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We Need Human-Level Al for Intelligent Assista

» In the near future, all of our interactions with the
digital world will be mediated by Al assistants.

» Intelligent assistants “Her’
that can helps us in our daily lives (2013)
» Smart glasses
» Communicates through voice, vision, display, EMG...

» We need machines with human-level intelligence
» Machines that understand how the world works

» Machines that can remember
» Machines that can reason and plan.

Meta Orion
(2024)
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The Ubiquitous Al Assistant is Becoming A Realltyt 3-- LA

» Ray-Ban Meta (today) » Meta’s Orion Demonstrator (future)
» Cameras / microphone / speakers » Cameras / microphones
> no display » Augmented reality color display
> Voice interface to Meta Al » \oice + EMG bracelet interface

assistant
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- But Machine LearningﬁSucks! (compared to humal'.

» Supervised learning (SL) requires large numbers of labeled samples.
» Reinforcement learning (RL) requires insane amounts of trials.
» Self-Supervised Learning (SSL) works great but...

» Generative prediction only works for text and other discrete modalities

» Animals and humans:
» Can learn new tasks very quickly.

» Understand how the world works
» Can reason an plan

» Humans and animals have common sense
» Their behavior is driven by objectives (drives)



- What'’s a universal fo%dation model architec'

» Captures structure in the data
» Discovers dependencies in a task-independent way

» Trained with Self-Supervised Learning (SSL)
» No need for labels

» Learns abstract representations in the data
» Representations that allow to make predictions

» Learns a predictive model
» Observation x, transformed observation y=Trans(x,a)

» Encoding : representations sx = Enc(x), sy = Enc(y)
» Prediction of sy : py = Pred(sx, a)



| Y. LeCun
Predictive Model with JEPA (R

» Joint Embedding Predictive Architecture (JEPA)
» [LeCun 2022], [Garrido 2023], [Bardes 2023], [Assran 2023], [Garrido 2024]

Pred(s,) 3 Prediction of the
Y Representation of the

State of the world

Representation of the
State of the world
Attime t

| D(sy,5,) | At time t+1

Transformation,
Action




- AE Collapse Preventl.q*h through ArChiteCturah

» Train an auto-encoder with causal connections
» No connection between an input and its corresponding output
» LLMs /| GPT architectures are the most popular example

» Trained to predict the next input.

I Predici Predicﬂ Predica Predia Predictl Divergence

)
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IMHJ'[O-RGQI‘GSSIVE LL“Mnject predicted ?oken.'

» Outputs one token after another through feed-forward prediction
» Tokens may represent words, image patches, speech segments...
» Predictor has a fixed number of layers

» Only works for discrete domains (text, DNA....)

Predictor

Prompt | predicted token

Context
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Auto-Regressive Generative Models Suck! le

» Auto-Regressive LLMs are doomed.
» They cannot be made factual, non-toxic, etc. Subtree of
» They are not controllable correct answers

> Probability e that any produced token takes Tree of all possible
. quences
us outside of the set of correct answers

» Probability that answer of length n is correct
(assuming independence of errors):

> p(correct) = (1-e)"

» This diverges exponentially.
» It’s not fixable (without a major redesign).

’

» See also [Dziri...Choi, ArXiv:2305.18654]



oo Y. LeCun
Can we train Generative Architecture with Continuoulsi\

» Short answer: NO!!!
» It works for discrete domains, not high-dim domains
» Generative world model architecture

Prediction of the
State of the world
At time t+1

Representation of the
State of the world
At time t

| Masking, | |
L | Action /8 j : {
R syl R

ThlS is a [ ] of text extracted This is a piece of text extracted
[...] alarge set of [...] articles from a large set of news articles



if "

l
Generative Architectures DO NOT Work for Images ahbl’ Mbéq i f, ;
ARt

Mathieu,
> Because the world is only partially [Couprie’
predictable LeCun
» A predictive model should ICLR 2016] |

represent multiple predictions

» Probabilistic models are
intractable in high-dim continuous
domains.

» Generative Models must predict
every detail of the world

» My solution: Joint-Embedding
Predictive Architecture

[Henaff, Canziani, LeCun ICLR 2019]
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Joint Embedding World Model: Self-Supervis‘ai

» Joint Embedding Predictive Architecture (JEPA)
» [LeCun 2022], [Garrido 2023], [Bardes 2023], [Assran 2023], [Garrido 2024]

Pred(s,) 3 Prediction of the
Y Representation of the

State of the world

Representation of the
State of the world
Attime t

| D(sy,5y) | At time t+1

Transformation,
Action
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Architectures: Generative vs Joint EmbeddanK

» Generative: predicts y (with all the details, including irrelevant ones)
» Joint Embedding: predicts an abstract representation of y
» JEPA lifts the abstraction level, generative architectures do not.

Pred(s,;) ~ Pred(s)

I D(y,g) I ID Sy,Sy
S S
x x Sy
Enc(x) Enc(x) Enc(y)
a) Generative Architecture b) Joint Embedding Architecture

Examples: VAE, MAE...
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This is how models are built in traditional phylsd'

Find an abstract state representation that allows to make predictions
Extract the state representation from observation/measurement
Predict outcome resulting from an intervention/experiment

Prediction of the
Pred(s;) S Representation of
Y The resulting state

Representation of
The resulting state

VvV Vyvyy

Irrelevant and state vector of
unpredictable relevant
) . . variables
information is

eliminated from the
representation

» The representation
contains
Information that
makes prediction y .
Initial transformation Resulting

pOSSi ble System experiment System
Observation Observation
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» How do we get
machines to learn
like babies?

=t

spene Uakenrity



Current architectures are missing something reall |

» Never mind humans, cats and dogs can do amazing feats
» Current robots intelligence doesn’'t come anywhere close

Any house cat can plan highly complex actions
Any 10 year-old can clear up the dinner table and fill up the
dishwasher without learning (“zero-shot”)

Any 17 year-old can learn to drive a car in
20 hours of practice

Al systems that can pass the bar exam, do
math problems, prove theorems....

...but where are my Level-5 self-driving car
and my domestic robot?

» We keep bumping into Moravec’s paradox

» Things that are easy for humans are difficult
for Al and vice versa.

vV vV v VvV
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- Our world model need;@ to be trained from seh

i

> LLM
» Trained on 3.0E13 tokens (2E13 words). Each token is 3 bytes.

» Data volume: 0.9E14 bytes.
» Would take 450,000 years for a human to read (12h/day, 250 w/minute)

» Human child
» 16,000 wake hours in the first 4 years (30 minutes of YouTube uploads)

» 2 million optical nerve fibers, carrying about 1 byte/sec each.
» Data volume: 1.1E14 bytes

» A four year-old child has seen more data than an LLM !



Desiderata for AMI (Advanced Machine Intelli,g.' ce) ”7

» Systems that learn world models from
sensory inputs

» E.g. learn intuitive physics from video

» Systems that have persistent memory
» Large-scale associative memories

» Systems that can plan actions
» So as to fulfill an objective

» Systems that can reason
» Inventing new solutions to unseen
problems
» Systems that are controllable & safe
» By design, not by fine-tuning.



~Inference: feed-forwd.il?i propagation vs optim' (!

» What is reasoning and planning?

» Feed-forward propagation is insufficient

» Complex inference requires the optimization of an objective

» Every computational problem can be reduced to optimization
» This includes every inference and planning problem.

» Energy-Based Model

Optimization

Perception

Perception

. representation
representation P

L 488 observation = &8 observation
=g 1 L




i

~Inference through optiﬁnization: Objective-Driwk

» Inference through optimization is used in
classical methods

» Probabilistic graphical models, Bayesian nets

Perception

Optimization

representation

» Model-Predictive Control in robotics
» Search & planning in “classical” Al

s observation

» In the past, all of Al was viewed as a search
or optimization problem

» Path planning, Block World, Towers of Hanoil,
SAT, logical inference
» Optimization-based inference enables zero-shot “learning”

» It can find innovative solutions to unseen problems.
» All game-playing Al systems use search/planning
» Optimization-based inference is “System 2”



- Capturing Dependenq:ﬂas with Energy-Based

» The only way to formalize & understand all model types
» Gives low energy to compatible pairs of x and y

» Gives higher energy to incompatible pairs

Energy
Landscape

time or space -




- 2. World Model for Pl%ning/Reasoning | '

\

» Perception: Computes an abstract representation of the state of the world
» Possibly combined with previously-acquired information in memory

» World Model: Predict the state resulting from an imagined action sequence
» Task Objective: Measures divergence to goal

» Guardrail Objective: Immutable objective terms that ensure safety

» Operation: Finds an action sequence that minimizes the objectives

Guardrail

Objective
memory

Perception
Initial World state Predicted state | CDIcctve
representation Sequence
. representation
o Action




- 2. Models for Physicsﬂl*xperiments | | ',

(

» Encoder: Computes an abstract representation of the state of the system

» World Model: Predict the state resulting from an imagined experiment or
iIntervention.

» Hypothesis Objective: Measures divergence to the result expected from the
experiment

» Constraints: that the trajectory must satisfy.
» Find an action an experiment that validates or invalidates the hypothesis

hypothesis
. Objective
Representation

of predicted state

Intervention /
experiment

Representation of
Initial state




- Objective-Driven Al: M'hJItistep/Recurrent n;

» Same world model applied at multiple time steps

» Guardrail costs applied to entire state trajectory

» This is identical to Model Predictive Control (MPC)
» But with a trained world model

» Action inference by minimization of the objectives
» Using gradient-based method, graph search, dynamic prog, A*, MCTS,....

Perception
World state
representation
T g

Guardrail Guardrail
Costs Costs

Final state Cost

representation

Predicted state
representation




- Objective-Driven Al N*)n-Deterministic World'l

» The world is not deterministic or fully predictable
» Latent variables parameterize the set of plausible predictions
» Can be sampled from a prior or swept through a set.

» Planning can be done for worst case or average case
» Uncertainty in outcome can be predicted and quantified

Guardrail Guardrail
Costs Costs

Final state Cost

representation

Predicted state
representation

World state
representation
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Obijective-Driven Al: Hierarchical Planning
| §

» Hierarchical Planning: going from NYU to Paris

Taxi or train? Which
EWR or JFK? Airline?

@ Guardrail2

Guardrail2

Encl(x)

Distance
To Paris

At NYU

hail or call?
Obstacles? Traffic?

@ Guardraill @ Guardraill

Distance
To airport

Sitting in

my NYU

ofice (a0) il
Go down Grab a taxi

In the street To airport



Objective-Driven Al Systems

Al that can learn, understand the world,
reason, plan,
Yet is safe and controllable

“A path towards autonomous machine intelligence”

[previous versions of this talk available on YouTube]


https://openreview.net/forum?id=BZ5a1r-kVsf

“Modular Cogpnitive Aﬂ,*itecture for AMI !'l

» Configurator
» Configures other modules for task

Sl 't — \ ﬂh“"*ﬁ
» Perception Y4 : S’h;) rm“g £
» Estimates state of the world - .

» World Model
» Predicts future world states

» Cost
» Compute “discomfort”

» Actor
» Find optimal action sequences

» Short-Term Memory
» Stores state-cost episodes



How could Machines Learn
World Models from Observations?

Self-Supervised Learning



Joint Embedding Architectures

» Computes abstract representations for x and y
» Tries to make them equal or predictable from each other.

/I D(3y7 §y) I\ /I Pred Sﬂ?)& Pred(3x7 Z) g
Y

ID S?J?Sy)l ID<Sy78y
S
'Enc(a:). 'Enc(y). 'Enc | Enc 'Enc | Enc
a) Joint Embedding Architecture (JEA) b) Deterministic Joint Embedding c) Joint Embedding Predictive
Examples: Siamese Net, Pirl, MoCo, Predictive Architecture (DJEPA) Architecture (JEPA)
SIMCLR, BarlowTwins, VICReg, Examples: BYOL, VICRegL, I-JEPA Examples: Equivariant VICReg



i Y. LeCun
~ Architecture for actlonacondltloned world moc‘_

» JEPA: Joint Embedding

Predictive Architecture. C(Sy
» X: observed past and present
» y: future Pred(sz, a, 2)
» a: action

» z: latent variable (unknown)

D(s,, s
» D( ): prediction cost ‘ s y)‘
» C(): surrogate cost Sy
» JEPA predicts a representation Enc(x) Enc(y)

of the future Sy from a

representation of the past and
present Sy




Energy-Based Models for
Self-Supervised Learning

Capturing dependencies through an energy function

Probabilistic modeling is intractable in high-dimensional
continuous domains.



- Energy-Based Model’s’? Implicit function 'l [

» The only way to formalize & understand all model types
» Gives low energy to compatible pairs of x and y

» Gives higher energy to incompatible pairs

Energy
Landscape

time or space -




'm‘}a'”'”g Energy- Ba‘ém Models: Collaple Prey

» A flexible energy surface can take any shape.
» We need a loss function that shapes the energy surface so that:
» Data points have low energies

» Points outside the regions of high data density have higher energies.

Collapse! Contrastive Method Regularized Methods

| @
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EBM Training: two categories of methods IL |

p» Contrastive methods

» Push down on energy of
training samples Low energy

region Contrastive
Method

/

Contrastive
samples

» Pull up on energy of
suitably-generated
contrastive samples

» Scales very badly with

dimension y &
>
» Regularized Methods Training |
. e samples Regularized
» Regularizer minimizes the Method 1
volume of space that can -
X

take low energy f»
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EBM Architectures i i

» Some architectures can lead to a collapse of the energy surface
Pred( sx,

a) Prediction / regression b) Generative latent-variable Architecture c¢) Auto-Encoder d) Joint Embedding Architecture
NO COLLAPSE CAN COLLAPSE CAN COLLAPSE CAN COLLAPSE
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- Energy-Based Models vs Probabilistic Model

Energy

» Probabilistic models are a special case of EBM Funclion

» Energies are like un-normalized negative log probabilities

» Why use EBM instead of probabilistic models?
» EBM gives more flexibility in the choice of the scoring
function.

» More flexibility in the choice of objective function for
learning

» From energy to probability: Gibbs-Boltzmann
distribution —BF (z,y)

» Beta is a positive constant P ( _
e x,Yy )
,y/




- Contrastive Methods \}fg.ﬁReguIarized/Architectu'r D

P Contrastive: [they all are different ways to pick which points to push up]

» CL1: push down of the energy of data points, push up everywhere else: Max likelihood (needs
tractable partition function or variational approximation)

» C2: push down of the energy of data points, push up on chosen locations: max likelihood with
MC/MMC/HMC, Contrastive divergence, Metric learning/Siamese nets, Ratio Matching, Noise
Contrastive Estimation, Min Probability Flow, adversarial generator/GANs

» C3: train a function that maps points off the data manifold to points on the data manifold: denoising
auto-encoder, masked auto-encoder (e.g. BERT)

P Regqularized/Architectural: [Different ways to limit the information capacity of the latent representation]

» Al: build the machine so that the volume of low energy space is bounded: PCA, K-means,
Gaussian Mixture Model, Square ICA, normalizing flows...

P A2: use a regularization term that measures the volume of space that has low energy: Sparse
coding, sparse auto-encoder, LISTA, Variational Auto-Encoders, discretization/VQ/VQVAE.

> A3: F(x,y) = C(y, G(x,y)), make G(x,y) as "constant" as possible with respect to y: Contracting
auto-encoder, saturating auto-encoder

» A4: minimize the gradient and maximize the curvature around data points: score matching



SSL-Pretrained Joint Embedding for Image ‘3"'

JEPA/JEA pretrained with SSL Training a supervised classification head

Pred(s) ~

Simple
Classifier

d=2048

ConvNext
ConvNet
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(Sample) Contrastive Joint Embedding is\ 1

» Example: Make D(Sy,Sx) small Make D(Sy,Sx) large
» Siamese Networks
Bromley NIPS 1993] Pred(@xgy Pred(sy)
[Chopra CVPR 2005]
'Hadsell CVPR 2006

» SIMCLR
[Chen 2020]

» Can only produce low-
dimensional image
representations

» Around 200 D.
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