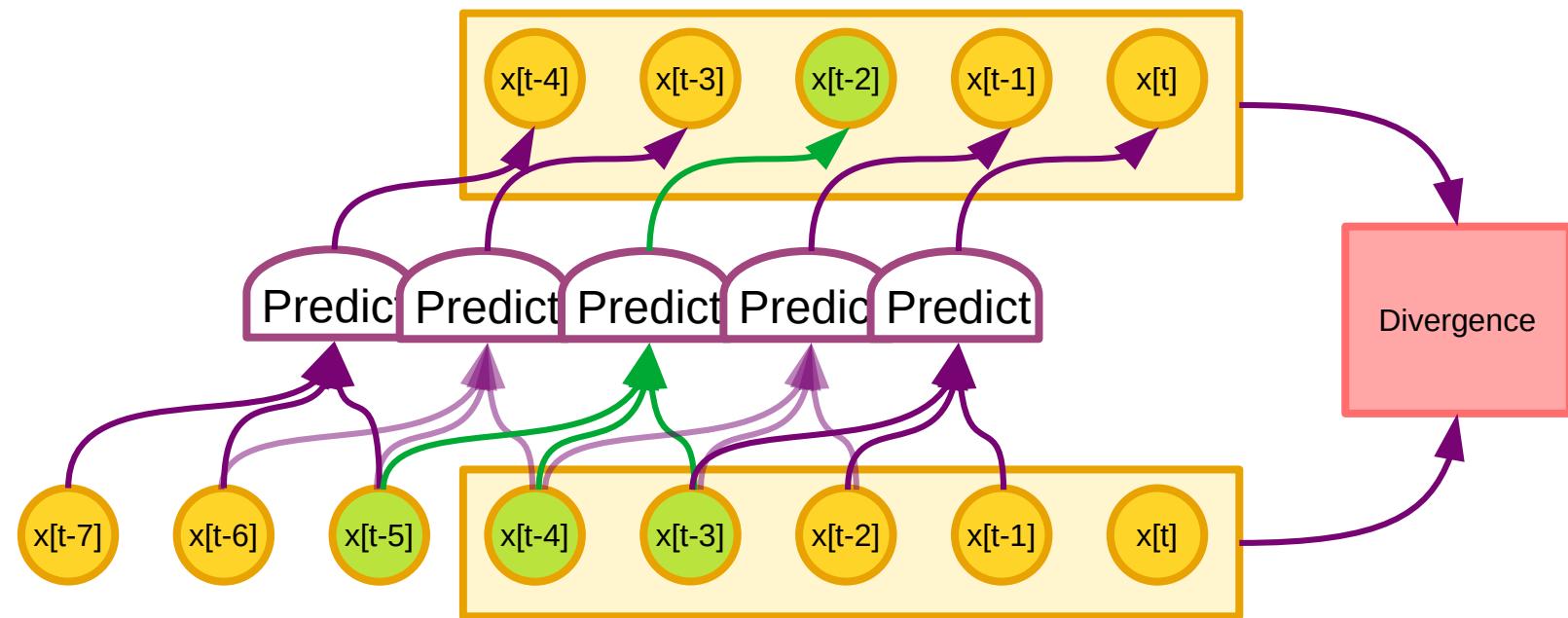
Predictive Model with JEPA

- ▶ **Joint Embedding Predictive Architecture (JEPA)**
- ▶ [LeCun 2022], [Garrido 2023], [Bardes 2023], [Assran 2023], [Garrido 2024]



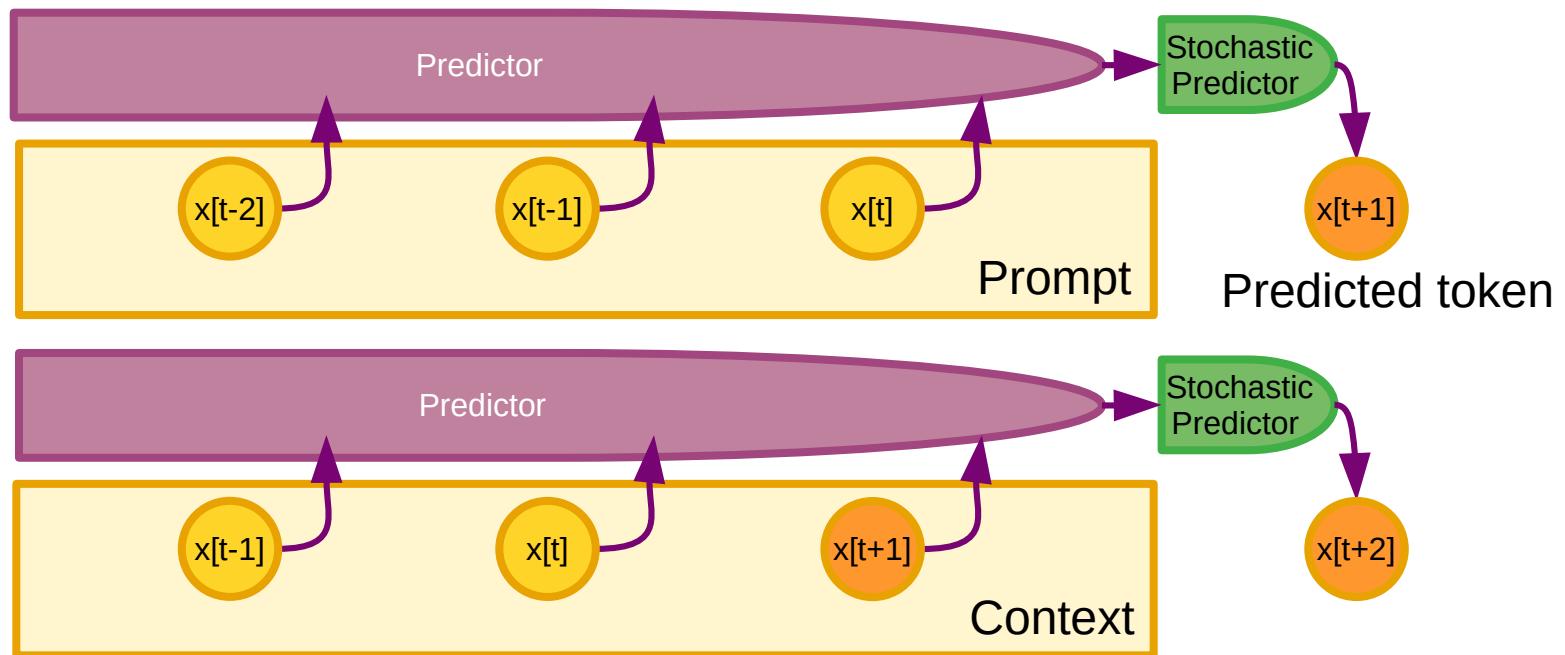
AE Collapse Prevention through Architectural Constraints

- ▶ Train an auto-encoder with **causal connections**
- ▶ No connection between an input and its corresponding output
- ▶ LLMs / GPT architectures are the most popular example
- ▶ Trained to predict the next input.



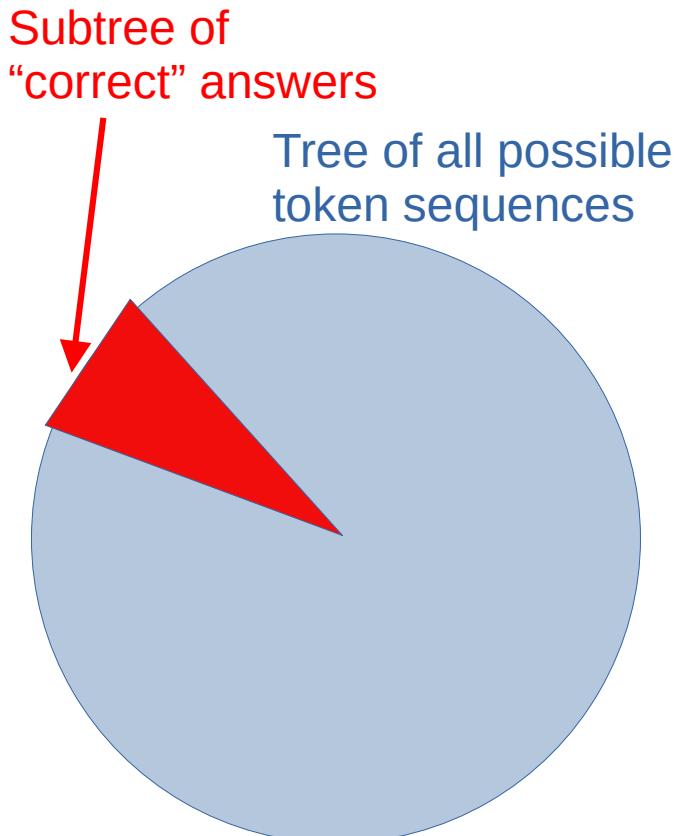
Auto-Regressive LLM. Inject predicted token in the input

- ▶ Outputs one token after another through feed-forward prediction
- ▶ Tokens may represent words, image patches, speech segments...
- ▶ Predictor has a fixed number of layers
- ▶ Only works for discrete domains (text, DNA....)



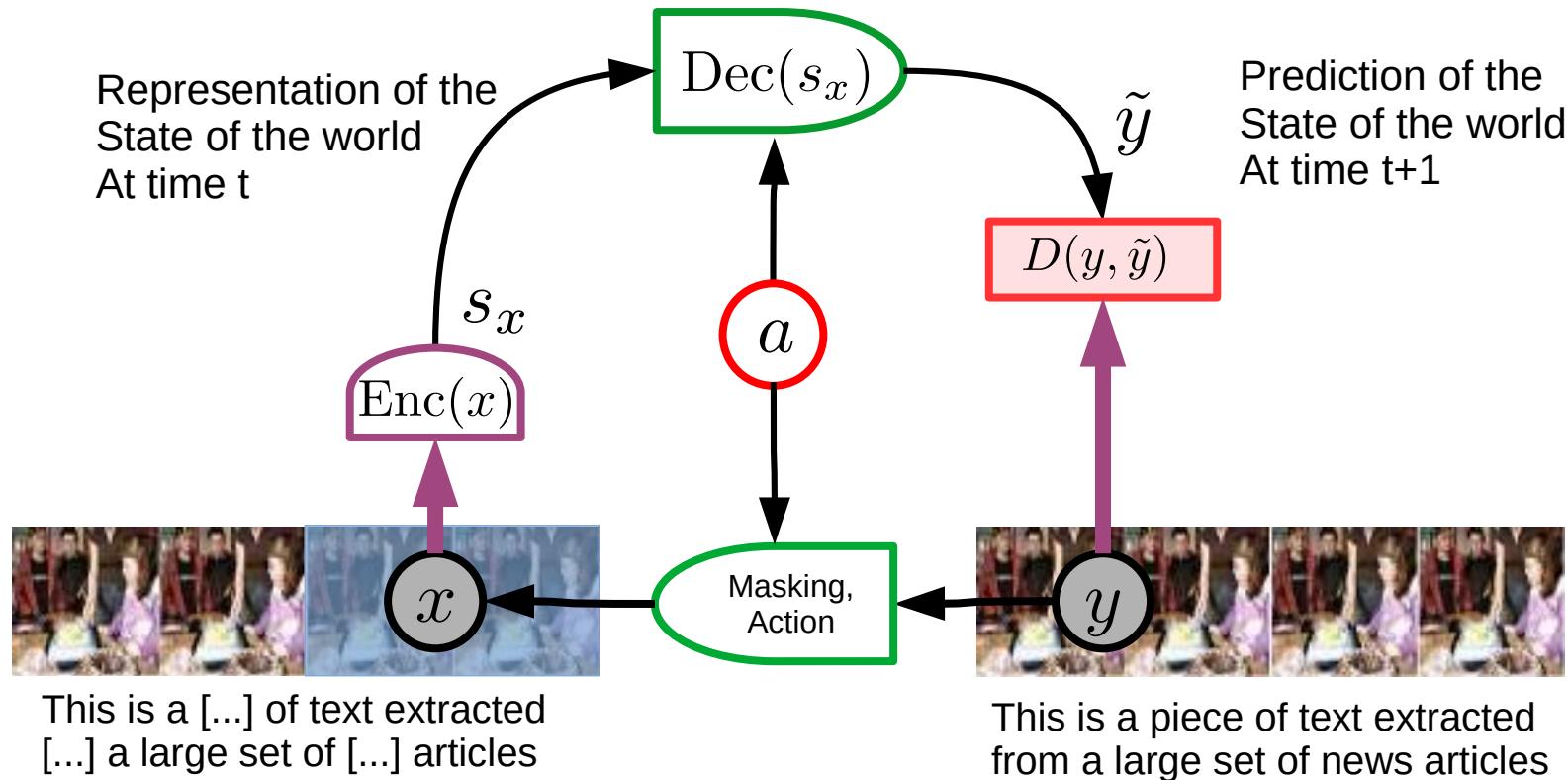
Auto-Regressive Generative Models Suck!

- ▶ Auto-Regressive LLMs are **doomed**.
- ▶ They cannot be made factual, non-toxic, etc.
- ▶ They are not controllable
- ▶ Probability e that any produced token takes us outside of the set of correct answers
- ▶ Probability that answer of length n is correct (assuming independence of errors):
 - ▶ $P(\text{correct}) = (1-e)^n$
- ▶ **This diverges exponentially.**
- ▶ **It's not fixable (without a major redesign).**
- ▶ See also [Dziri...Choi, ArXiv:2305.18654]



Can we train Generative Architecture with Continuous Data?

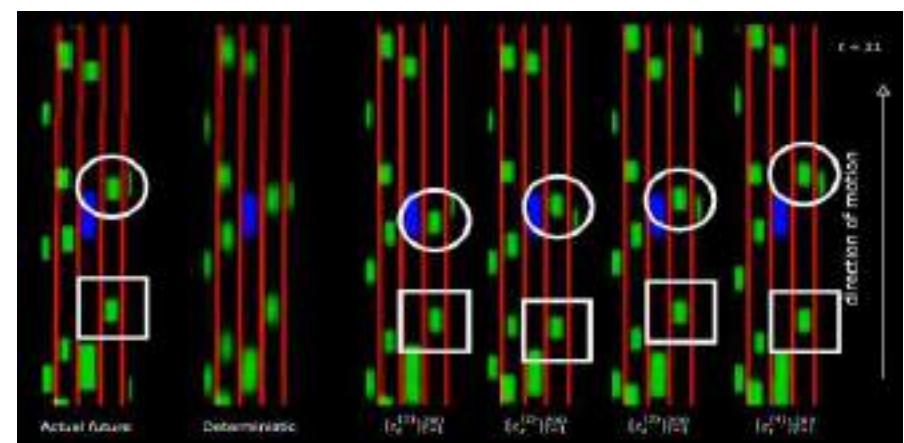
- ▶ Short answer: **NO!!!**
- ▶ It works for discrete domains, not high-dim domains
- ▶ Generative world model architecture



Generative Architectures DO NOT Work for Images and video

- ▶ Because the world is only partially predictable
- ▶ A predictive model should represent multiple predictions
- ▶ Probabilistic models are intractable in high-dim continuous domains.
- ▶ Generative Models must predict every detail of the world
- ▶ **My solution: Joint-Embedding Predictive Architecture**

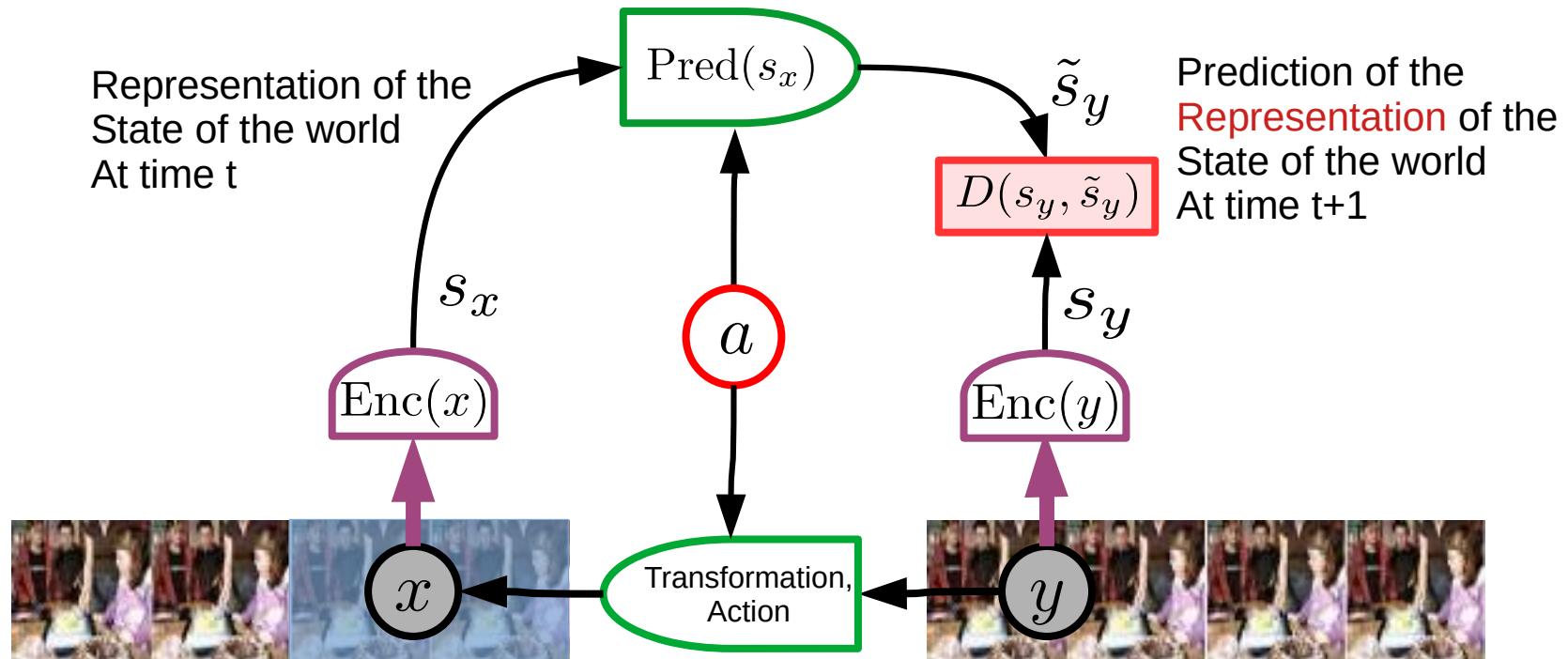
[Mathieu,
Couprie,
LeCun
ICLR 2016]



[Henaff, Canziani, LeCun ICLR 2019]

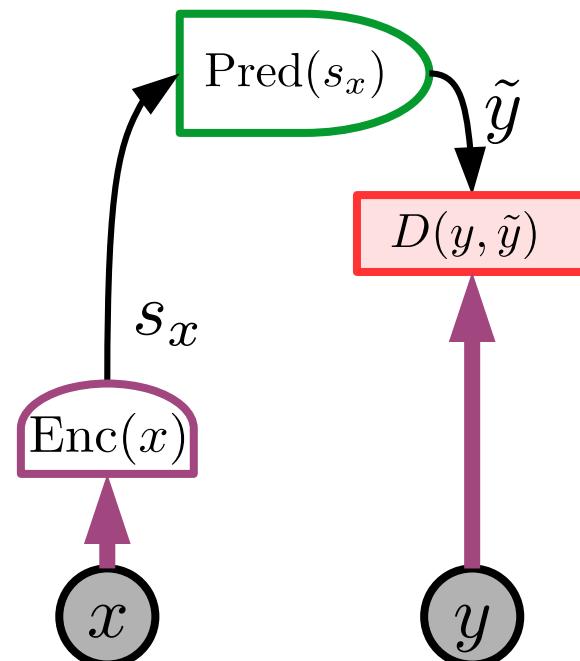
Joint Embedding World Model: Self-Supervised Training

- ▶ **Joint Embedding Predictive Architecture (JEPA)**
- ▶ [LeCun 2022], [Garrido 2023], [Bardes 2023], [Assran 2023], [Garrido 2024]

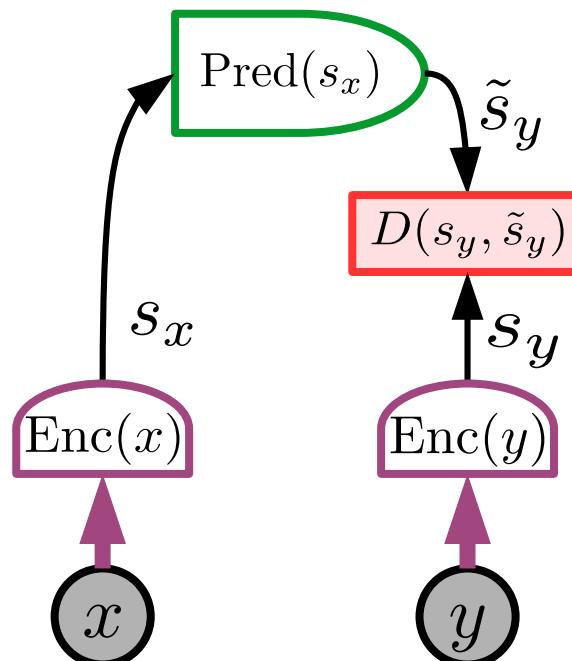


Architectures: Generative vs Joint Embedding

- ▶ **Generative:** predicts y (with all the details, including irrelevant ones)
- ▶ **Joint Embedding:** predicts an **abstract representation** of y
- ▶ **JEPA lifts the abstraction level**, generative architectures do not.



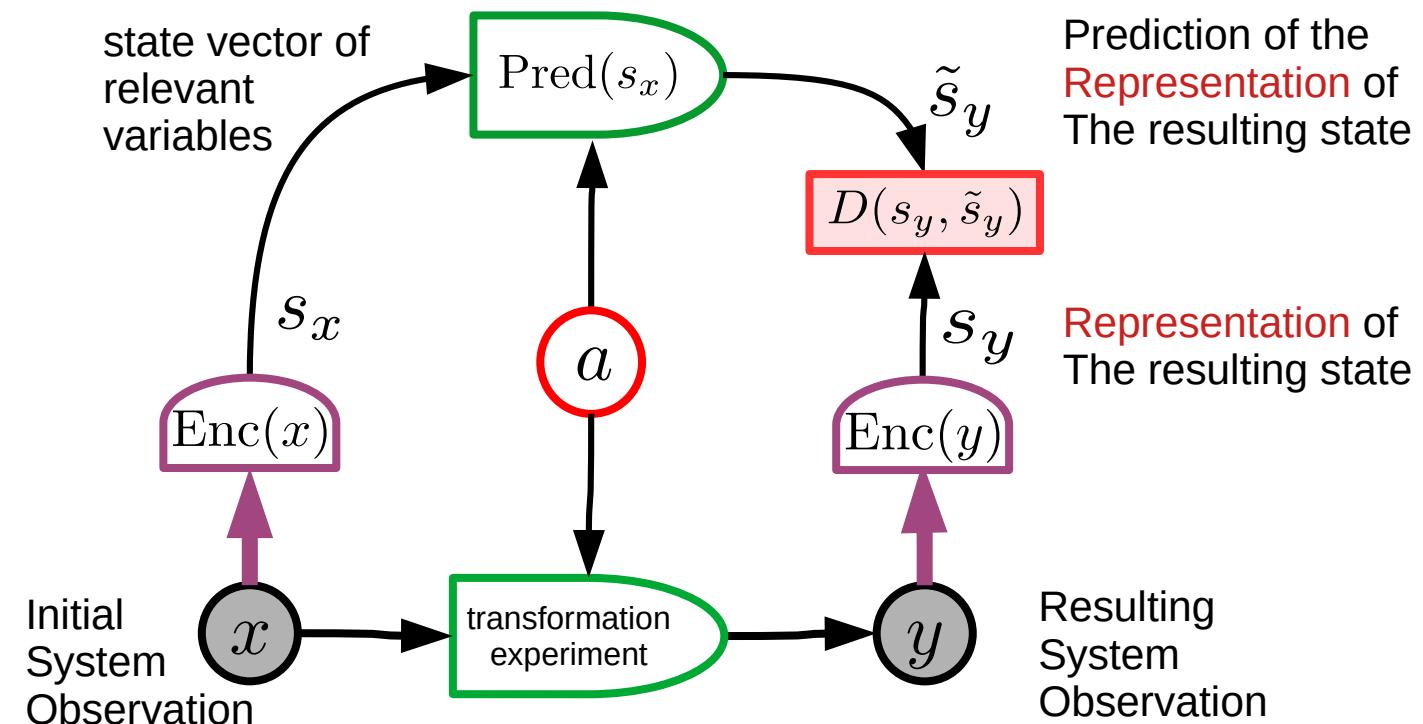
a) Generative Architecture
Examples: VAE, MAE...



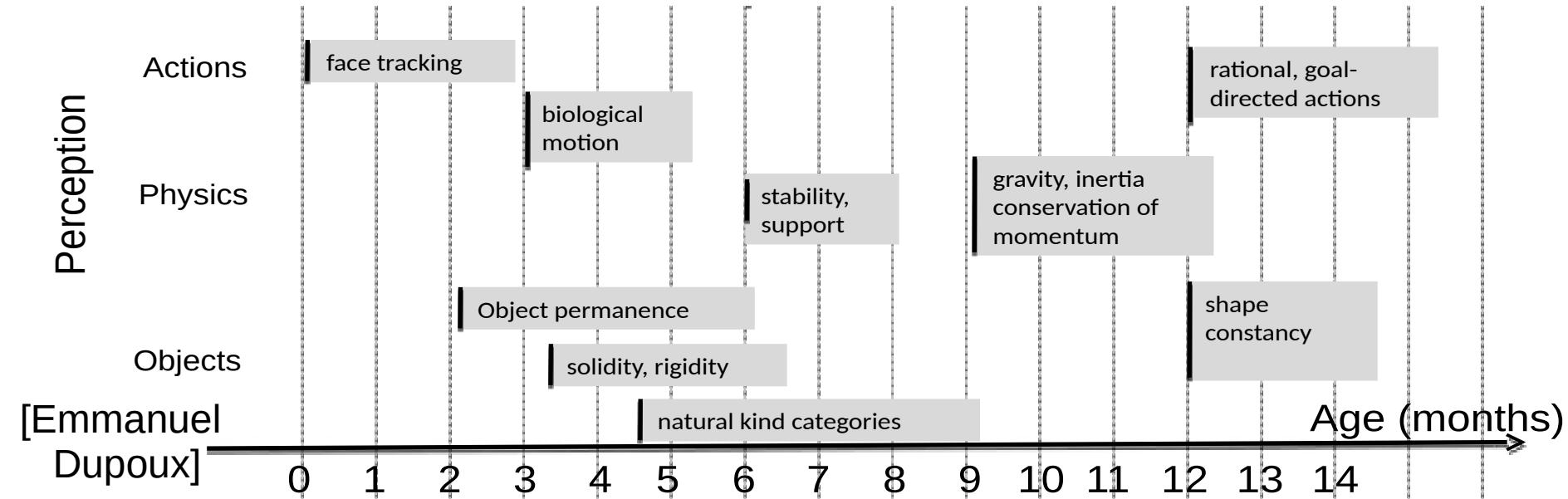
b) Joint Embedding Architecture

This is how models are built in traditional physics

- ▶ Find an **abstract state representation** that allows to make predictions
- ▶ Extract the state representation from observation/measurement
- ▶ Predict outcome resulting from an intervention/experiment
- ▶ Irrelevant and unpredictable information is eliminated from the representation
- ▶ The representation contains information that makes prediction possible



How do babies learn how the world works?



▶ How do we get machines to learn like babies?

Current architectures are missing something really big!

- ▶ Never mind humans, cats and dogs can do amazing feats
 - ▶ Current robots intelligence doesn't come anywhere close
- ▶ Any **house cat** can plan highly complex actions
- ▶ Any **10 year-old** can clear up the dinner table and fill up the dishwasher **without learning** ("zero-shot")
- ▶ Any **17 year-old** can learn to drive a car in 20 hours of practice
- ▶ AI systems that can pass the bar exam, do math problems, prove theorems....
- ▶ ...but where are my Level-5 self-driving car and my domestic robot?
- ▶ We keep bumping into Moravec's paradox
 - ▶ Things that are easy for humans are difficult for AI and vice versa.

Our world model needs to be trained from sensory inputs

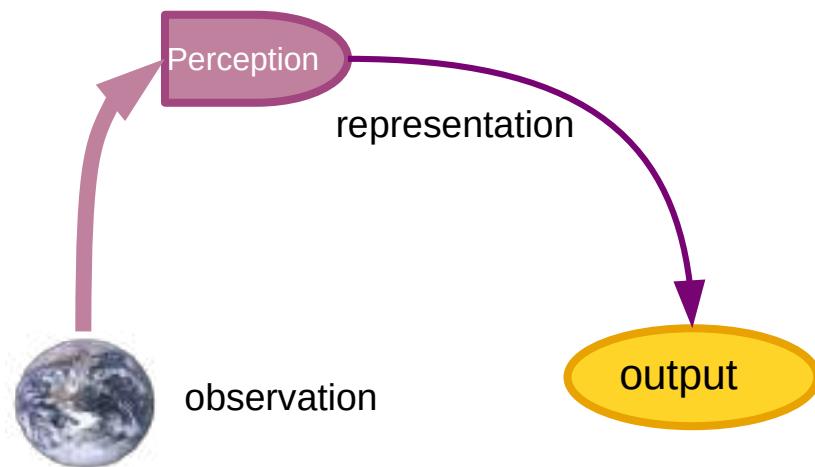
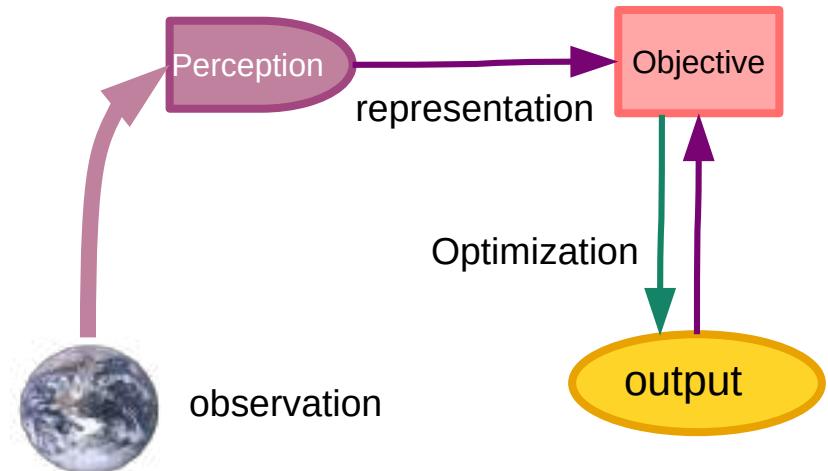
- ▶ **LLM**
 - ▶ Trained on $3.0E13$ tokens ($2E13$ words). Each token is 3 bytes.
 - ▶ **Data volume: $0.9E14$ bytes.**
 - ▶ Would take 450,000 years for a human to read (12h/day, 250 w/minute)
- ▶ **Human child**
 - ▶ 16,000 wake hours in the first 4 years (30 minutes of YouTube uploads)
 - ▶ 2 million optical nerve fibers, carrying about 1 byte/sec each.
 - ▶ **Data volume: $1.1E14$ bytes**
- ▶ **A four year-old child has seen more data than an LLM !**

Desiderata for AMI (Advanced Machine Intelligence)

- ▶ **Systems that learn world models from sensory inputs**
 - ▶ E.g. learn intuitive physics from video
- ▶ **Systems that have persistent memory**
 - ▶ Large-scale associative memories
- ▶ **Systems that can plan actions**
 - ▶ So as to fulfill an objective
- ▶ **Systems that can reason**
 - ▶ Inventing new solutions to unseen problems
- ▶ **Systems that are controllable & safe**
 - ▶ By design, not by fine-tuning.

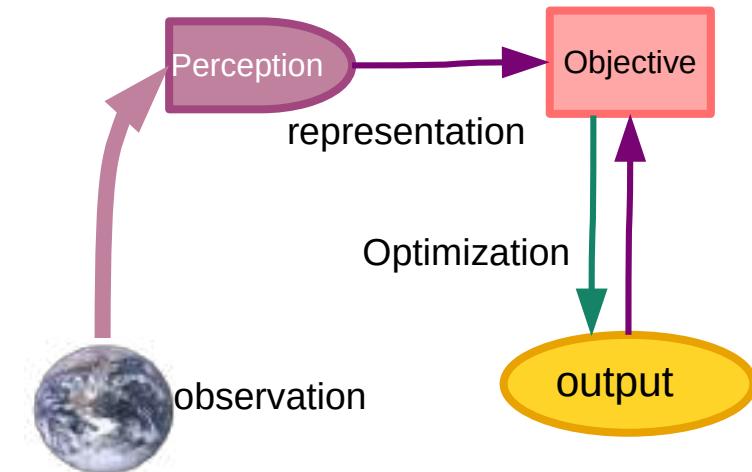
Inference: feed-forward propagation vs optimization

- ▶ What is reasoning and planning?
- ▶ Feed-forward propagation is insufficient
- ▶ Complex inference requires the **optimization** of an **objective**
- ▶ Every computational problem can be reduced to optimization
 - ▶ This includes every inference and planning problem.
- ▶ **Energy-Based Model**



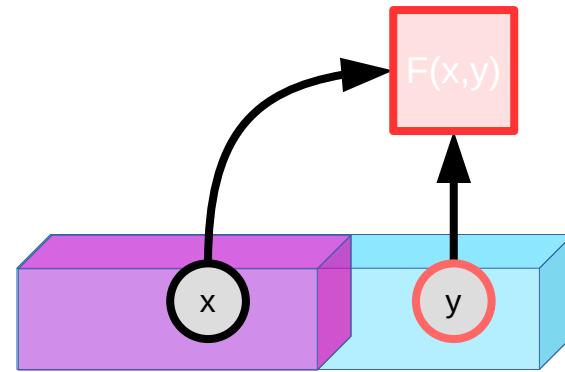
Inference through optimization: Objective-Driven AI.

- ▶ Inference through optimization is used in classical methods
 - ▶ Probabilistic graphical models, Bayesian nets
 - ▶ Model-Predictive Control in robotics
 - ▶ Search & planning in “classical” AI
- ▶ In the past, **all of AI** was viewed as a search or optimization problem
 - ▶ Path planning, Block World, Towers of Hanoi, SAT, logical inference
- ▶ **Optimization-based inference enables zero-shot “learning”**
 - ▶ It can find innovative solutions to unseen problems.
 - ▶ All game-playing AI systems use search/planning
- ▶ **Optimization-based inference is “System 2”**

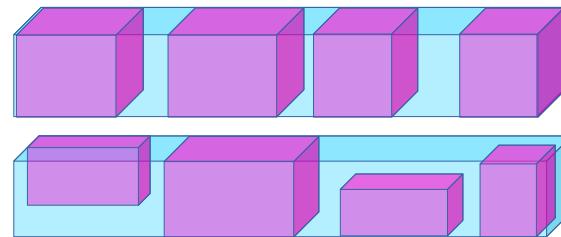
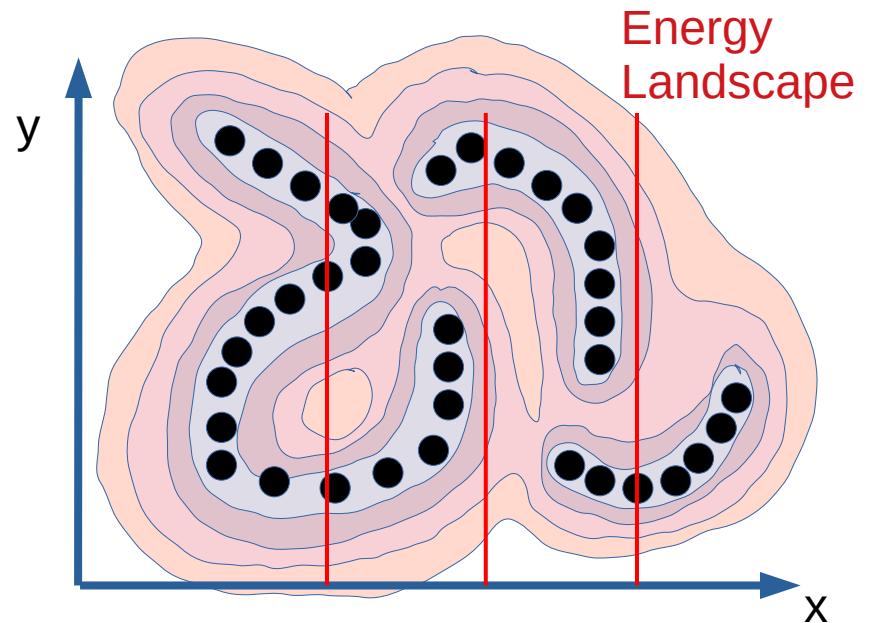


Capturing Dependencies with Energy-Based Models

- ▶ The only way to formalize & understand all model types
- ▶ Gives low energy to compatible pairs of x and y
- ▶ Gives higher energy to incompatible pairs



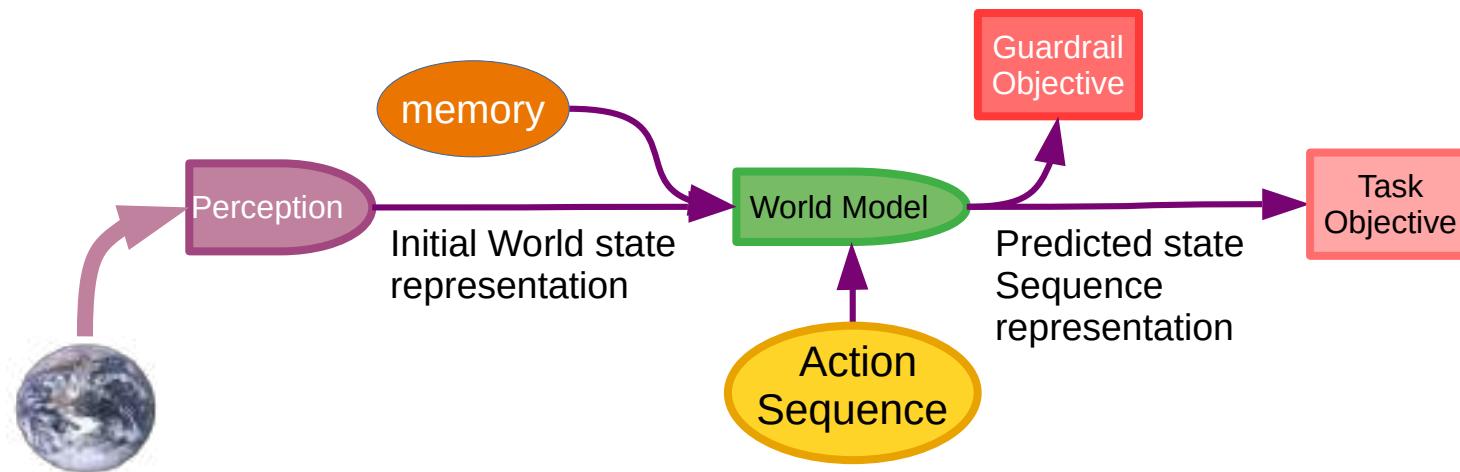
time or space →



$$\check{y} = \operatorname{argmin}_y F(x, y)$$

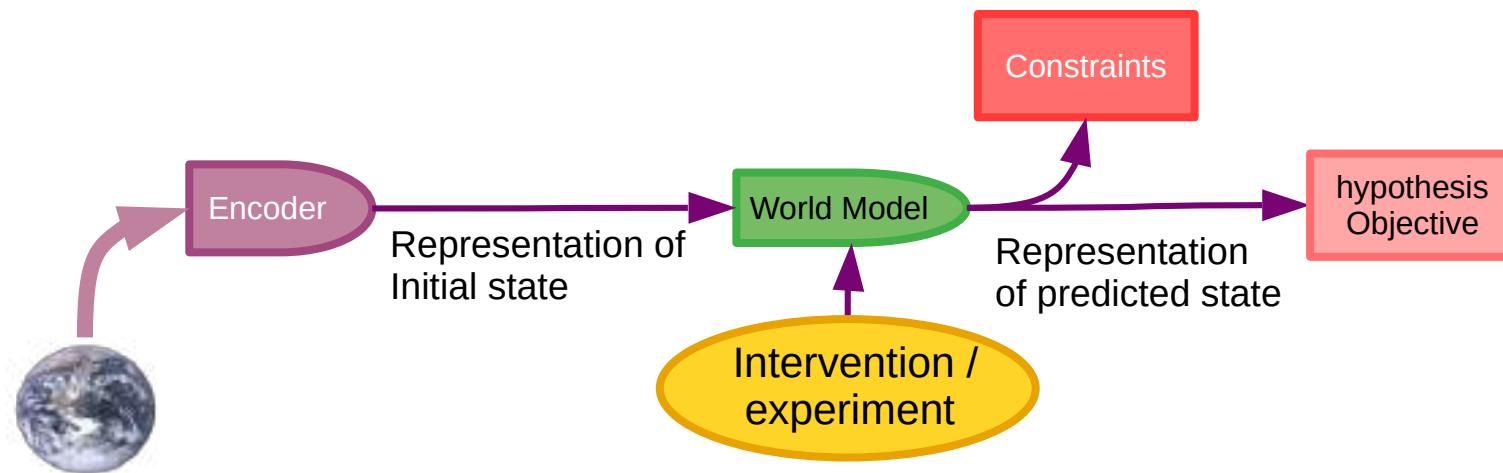
2. World Model for Planning/Reasoning

- ▶ **Perception:** Computes an abstract representation of the state of the world
 - ▶ Possibly combined with previously-acquired information in memory
- ▶ **World Model:** Predict the state resulting from an imagined action sequence
- ▶ **Task Objective:** Measures divergence to goal
- ▶ **Guardrail Objective:** Immutable objective terms that ensure safety
- ▶ **Operation:** Finds an action sequence that minimizes the objectives



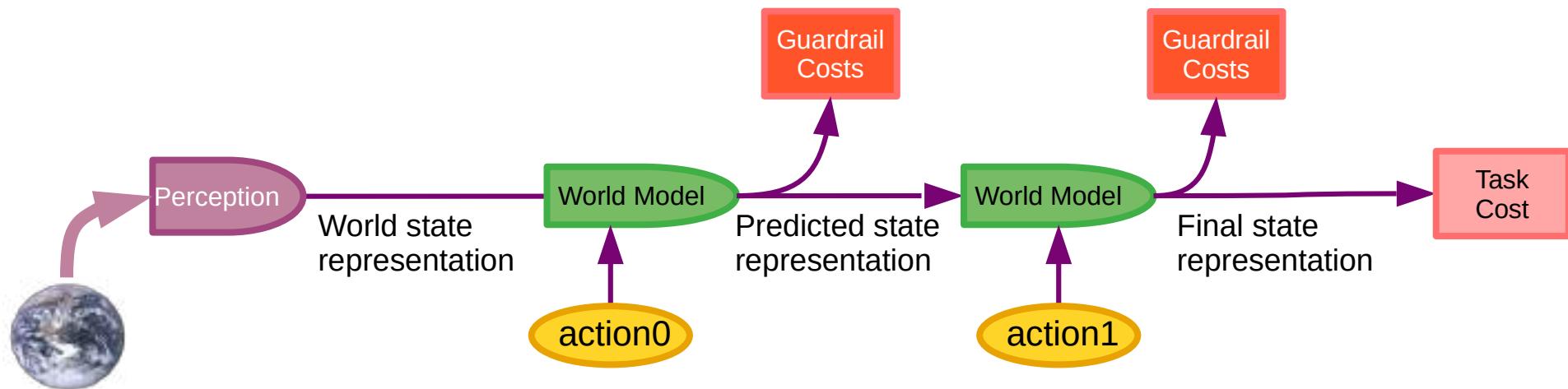
2. Models for Physics Experiments

- ▶ **Encoder:** Computes an abstract representation of the state of the system
- ▶ **World Model:** Predict the state resulting from an imagined experiment or intervention.
- ▶ **Hypothesis Objective:** Measures divergence to the result expected from the experiment
- ▶ **Constraints:** that the trajectory must satisfy.
- ▶ **Find an action an experiment that validates or invalidates the hypothesis**



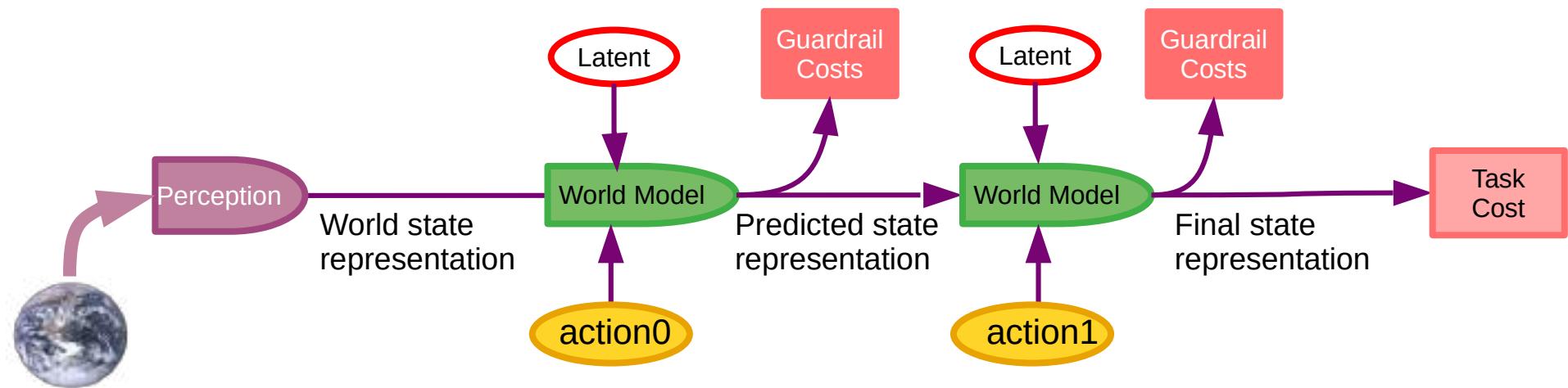
Objective-Driven AI: Multistep/Recurrent World Model

- ▶ Same world model applied at multiple time steps
- ▶ Guardrail costs applied to entire state trajectory
- ▶ This is identical to **Model Predictive Control (MPC)**
 - ▶ But with a trained world model
- ▶ Action inference by minimization of the objectives
- ▶ Using gradient-based method, graph search, dynamic prog, A*, MCTS,....



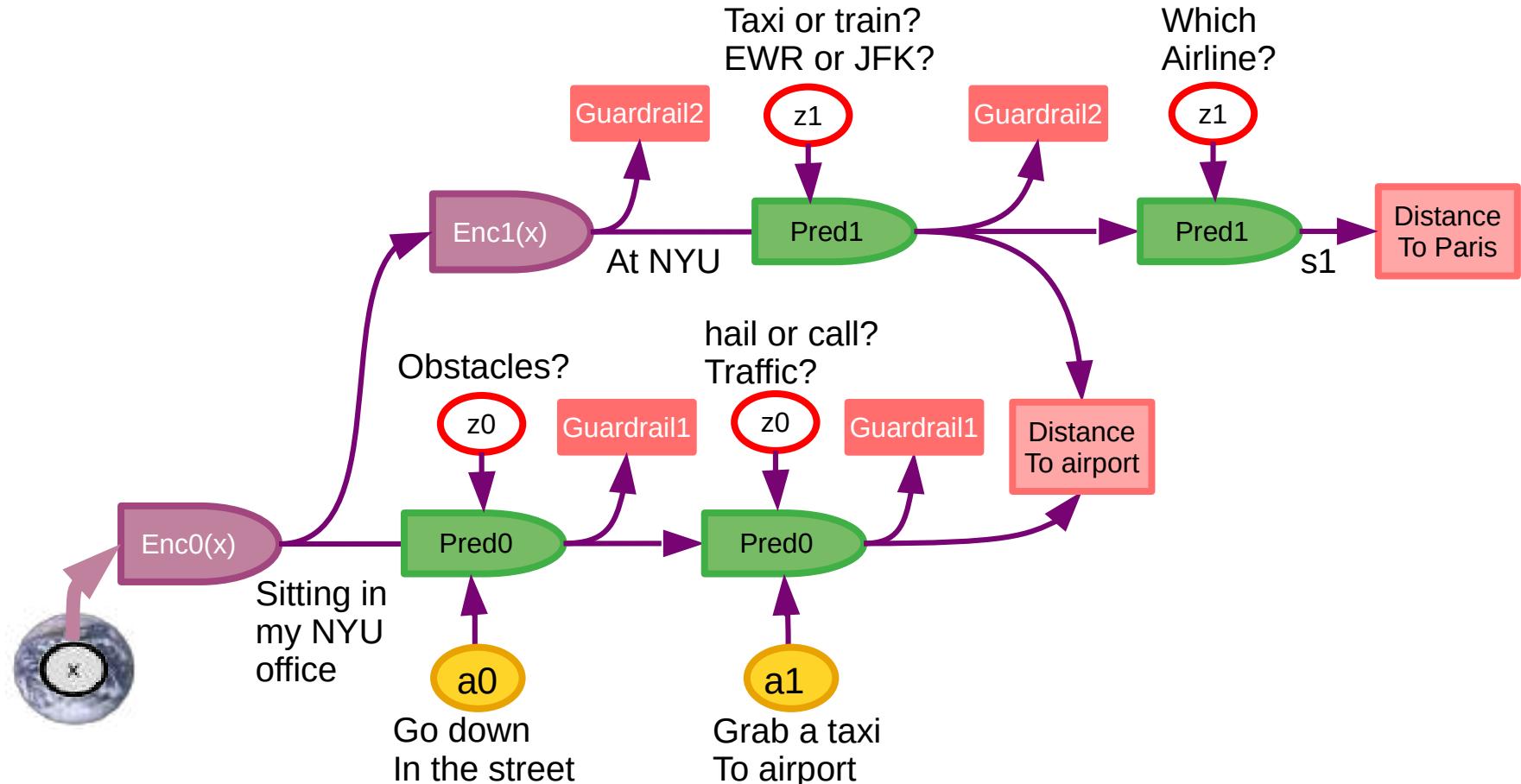
Objective-Driven AI: Non-Deterministic World Model

- ▶ The world is not deterministic or fully predictable
- ▶ Latent variables parameterize the set of plausible predictions
- ▶ Can be sampled from a prior or swept through a set.
- ▶ Planning can be done for worst case or average case
- ▶ Uncertainty in outcome can be predicted and quantified



Objective-Driven AI: Hierarchical Planning

► Hierarchical Planning: going from NYU to Paris



Objective-Driven AI Systems

AI that can learn, understand the world,
reason, plan,
Yet is safe and controllable

“A path towards autonomous machine intelligence”
<https://openreview.net/forum?id=BZ5a1r-kVs>

[previous versions of this talk available on YouTube]

Modular Cognitive Architecture for AMI

► Configurator

- ▶ Configures other modules for task

► Perception

- ▶ Estimates state of the world

► World Model

- ▶ Predicts future world states

► Cost

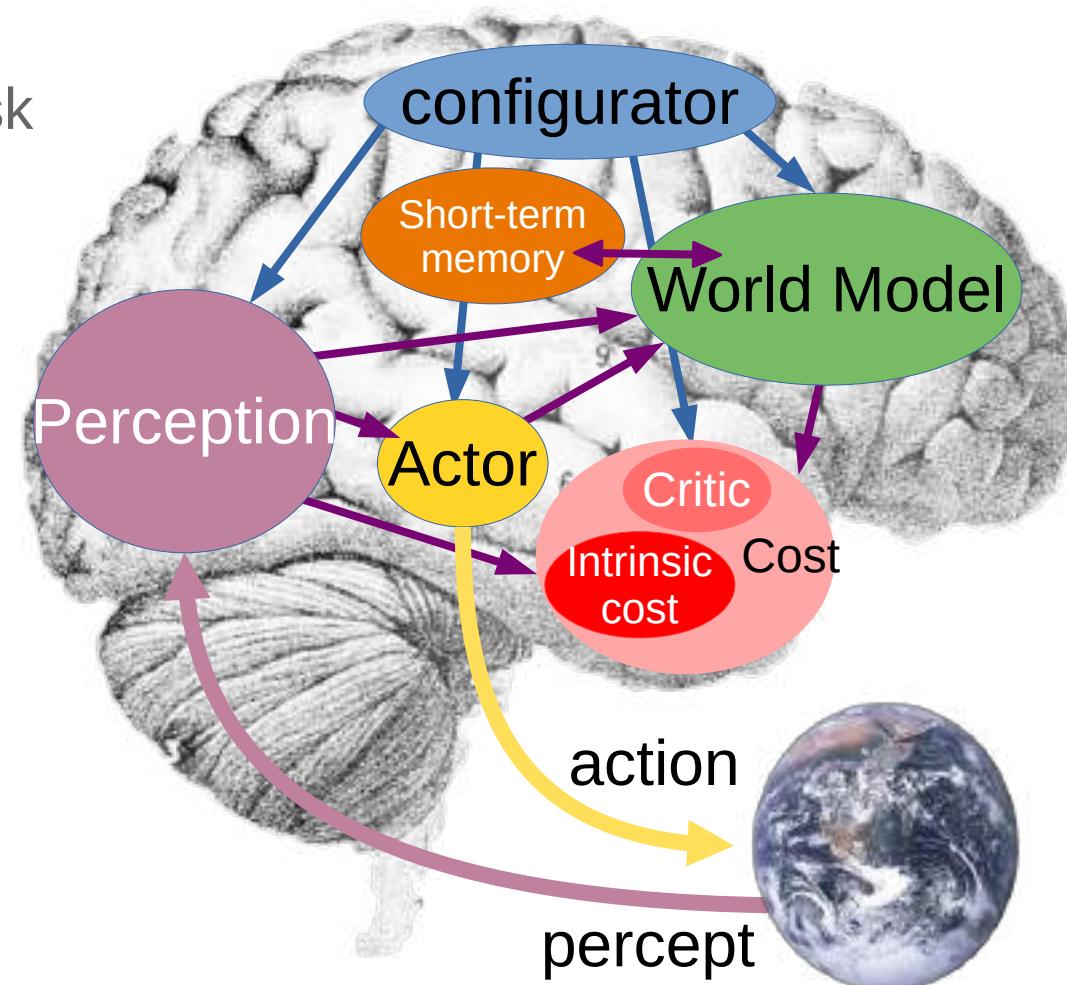
- ▶ Compute “discomfort”

► Actor

- ▶ Find optimal action sequences

► Short-Term Memory

- ▶ Stores state-cost episodes

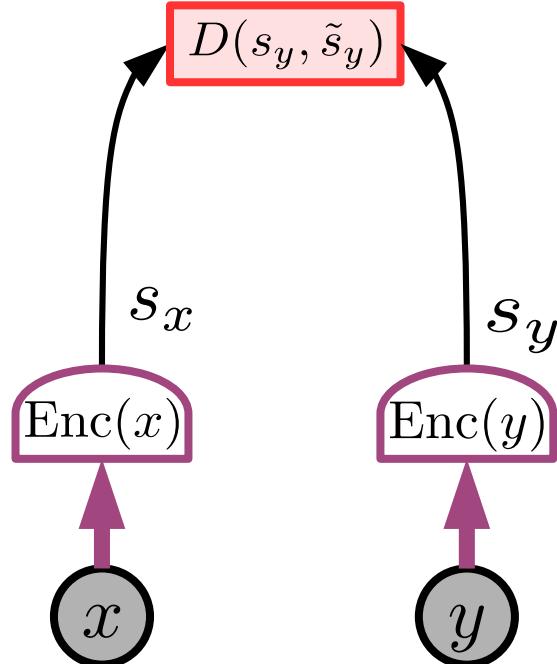


How could Machines Learn World Models from Observations?

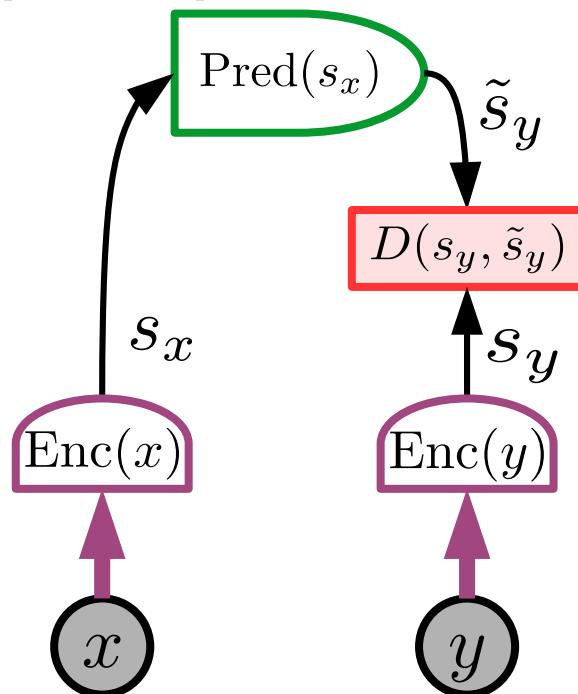
Self-Supervised Learning

Joint Embedding Architectures

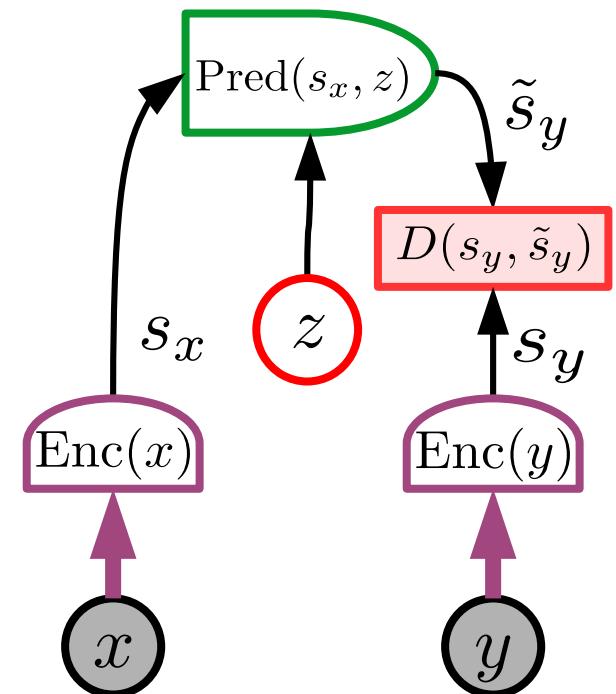
- ▶ Computes abstract representations for x and y
- ▶ Tries to make them equal or predictable from each other.



a) Joint Embedding Architecture (JEA)
Examples: Siamese Net, Pirl, MoCo,
SimCLR, Barlow Twins, VICReg,



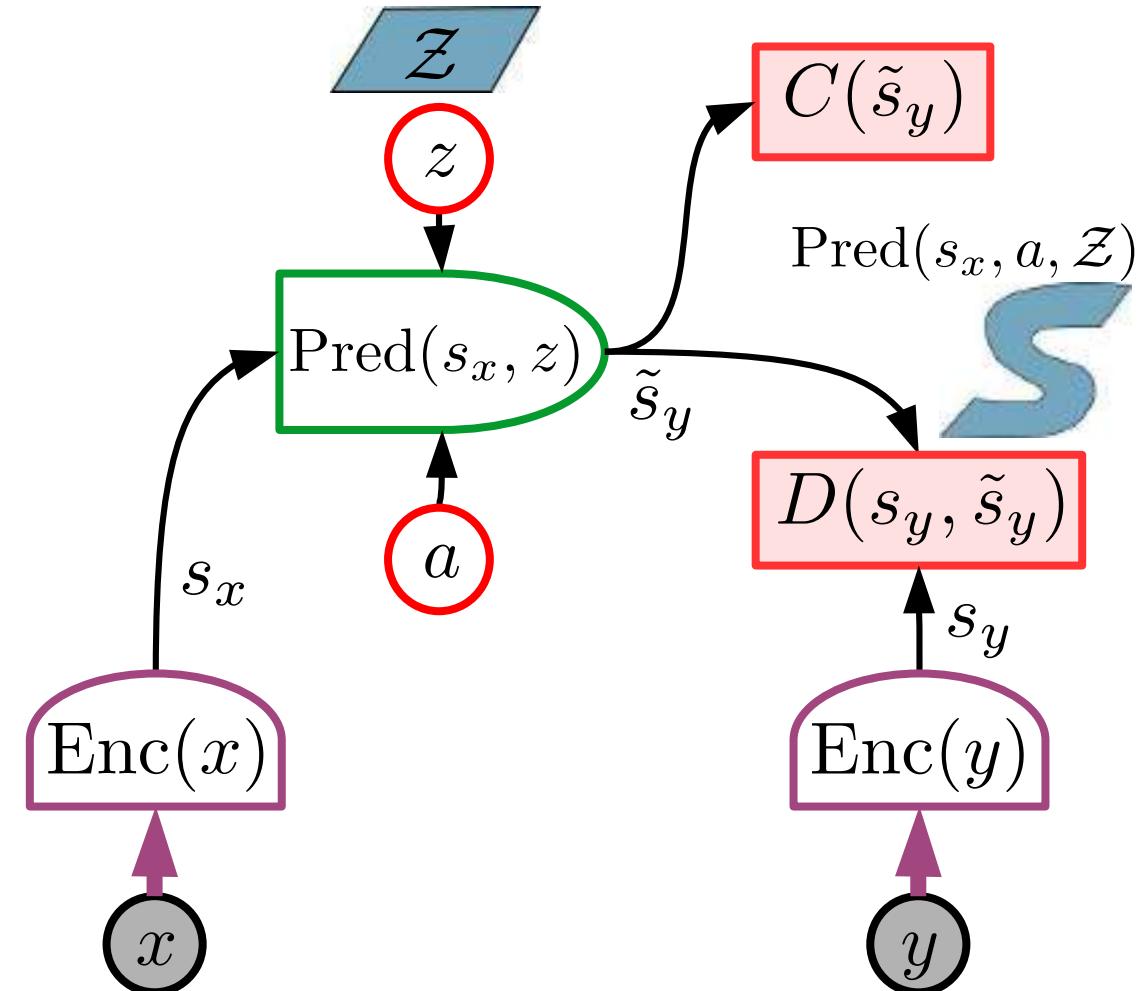
b) Deterministic Joint Embedding Predictive Architecture (DJEPA)
Examples: BYOL, VICRegL, I-JEPA



c) Joint Embedding Predictive Architecture (JEPA)
Examples: Equivariant VICReg
I-JEPA.....

Architecture for action-conditioned world models: JEPA

- ▶ JEPA: Joint Embedding Predictive Architecture.
- ▶ x : observed past and present
- ▶ y : future
- ▶ a : action
- ▶ z : latent variable (unknown)
- ▶ $D(\cdot)$: prediction cost
- ▶ $C(\cdot)$: surrogate cost
- ▶ JEPA predicts a representation of the future S_y from a representation of the past and present S_x



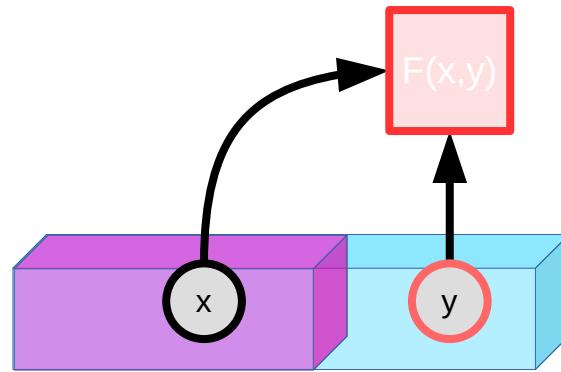
Energy-Based Models for Self-Supervised Learning

Capturing dependencies through an energy function

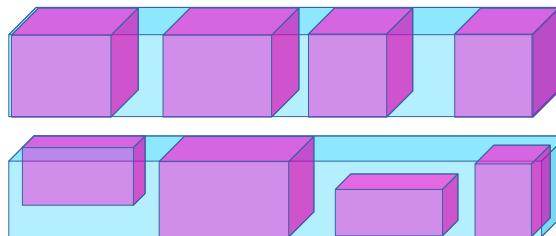
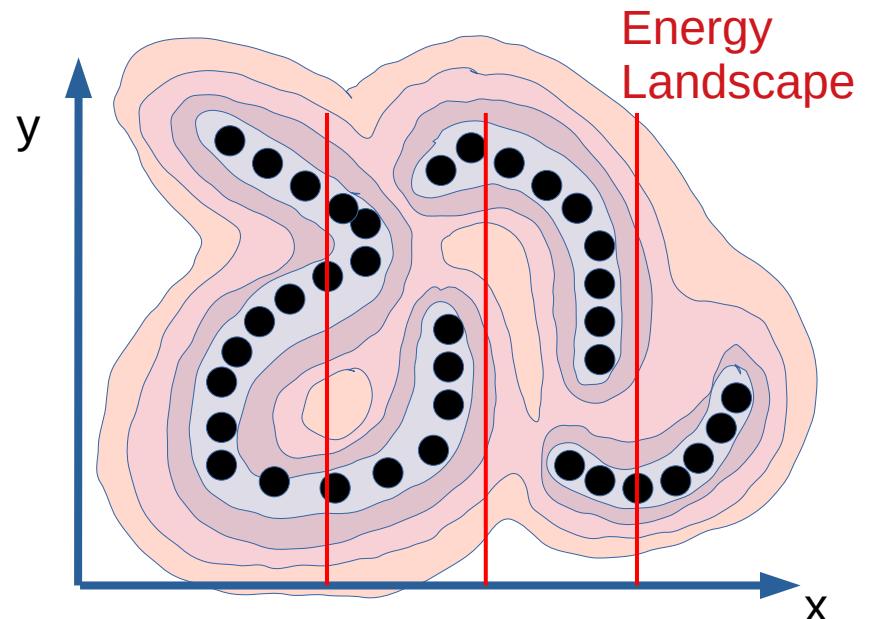
Probabilistic modeling is intractable in high-dimensional continuous domains.

Energy-Based Models: Implicit function

- ▶ The only way to formalize & understand all model types
- ▶ Gives low energy to compatible pairs of x and y
- ▶ Gives higher energy to incompatible pairs



time or space →

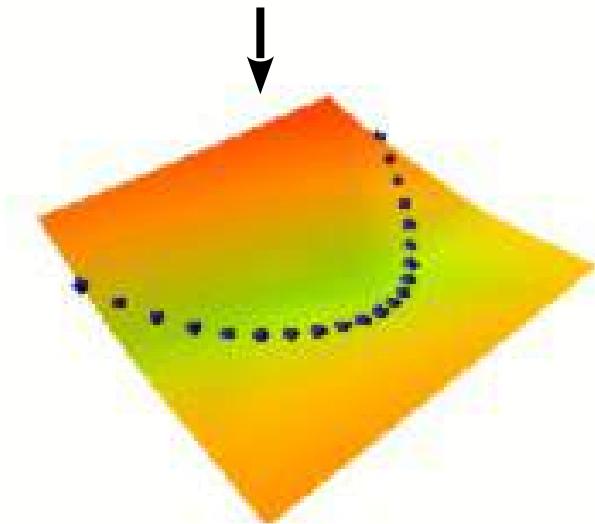


$$\check{y} = \operatorname{argmin}_y F(x, y)$$

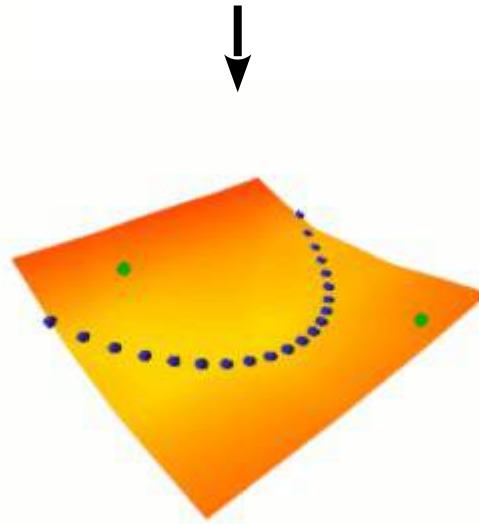
Training Energy-Based Models: Collapse Prevention

- ▶ A flexible energy surface can take any shape.
- ▶ We need a loss function that shapes the energy surface so that:
 - ▶ Data points have low energies
 - ▶ Points outside the regions of high data density have higher energies.

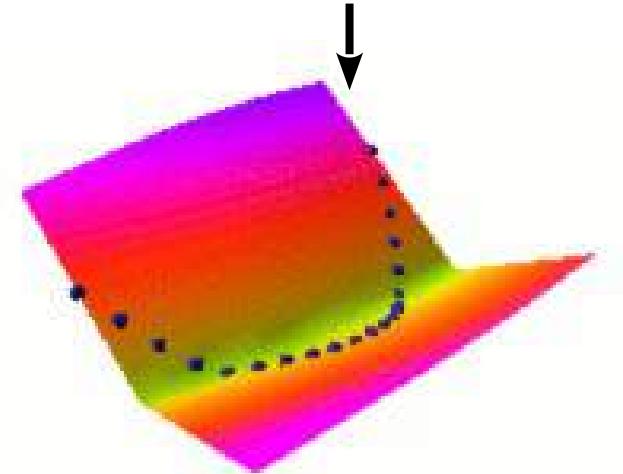
Collapse!



Contrastive Method



Regularized Methods



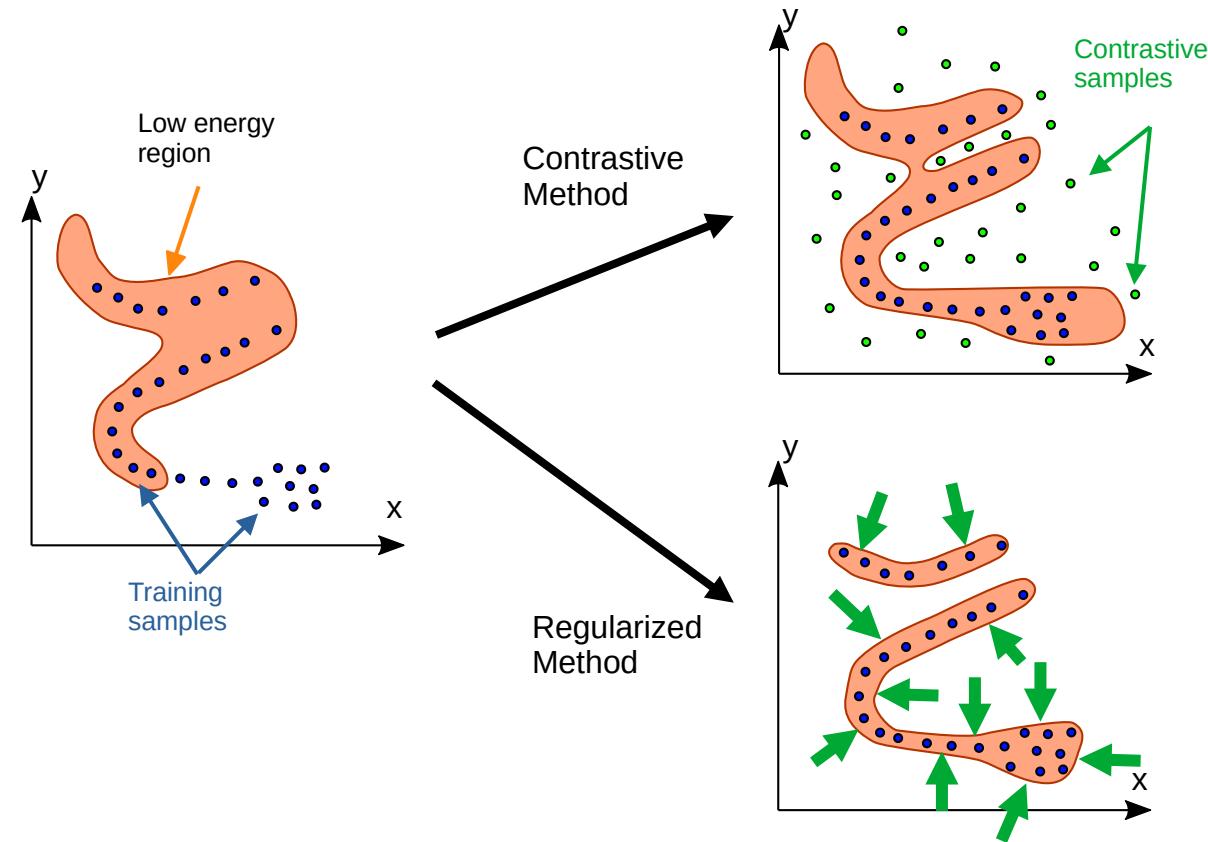
EBM Training: two categories of methods

► Contrastive methods

- Push down on energy of training samples
- Pull up on energy of suitably-generated contrastive samples
- Scales very badly with dimension

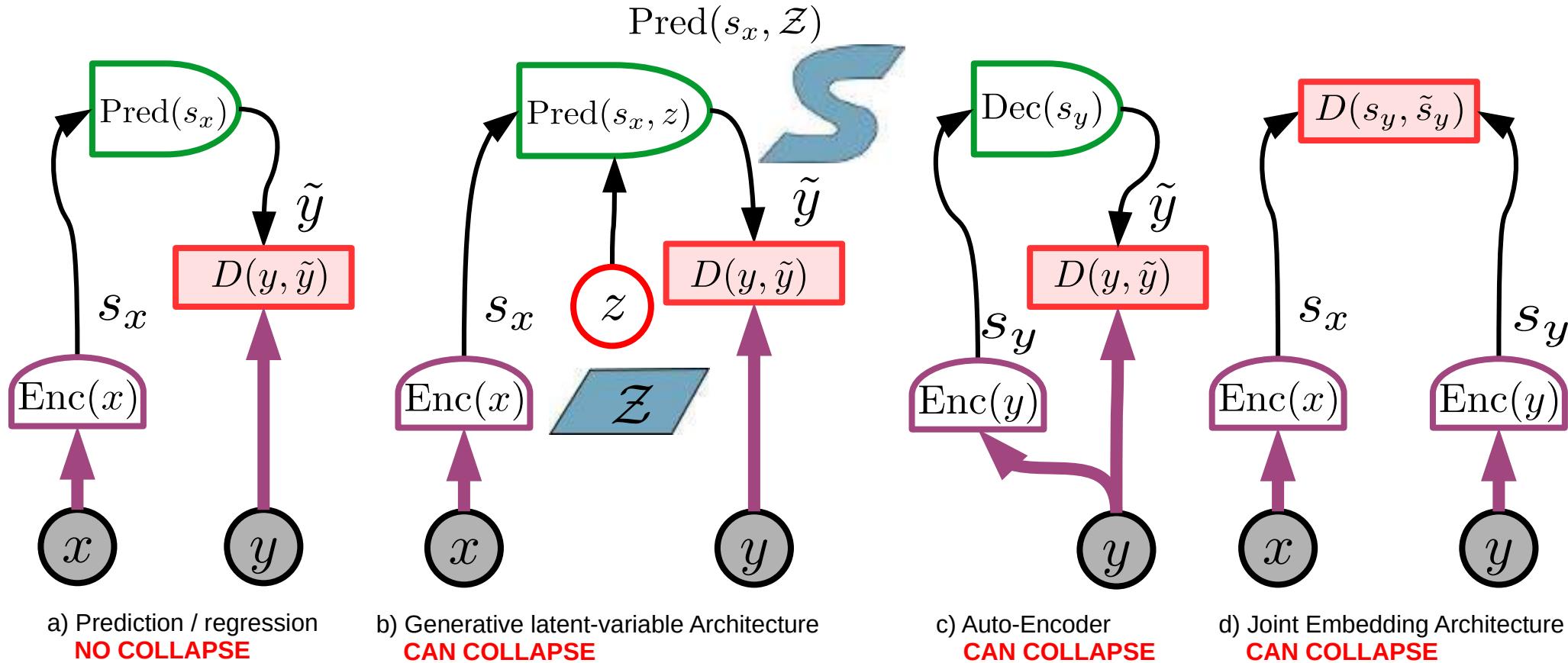
► Regularized Methods

- Regularizer minimizes the volume of space that can take low energy



EBM Architectures

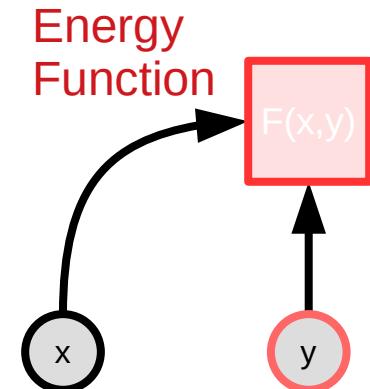
► Some architectures can lead to a collapse of the energy surface



Energy-Based Models vs Probabilistic Models

- ▶ Probabilistic models are a special case of EBM
- ▶ Energies are like un-normalized negative log probabilities
- ▶ Why use EBM instead of probabilistic models?
- ▶ EBM gives more flexibility in the choice of the scoring function.
- ▶ More flexibility in the choice of objective function for learning
- ▶ From energy to probability: **Gibbs-Boltzmann distribution**
- ▶ Beta is a positive constant

$$P(y|x) = \frac{e^{-\beta F(x,y)}}{\int_{y'} e^{-\beta F(x,y')}} \quad \text{Energy Function} \quad F(x,y)$$

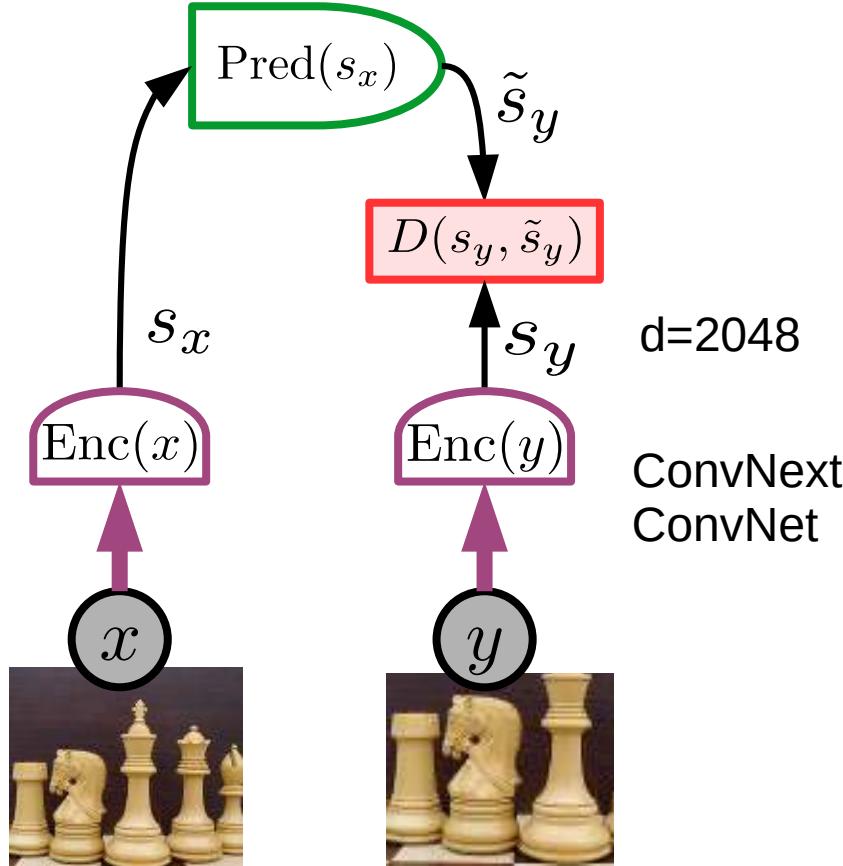


Contrastive Methods vs Regularized/Architectural Methods

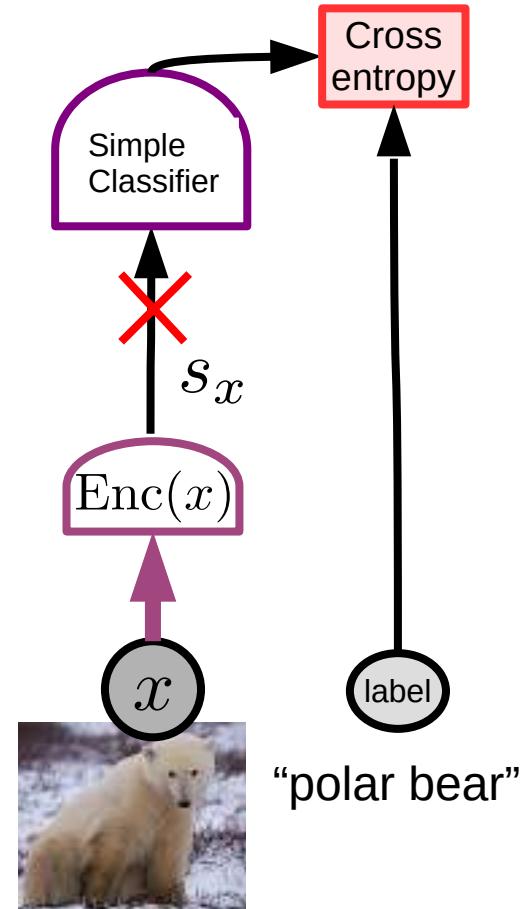
- ▶ **Contrastive:** [they all are different ways to pick which points to push up]
 - ▶ C1: push down of the energy of data points, push up everywhere else: **Max likelihood** (needs tractable partition function or variational approximation)
 - ▶ C2: **push down of the energy of data points, push up on chosen locations:** max likelihood with MC/MMC/HMC, Contrastive divergence, **Metric learning/Siamese nets**, Ratio Matching, Noise Contrastive Estimation, Min Probability Flow, **adversarial generator/GANs**
 - ▶ C3: train a function that maps points off the data manifold to points on the data manifold: denoising auto-encoder, **masked auto-encoder** (e.g. BERT)
- ▶ **Regularized/Architectural:** [Different ways to limit the information capacity of the latent representation]
 - ▶ A1: build the machine so that the volume of low energy space is bounded: PCA, K-means, Gaussian Mixture Model, Square ICA, normalizing flows...
 - ▶ A2: **use a regularization term that measures the volume of space that has low energy:** Sparse coding, **sparse auto-encoder**, LISTA, Variational Auto-Encoders, discretization/VQ/VQVAE.
 - ▶ A3: $F(x,y) = C(y, G(x,y))$, make $G(x,y)$ as "constant" as possible with respect to y : Contracting auto-encoder, saturating auto-encoder
 - ▶ A4: minimize the gradient and maximize the curvature around data points: score matching

SSL-Pretrained Joint Embedding for Image Recognition

JEPA/JEA pretrained with SSL



Training a supervised classification head



(Sample) Contrastive Joint Embedding

► Example:

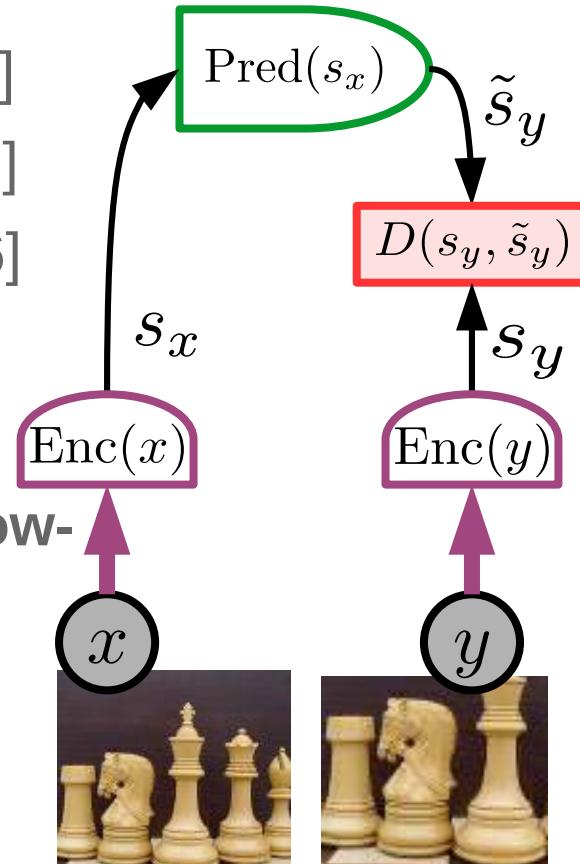
- Siamese Networks
[Bromley NIPS 1993]
[Chopra CVPR 2005]
[Hadsell CVPR 2006]

- SimCLR
[Chen 2020]

- Can only produce low-dimensional image representations

- Around 200 D.

Make $D(s_y, s_x)$ small



Make $D(s_y, s_x)$ large

