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Abstract

Large language models (LLMs) have attracted significant attention in both academia
and industry due to their impressive ability to mimic human language. Accurately
identifying texts generated by LLMs is essential for understanding their full ca-
pabilities and mitigating potential serious consequences. This paper presents a
comprehensive analysis across datasets of varying text lengths—small, medium,
and large. We compare the performance of different machine learning algorithms
on four extensive datasets: small (tweets from Election, FIFA, and Game of
Thrones), medium (Wikipedia introductions and PubMed abstracts), and large
(OpenAI web text dataset). Additionally, we examine the characteristics of human
and machine-generated texts across multiple dimensions, including linguistics,
personality, sentiment, bias, and morality. Our findings indicate that machine-
generated texts generally have higher readability and closely mimic human moral
judgments. However, they exhibit notable differences in personality traits compared
to human-generated texts. SVM and Voting Classifier (VC) models consistently
achieve high performance across most datasets, while Decision Tree (DT) mod-
els show the lowest performance. We also find that model performance drops
when dealing with rephrased texts, particularly for shorter texts like tweets. This
study underscores the challenges and importance of detecting LLM-generated
texts and suggests directions for future research to improve detection methods and
understand the nuanced capabilities of LLMs.

1 Introduction

Modern large language models are becoming increasingly powerful and capable of generating realistic
and convincing content. These models can also target users with highly personalized recommenda-
tions. Consequently, they have the potential to create and propagate harmful or misleading content,
such as fake news or hate speech, whether intentionally or unintentionally [12, 8, 33]. The prolifera-
tion of content generated and distributed by these models has amplified the threat and impact of such
harmful activities more than ever before [32, 41, 8, 33, 10]. As AI-generated texts increasingly blend
seamlessly with human-written content, the demand for more effective methods to detect misleading
information produced by AI grows. Therefore, there is a growing interest in investigating the impact
and detection mechanisms for machine-generated content [34, 19, 40, 16, 36, 35]. Accurately de-
tecting machine-generated content is essential to understand their full capabilities while minimizing
the potential for any serious consequences. In prior detection efforts, researchers predominantly
utilized pre-trained models like RoBERTa, GPT-2, GROVER, and GLTR [20], and more recently,
the effectiveness of conventional methods such as logistic regression, SVM, and others is also being
explored [38, 19]. Overall, supervised detection, zero-shot detection, retrieval-based detection, and
watermarking-based detection are being used to distinguish machine-generated text from human text
[39, 2]. Despite growing interest and several published studies, a consolidated comparison across
different domains, text lengths, and characteristics is still missing.
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This paper aims to contribute towards that goal by presenting three detailed analyses on datasets
comprising varying text lengths—small, medium, and large. First, it compares the performance
of different machine learning algorithms on four datasets: small (tweets from Election, FIFA, and
Game of Thrones), medium (Wikipedia introductions and PubMed abstracts), and large (OpenAI
web text dataset). Second, it compares the characteristics of human and machine-generated writing
across multiple dimensions, including linguistics, personality, sentiment, bias, and morality. Third, it
compares the algorithm performances on rephrased texts. Our analysis revealed several key findings:
Machine-generated texts are generally more accessible and require a lower level of education to
understand compared to human-generated texts. While there are some differences in sentiment scores,
especially in the weak negative and weak positive metrics, the scores are generally close across most
datasets, indicating that machine-generated texts can closely mimic the sentiment characteristics of
human-generated texts. Machine-generated texts show notable differences in personality metrics
compared to human-generated texts across different datasets. SVM and Voting Classifier (VC)
consistently achieve high performance across most datasets, particularly excelling in the Wiki and
Abstract datasets. In contrast, Decision Tree (DT) models generally exhibited the lowest performance
across all datasets. Finally, the performance of models drops when dealing with rephrased data. This
drop is more pronounced for short texts like tweets compared to medium-length texts like PubMed
abstracts.

The rest of the paper is organized as follows: In Section 2, we discuss the related background. The
datasets used in this study are described in Section 3, whereas their linguistic, personality, and
emotional characteristics of human and machine-generated data are presented in Section 4. The
performance results of the machine learning algorithms for the task of detection are discussed in
Section 5. Section 5 presents the implications of re-phrasing techniques on the model performances.
Finally, in Section 6, we conclude with our overall findings.

2 Related Work

Large language models (LLMs), such as the Generative Pre-trained Transformer (GPT) models
developed by OpenAI, have demonstrated remarkable capabilities in generating human-like text
across various domains [30]. These models are trained on extensive datasets and can produce coherent
and contextually relevant text in response to prompts. However, alongside their transformative
potential, LLMs pose significant challenges, particularly regarding the identification and mitigation
of potential misuse or harmful outputs. The number of users and applications for these models
is growing at an unprecedented rate. Most recently, ChatGPT reported having 180 million users
[9]. This rapid growth highlights the profound impact of this technology on individuals and society
[10, 37, 11, 28, 39].

The influence of LLMs in education has raised substantial concerns. While their convenience is
notable, the risk of providing swift answers poses a threat to the development of critical thinking and
problem-solving skills, which are essential for academic and lifelong success. Additionally, there’s
concern about academic honesty, as students may be tempted to use these tools inappropriately. In
response, New York City Public Schools have prohibited the use of ChatGPT [11]. Although the
impact of LLMs on education is considerable, it is crucial to extend this discussion to other domains
as well. In journalism, for example, the emergence of AI-generated "deepfake" news articles could
jeopardize the credibility of news outlets and misinform the public. In the legal sector, the potential
misuse of LLMs could have repercussions on the justice system, affecting processes from contract
generation to litigation. Furthermore, in cybersecurity, LLMs could be weaponized to craft more
convincing phishing emails or execute social engineering attacks. Zellers et al. [41] found that Grover
(Generating aRticles by Only Viewing mEtadata Records) can rewrite propaganda articles, with
humans rating the rewritten versions as more trustworthy. LLMs when assigned a persona can show
increase in toxicity [8]. Depending on the persona assigned to ChatGPT, its toxicity can increase up
to 6 times, with outputs engaging in incorrect stereotypes, harmful dialogue, and hurtful opinions.

Detecting text generated by LLMs is crucial for various reasons, including combating misinformation,
protecting against online abuse, and ensuring the ethical use of AI technologies. Recent research
has focused on developing methodologies for distinguishing between text generated by LLMs and
human-authored content. Approaches range from linguistic analysis and stylometric features to
leveraging artifacts specific to model architectures [31]. One common strategy involves analyzing
linguistic patterns and semantic coherence in generated text. LLMs often exhibit characteristic
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biases, repetition, or semantic inconsistencies that differ from human-written text [6]. Additionally,
researchers have explored the use of stylometric features, such as writing style, vocabulary usage,
and syntactic structures, to differentiate between LLM-generated text and human-written text [4].

Advancements in adversarial testing frameworks have enabled the evaluation of LLM robustness
against detection techniques. Adversarial examples, crafted to evade detection mechanisms, provide
insights into the vulnerabilities of detection models and inform the development of more robust
detection strategies [17]. Jonathan [29] illustrated cybersecurity issues raised by machine-generated
texts, the importance of distinguishing machine-generated texts from human-generated texts, and
how to use a model to classify machine-generated texts. Using the Foundation Model framework,
they trained their own model using human-generated texts with self-supervised learning and then
fine-tuned the model using a transfer learning approach on a small set of machine-generated texts.
Although the results are promising, further improvements are required to accommodate the growing
LLM model.

In the work done by Mohamed et al. [3], they assessed the difficulty and importance of identifying
genuine research in academic writing and scientific publication. They developed datasets of human-
written and machine-generated scientific papers using various generative AI and experimented
with classifiers to build a model to detect authorship. The classifiers were then assessed in terms
of generalization capabilities and explainability. Chong et al. [7] discussed the identification of
critical linguistic, emoji, and sentiment characteristics to distinguish between machine-generated
and human-generated posts on Twitter through a classifier. Their model includes BERT embeddings
with semantic, emoji, sentiment, and linguistic features, and a multi-layer perceptron is used to
incorporate additional features beyond BERT. It was evaluated using logistic regression, support
vector machines, and random forest. They found apparent differences between machine-generated
texts and human-generated texts according to these features, achieving accuracy scores of 88.3%,
with F1 scores ranging between 88.1% and 88.3%.

Xie et al. [38] tested traditional machine learning methods like logistic regression, support vector
machines, decision tree, k-nearest neighbor, random forest, AdaBoost, bagging classifier, gradient
boosting, multi-layer perceptron, long short-term memory, etc., for the task of machine-generated
text detection. While [19] observed that extremely randomized trees exhibited the highest F1-score
at 76%, [38] reported very high accuracy (above 95%) on abstract, PubMed, and poetry datasets.
Gehrmann et al. [14] used a statistical approach to detect differences in patterns between human and
model-generated texts. Assuming that AI systems tend to overgenerate from a limited subset of the
true distribution of natural language, they developed a tool called GLTR (Giant Language model
Test Room) which assesses each word in terms of its probability, absolute rank, and entropy of its
prediction. While GLTR significantly improved the detection rate (from 54% to 72%) of generated
text, the tool relies heavily on the assumption that models have a tendency for biased sampling.
Overall, the detection of text generated by LLMs is a multidisciplinary endeavor, drawing on insights
from natural language processing, machine learning, and computational linguistics. Addressing the
challenges associated with large language model detection is essential for fostering trust, transparency,
and the responsible deployment of AI technologies in various domains.

3 Dataset

In this section, we describe the four datasets of varying lengths used in our study: (1) OpenAI GPT-2
Webtext dataset; (2) Wikipedia introductions; (3) Pubmed abstracts; and (4) a Twitter dataset. Before
conducting the statistical analysis and modeling, we adhered to standard data cleaning procedures.
These included removing missing values, stopwords (except for the OpenAI and Twitter datasets),
non-English text, excess whitespaces, special characters, and isolated single digits. The decision
not to remove stopwords from the OpenAI and Twitter datasets was based on observed performance
degradation in detection tasks when stopwords were excluded. Each dataset contains a ’label’
column that indicates whether the text was authored by a machine or a human ( 1 = machine and
0 = human). Overview of the four dataset description is provided in the Table 1. The table provides
insights into the differences between machine-generated and human-generated texts across various
datasets in terms of token count and vocabulary size. Human texts generally have larger vocabularies,
while the length of the texts varies depending on the dataset. The machine-generated texts tend
to be more consistent in length compared to human texts, which show more variability. For our
experiments, we used the University HPC Cluster which is a high-powered, multi-node, parallel
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computing system designed to support large datasets. More specifically, we used jupyter labs on the
RC using short partition and 6 CPUs, and max of 8gb memory. Details of each dataset is described
next.

Table 1: Mean distribution of tokens/words per text (mean and SD), dataset size (n) and their
corresponding columns.

Dataset Tokens-Machine Tokens-Human Total (n) Vocab (human/Machine)
OpenAI- GPT2 481.87 (277.43) 440.94 (275.87) 500,000 2,437,481/3,738,722

Wiki Intro 50.60 (21.06) 82.32 (18.54) 300,000 465,420 / 213,963
Pubmed 105 (41.64) 132.73 (80.66) 29,844 88,317/24,225
Twitter 22.77(4.87) 28.48 (15.94) 59,999 32,730/7,735

Open AI GPT-2 Output Dataset (Long Text Length): The OpenAI GPT-2 Output Dataset [27]
consists of text generated by the GPT-2 model, a transformer-based language model developed by
OpenAI. This dataset was created to study GPT-2’s outputs and provide a resource for researchers
investigating language generation, model evaluation, and detection of machine-generated text. Key
characteristics include: (i) a variety of prompts that vary in topic and style, reflecting the model’s
versatility; (ii) text generated by different sizes of GPT-2, from 117M to 1.5B parameters, allowing
for comparison across model capacities. The dataset comprises 250K documents from the WebText
test set, including 250K random samples and 250K samples generated using Top-K truncation of 40.
Table 1 provides initial statistics: the average number of tokens in machine-generated text is 481.87,
slightly higher than the 440.94 in human-generated text, with both showing high variability (standard
deviations around 277). Machine-generated text has a significantly larger vocabulary (3,738,722)
compared to human-generated text (2,437,481).

GPT Wiki Intro (Medium Text Length): GPT Wki Intro [1] is an open source dataset for training
models to classify human-written vs. GPT/ChatGPT generated text. This dataset comprises Wikipedia
introductions and GPT (Curie) generated introductions for 150K topics. Prompt used for generating
text: A 200-word Wikipedia-style introduction on {title}: {starter_text} where {title} is
the title for the Wikipedia page, and {starter_text} is the first seven words of the Wikipedia
introduction. From the Table 1, it can be seen that the Machine-generated texts are shorter on average
(50.60 tokens) compared to human-generated texts (82.32 tokens). The standard deviations are
relatively low, indicating consistent lengths. Human-generated text has a larger vocabulary (465,420)
than machine-generated text (213,963). In total, there are 300,000 wikipedia text samples.

Pubmed Abstract (Medium Text Length): For the purpose of investigating the technical writing
styles (dataset), we utilized the Pubmed Python library1 to extract abstracts from the vast repository
of scientific literature available on Pubmed. Our focus was particularly directed towards abstracts
and their corresponding titles related to the topic of HIV and Dementia. To balance our dataset
and to generate equivalent machine-generated content, we used the following approach. Each
human-generated abstract’s title served as a prompt for ChatGPT-3, enabling us to generate machine-
equivalent abstracts. Through this method, we successfully generated approximately 30K abstracts
for the purpose of this study. Overall, machine-generated texts in pubmed dataset have an average of
105 tokens, while human-generated texts are longer with an average of 132.73 tokens (See Table 1.
Additionally, human-generated texts show more variability (standard deviation of 80.66) compared to
machine-generated texts (standard deviation of 41.64). The vocabulary size for human-generated text
(88,317) is larger than for machine-generated text (24,225).

Tweets (Short Text Length): To evaluate the detection task on short text samples, tweets from
three topics were utilized: US Election 20202, FIFA World Cup 20223, and Game of Thrones Season
84. These datasets represented the ’Human’ dataset. Machine-generated tweets were produced using
the OpenAI library with the ’gpt-3.5-turbo’ model. The prompt used for generating tweets was:
"Generate {max_tweets_per_request} tweets using the following prompt: You are a devoted supporter

1https://pypi.org/project/pymed/
2https://www.kaggle.com/datasets/manchunhui/us-election-2020-tweets
3https://www.kaggle.com/datasets/tirendazacademy/fifa-world-cup-2022-tweets
4https://www.kaggle.com/datasets/monogenea/game-of-thrones-twitter
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Table 2: Average readability scores for human and machine generated texts.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Gunning Fog Index 11.62 12.50 12.89 10.41 16.82 15.06 14.72 12.05
SMOG Index 11.26 11.42 12.76 11.08 17.16 14.93 11.75 10.23

Dale-Chall Readability 9.23 9.38 10.14 9.54 10.86 11.40 10.66 9.55
Flesch Reading Ease Score 59.35 58.90 53.19 60.97 19.99 29.95 56.62 68.86

Coleman Liau Index 10.74 10.66 11.69 10.45 18.40 16.42 11.75 9.06

of Biden. Write an enthusiastic twitter post to show your support for him in the 2020 election. Do
not exceed {character_limit} characters per tweet. Do not include line breaks within a tweet." For the
US Election Twitter dataset, tweets were balanced to demonstrate support for both the Democratic
and Republican parties. This approach aimed to ensure equal representation and a comprehensive
analysis. The diverse topics create a robust benchmark for comparing human and machine-generated
texts, introducing variety into the classification task. Ten thousand tweets were randomly sampled
from the ’Human’ dataset, totaling 30K human tweets. Using gpt-3.5, another 30K machine tweets
were generated, resulting in 60K tweets in total. Data statistics are provided in Table 1. On average,
human-generated tweets contain more tokens (28.48) compared to machine-generated tweets (22.77).
This suggests that human tweets tend to be longer. Human-generated tweets exhibit greater variability
in length (standard deviation of 15.94) compared to machine-generated tweets (standard deviation of
4.87). he human-generated text has a significantly larger vocabulary (32,730 unique words) compared
to the machine-generated text (7,735 unique words). This indicates that human-generated tweets use
a more diverse set of words than machine-generated tweets.

4 Characteristic Analysis

To understand the characteristics of human and machine-generated data, we analyzed them across
various linguistic, personality, and emotional dimensions. The rationale for including linguistic and
emotional features is that individuals express themselves differently, using distinct words, phrases,
and emotions (e.g., anger, joy). In contrast, machine-generated content tends to lack strong emotions
or specific personality traits. Research has shown that machine-generated writing is typically polite,
devoid of specific details, uses sophisticated and unusual vocabulary, is impersonal, and generally does
not convey emotions [26]. Additionally, while machine-generated medical content is grammatically
flawless and human-like, its linguistic characteristics differ from those written by human experts [23].
The difference between the human and machine data scores were compared for significance using
t-test at α = 0.05.

Readability: To analyze the complexity and readability of the poems, essays and abstracts, we
utilized four well known readability metrics [25] – Gunning Fog Index5, SMOG Index6, Dale-Chall
Readability Score7, Flesch Reading Ease Score8 and coleman liau index [18]. Research pertaining
to Large Language Models (LLMs) and their linguistic capabilities has been of significant interest
to researchers in the past [5]. However, there has been a relatively limited exploration from the
perspective of readability scores. The scores for both machine and human data are provided in the
Table 2. The results in the table suggest that machine-generated texts tend to be simpler and more
accessible than human-generated texts, especially in the Wiki and Tweets datasets. However, in
the OpenAI and PubMed datasets, the results are mixed, with machine-generated texts sometimes
being more complex or slightly easier to read, depending on the metric. This indicates that while
machine-generated texts can mimic human writing closely, they often result in more straightforward
and less nuanced language.

5https://en.wikipedia.org/wiki/Gunning_fog_index
6https://readable.com/readability/smog-index/
7https://readabilityformulas.com/word-lists/the-dale-chall-word-list-for-readability-formulas/
8https://yoast.com/flesch-reading-ease-score/
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Table 3: Bias metric comparisons between human and machine generated data. Here, mean score for
dataset are reported.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Bias words 0.0781 0.0744 0.2288 0.2495 0.0599 0.0727 0.1246 0.1330
Assertatives 0.0044 0.0043 0.0105 0.0105 0.0020 0.0029 0.0097 0.0100

Factives 0.0025 0.0026 0.0051 0.0058 0.0024 0.0034 0.0062 0.0074
Hedges 0.0117 0.0116 0.0107 0.0093 0.0077 0.0068 0.0106 0.0119

Implicatives 0.0059 0.0054 0.0046 0.0039 0.0049 0.0060 0.0111 0.0180

Table 4: Morality comparisons between human and machine generated data. Here, mean for dataset
are reported.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Harm 0.0019 0.0019 0.0035 0.0040 0.0012 .0014 0.0019 0.0019
Fairness 0.0003 0.0003 0.0003 0.0002 0.0001 0.000 0.0003 0.0003
Cheating 0.000 0.000 0.0035 0.0040 0.0001 0.000 0.000 0.000
Loyalty 0.0017 0.0017 0.0058 0.0061 0.0027 0.0020 0.0010 0.0007
Betrayal 0.0002 0.0002 0.0004 0.0003 0.000 0.000 0.0002 0.0001

Authority 0.0025 0.0025 0.0063 0.0048 0.002 0.001 0.0012 0.0010
Subversion 0.0002 0.0002 0.0003 0.0003 0.000 0.000 0.0003 0.0002

Purity 0.0003 0.0003 0.0015 0.0013 0.000 0.000 0.0002 0.0003
Degradation 0.0002 0.0003 0.0003 0.0003 0.000 0.00003 0.0005 0.0005

Morality General 0.0016 0.0018 0.0013 0.0013 0.0014 0.0010 0.0042 0.0034

Bias: This set of features encapsulates the general bias and subjectivity present in the text. It draws
heavily from the research of Recasens et al. [46] in identifying biased language. This feature set
encompasses various linguistic indicators, such as hedges, factives, assertives, implicatives, and
opinion words. Additionally, it incorporates the count of biased words according to a lexicon of biased
terms referenced. Results for bias features are shown in the Table 3. The results in the table indicates
that machine-generated texts tend to exhibit slightly higher scores in several bias metrics compared to
human-generated texts. This is particularly notable in the "Bias words" and "Factives" metrics across
the Wiki and Pubmed datasets, suggesting that machine-generated texts may contain more biased
language and assertive statements. However, for "Hedges" and "Implicatives," the scores vary, with
some datasets showing higher scores for human-generated texts and others for machine-generated
texts. Overall, while the differences are generally small, machine-generated texts exhibit a slight
tendency towards higher bias across most metrics.

Moral: This feature set draws from Moral Foundation Theory [15] and lexicons referenced in
[22]. Despite its application in prior research, its efficacy in the news context or its ability to capture
significant signals has not been demonstrated. We include this feature group for comprehensive
analysis purposes. In total, this group comprises 10 features as shown in Table 4. The Fairness score
are almost identical across human and machine-generated texts for OpenAI and Tweets datasets.
In the Wiki dataset, human texts score slightly higher. Whereas, Cheating was only present in the
Wiki dataset, where machine-generated texts have a higher score (0.0040) compared to human texts
(0.0035). Very similar ‘Harm’ scores were observed across human and machine-generated texts for all
datasets. Machine texts in Wiki and Pubmed datasets show slightly higher scores. Overall, the results
indicates that the morality metrics between human and machine-generated texts are generally similar,
with some variations. Machine-generated texts tend to have slightly higher scores in certain metrics
like "Cheating" and "Harm" in specific datasets. Overall, the differences are minor, suggesting that
both types of texts exhibit similar moral considerations across the datasets. This similarity highlights
the capability of machine-generated texts to closely mimic human moral judgments in content.
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Table 5: Sentiment comparisons between human and machine generated data. Here, average scores
for datasets are reported.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Weak Negatives 0.0166 0.0652 0.0287 0.0275 0.0231 0.0220 0.0297 0.0351
Weak Positive 0.0250 0.0250 0.0409 0.0438 0.0278 0.0432 0.0297 0.0369
Weak Neutral 0.0206 0.0202 0.0254 0.0218 0.0185 0.0174 0.0229 0.0240

Strong Negative 0.0101 0.0117 0.0152 0.0133 0.0086 0.0076 0.0206 0.0243
Strong Positive 0.0199 0.0204 0.0189 0.0194 0.0084 0.0124 0.0557 0.0531
Strong Neutral 0.0074 0.00756 0.0096 0.0090 0.0044 0.0068 0.0125 0.0157

Table 6: Average personality score comparisons of human and machine generated data.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Extroversion 0.5667 0.5156 0.1919 0.1921 0.3815 0.3643 0.4644 0.4665
Neuroticism 0.5188 0.5203 0.1699 0.1692 0.6138 0.6343 0.64 0.6432

Agreeableness 0.6137 0.3915 0.2343 0.2353 0.4349 0.4265 0.5604 0.566
Conscientiousness 0.4517 0.4649 0.1987 0.1967 0.4425 0.4381 0.5561 0.5628

Openness 0.4238 0.5921 0.2052 0.2067 0.6179 0.0198 0.5019 0.4983

Sentiment: To investigate the expression style of human and machine writing we computed various
sentiment features from Liu et. al [24] using python NELA Feature extractor9. Results are provided
in Table 19. The table provides insights into how sentiment scores vary between human and machine-
generated texts. For instance, scores are similar for OpenAI human and machine-generated texts
(0.0250), and machine-generated texts have slightly higher weak positive scores in the Wiki, Pubmed,
and Tweets datasets compared to human-generated texts. While there are some differences in
sentiment scores, especially in the weak negative and weak positive metrics, the scores are generally
close across most datasets, indicating that machine-generated texts can closely mimic the sentiment
characteristics of human-generated texts. However, certain nuances, such as higher weak negative
sentiment in machine texts for the OpenAI dataset, highlight areas where machine-generated content
differs from human-generated content.

Personality: Research in psychology suggests that individual behavior and preferences can largely
be explained by underlying personality traits. Traditionally, these traits are identified through surveys
like the Big Five inventory questionnaire [21], which asks participants to rate themselves on a 5-point
scale across five traits: Extraversion, Agreeableness, Emotional Stability, Openness to experience,
and Conscientiousness. Previous studies have shown that user-generated content, such as social media
posts, can accurately predict personality [13]. To explore personality differences between machine-
generated and user-generated content, we used the BERT personality prediction model10 to compute
scores for the five personality traits. Table 6 presents the overall personality trait scores for the three
datasets. The results indicate notable differences between machine-generated and human-generated
texts. For instance, machine-generated texts are generally more open in the OpenAI dataset but
significantly less open in the PubMed dataset. Scores for neuroticism and conscientiousness are quite
similar between human and machine-generated texts across all datasets. These findings highlight
the variability in personality scores depending on the source and nature of the text, indicating both
alignments and significant differences between machine-generated and human-generated texts.

5 Detection

For the detection task, we defined the problem as a binary classification challenge. Specifically, the
task is to determine whether a given input belongs to one of two categories. Let F represent the vector
in the feature space with m features, f1, f2, ..., fm, and let T represent the target vector in the output

9https://pypi.org/project/nela-features/
10https://huggingface.co/Minej/bert-base-personality

7



space with n target categories [0, 1]. The objective of the classification algorithm is to learn a model
M : F → T that minimizes the prediction error over the blind test. In this paper, we explore the
application of various machine learning algorithms for this detection task. Specifically, we compare
eight algorithms: Logistic Regression, Random Forest, Multinomial NB, SGDClassifier11, SVM,
VotingClassifier12 and Sequential modeling13. For input features, we only used the content of the text.
All algorithms were trained and tested using the same set of input features. In our experiments, each
dataset was split into 90% training data and 10% test data. The training data was further used for
5-fold cross-validation (using 80%-20% split), and then the final model was tested on the 10% test
dataset. We report results for overall performance scores in Table 7 for the test datasets. For feature
extraction, we used the TfidfVectorizer library from sklearn in Python14. The performance outcomes
of the algorithms for OpenAI, Wikipedia, Pubmed, and Twitter datasets are shown in Table 8, Table
10, Table 9 and Table 11 respectively.

Table 7: Classification results (5-fold) on the four datasets. The reported results here are on the blind
test sets. Here, Acc = Accuracy, P= Precision and R= Recall scores. The models: LR = Logistic
Regression, DT = Decision Trees, RF = Random Forest, MNB = multinomial naive bayes, SGD
= Stochastic Gradient Descent classifier, SVM = Support Vector Machine, VC = Majority Voting
Classifier, and Seq = Sequential.

Table 8: OpenAI Dataset (xl-1542M)

Model Acc P R F1

LR 74.32% 75.89% 71.28% 73.51%
DT 58.99% 60.21% 61.63% 61.63%
RF 67.09% 71.56% 63.98% 67.56%

MNB 64.65% 61.57% 77.89% 68.81%
SGD 64.88% 69.99% 52.07% 59.71%
SVM 74.86% 73.89% 71.28% 72.56%
VC 72.69% 75.04% 70.53% 72.72%
Seq 73.60% 74.20% 71.05% 72.59%

Table 9: Wiki Dataset

Model Acc P R F1

LR 87.00% 86.81% 87.61% 87.21%
DT 77.46% 77.08% 78.11% 77.59%
RF 88.83% 88.92% 88.83% 88.82%

MNB 74.58% 79.02% 66.87% 72.44%
SGD 85.75% 85.28% 86.40% 85.83%
SVM 92.28% 92.28% 92.28% 92.28%
VC 88.27% 88.30% 88.27% 88.27%
Seq 92.61% 92.05% 93.26% 92.65%

Table 10: Abstract dataset

Model Acc P R F1

LR 96.08% 96.10% 96.08% 96.08%
DT 96.08% 96.10% 96.08% 96.08%
RF 97.32% 97.43% 97.32% 97.32%

MNB 87.40% 89.45% 87.40% 87.24%
SGD 90.08% 90.29% 90.08% 90.07%
SVM 97.35% 97.37% 97.35% 97.35%
VC 97.02% 97.10% 97.02% 97.02%
Seq 96.82% 95.50% 95.50% 96.00%

Table 11: Twitter Dataset

Model Acc P R F1

LR 98.47% 98.47% 98.47% 98.47%
DT 95.82% 95.83% 95.83% 95.82%
RF 98.92% 98.91% 98.92% 98.92%

MNB 97.05% 97.07% 97.07% 97.05%
SGD 52.25% 75.76% 51.52% 36.96%
SVM 98.02% 98.01% 98.02% 98.02%
VC 99.03% 99.03% 99.03% 99.03%
Seq 99.00% 99.00% 99.00% 99.00%

The results in Table 7 demonstrate that SVM and VC consistently achieve high performance across
most datasets, particularly excelling in the Wiki and Abstract datasets. In contrast, Decision Tree (DT)
models generally exhibited the lowest performance across all datasets. While Logistic Regression
(LR) performed well, it was outperformed by more complex models such as SVM and VC, especially
in terms of accuracy and F1 scores. For the OpenAI dataset, the results presented pertain to the
XL-1542M version, the largest version with 1.5 billion parameters, evaluated with a temperature
setting of 1 (no truncation). The baseline performance for this dataset using Logistic Regression
is reported to be 74.31% [27]. Although the performance of Logistic Regression on this dataset is
well-documented, our study sought to evaluate the performance of other well-known models as well.
Comprehensive results for all data versions are provided in Appendix Table 21. In the Twitter dataset
(merged US Election, Game of Thrown and FIFA tweets), all models except SGD exhibited very

11https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
12https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
13https://www.tensorflow.org/guide/keras/sequential_model
14https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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high performance, with RF, VC, and Seq models approaching near-perfect metrics. This clearly
demonstrates the limitation of machine data generated using generic prompt. Therefore, we further
modified the Twitter and Abstract datasets using a rephrasing technique to increase the difficulty
of the detection task (discussed in the following section). Overall, the results in Table 7 indicate
that while traditional models like Logistic Regression and Decision Trees can perform adequately,
advanced models such as SVM and ensemble methods like Voting Classifier tend to deliver superior
performance, particularly in more complex or varied datasets.

Re-Phrased Text Detection Detecting short and rephrased text poses challenges, as noted in
previous studies [19]. In our initial experiments with Twitter and abstract datasets, we employed
OpenAI’s GPT-3.5-turbo model to generate machine data, aiming to emulate diverse human behaviors.
However, stark disparities emerged between human and machine-generated tweets. While human
tweets often lack context, contain informal language with occasional errors, and express varied tones,
machine-generated tweets tend to be comprehensive, positive, grammatically flawless, and formal
[35]. To address this, we refined our prompt engineering approach by incorporating actual human
tweets, instructing the model to mimic not only content but also style, tone, and vocabulary usage. We
tested two methods of rephrasing: (1) generate data without any threshold constraint of vocabulary
from the human text to generate machine data.; (2) generate data using at least 60% of the vocabulary
from the human text to generate machine data. This led to newly generated tweets and abstracts
closely resembling their human counterparts. We report results for the second in this paper as it was
harder to detect. Results for the first method is provided in the Table 22 of Appendix Section. As
expected, detecting rephrased data proved more challenging, resulting in performance drops observed
in both datasets. For instance, logistic regression’s performance dropped from 96% to 77% for the
Twitter dataset and from 98% to 91% for the PubMed dataset. These findings confirm previous
literature, highlighting the increased difficulty in detecting shorter and rephrased texts, particularly
in tweets compared to abstracts. It should be noted that the Twitter dataset include tweets on three
different topics (US election, FIFA and Game of Thrown). Significant drop in the performance can
also be due to the diversity in the topics. Results on individual topic is provided in the Table 25 of the
Appendix Section.

Table 12: Classification results on the Twitter and Pubmed re-phrased datasets, using 60% overlap
constraint.

Table 13: Twitter Dataset

Model Acc P R F1

LR 77.43% 77.55% 77.42% 77.4%
DT 65.64% 65.65% 65.64% 65.63%
RF 73.47% 73.53% 73.47% 73.45%

MNB 72.82% 72.94% 72.82% 72.78%
SGD 56.4% 75.12% 56.33% 46.33%
SVM 76.07% 76.19% 76.06% 76.04%
VC 77.01% 77.07% 77.00% 76.99%
Seq 77.02% 77.15% 77.02% 77.00%

Table 14: Pubmed Dataset

Model Acc P R F1

LR 91.22% 91.24% 91.22% 91.22%
DT 91.22% 91.24% 91.22% 91.22%
RF 89.86% 90.04% 89.86% 89.83%

MNB 83.46% 84.00% 83.46% 83.34%
SGD 84.16% 84.18% 84.16% 84.16%
SVM 91.61% 91.62% 91.61% 91.61%
VC 84.72% 84.79% 84.72% 84.69%
Seq 82.24% 82.20% 82.20% 82.00%

6 Conclusion

In conclusion, this study contributes to the ongoing efforts to understand and effectively detect
texts generated by large language models (LLMs). By analyzing datasets of varying text lengths
and employing different machine learning algorithms, we gained insights into the performance
and characteristics of human and machine-generated text. Our findings indicate that machine-
generated texts generally exhibit higher readability and closely mimic human moral judgments,
although notable differences in personality metrics were observed across datasets. Furthermore, SVM
and VC consistently outperformed other algorithms, highlighting their effectiveness in detecting
machine-generated text. However, our analysis is limited by the specific datasets and LLM versions
used, underscoring the need for further research to generalize these findings and explore additional
dimensions of human writing style. Moving forward, future studies will aim to address these
limitations and enhance our understanding of LLM-generated texts, ultimately contributing to the
development of more robust detection methods.
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A Appendix / supplemental material

Table 15: Datasets and their corresponding columns.

Dataset Column Names

OpenAI GPT2 id, text, length, ended, label
Wiki Intro id, title, wiki intro, generated intro, label
Pubmed id, abstract text and label
Twitter id, tweets (full tweet text) and label

Table 16: Readability score of human and machine generated data. Here standard deviation for all
four datasets are reported.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Gunning Fog Index 7.73 6.11 5.09 2.42 2.21 3.56 6.45 5.44
SMOG Index 3.17 3.37 2.60 3.01 2.41 3.99 4.43 3.96

Dale-Chall Readability 1.77 1.92 1.17 1.10 1.00 1.55 3.07 2.64
Flesch Reading Ease Score 24.77 88.69 18.00 13.24 11.84 16.33 27.87 24.80

Coleman Liau Index 4.49 18.72 2.34 2.23 3.56 3.33 9.05 6.72

Table 17: Bias metric comparisons between human and machine generated data. Here, standard
deviation scores for datasets are reported.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Bias words 0.0281 0.0265 0.0703 0.0874 0.020 0.02 0.0842 0.0865
Assertatives 0.0055 0.0052 0.0134 0.0165 0.0041 0.0047 0.0217 0.0234

Factives 0.0043 0.0043 0.0080 0.0114 0.006 0.008 0.0169 0.0196
Hedges 0.0096 0.0090 0.0134 0.0169 0.008 0.007 0.0220 0.0242

Implicatives 0.0069 0.0063 0.0084 0.0111 0.008 0.01 0.0233 0.0303
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Table 18: Morality comparisons between human and machine generated data. Here, standard deviation
scores for datasets are reported.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Harm 0.0046 0.0039 0.0091 0.0131 0.003 0.004 0.0096 0.0102
Fairness 0.0013 0.0014 0.0024 0.0027 0.0008 0.0005 0.0042 0.0047
Cheating 0.0005 0.0005 0.0091 0.0131 0.0012 0.0006 0.0014 0.0016
Loyalty 0.0038 0.0035 0.0106 0.0132 0.005 0.002 0.0077 0.0067
Betrayal 0.0011 0.0010 0.0023 0.0029 0.0005 .0002 0.0039 0.0031

Authority 0.0049 0.0044 0.0117 0.0129 0.0044 .0014 0.0083 0.0080
Subversion 0.0015 0.0012 0.0025 0.0036 0.0006 0.0006 0.0045 0.0038

Purity 0.0019 0.0017 0.0082 0.0091 0.0005 .0006 0.0032 0.0038
Degradation 0.0013 0.0012 0.0024 0.0031 0.0007 0.0005 0.0063 0.0082

Morality General 0.0033 0.0034 0.0048 0.0065 0.005 0.001 0.0161 0.0140

Table 19: Sentiment comparisons between human and machine generated data. Here, standard
deviation scores for datasets are reported.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Weak Negatives 0.0129 0.0119 0.0289 0.0369 0.0179 0.193 0.0395 0.0449
Weak Positive 0.0151 0.0142 0.0277 0.0378 0.0191 0.0228 0.0424 0.0467
Weak Neutral 0.0131 0.0124 0.0206 0.0244 0.0185 0.0174 0.0339 0.0384

Strong Negative 0.0102 0.0100 0.0192 0.0230 0.0866 0.0766 0.0373 0.0399
Strong Positive 0.0150 0.0142 0.0207 0.0265 0.0099 0.0118 0.0877 0.0655
Strong Neutral 0.0078 0.0075 0.0119 0.0149 0.0066 0.0068 0.0261 0.0309

Table 20: Standard Deviation personality score comparisons of human and machine generated data.

OpenAI Wiki Pubmed Tweets

Metric Human Machine Human Machine Human Machine Human Machine

Extroversion 0.0243 0.0241 0.0054 0.0060 0.0553 0.0175 0.0216 0.0229
Neuroticism 0.0226 0.0157 0.0055 0.0061 0.0666 0.0173 0.0128 0.0121

Agreeableness 0.0153 0.0219 0.0067 0.0074 0.0476 0.0331 0.0234 0.0223
Conscientiousness 0.0209 0.0373 0.0065 0.0067 0.0472 0.0266 0.028 0.0269

Openness 0.0260 0.0243 0.0066 0.0073 0.0198 .0154 0.0142 0.0142
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Table 21: Model Performance on Train and Test Sets for complete Open AI Dataset

Dev Set Test Set

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

large-762M
lr 76.66% 78.76% 73.02% 75.78% 77.28% 78.28% 73.86% 76.01%
sgd 67.67% 73.29% 55.60% 63.23% 67.75% 73.24% 55.94% 63.43%
nb 64.78% 60.86% 82.82% 70.16% 65.89% 62.32% 80.40% 70.21%
dt 61.17% 61.26% 60.73% 60.99% 60.42% 60.37% 60.64% 60.50%
rf 69.25% 73.73% 59.80% 66.04% 69.45% 73.86% 60.22% 66.35%
svm(linear) 78.34% 78.41% 73.93% 76.10% 78.42% 78.33% 73.74% 75.97%
svm(sigmoid) 75.47% 77.69% 74.05% 75.83% 75.61% 77.56% 72.58% 74.99%
vc 76.17% 76.81% 72.39% 74.53% 75.83% 77.17% 70.50% 73.68%
MLP 71.33% 74.20% 73.52% 73.86% 71.61% 73.68% 74.84% 74.26%

large-762M-k40
lr 93.82% 93.79% 93.84% 93.81% 94.39% 94.74% 94.00% 94.37%
sgd 85.06% 88.75% 80.28% 84.30% 84.81% 88.31% 80.24% 84.08%
nb 77.51% 72.31% 89.14% 79.85% 77.38% 72.46% 88.34% 79.62%
dt 63.84% 65.40% 62.32% 63.82% 64.21% 64.79% 63.43% 64.10%
rf 85.47% 87.49% 85.71% 86.59% 85.60% 87.53% 84.88% 86.18%
svm(linear) 94.46% 94.89% 92.32% 93.59% 93.98% 94.82% 91.75% 93.26%
svm(sigmoid) 93.36% 92.05% 90.70% 91.37% 93.37% 90.30% 92.46% 91.37%
vc 94.49% 94.76% 94.98% 94.87% 93.48% 96.19% 95.97% 96.08%
MLP 88.29% 87.91% 88.25% 88.08% 87.94% 88.34% 87.08% 87.71%

medium-345M
lr 88.69% 90.58% 86.36% 88.42% 89.07% 91.01% 86.70% 88.80%
sgd 82.61% 91.28% 72.13% 80.58% 82.64% 91.19% 72.26% 80.63%
nb 80.96% 79.68% 83.11% 81.36% 81.56% 81.21% 82.12% 81.66%
dt 68.61% 69.92% 63.85% 66.75% 68.72% 70.38% 64.73% 67.44%
rf 85.86% 92.30% 85.55% 88.80% 84.23% 89.40% 86.51% 87.93%
svm(linear) 88.44% 89.64% 87.45% 88.53% 88.16% 90.63% 87.44% 89.01%
svm(sigmoid) 85.25% 88.74% 87.93% 88.33% 86.08% 88.36% 87.58% 87.97%
vc 89.17% 91.12% 85.30% 88.11% 90.79% 90.56% 84.95% 87.67%
MLP 84.86% 88.65% 86.29% 87.45% 84.04% 87.52% 85.07% 86.28%

medium-345M-k40
lr 94.77% 94.93% 94.58% 94.75% 95.26% 95.57% 94.92% 95.24%
sgd 84.78% 89.27% 79.05% 83.85% 84.32% 88.59% 78.78% 83.40%
nb 78.47% 72.57% 91.55% 80.96% 78.28% 72.85% 90.16% 80.59%
dt 76.63% 76.81% 72.55% 74.62% 75.46% 76.47% 72.37% 74.36%
rf 88.39% 90.55% 89.34% 89.94% 89.27% 90.59% 88.83% 89.70%
svm(linear) 93.68% 94.82% 91.69% 93.23% 93.87% 94.34% 90.47% 92.36%
svm(sigmoid) 92.96% 91.52% 90.67% 91.09% 93.43% 91.09% 92.41% 91.74%
vc 95.32% 95.57% 95.73% 95.65% 94.79% 95.89% 96.13% 96.01%
MLP 90.59% 90.10% 90.79% 90.44% 89.95% 90.76% 89.78% 90.27%

small-117M
lr 83.92% 86.97% 79.58% 83.11% 83.41% 86.59% 78.58% 82.41%
sgd 78.64% 82.43% 73.41% 77.65% 78.51% 82.33% 73.24% 77.55%
nb 73.19% 69.91% 81.99% 75.47% 72.97% 69.78% 81.68% 75.30%
dt 63.56% 64.08% 62.78% 63.42% 63.78% 64.39% 62.87% 63.62%
rf 82.67% 85.29% 80.82% 83.00% 82.96% 85.71% 80.81% 83.17%
svm(linear) 84.53% 88.29% 81.10% 84.54% 84.94% 88.60% 81.54% 84.91%
svm(sigmoid) 83.69% 84.92% 83.11% 84.01% 83.71% 84.76% 83.26% 84.00%
vc 84.87% 87.67% 85.56% 86.60% 84.96% 87.77% 85.75% 86.75%
MLP 79.94% 80.82% 81.21% 81.02% 79.82% 80.68% 81.15% 80.92%

small-117M-k40
lr 89.53% 91.12% 88.05% 89.55% 90.11% 91.93% 88.12% 89.99%
sgd 82.53% 89.52% 77.16% 82.81% 82.61% 89.38% 77.12% 82.74%
nb 74.19% 70.48% 82.95% 76.18% 73.87% 70.18% 82.68% 75.96%
dt 68.19% 68.81% 65.62% 67.18% 68.41% 69.06% 66.03% 67.50%
rf 82.46% 86.83% 83.79% 85.28% 82.61% 86.95% 83.93% 85.41%
svm(linear) 88.38% 89.61% 87.28% 88.43% 88.21% 89.49% 87.05% 88.26%
svm(sigmoid) 87.71% 88.40% 86.57% 87.48% 87.94% 88.50% 86.76% 87.63%
vc 89.58% 90.85% 89.77% 90.31% 89.43% 90.82% 89.57% 90.19%
MLP 84.36% 85.46% 84.08% 84.76% 84.31% 85.55% 84.12% 84.83%
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Table 22: Classification results on the Twitter and Pubmed re-phrased datasets using any percentage
of the vocabulary from the human text to generate machine data

Table 23: Twitter Dataset

Model Acc P R F1

LR 82.97% 82.65% 78.02% 79.58%
DT 74.53% 71.42% 71.41% 71.42%
RF 82.10% 82.59% 76.14% 78.00%

MNB 72.62% 80.87% 59.67% 58.05%
SGD 66.50% 33.25% 50.00% 39.94%
SVM 80.60% 78.21% 79.49% 78.74%
VC 83.37% 84.16% 77.70% 79.63%
Seq 83.24% 82.99% 83.24% 82.79%

Table 24: Pubmed Dataset

Model Acc P R F1

LR 92.76% 93.40% 92.76% 92.53%
DT 92.76% 93.4% 92.76% 92.53%
RF 95.24% 95.27% 95.24% 95.20%

MNB 90.67% 91.36% 90.67% 90.33%
SGD 91.65% 91.63% 91.65% 91.58%
SVM 95.92% 95.98% 95.92% 95.88%
VC 93.15% 93.28% 93.15% 93.04%
Seq 91.15% 91.50% 91.50% 91.00%

Table 25: Classification results for Logistic Regression (best performing model) on the rephrased
Tweets using 60% overlap constraint.

Table 26: Train

Topic Acc P R F1

FIFA 76.56% 76.62% 76.53% 76.53%
Election 72.51% 72.78% 72.49% 72.42%

Game of Thrones 83.71% 83.71% 83.71% 83.7%
Merged (all three) 77.62% 77.75% 77.6% 77.58%

Table 27: Test

Acc P R F1

78.15% 78.48% 78.11% 78.07%
71.31% 71.57% 71.18% 71.13%
82.2% 82.2% 82.18% 82.19%

77.43% 77.55% 77.42% 77.4%
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