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Abstract. In Cohen’s famous calculation of the mod p cohomology of configuration spaces,

the key ingredient was a complete description of the Cartan–Leray spectral sequence for the

configuration space of k = p points. I will discuss this aimed at giving a complete description
of this spectral sequence for arbitrary k. This work not only provides a geometric way to prove

the Arone–Mahowald theorem and Kjaer’s theorem, but also gives the potential to determine the
ring structure of cohomology of unordered configuration spaces.
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1. Introduction

Configuration spaces lie at the intersection of fields as diverse as iterated loop space theory, knot
theory, number theory, and mathematical physics.

Definition 1.1. The configuration space of k ordered points in the topological space X is

Confk(X) := {(x1, x2, . . . , xk) ∈ Xk : xi 6= xj if i 6= j}
endowed the subspace topology of Xk. The unordered configuration space is the quotient

Bk(X) := Confk(X)/Σk.

For the case of X = R2, Bk(R2) is the classifying space of the braid group. Since the action Σk
on Confk(Rn) is free, so for each k and n, there is a Cartan–Leray spectral sequence of the form

Es,t2
∼= Hs

(
Σk, H

t(Confk(Rn);Fp)
)

=⇒ Hs+t(Bk(Rn);Fp).

In Cohen’s famous calculation [FM76] of the mod p cohomology of configuration spaces over Rn,
the key ingredient was a complete description of the Cartan–Leray spectral sequence for the con-
figuration space of k = p points. As such, giving a complete description of this spectral sequence
mod p for arbitrary k is a natural question to ask. Formally,

Problem 1.2. For every k and n, determine the Cartan–Leray spectral sequence for the action of
Σk on Confk(Rn) mod p.

There are several applications of this problem. First, we recall that the transfer maps for the
coordinate projections endow

An :=
⊕
k>0

H∗(Bk(Rn);Fp)

with the structure of a divided power algebra [GSS23].

Application 1.3. Give a complete description of An as a divided power algebra.

Next, recall from above that the entries in the top row of the spectral sequence are of the form
H∗(Σk;Mk), where

Mk := H(k−1)(n−1)(Confk(Rn);Fp).
These vector spaces may be interpreted as certain spaces of Lie algebra power operations [Chi05],
and a difficult calculation of Arone–Mahowald shows that all such operations vanish for k = pr or
k = 2pr for r ≥ 1 [AM99].

Application 1.4. Give a geometric proof of the Arone–Mahowald theorem.

Kjaer’s theorem from [Kja17] shows that among the cases where the top row does not vanish, it
is possible to calculate its dimension over Fp.

Application 1.5. Give a geometric proof of Kjaer’s theorem.

Note that the same technique can be applied to study the general Bk(Rn). Besides, since the cup
product is compatible with the spectral sequence, this creates a potential to study its ring structure,
which is still an open question until these days. Moreover, we can incorporate Hopf ring [GSS23]
and/or operad [May72] structure into the Cartan–Leray spectral sequence description, which brings
extra structures on An.

For this paper, we have been able to solve the main problem up to the case k ≤ 2p2. We will
phrase our answer in terms of certain atomic spectral sequences U(m,n,r) and V(m,n).
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Definition 1.6. Let m,n and r be integers and 0 ≤ m ≤ n, r ≥ 2. We define U(m,n,r) to be a first
quadrant spectral sequence over Fp such that

dm,n−mr : Em,n−mr
∼= Fp → Em+r,n−m−r+1

r
∼= Fp

is an isomorphism and other entries in the spectral sequence are all trivial. Similar, we define
V(m,n) to be a first quadrant spectral sequence over Fp such that Em,n−mr

∼= Fp for r ≥ 2 and other
entries in the spectral sequence are all trivial. We call a first quadrant spectral sequence a universal
spectral sequence if it is isomorphic to U(m,n,r) or V(m,n). See Figure 1.

Example 1.7. In this language, Cohen’s original calculation, see Proposition 5.5, for the case k = p
and n = 2 can be expressed as an isomorphism between the Cartan–Leray spectral sequence and

V(0,0) ⊕ V(0,1) ⊕
⊕

t≥1,ε=0,1

U(
2t(p−1)−ε−p,2t(p−1)−ε−1,p

).
Roughly speaking, the spectral sequence is isomorphic to the sum of two spectral sequences. One

spectral sequence is induced by the previous cases where k′ < k, and another one captures new
behavior.

Theorem 1.8. The spectral sequence for the braid group B2p2(R2) is isomorphic to

V(
p2−2p,2p2−2p

) ⊕ V(
p2−2p+1,2p2−2p+1

) ⊕ V(
p2−2,2p2−2

) ⊕ V(
p2−1,2p2−1

)
⊕

⊕
t1≥t2+2−ε2
t2≥1;ε1,ε2=0,1

UĴ(t1,ε1,t2,ε2) ⊕ U
′

where Ĵ(t1, ε1, t2, ε2) = (a, a+ 2p2 − 1, p) and

a := p
(
(2t2 + 1)(p− 1) + (1− 2ε2)p− 1

)
− p+ (2t1 + ε2)(p− 1)− ε1,

and U ′ is a spectral sequence whose E∞ page coincides with

V(0,0)⊕V(0,1)⊕
⊕

l=1,2,...,p−1

V(
(p−2)l,(2p−2)l

)⊕V(
(p−2)l+1,(2p−2)l+1

)⊕V(
(p−2)l,(2p−2)l+1

)⊕V(
(p−2)l+1,(2p−2)l+2

).
Remark 1.9. See Theorem 5.23 for the general statement, which proves the Arone–Mahowald
theorem and Kjaer’s theorem up to 2p2.

Corollary 1.10. Let l = 1, 2, . . . , p− 1 and ε = 0, 1, then

H∗(B2p2(R2);Fp) ∼=


Fp if ∗ = 0, 1, (2p− 2)l, (2p− 2)l + 2
Fp ⊕ Fp if ∗ = (2p− 2)l + 1
Fp if ∗ = 2p2 − 2p+ ε, 2p2 − 2 + ε
0 otherwise

Corollary 1.11. Through degree 2p2, A2 is a free divided power algebra on generators of bidegree

|xi| = (2pi − 2, 2pi), |yi| = (2pi − 1, 2pi)

for i = 1, 2, where the first degree is the cohomological degree and the second degree is the number
of points in configuration spaces.
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(m,n−m)

(m+ r, n−m− r + 1)

(m,n−m)

dr

Figure 1. U(m,n,r) on the left and V(m,n) on the right.

1.1. Some definitions.

Definition 1.12. Let C be a (co)chain complex with differential d. We call a subcomplex A
independent if dx ∈ A if and only if dx = dy for some y ∈ A.

An immediate result is that the subcomplex A is independent if and only if H∗(A)→ H∗(C) is
injective.

Definition 1.13. Let {Er} be a spectral sequence and A2 a subspace of E2. We define what it
means for A2 to be independent through Er recursively as follows:

(1) First, we say that A2 is independent through E2 if A2 is an independent subcomplex of E2.
In this case, we define A3 := H∗(A2), thought of as a subspace of E3.

(2) Assume that independent through Er−1 and Ar have been defined. We say that A2 is
independent through Er if Ar is an independent subcomplex of Er.

We say that A2 spans a spectral subsequence if A2 is independent through Er for every r. In this
case, {Ar} forms a spectral sequence with a canonical map of spectral sequences to {Er} that is
injective on every page.

Definition 1.14. Let U be a sum of universal spectral sequences. Let µi be the distinct partitions
of k for i = 1, 2, . . . ,m, which correspond to the summands H∗(Σk,Mµi) in the spectral sequence
of Bk(R2). We say {µ1, µ2, . . . , µm} spans a spectral subsequence if

⊕
1≤i≤mH

∗(Σk,Mµi) spans a
spectral subsequence. We say U provides a model for µ1, µ2, . . . , µm if

(1) {µ1, µ2, . . . , µm} spans a spectral subsequence, and
(2) There is an injective map of spectral sequences from U to the spectral sequence of Bk(R2)

with the image
⊕

1≤i≤mH
∗(Σk,Mµi) at the E2 page.

2. Background on group (co)homology

This section, together with the next section, are the fundamental tools to solve the problem.
The big framework is to apply Cartan-Leray spectral sequence to study the braid group. Hence,
we shall review some of the facts about spectral sequences and group cohomology at this section.
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2.1. Basic group (co)homology facts. Let us recall some group (co)homology facts here which
shall be used constantly in this paper. Proofs of the statements can be found at Chapter III of
[Bro82].

Proposition 2.1 (Shapiro’s lemma). If H ≤ G and M is an H-module, then

H∗(H,M) ∼= H∗(G, IndGHM)

and

H∗(H,M) ∼= H∗(G,CoindGHM).

Proposition 2.2 ([Bro82, Prop 3.5.9]). If the index of a subgroup H in G is finite, then IndGHM
∼=

CoindGHM .

Proposition 2.3 ([Bro82, Prop 3.6.1]). Let G be a group and M a G-module.

(1) There is a natural isomorphism H0(G,M) = MG.
(2) For any exact sequence 0→M ′ →M →M ′′ → 0 of G-modules and any integer n, there is

a natural map δ : Hn(G,M ′′)→ Hn+1(G,M ′) such that the sequence

0→ H0(G,M ′)→ H0(G,M)→ H0(G,M ′′)
δ−→ H1(G,M ′)→ H1(G,M)→ . . .

(3) If Q is an injective FpG-module, then Hn(G,Q) = 0 for n > 0.

Proposition 2.4 ([Bro82, Prop 3.9.5]). Let H,K be subgroups of G and M be a G-module.
Denote resGH : H∗(G,M) → H∗(H,M) as the restriction map and corGH : H∗(H,M) → H∗(G,M)
as the corestriction map.

(1) Given (G : H) <∞, corGH ◦ resGH = [G : H] · id.

(2) Given (G : H) <∞, resGK ◦ corGH =
∑
g∈E corKK∩gHg−1 ◦ resgHg

−1

K∩gHg−1 ◦(c(g)∗)−1, where c(g) :

(H,M)→ (gHg−1,M) sends (h,m) to (ghg−1, gm).

Corollary 2.5 ([Bro82, Prop 3.10.2]). If |G| is invertible in M , then

Hn(G,M) = 0

for all n > 0.

Corollary 2.6. If a subgroup H of G is invertible in M and [G : H] <∞, then

Hn(G, IndGHM) = 0

for all n > 0.

Proof. This is by 2.5 and Shapiro’s lemma. �

2.2. Spectral sequences and naturality. The Cartan-Leray spectral sequence theorem is the
most fundamental theorem used in this paper. Besides, naturality plays a key role for computing
cohomology of Bk where k > p.

Theorem 2.7 (The cohomological version of [Bro82, p. 169]). Let G be a group, C∗ be a co-chain
complex equipped with a G-action, and let W∗ be a free resolution over G, then there is a spectral
sequence of the form

Es,t2
∼= Hs(G,Ht(C∗))⇒ Hs+t(HomG(W∗, C

∗)),

which is natural for equivariant cochain maps.
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Corollary 2.8 ([Bro82, p. 173]). If X is a G-space for a group G and M is a G-module, then there
is a spectral sequence of the form

Es,t2 = Hs(G,Ht(X,M))⇒ Hs+t(EG×G X,M)

where the E2-term here involves the diagonal action of G on H∗(X,M) induced by the acton of G
on X and M and H∗(X/G,M) needs to interpreted as cohomology groups with local coefficient if
G acts non-trivially on M .

Corollary 2.9 (Cartan–Leray). If X is a free G-space for a group G and M is a G-module, then
there is a spectral sequence of the form

Es,t2 = Hs(G,Ht(X,M))⇒ Hs+t(X/G,M).

Corollary 2.10 ([Bro82, p. 175]). Let X be a G-space. If N is a normal subgroup of G which acts
freely on X, then

H∗(EG×G X) ∼= H∗(G/N ×G/N X/N)

with any G/N -module of coefficients.

For our purpose, we can study fibration of the form

Confk → Bk → BΣk.

Corollary 2.11. Given X be a G-space and Y be a H-space such that H ≤ G. Let f : X → Y be
a continuous H-equivariant map, then the induced map between spectral sequences

f∗ : H∗(H,H∗(Y ))→ H∗(G,H∗(X))

commutes with the differentials at every page.

Proof. By assumption, f : X → Y induces a map at the co-chain level f : C∗(Y ) → C∗(X).
This map is a H-homomorphism. By the universal mapping property, there is an induced G-
homomorphism

f∗ : IndGH C
∗(Y )→ C∗(X).

This induces a map between spectral sequences by 2.7 and

H∗(G, IndGH H
∗(Y )) ∼= H∗(H,H∗(Y ))

by Shapiro’s lemma. �

Proposition 2.12 ([Bro82, p. 169]). If τ : C → C ′ is a quasi-isomorphism of two G-chain com-

plexes, then τ induces an isomorphism H∗(HomG(W∗, C))
∼=−→ H∗(HomG(W∗, C

′)), where W∗ is a
free resolution over G.

In order to study spectral sequence of Bk for large k, we ‘break’ it into smaller pieces by studying
spectral sequence of product of Bk for small k. Hence, we need to study the spectral sequence
regarding to the product and the wreath product. For that, we introduce the Lyndon-Hochschild-
Serre spectral sequence here.

Theorem 2.13 (Lyndon–Hochschild–Serre). For any group extension

1→ H → G→ Q→ 1

and any G-module M , there is a spectral sequence

Es,t2
∼= Hs(Q,Ht(H,M))⇒ Hs+t(G,M).
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We need Lyndon–Hochschild–Serre spectral sequence to study the group extension regarding to
the wreath product of symmetric groups. With the Fp-coefficient, [Nak61, Thm 3.3] has proven
that

H∗(Σl o Σm,Fp) ∼= H∗(Σl, H
∗(Σm,Fp)⊗l).

We can expand this idea by considering a more general coefficient.

Theorem 2.14 ([Lea07, Thm 2.1]). Let X be a connected space of finite type with fundamental
group G, and let M be an Fp-free G-module, then the spectral sequence with coefficients in M⊗k

(over Fp) for the fibration

(X)k → (X)k ×Σk EΣk → BΣk

collapses at the E2-page.

Note that (X)k ×Σk EΣk is the classifying space of Σk oG.

2.3. Cohomology of symmetric groups. We will run into a lot of scenarios where cohomology
of symmetric groups appear in our Cartan-Leray spectral sequences. Hence, we need a tool to study
them.

Recall a classical theorem by May.

Theorem 2.15 ([May70, p. 123]). Consider group cohomology H∗(Σp;M) and let β denotes the
mod p Bockstein, then

(1) for M = Fp, H∗(Σp;Fp) = ∧Fp [v] ⊗ Fp[βv] as an algebra where v is a class of degree
2(p− 1)− 1; and

(2) for M = Fsgnp , Hs(Σp;Fsgnp ) has the additive basis {(βv)sβεv′} where v′ is a class of degree
p− 2, ε = 0, 1 and s ≥ 0.

This tells us cohomology of Σp over Fp. However, for our purpose, we need to study cohomology
of Σk over Fp for an arbitrary positive integer k.

Dyer-Lashof operation provides an extreme helpful way to understand (co)homology of symmetric
groups with coefficient either trivial or sign representation, even though it has boarder applications
including general linear groups. To understand the full potential of Dyer-Lashof operation, readers
can access Bernard’s paper here [Ber23], where (co)homology of symmetric group is just one of its
applications.

Consider two types of homology operations:

• the untwisted Dyer-Lashof operations

Qs : Hn(Σg,Fp)→ Hn+2s(p−1)(Σpg,Fp)
βQs : Hn(Σg,Fp)→ Hn+2s(p−1)−1(Σpg,Fp)

for n ∈ Z and s ∈ Z.
• the twisted Dyer-Lashof operations

Qs+
1
2 : Hn(Σg,Fsgnp )→ Hn+(2s+1)(p−1)(Σpg,Fsgnp )

βQs+
1
2 : Hn(Σg,Fsgnp )→ Hn+(2s+1)(p−1)−1(Σpg,Fsgnp )

for n ∈ Z and s ∈ Z.

They satisfy a list of properties:
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Proposition 2.16 ([Ber23, Thm. 6.21]). Let M = Fp or Fsgnp . The Dyer-Lashof operations consist
of natural transfomations

Qs : Hn(Σg,M)→ Hn+2s(p−1)(Σpg,M)

βQs : Hn(Σg,M)→ Hn+2s(p−1)−1(Σpg,M)

for every s ∈ Z t Z + 1
2 satisfying the following relations.

(1) The composition of trivial coefficient and sign representation is always trivial, i.e.,

Qs
′
Qs+

1
2 = Qs

′+ 1
2Qs = 0

for any s and s′.
(2) Qs = 0 if 2s < n.
(3) βQs = 0 if 2s ≤ n.
(4) If x ∈ Hn(Σg) with n = 2s, then Qs(x) = xp.

By digging into the original definition of Dyer-Lashof operations, not only every element in
H∗(Σp2) comes from H∗(Σp o Σp), but also we know which summand of H∗(Σp o Σp) specifically
since

Hs(Σp o Σp) ∼=
⊕

s1+s2=s

Hs1(Σp, Hs2(Σp)).

Note that we always have the following surjective ‘corestriction’ map,

H∗(Σp o Σp)→ H∗(Σp2).

Consider tuples

I = (ε1, s1, ε2, s2, . . . , εk, sk)

where εi is either 0 or 1, si is either in Z or in (Z + 1
2 ). Any such I determines a word in the

Dyer-Lashof operations

QI := βε1Qs1 . . . βεkQsk .

We say such a sequence I admissible if both of the following conditions hold:

(1) For untwisted operations, si ∈ Z for all 1 ≤ i ≤ k; for twisted operations, si ∈ (Z + 1
2 ) for

all 1 ≤ i ≤ k.
(2) psi − εi ≥ si−1 for all 1 < i ≤ k.

We call l(I) = k, the length of I, and e(I) := 2s1 − ε1 −
∑k
i=2(2si(p− 1)− εi), the excess of I.

Theorem 2.17 ([Ber23, Thm. 7.13]). Let M = Fp or Fsgnp , then H∗(Σg,M) is isomorphic

to the free commutative algebra on {QIx} as a Fp-vector space, where x ∈ H0(Σ1,M), QIx ∈
Ht(Σpl(I) ,M) for

t =

k∑
i=1

(2si(p− 1)− εi),
∑
I

pl(I) = g,

and QI rangers over all admissible compositions of Dyer-Lashof operations subject to e(I) + ε1 > 0.

Remark 2.18. Let us call the free commutative algebra above S, we give a default total ordering
to elements in S. For element s1s2 . . . sj where s1 ≤ s2 ≤ · · · ≤ sj , we can only have si = si+1 if
homology degree of si is odd with sign representation and even with trivial coefficient.
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Example 2.19. Let M = Fp or Fsgnp . For x ∈ H0(Σ1,M), we have

Q1(x) ∈ H2(p−1)(Σp,Fp), βQ1(x) ∈ H2(p−1)−1(Σp,Fp)

Q
1
2 (x) ∈ H(p−1)(Σp,Fsgnp ), βQ

1
2 (x) ∈ Hp−2(Σp,Fsgnp )

This is related to 2.15. Hence, v = (βQ1(x))∗, βv = (Q1(x))∗, and v′ = (βQ
1
2 (x))∗, βv′ = (Q

1
2 (x))∗.

Example 2.20. For x ∈ H0(Σ1,Fp) and l ∈ N, we have

H∗(Σlp,Fp) ∼= H∗(Σlp+1,Fp) ∼= . . . ∼= H∗(Σlp+(p−1),Fp).

Example 2.21. For x ∈ H0(Σ1,Fsgnp ) and l ∈ N, we have

H∗(Σlp,Fsgnp ) ∼= H∗(Σlp+1,Fsgnp ),

H∗(Σlp+2,Fsgnp ) = H∗(Σlp+3,Fsgnp ) = · · · = H∗(Σlp+(p−1),Fsgnp ) = 0.

This is because x2 ∈ H0(Σ2,Fsgnp ) = 0.

Corollary 2.22. For H∗(Σpr ,Fsgnp ) with r ≥ 1, the first non-trivial admissible set I of length r
satisfying the conditions on theorem 2.17 has the form

I = (ε1,
pr−1

2
, 0,

pr−2

2
, 0,

pr−3

2
, . . . , 0,

p

2
, 0,

1

2
),

and for such I, ∗ = pr − 1− ε1.

Proof. For I = (ε1, s1, ε2, s2, . . . , εr, sr), this is subject to

psr − εr ≥ sr−1

psr−1 − εr−1 ≥ sr−2

. . . . . .

ps2 − ε2 ≥ s1

and

2sr > 0

2sr−1 > 2sr(p− 1)− εr
. . . . . .

2s1 >

r∑
i=2

2si(p− 1)− εi

For the first admissible set I, we start with sr = 1
2 , then

p− 1− εr
2

< sr−1 ≤
p− εr

2
.

If εr = 1, then sr−1 does not exist.
If εr = 0, then sr−1 = p

2 . Then we continue this process to get

I = (ε1,
pr−1

2
, 0,

pr−2

2
, 0,

pr−3

2
, . . . , 0,

p

2
, 0,

1

2
).

Note that this is related to

βε1Q
pr−1

2 . . . Q
p
2Q

1
2 (x) ∈ Hpr−1−ε1(Σpr ,Fsgnp ).

for x ∈ H0(Σ1,Fsgnp ). �
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Let us take a close look at the co-restriction map we mentioned before, and we shall make it into
a general case.

Lemma 2.23. Let Σp o Σpr−1 be a subgroup of Σpr and ε = 0 or 1, then we have the surjective
transfer map with coefficient of sign representation

f : Hpr−1−ε(Σp o Σpr−1 ,Fsgnp )→ Hpr−1−ε(Σpr ,Fsgnp )

with the image isomorphic to

H0(Σp, H
pr−1−ε((Σpr−1)p, (Fsgnp )⊗p)⊕Hp−1−ε(Σp, (H

pr−1−1(Σpr−1 ,Fsgnp ))⊗p).

as a direct summand of Hpr−1−ε(Σp o Σpr−1 ,Fsgnp ).

Proof. This is by the original definition of Dyer-Lashof operations.
For l(I) = r, subject to the conditions on I, we get that

βεQ
pr−1

2 . . . Q
p
2Q

1
2 (x) ∈ Hpr−1−ε(Σpr ,Fsgnp ),

and this is from Hp−1−ε(Σp, (Hpr−1−1(Σpr−1 ,Fsgnp ))⊗p).

For l(I) < r, the corresponding terms all come from H0(Σp, Hpr−1−ε((Σpr−1)p, (Fsgnp )⊗p) by the
total ordering argument after theorem 2.17. �

Proposition 2.24. For M = Fp or Fsgnp and 1 ≤ l < p,

H∗(Σlpr ,M) ∼= H∗(Σl o Σpr ,M).

Proof. First, we have an injective Fp-vector space homomorphism

H∗(Σlpr ,M)→ H∗(Σl o Σpr ,M) ∼= (H∗(Σpr ,M)⊗l)Σl .

By 2.17, both sides have the same basis. This is because for admissible I, it has length ranging
from l(I) = 1 to l(I) = r for both sides. Besides, for element s1s2 . . . sj in this free commutative
algebra given a default total ordering s1 ≤ s2 ≤ · · · ≤ sj , we can only have si = sj if homology
degree of si is n for (−1)n+1 = 1 with sign representation and (−1)n = 1 with trivial coefficient.
This extra condition coincide with Σl coinvariant property for H∗(Σpr ,M)⊗l. �

3. Configuration spaces

In the spectral sequence related to H∗(Σk, H
∗(Confk,Fp)), we can simplify each entry by getting

rid of many trivial components, which can be accomplished by looking at partitions of k and related
submodules of H∗(Confk). However, this is not enough because we lack information about the
entries in the top rows and bottom rows of the spectral sequence. For the top rows, we may fix the
issue by looking at cohomology dimension of Bk. As for the bottom rows, Dyer-Lashof operation
(from last section) provides a solution.

3.1. Maps out, maps in, and partitions.

Definition 3.1. We call the projection map

Confk → Confk1 × · · · × Confkl ,

a “map out” if k1 + · · ·+ kl = k.

We can consider its dual notion.
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Definition 3.2. Let ϕ :
∐

i=1,2,...,l

Rn → Rn be any orientation preserving embedding, and we call

the dashed map of the following form

Confk1(Rn)× · · · × Confkl(Rn)

Confk(
∐

Rn) Confk(Rn)
Confk(ϕ)

a “map in” if k1 + · · ·+ kl = k.

Note that the any two choices of ϕ are the same, up to homotopy.
Fix an integer k, and consider a (unordered) partition λ of k of length r such that

k1 + k2 + · · ·+ kr = k.

This corresponds to a subgroup

Σλ ≤ Σk,

which is defined to be the product of Σa o Σkb ’s where a is the number of times where kb appears.
This also corresponds to a Σλ-equivariant map out

f : Confk → Confk1 ×Confk2 × · · · × Confkl =: Confλ .

3.2. H∗(Confk(Rn)) and induced submodules related to partitions of k. Let λ be a partition
of k of length r, and consider the following commutative (up to homotopy) diagram

Confλ Confk

Confλ

i

p
id

where i is a map in and p is a map out. This shows that the induced map p∗ is injective.

H(k−r)(n−1)(Confλ) H(k−r)(n−1)(Confk)

H(k−r)(n−1)(Confλ)

p∗

i∗

id

Note that p∗ is a Σλ-module homomorphism and H(k−r)(n−1)(Confk) is a Σk-module. Hence,
by the universal mapping property, this induces a map

p̄∗ : IndΣk
Σλ
H(k−r)(n−1)(Confλ)→ H(k−r)(n−1)(Confk).

such that the following diagram commutes

H(k−r)(n−1)(Confλ) H(k−r)(n−1)(Confk)

H(k−r)(n−1)(Confλ) IndΣk
Σλ
H(k−r)(n−1)(Confλ)

p∗

i∗

id

p̄∗

Note that p̄∗ is also injective, and this is by [Sin06, Cor 4.6].
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Definition 3.3. Given a partition λ of k of length r, we call

Mλ := im p̄∗ ∼= IndΣk
Σλ
H(k−r)(n−1)(Confλ),

an induced submodule related to the partition λ.

Let λ run through all (unordered) partitions of k of length r. By the universal property of the
direct sum, we have a Σk-modules homomorphism

⊕p̄∗ :
⊕
λ

Mλ → H(k−r)(n−1)(Confk).

Proposition 3.4 ([Sin06, Thm 2.10]). There is an isomorphism of Σk-modules

H(k−r)(n−1)(Confk) ∼=
⊕

λ;|λ|=r

Mλ,

and hence

H∗(Confk) ∼=
k⊕
r=1

⊕
λ;|λ|=r

Mλ.

Definition 3.5. Let k be an integer, and consider all the partitions of k. For a partition of the
form (k1, k2, . . . , kr) of length r, it corresponds a Σk-submodule Mλ of H∗(Confk(R2),Fp). We call
a partition cohomologically non-trivial if H∗(Σk,Mλ) 6= 0 for ∗ > 0.

With the help of cohomology dimension of Bk(Rn), we will be able to classify all cohomologically
non-trivial partitions for a fixed k. See 3.17.

Proposition 3.6 ([Knu18, Prop 3.2.6]).

Mk := H(k−1)(n−1)(Confk(Rn))

is a free Σk−1-module as a sub Σk-module.

We wish to understand the first column of the spectral sequence. In other words, we need to
compute H0(Σk,Mλ) for a given partition λ.

Remark 3.7. For the case k = p, it is called the Invariants Theorem in Cohen’s paper. Note
that we can easily expand to the general case. For the proof, [Knu18, p. 81] provides a more
reader-friendly version here.

Theorem 3.8 (Invariants Theorem). For any prime p > 3,

H0(Σk,Mλ) =

 Fp if λ = (1, 1, . . . , 1)
(M2)Σ2 if λ = (2, 1, . . . , 1)
0 otherwise

3.3. Cohomology dimension of Bk(Rn). We denote by cohdim±Z(M) the smallest integer with
the property that

Hi(M,±Z) = 0,∀i > cohdim±Z(M).

Theorem 3.9 ([Kal08, Thm 1.1]). Let M be a compact manifold of dimension n ≥ 1, with boundary
∂M , and let U ⊂M be a closed subset such that U ∩ ∂M = ∅ and M −U connected. We denote by
r the connectivity of the quotient M/(U ∪ ∂M) if U ∪ ∂M 6= ∅. We assume 0 ≤ r <∞ and k ≥ 2.
Then

cohdim±Z(Bk(M − U)) ≤ (n− 1)k − r
When M is even dimensional orientable, then replace cohdim±Z by cohdim.
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s

t

0

0

(n-1)(p-1)

drdr
0

0

Figure 2. E2-page of Confp(Rn)→ Bp(Rn)→ BΣp where r = (n− 1)(p− 1) + 1.

Corollary 3.10. Hi(Bk(Rn),Fp) = 0 for any i ≥ (n− 1)k − n+ 2 = (n− 1)(k − 1) + 1.

Proof. Pick M = Sn and U = {pt} where n is even, then Sn − pt ∼= Rn and r = n− 1 in this case,
then we use the universal coefficient theorem to pass from Z to Fp. The statement follows since
Bk(Rn) is orientable. �

Note that Arnold [Arn14, p. 32] proved the case when n = 2.

3.4. k = p case from Cohen. In this section, we revisit Cohen’s calculation for the case k = p
using the tools we have seen so far. The original calculation can be found at [FM76, p. 207]. We
arrange this section here because this lays the foundation for later sections.

The main strategy is to apply Cartan-Leray spectral sequence to fiber bundle

Confp(Rn)→ Bp(Rn)→ BΣp.

This produces a spectral sequence with

Es,t2
∼= Hs(Σp, H

t(Confp(Rn),Fp))⇒ Hs+t(Bp(Rn),Fp).

By 3.4 and 2.1, we can determine the non-invariant part of E2 page of the spectral sequence. It
turns out that there are only two cohomologically non-trivial partitions of p, and they are (p) and
(1, 1, . . . , 1). They are corresponding to the top row and the bottom row in the spectral sequence.
As for the invariant part, this can be determined by 3.8. See figure 2.

By 3.10, we know that the differentials at page (p− 1)(n− 1) + 1 between these two rows above
must be isomorphisms. Hence, the E∞ page looks like a chop-off form. See figure 3.

Remark 3.11. As for the terminology in Cohen’s paper, if we combine 3.4 and 2.1, it is called
Vanishing Theorem. Another key statement is called Periodicity Theorem. However, 3.10 is a
‘stronger’ version than the Periodicity Theorem since it can used for the general case. See [Knu18,
p. 81] for the statements and the proofs. See [Knu18, p. 112] for why Periodicity Theorem fails for
the general case.
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s

t

0

0

(n-1)(p-1)

(n-1)

0

0

0

0

Figure 3. E∞-page of Confp(Rn)→ Bp(Rn)→ BΣp.

Theorem 3.12 (Cohen). There is an isomorphism

H∗(Bp(Rn),Fp) ∼= I ×Fp
H∗(Σp,Fp)

H>(n−1)(p−1)(Σp,Fp)
where

I := H∗(Confp(Rn),Fp)Σp =

{
∧Fp(αn−1) n is even
Fp n is odd

where αn−1 is a non-zero class of degree n − 1 in H∗(Confp(Rn),Fp) and p is any prime greater
than 3.

Corollary 3.13. If n = 2 and p > 3, then

Hs(Bp(R2),Fp) =

 Fp s = 0
Fp s = 1
0 otherwise

where for s = 0, Fp comes from H0(Σp,Fp), and for s = 1, Fp comes from H1(Confp(R2),Fp)Σp .

3.5. The Arone–Mahoward Theorem. The following statement, originally proved by [AM99,
Thm 4.4], is important because most of top rows in our spectral sequence are actually trivial.

Theorem 3.14 (Arone–Mahowald).

H∗(Σk, H
(k−1)(Confk(R2)) =: H∗(Σk,Mk) ∼= 0

unless k is of the form pr or 2pr for r ∈ N.

Remark 3.15. The previous statement also holds over Rn, where n is general. Potentially, this
could also be proven using spectral sequence argument and 3.10.

To determine the second page of the spectral sequence, we need to compute H∗(Confk,Fp). For
that, it is equivalent to find all partitions of k.
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Definition 3.16. Given two partitions λ and λ′ of an integer k. We say λ′ is p-subordinate to λ
if λ′ is obtained from λ by replacing pi with (i, i, . . . , i) for p many i’s. We say λ is a top partition
if λ is not p-subordinate to µ for any partition µ of the integer k.

Remark 3.17. Note that for the all partitions of k, we can get rid of many cohomologically trivial
partitions (See Definition 3.5) since its cohomology is trivial after applyingH∗(Σk,−) by 2.5. Hence,
we should only keep the partitions which only have 1, 2, p, 2p, p2, 2p2, and so on (repeating on
pr and 2pr). This is also by 3.14. Besides, for the partitions with 2 involved, we should only keep
these partitions with 2 appearing 1 time, p times, p + 1 times, 2p times, 2p + 1 times, and so on
(repeating on l · p or l · p + 1)). This is because for l, the number of 2’s in the partition, we have
by 2.21

H∗(Σl o Σ2,M
⊗l
2 ) ∼= H∗(Σl,Fp[1]⊗l) ∼= H∗(Σl,Fsgnp ) = 0

if l is not of the form mentioned above.

Hence, we have simplified the E2 page of the spectral sequence from all partitions of k into
certain patterns of partitions by 3.17. Next, we will show that there are differentials connecting
partitions of form

(pr, pr, . . . , pr, . . . )

for p many pr with partitions of the form

(pr+1, . . . ).

3.6. Maps between spectral sequence. In this section, we shall rely on 2.11 to study the maps
between two spectral sequences induced by a Σλ-equivalent map out f : Confk → Confλ, where
λ is any partition of k of length r. This induces a submodule Mλ ⊆ Hk−r(Confk) such that the
following diagram commutes

Hk−r(Confλ) Mλ ⊆ Hk−r(Confk)

IndΣk
Σλ
Hk−r(Confλ)

∼=

Lemma 3.18. The induced map between spectral sequences at E
(s,k−r)
2

f∗ : Hs(Σk, IndΣk
Σλ
Hk−r(Confλ))→ Hs(Σk, H

k−r(Confk)) ∼= Hs(Σk,
⊕

λ;|λ|=r

Mλ)

is an embedding onto Hs(Σk,Mλ).

Proof. This is by the functoriality of the spectral sequence, and the isomorphism at the target is
by 3.4. �

Furthermore, Let G = Σk and K = Σλ, then f : Confk → Confλ is also H-equivalent for the
fixed partition λ of k, where H 6 K.

Lemma 3.19. Let M = Hk−r(Confλ). The induced map between spectral sequences at E
(s,k−r)
2

f∗ : Hs(G, IndGHM)→ Hs(G, IndGKM) ⊆ Hs(G,Hk−r(Confk))

coincides with the corestriction map corKH : Hs(H,M)→ Hs(K,M).
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Proof. Hs(G, IndGKM) as a summand in Hs(G,Hk−r(Confk)) is by Lemma 3.18. Let F• be a free
resolution over G. Then the following diagram is commutative:

F• ⊗G FG⊗H M F• ⊗G FG⊗K M

F• ⊗H M F• ⊗K M

∼=

π

π

∼=

Applying H∗(G,−), we have

H∗(G, IndGHM) H∗(G, IndGKM)

H∗(H,M) H∗(K,M)

∼=

corKH

∼=

where two vertical maps are isomorphism due to Shapiro’s lemma. �

Similarly, let g : Confλ → Confk be a map in, which is H-equivalent. By universal mapping
property again, we have

HomH(FG,Hk−r(Confλ)

Hk−r(Confk) Hk−r(Confλ)

Lemma 3.20. Let M = Hk−r(Confλ). The induced map between spectral sequences at E
(s,k−r)
2

g∗ : Hs(G, IndGKM) ⊆ Hs(G,Hk−r(Confk))→ Hs(G, IndGHM)

coincides with the restriction map resKH : Hs(K,M)→ Hs(H,M).

Proof. It is similar to Lemma 3.19. �

4. Universal spectral sequence

In this section, we will first construct a “universal” filtered cochain complex D such that the
spectral sequence for the complex is isomorphic to the U(m,n,r) or the V(m,n) from Definition 1.6.
By studying the spectral sequence for the filtered complex

HomΣp(W∗, (D)⊗p)

and the filtered map

D → HomΣk(F∗, C
∗(Confk)),

we can show that given a differential in the spectral sequence for Confk, it gives rise to infinite
family of differentials in the spectral sequence for Confpk, where W∗ is a free resolution over Σp
and F∗ is a free resolution over Σk.
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4.1. Construction. Let

D(m,n,r) = Fp〈xn, yn+1〉
be a filtered (graded) cochain complex over Fp such that d(x) = y and

F l(D) =


span(x, y) if 0 ≤ l ≤ m
span(y) if m+ 1 ≤ l ≤ m+ r

0 if l ≥ m+ r + 1

where m ≤ n and r > 1.

Lemma 4.1. The spectral sequence for the filtered complex D(m,n,r) is isomorphic to the universal
spectral sequence U(m,n,r).

Proof. The filtration on D(m,n,r) shows that there are only two non-trivial entries at its E2-page,

which are Em,n−m2
∼= Fp〈x〉 and Em+r,n−m−r+1

2
∼= Fp〈y〉. Since the total complex D∗ is acyclic, so

the differential dm,n−mr must be an isomorphism. �

Through this section, for convenience, we will denote

D := D(m,n,r).

Let C = C∗,∗, a double complex with horizontal differentials d→ and vertical differentials d↑.
We will filter the total complex of C by the columns, and this produces a spectral sequence for the
double complex such that the differentials d0 are just d↑ at E0 and the differentials d1 are induced
from d→. Besides, let α be an element in Em,n−mr (C), the spectral sequence of the double complex
C, such that

dm,n−mr (α) = β ∈ Em+r,n−m−r+1
r .

Lemma 4.2 ([BT13, p. 163]). Assume a ∈ Em,n−m0 lives to Er such that [a]r = α, i.e., a is a
cocycle in E1, E2, . . . , Er−1. Then, there exists a zig-zag diagram at E0

0

a

b1

b2 . . .

. . .

br−1

such that d↑(a) = 0, d→(a) = d↑(b1), . . . , d→(br−2) = d↑(br−1), and β = [d→(br−1)]r.

Proposition 4.3. Let α ∈ Em,n−mr (C) and dr(α) = β, then there is a map of spectral sequences
E∗,∗(D)→ E∗,∗(C) such that [x] 7→ α and [y] 7→ β.
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Proof. Since x is the generator of Fp[n] and y is the generator of Fp[n+1] in D, and we can produce
a map between two total complexes f : D → C such that

x 7−→ a+ b1 + · · ·+ br−1

y 7−→ d→(br−1)

By the previous lemma, f is a chain map since

(d→ − d↑)(a+ b1 · · ·+ br−1) = d→(br−1).

By filtering C via the columns, we have

F l(C) =
⊕
i≥l

⊕
q≥0

Ci,q.

Note that f also preserves filtrations since

a+ b1 + · · ·+ br−1 ∈ Cm,n−m ⊕ Cm+1,n−m−1 ⊕ · · · ⊕ Cm+r−1,n−m−r+1,

which is a summand in F 0(C), F 1(C), . . . , Fm(C). Besides,

d→(br−1) ∈ Cm+r,n−m−r+1

which is a summand in F 0(C), F 1(C), . . . , Fm(C), Fm+1(C), . . . , Fm+r(C). Hence, this filtered
chain map f induces a map between two spectral sequences.

�

This filtered map from above induces a filtered map between

HomΣp(W∗, D
⊗p)→ HomΣp(W∗, C

⊗p),

where W∗ is a free resolution of Fp over Σp.

Convention 4.4. (1) Given a filtration on P∗, a free resolution over some group G, such that

Fs(P∗) : Ps
δ−→ Ps−1

δ−→ . . .
δ−→ P0 → 0,

there is an induced decreasing filtration on Hom(P∗,Fp):
F s(Hom(P∗,Fp)) : 0→ Hom(Ps,Fp)→ Hom(Ps+1,Fp)→ . . . .

(2) Given filtrations on two cochain complexes D∗1 and D∗2 , we have

F s(D∗1 ⊕D∗2) = F s(D∗1)⊕ F s(D∗2)

and
F s(D∗1 ⊗D∗2) =

∑
s1+s2=s

F s1(D∗1)⊗ F s2(D∗2).

Denote:
Hom(P≥s,Fp) := F s(Hom(P∗,Fp)).

Let C = HomΣr (V∗,M
∗), where V∗ is a free resolution over Σr and M∗ is a cochain complex

with a Σr-action.
Note that

HomΣp(W∗, C
⊗p) = HomΣp(W∗, (HomΣr (V∗,M

∗))⊗p)

∼= HomΣp(W∗, (Hom(Σr)p((V∗)
⊗p, (M∗)⊗p)))

∼= HomΣpoΣr (W∗ ⊗ (V∗)
⊗p, (M∗)⊗p)

The last isomorphism is a filtration preserving map.
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Lemma 4.5.

S := HomΣp(W∗, (Hom(Σr)p((V∗)
⊗p, (M∗)⊗p))) ∼= HomΣpoΣr (W∗ ⊗ (V∗)

⊗p, (M∗)⊗p) =: T

preserves the filtration.

Proof.

F s(T ) =
∑

s1+s2=s

F s1(Hom(W∗,Fp))⊗Σp F
s2(Hom(Σr)p((V∗)

⊗p, (M∗)⊗p)))

=
∑

s1+s2=s

Hom(W≥s1 ,Fp)⊗Σp Hom(Σr)p(((V∗)
⊗p)≥s2 , (M

∗)⊗p))

∼=
∑

s1+s2=s

HomΣp(W≥s1 ,Hom(Σr)p(((V∗)
⊗p)≥s2 , (M

∗)⊗p))

∼=
∑

s1+s2=s

HomΣpoΣr (W≥s1 ⊗ ((V∗)
⊗p)≥s2 , (M

∗)⊗p)

= HomΣpoΣr ((W∗ ⊗ (V∗)
⊗p)s, (M

∗)⊗p)

= F s(S)

where the third isomorphism is by the tensor-hom adjunction for chain complexes. �

4.2. The spectral sequence of HomΣp(W∗, D
⊗p). We shall compute the spectral sequence of

HomΣp(W∗, D
⊗p) with given filtrations on W∗ and D.

We acquire the cochain complex D⊗p by performing tensor product for itself p times. We have

(D⊗p)pn+l ∼= Ind
Σp
Σp−l×Σl

(Fp[n])⊗p−l ⊗ (Fp[n+ 1])⊗l

for l = 0, 1, . . . , p at degree pn+ l in this complex, and the filtration is induced by the filtration on
D.

Proposition 4.6. Let W∗ be a free resolution of Fp over Σp, and n be even for D(m,n,r). The

spectral sequence for the filtered complex HomΣp

(
W∗, (D(m,n,r))

⊗p) is isomorphic to

U(
pm,pn,r

) ⊕ ⊕
t≥1,ε=0,1

U(
pm+2t(p−1)−ε,pn+2t(p−1)−ε,p(r−1)+1

).
Proof. The filtration on HomΣp(W∗, D

⊗p) takes the form:

F s(HomΣp(W∗, D
⊗p)) =

∑
s1+s2=s

F s1(Hom(W∗,Fp))⊗Σp F
s2(D⊗p)

=
∑

s1+s2=s

HomΣp(W≥s1 , F
s2(D⊗p))

Since D⊗p is a cochain complex with the first non-trivial degree at np,∑
s1+s2=s

HomΣp(W≥s1 , F
s2(D⊗p))

is a sub-complex which is isomorphic to HomΣp(W∗, D
⊗p) for the degree ≥ np+ s and is trivial for

the degree < np+ s. Hence, the associated graded of HomΣp(W∗, D
⊗p) is

F s/F s+1 ∼=
⊕

s1+s2=s

HomΣp(Ws1 , F
s2(D⊗p)/F s2+1(D⊗p)).
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Since HomΣp(Ws1 ,−) is an exact functor, we have

Es,i−s1
∼= Hi(F s/F s+1) ∼=

⊕
s1+s2=s

HomΣp

(
Ws1 , H

i−s1
(
F s2(D⊗p)/F s2+1(D⊗p)

))
.

Hence,

Es,i−s2
∼=

⊕
s1+s2=s

Hs1

(
Σp, H

i−s1
(
F s2(D⊗p)/F s2+1(D⊗p)

))
.

Note that F s(D⊗p)/F s+1(D⊗p) is trivial unless s = pm+ lr for 0 ≤ l ≤ p. Besides, we have

Hj
(
F pm+lr(D⊗p)/F pm+lr+1(D⊗p)

)
=

{
Ind

Σp
Σp−l×Σl

(Fp[n])⊗p−l ⊗ (Fp[n+ 1])⊗l j = pn+ l

0 otherwise

These reduce the E2 page to

(4.7) Es,pn+l−pm−lr
2

∼= Hs−pm−lr(Σp, Ind
Σp
Σp−l×Σl

(Fp[n])⊗p−l ⊗ (Fp[n+ 1])⊗l)

with other rows trivial. For l = 0,

Es,pn−pm2
∼= Hs−pm(Σp, (Fp[n])⊗p) ∼= Hs−pm(Σp,Fp).

By Theorem 2.15, we see that this is trivial unless s = pm + 2t(p − 1) − ε for t ≥ 0 and ε = 0, 1.
For l = 1,

Es,pn−pm−r+1
2

∼= Hs−pm−r(Σp, Ind
Σp
Σp−1×Σ1

(Fp[n])⊗p−1 ⊗ Fp[n+ 1]).

By Shapiro’s lemma and Corollary 2.5, we see that this is trivial unless s = pm + r. For l =
2, 3, . . . , p − 1, it has the similar argument as the l = 1 case but it is trivial for every s by the
invariant of the sign representation is trivial. For l = p,

Es,pn−pm−pr+p2
∼= Hs−pm−pr(Σp, (Fp[n+ 1])⊗p) ∼= Hs−pm−pr(Σp,Fsgnp ).

Similarly, we see that this is trivial unless s = pm+ pr + p− 1 + 2t(p− 1)− ε for t ≥ 0.
Hence, the E2-page of the spectral sequence takes the form of Figure 4 after the simplification.

Since D⊗p is quasi-isomorphic to the zero complex, by Proposition 2.12, the infinity page Es,t∞ is
trivial for s ≥ 0 and t ≥ 0. This implies that every differential in Figure 4 (black arrows) is an
isomorphism.

�

As for the case of n being odd, it is similar. See Figure 5 for its E2-page. Since its Es,t∞ is trivial
for s ≥ 0 and t ≥ 0, this implies that the red differential dr in Figure 5 must be a trivial map, and
every black differential is an isomorphism.

Proposition 4.8. Let W∗ be a free resolution of Fp over Σp, and n be odd for D(m,n,r). The

spectral sequence for the filtered complex HomΣp

(
W∗, (D(m,n,r))

⊗p) is isomorphic to

U(
pm+p−2,pn+p−2,(p−1)(r−1)+1

) ⊕ U(
pm+p−1,pn+p−1,p(r−1)+1

)
⊕

⊕
t≥1,ε=0,1

U(
pm+(2t+1)(p−1)−ε,pn+(2t+1)(p−1)−ε,p(r−1)+1

).
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s

t

c := pn− pm

c− r + 1

c− p(r − 1)

a := pm a+ 2(p− 1)− ε a+ 4(p− 1)− ε

a+ r

b := pm+ pr + p− 1− ε b+ 2(p− 1)

. . .

. . .

dr

dp(r−1)+1 dp(r−1)+1

Figure 4. The spectral sequence of HomΣp(W∗, D
⊗p) if n is even.

s

t

c := pn− pm

c− (p− 1)(r − 1)

c− p(r − 1)

a := pm+ p− 1− ε a+ 2(p− 1) a+ 4(p− 1)

b := pm+ pr

b− r

b+ 2(p− 1)− ε b+ 4(p− 1)− ε

. . .

. . .
dr

d(p−1)(r−1)+1 dp(r−1)+1 dp(r−1)+1 dp(r−1)+1

Figure 5. The spectral sequence of HomΣp(W∗, D
⊗p) if n is odd.

4.3. Some related results. We shall list some properties of the universal spectral sequences. The
proof of the following statements is similar to Proposition 4.6 and Proposition 4.8.

Lemma 4.9. Let a be an positive integer such that a < p and W a
∗ is a free resolution over Σa,

then the spectral sequence for

HomΣa(W a
∗ , (D(m,n,r))

⊗a)
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is isomorphic to {
U(am,an,r) if n is even
U(am+(a−1)r,an+a−1,r) if n is odd

We can also construct a filtered complex for the universal spectral sequence V(m,n). Let

S(m,n) = Fp〈xn〉

be a filtered (graded) cochain complex over Fp and

F l(S) =

{
S(m,n) if 0 ≤ l ≤ m
0 if l ≥ m+ 1

where m ≤ n.

Proposition 4.10. The spectral sequence for the filtered complex S(m,n) is isomorphic to the uni-
versal spectral sequence V(m,n). Moreover, the spectral sequence for the filtered complex

HomΣp

(
W∗, (S(m,n))

⊗p)
is isomorphic to ⊕

t≥0,ε=0,1

V(
pm+2t(p−1)−ε,pn+2t(p−1)−ε

)
if n is even, and is isomorphic to⊕

t≥0,ε=0,1

V(
pm+(2t+1)(p−1)−ε,pn+(2t+1)(p−1)−ε

)
if n is odd.

Lemma 4.11. Let a be an positive integer such that a < p and W a
∗ is a free resolution over Σa,

then the spectral sequence for

HomΣa(W a
∗ , (S(m,n))

⊗a)

is isomorphic to  V(am,an) if n is even
V(m,n) if n is odd and a = 1
0 if n is odd and a > 1

5. Spectral sequence for the braid group

5.1. The framwork. Since Cartan–Leray spectral sequence is essentially graded cochain complex,
the following statement can be useful for maps between Cartan–Leray spectral sequences.

Lemma 5.1. Let C∗ be a cochain complex with differential ∂ and D∗ be a cochain complex with
differential d. Let f∗ : C∗ → D∗ → C∗ be an endomorphism of a cochain complex C∗ such that fn

is an isomorphism in degree n and Cn is of finite dimensional, then the induced map

ker ∂n/ im ∂n−1 → ker dn/ im dn−1 → ker ∂n/ im ∂n−1

is an isomorphism in degree n as well.

Proof. Since f∗ is a cochain map, it restricts to an endomorphism of ker ∂n and an endomorphism
of im ∂n−1. Since fn is injective, these two restrictions are also injective, hence isomorphism by
finite dimensionality. �
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Let k be a positive integer such that k ≤ 2p2. We define

ΠCNT
k :=

{
µ =

(
2p2, 2p2, . . . , 2p2︸ ︷︷ ︸

b2

, p2, p2, . . . , p2︸ ︷︷ ︸
a2

, 2p, 2p, . . . , 2p︸ ︷︷ ︸
b1

, p, p, . . . , p︸ ︷︷ ︸
a1

, 2, 2, . . . , 2︸ ︷︷ ︸
b0 = ip+ ε, i ≥ 0, ε = 0, 1

, 1, 1, . . . , 1︸ ︷︷ ︸
a0

)
|µ ` k

}
.

and a subset of ΠCNT
k as

Π̂CNT
k :=

{
µ =

(
2p2, 2p2, . . . , 2p2︸ ︷︷ ︸

b2 < p

, p2, p2, . . . , p2︸ ︷︷ ︸
a2 < p

, 2p, 2p, . . . , 2p︸ ︷︷ ︸
b1 < p

, p, p, . . . , p︸ ︷︷ ︸
a1 < p

, 2︸︷︷︸
b0 = ε

, 1, 1, . . . , 1︸ ︷︷ ︸
a0 < p

)
|µ ` k

}
.

For convenience, we let

C(k) =
⊕
µ`k

H∗(Σk,Mµ).

By Proposition 3.4, C(k) is the spectral sequence of the braid group Bk(R2) at E2.
Let λi be a partition of 2εpr for 0 ≤ i ≤ p(r − 1) and ε = 0, 1 such that λ0 is p-subordinate to

(2εpr), λi is p-subordinate to λi−1 for 1 ≤ i ≤ p(r − 1) and λp(r−1) = (2ε, 2ε, . . . , 2ε︸ ︷︷ ︸
pr

).

Proposition 5.2. Let k be a positive integer such that k ≤ 2p2, then for all ∗ ≥ 0, H∗(Σk,Mk) = 0
unless k = pr or 2pr for some r ≥ 0. Besides, let r ≥ 0 and ε = 0 or 1, then the set of partitions

S2εpr = {(2εpr), λ0, λ1, . . . , λp(r−1)}

spans a spectral subsequence of the spectral sequence for B2εpr (R2).

Remark 5.3. The first part of the statement is called the Arone–Mahowald theorem.

Proof. We prove the statement using the induction. The base case has been showed in Cohen’s
calculation for k = p. Without loss of generality, let 2pr−1 < k ≤ pr for some r, and we assume
H∗(Σk′ ,Mk′) = 0 if k′ < k and k′ is not equal to pj or 2pj for some j. Besides, we assume
S1, S2, . . . , Spr−1 , S2pr−1 span spectral subsequences, hence there are sum of universal spectral se-
quences U(1), U(2), . . . , U(pr−1), U(2pr−1) such that they provide models for S1, S2, . . . , Spr−1 , S2pr−1

respectively. By Corollary 2.6 and the first assumption above,

C(k) ∼=
⊕

µ∈ΠCNT
k ∪(k)

H∗(Σk,Mµ).

Let

O(k) =
⊕
µ6=(k)

µ∈Π̂CNT
k

⊗
0≤i≤r−1

U(pi)⊗ai ⊗ U(2pi)⊗bi .

Fix a µ ∈ Π̂CNT
k such that µ 6= (k). By definition, there is an injective iµ of spectral sequences⊗

0≤i≤r−1

U(pi)⊗ai ⊗ U(2pi)⊗bi
iµ−→

⊗
0≤i≤r−1

C(pi)⊗ai ⊗ C(2pi)⊗bi .

Let Confk → Confµ be a
∏

0≤i≤r−1(Σpi)
ai × (Σ2pi)

bi -equivariant map out, then it induces a map
of spectral sequence ⊗

0≤i≤r−1

C(pi)⊗ai ⊗ C(2pi)⊗bi
fµ−→ C(k).
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Let Confµ → Confk be a
∏

0≤i≤r−1(Σpi)
ai × (Σ2pi)

bi-equivariant map in and let rµ be a retraction
of iµ, then we have

C(k)
gµ−→

⊗
0≤i≤r−1

C(pi)⊗ai ⊗ C(2pi)⊗bi
rµ−→

⊗
0≤i≤r−1

U(pi)⊗ai ⊗ U(2pi)⊗bi .

Summing over all partitions in Π̂CNT
k \ {(k)} and denote g = (⊕rµ) ◦ (⊕gµ) and f = (⊕fµ) ◦ (⊕iµ).

We have the composition of spectral sequences

f ◦ g : C(k)→ O(k)→ C(k).

Lemma 5.4. f ◦ g : C(k)→ O(k)→ C(k) is an isomorphism at E2 restricting to the summand{ ⊕
µ∈ΠCNT

k
H∗(Σk,Mλ) if 2pr−1 < k < pr,⊕

µ∈ΠCNT
pr
\Spr H

∗(Σk,Mλ) if k = pr.

For 2pr−1 < k < pr, at E∗,k−1
2 , we have

H∗(Σk,Mk)
g−→ 0

f−→ H∗(Σk,Mk).

Combing with Lemma 5.1 for
⊕

µ∈ΠCNT
k

H∗(Σk,Mλ), then the commutative diagram of maps be-

tween C(k) and O(k) shows that the differential coming out of E∗,k−1
t must be trivial for t ≥ 2.

Hence, E∗,k−1
∞

∼= E∗,k−1
2

∼= H∗(Σk,Mk). By Corollary 3.10, we have H∗(Σk,Mk) = 0, i.e.,
C(k) ∼=

⊕
µ∈ΠCNT

k
H∗(Σk,Mµ). For k = pr, the argument is similar, and it shows that the set

of partitions Spr spans a spectral subsequence. �

For the rest of the paper, we shall construct these universal models for S2εpr .

5.2. Models for the partition (p) and the partition (2p). Applying the language of universal
spectral sequence, we can reformulate Cohen’s calculation for k = p.

Proposition 5.5. The Cartan–Leray spectral sequence for the braid group Bp(R2) is isomorphic
to V(0,1) ⊕ U(p) where

U(p) := V(0,0) ⊕
⊕

t≥1,ε=0,1

UI(t,ε)

provides a model for Sp = {(p), (1, 1, . . . , 1︸ ︷︷ ︸
p

)}, and I(t, ε) = (2t(p− 1)− ε− p, 2t(p− 1)− ε− 1, p).

Proof. In the spectral sequence ofBp(R2), we have the isomorphic differential ds,p−1
p : Hs(Σp;Mp)→

Hs+p(Σp;Fp) for s > 0. By Example 2.19, Hs+p(Σp;Fp) is non-trivial and isomorphic to Fp only
if s = 2t(p− 1)− ε− p for t ≥ 1. By Proposition 4.3, for every t and ε, there is a map of spectral
sequence from U(m,n,r) where m = 2t(p− 1)− ε− p, n = 2t(p− 1)− ε− 1 and r = p. Besides, we

have E0,0
2
∼= H0(Σp;Fp) ∼= V(0,0), E

0,1
2
∼= H0(Σ2;M2) ∼= V(0,1) and other entries are trivial. This

leads to an isomorphism of two spectral sequences from V(0,0) ⊕ V(0,1) ⊕
⊕

t≥1,ε=0,1 UI(t,ε) to the

spectral sequence for Bp(R2) where I(t, ε) = (2t(p− 1)− ε− p, 2t(p− 1)− ε− 1, p). �

Remark 5.6. We can construct models for the partitions (1) and (2).

(1) U(1) := V(0,0) provides a model for S1 = {(1)}.
(2) U(2) := V(0,1) provides a model for S2 = {(2)}.
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Proposition 5.7. In the spectral sequence for the braid group B2p(R2),

U(2p) := V(p−2,2p−2) ⊕ V(p−1,2p−1) ⊕
⊕

t≥1,ε=0,1

UJ(t,ε),

provides a model for S2p = {(2p), (2, 2, . . . , 2︸ ︷︷ ︸
p

)}, where J(t, ε) =
(

(2t+ 1)(p− 1)− p− ε, (2t+ 1)(p−

1) + p− 1− ε, p
)

.

Proof. Proposition 5.2 shows that S2p spans a spectral subsequence. Hence, to not contradict with
Corollary 3.10, the differential connecting these two partitions must be an isomorphism. Specifically,
we have the isomorphic differential ds,p−1

p : Hs(Σ2p;M2p) → Hs+p(Σp;Fp[1]⊗p) ∼= Hs+p(Σp;Fsgnp )

for s > 0. By Example 2.19, Hs+p(Σp;Fsgnp ) is non-trivial and isomorphic to Fp only if s =

(2t+ 1)(p− 1)− ε− p for t ≥ 1. Besides, Hp−2(Σp,Fsgnp ) ∼= Hp−1(Σp,Fsgnp ) ∼= Fp are not being hit

by ds,p−1
p . Hence, similar to Proposition 5.5, we can build a model for these two partitions. �

5.3. The wreath product of spectral sequences for (Confp)
p. For the construction of a model

for the partition (p2),we should consider a Σp o Σp-equivariant maps out Confp2 → (Confp)
p. Let

W∗ be a free resolution over Σp and W ′∗ be a free resolution over Σp2 , then we will be dealing with
the following pathway for this section:

HomΣp(W∗, D
⊗p)→ HomΣpoΣp(W∗ ⊗ (W∗)

⊗p, C∗(Confp)
⊗p)→ HomΣp2

(W ′∗, C
∗(Confp2)).

Lemma 5.8. The wreath product of spectral sequences for (Confp)
p is isomorphic to the spectral

sequence for the filtered complex

HomΣp

(
W∗,

(
S(0,0) ⊕ S(0,1) ⊕

⊕
t≥1,ε=0,1

DI(t,ε)

)⊗p)
.

Proof. The spectral sequence for the wreath product is isomorphic to the spectral sequence for the
complex

HomΣpoΣp(W∗ ⊗ (W∗)
⊗p, C∗(Confp)

⊗p),

which, by Lemma 4.5, is isomorphic to the spectral sequence for the complex

HomΣp(W∗,HomΣp(W∗, C
∗(Confp))

⊗p).

Then, by Proposition 5.5, it is isomorphic to the spectral sequence for the filtered complex

HomΣp

(
W∗,

(
S(0,0) ⊕ S(0,1) ⊕

⊕
t≥1,ε=0,1

DI(t,ε)

)⊗p)
.

�

We want to determine how differentials interact with one another among partitions in the wreath
product of spectral sequences. First, we define some short-hand notations. For l = 0, 1, . . . , p, let

(5.9) λl :=
(
p, p, . . . , p︸ ︷︷ ︸

p− l

, 1, 1, . . . , 1︸ ︷︷ ︸
lp

)
,

be a partition of p2 such that there are there are p − l many p’s and lp many 1’s, and we use the
same symbol to denote the corresponding summand H∗(Σp2 ,Mλl) in the spectral sequence.
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As for the wreath product of spectral sequences, let

(5.10) λ′l := (p)⊗p−l ⊗ (1, 1, . . . , 1︸ ︷︷ ︸
p

)⊗l,

and we use the same symbol to denote the corresponding summandH∗(ΣpoΣp; Ind
Σp
Σp−l×Σl

(Mp)
⊗p−l⊗

(Fp)⊗l). Since the partition λl is at row (p − l)(p − 1) in the spectral sequence, so we omit S(0,1).
Hence, it suffices to look at the filtered complex

(5.11) T = HomΣp

(
W∗,

(
S(0,0) ⊕

⊕
t≥1,ε=0,1

DI(t,ε)

)⊗p)
.

By the universal property of Hom functor with respect to direct sum, T is isomorphic to

HomΣp

(
W∗,

(
S(0,0)

)⊗p)⊕ ⊕
t≥1,ε=0,1

HomΣp

(
W∗,

(
DI(t,ε)

)⊗p)⊕ T ′,
where T ′ is the complement and its summand takes the form:

HomΣp

(
W∗,

⊕
a+b1+b2+···=p

Ind
Σp
Σa×Σb1×Σb2×...

S⊗a(0,0) ⊗D
⊗b(t,ε)
I(t1,ε1) ⊗D

⊗b2
I(t2,ε2) ⊗ . . .

)
.

The corresponding spectral sequence for T ′ is isomorphic to the tensor product of spectral sequences
of the form from Lemma 4.9 with Ep+1 = · · · = E∞ = 0. We use the symbol E∗,∗(T ′) to denote its
corresponding spectral sequence.

Proposition 5.12. In the wreath product of spectral sequences for (Confp)
p, the only non-trival

summands among the λ′l’s which survive to E∞ are

H2s(p−1)−ε(Σp, H
0(Σp;Fp)⊗p) ⊆ λ′p

for s ≥ 0, ε = 0, 1. Specifically,

(1) Let i = 2t(p− 1)− p for t ≥ 1, the restriction of the differential to the summand

Hp−2(Σp, H
i(Σp;Mp)

⊗p) ⊆ λ′0
with the image

H0(Σ1 × Σp−1, H
i(Σp;Mp)⊗Hi+p(Σp;Fp)⊗p−1) ⊆ λ′p−1

is an isomorphism at the E(p−1)(p−1)+1.
(2) Let i = 2t(p− 1)− p for t ≥ 1, the restriction of the differential to the summand

Hp−1(Σp, H
i(Σp;Mp)

⊗p) ⊆ λ′0
with the image

H0(Σp, H
i+p(Σp;Fp)⊗p) ⊆ λ′p

is an isomorphism at Ep(p−1)+1.
(3) Let i = 2t(p− 1)− p, j = 2n(p− 1) for t ≥ 1, n ≥ 1, the restriction of the differential to the

summand

Hp−1−ε+j(Σp, H
i(Σp;Mp)

⊗p) ⊆ λ′0
with the image

Hj−ε(Σp, H
i+p(Σp;Fp)⊗p) ⊆ λ′p

is an isomorphism at Ep(p−1)+1.
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s

t

0

0

(p-1)

2(p-1)

(p-2)(p-1)

(p-1)(p-1)

p(p-1)

dp(p−1)+1

dp

dp

dp

dp

dp

. . .. . .

Figure 6. The spectral sequence for EΣp ×Σp (Bp)
p.

(4) Let i = 2t(p− 1)− 1− p, j = 2n(p− 1) for t ≥ 1, n ≥ 1, the restriction of the differential to
the summand

Hj−ε(Σp, H
i(Σp;Mp)

⊗p) ⊆ λ′0
with the image

Hj−ε−(p−1)(Σp, H
i+p(Σp;Fp)⊗p) ⊆ λ′p

is an isomorphism at Ep(p−1)+1.
(5) The remaining non-trivial summands in λ′l vanish at Ep+1 for l = 0, 1, 2, . . . , p.

Proof. Note that by Theorem 2.14, we have

H∗(Σp oΣp; Ind
Σp
Σp−l×Σl

(Mp)
⊗p−l ⊗ (Fp)⊗l) ∼= H∗(Σp, Ind

Σp
Σp−l×Σl

H∗(Σp;Mp)
⊗p−l ⊗H∗(Σp;Fp)⊗l).

Hence, we should study each individual summand under the differential. H2s(p−1)−ε(Σp, H
0(Σp;Fp)⊗p)

is the only summand surviving to E∞ is due to HomΣp

(
W∗,

(
S(0,0)

)⊗p) ⊆ T and Proposition 4.10.

Statement (1), (2) and (3) are by Proposition 4.8. Statement (4) is by Proposition 4.6, and State-
ment (5) is by the argument for the T ′ from above. See Figure 6 for its sketch. �

5.4. The differential coming out of the partition (p2) is injective. We denote ai (a′i, respec-
tively) to be the differential dp (d′p, respectively) between λl’s (λ′l’s, respectively) at the page Ep
for i = 0, 1, 2, . . . , p − 1. Besides, we denote dT to be the differential coming out of the top row.
Hence, the maps between spectral sequences form a commutative diagram
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0 0 λ′0 λ′1 . . . . . . λ′p−1 λ′p 0

0 (p2) λ0 λ1 . . . . . . λp−1 λp 0

a′0

∼=

a′1

∼=

a′p−2 a′p−1

∼= cor

dT a0 a1 ap−2 ap−1

The map between λ′i → λi is an isomorphism for i = 0, 1, . . . , p − 1 by Lemma 3.18, whereas the
map between λ′p → λp is a surjective map coinciding with the surjective corestriction map

corGH : H∗(Σp o Σp;Fp)→ H∗(Σp2 ;Fp).

with H = Σp o Σp and G = Σp2 .
By Theorem 2.14, we have

λ′0 = Hn(Σp o Σp;M⊗pp ) ∼= H0
(
Σp, H

n((Σp)
p;M⊗pp

)
⊕
⊕
j>0

Hj
(
Σp, H

n−j((Σp)
p;M⊗pp

)
.

We define the H0(Σp,−) part of λ′0 as H0
(
Σp, H

n((Σp)
p;M⊗pp

)
, and the H>0(Σp,−) part of λ′0

as
⊕

j>0H
j
(
Σp, H

n−j((Σp)
p;M⊗pp

)
. Similarly, we define the H0(Σp,−) part and the H>0(Σp,−)

part for λ′l and l = 1, 2, . . . , p. However, by Corollary 2.6, the H>0(Σp,−) part of λ′l is trivial for
l = 1, 2, . . . , p − 1. Hence, the H0(Σp,−) part of λ′l vanishes after the page Ep for l = 0, 1, . . . , p
except these summands from part (1) and part (2) of Proposition 5.12.

Lemma 5.13. In the spectral sequence for the braid group Bp2(R2), the differential coming out of
the top row

ds,p
2−1

p : Es,p
2−1

p
∼= Hs(Σp2 ;Mp2)→ Es+p,p(p−1)

p

is injective and its image is a summand in the H>0(Σp,−) part of λ0 for s ≥ 1.

Proof. We study how the partition λ0 vanishes in the spectral sequence for Bp2(R2). We can rely
on the knowledge of λ′0 in the wreath product of spectral sequences. Proposition 5.12 indicates that
the disappearance of λ′0 comes with three steps. The first non-trivial differential is at the page Ep
such that its Ep+1

∼= ker a′0 := M is the H>0(Σp,−) part of λ′0. The second non-trivial differentials
is at the page E(p−1)(p−1)+1 such that the summands Hp−2(Σp, H

i(Σp;Mp)
⊗p) vanish which are in

the H>0(Σp,−) part of λ′0. The last non-trivial differential is at the page Ep(p−1)+1 such that the

remaining H>0(Σp,−) part of λ′0 vanish. We shall look at the three steps.
At the page Ep, by the diagram from above, we have

(1) ker ai ∼= ker a′i for i = 0, 1, . . . , p− 2;
(2) im ai ∼= im a′i for i = 0, 1, . . . p− 2;
(3) ker ap−1

∼= ker(corGH ◦ a′p−1);

(4) im ap−1
∼= im(corGH ◦ a′p−1).

For (3), we can further show that ker(corGH ◦ a′p−1) ∼= ker(a′p−1) and this is because that im a′p−1 is

a summand in the H0(Σp,−) part of λ′p whereas ker(corGH) is a summand in the H>0(Σp,−) part
of λ′p. Let

L :=
⊕
t≥1

Hp−2(Σp, H
2t(p−1)−p(Σp;Mp)

⊗p).
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At the page E(p−1)(p−1)+1, we have the following commutative diagram for the maps between two
spectral sequences from λ0 to λp−1 where the partitions in the middle die at the page Ep

0 M L 0

0 M/ im dT L 0

d

∼=

D

The diagram shows that D is surjective, so λp−1 vanishes after the E(p−1)(p−1)+1. Next, at the
page Ep(p−1)+1, we have the following commutative diagram for the maps between two spectral
sequences from λ0 to λp

0 ker d λ′p/ im a′p−1 0

0 kerD λp/ im ap−1 0

d′

corGH

D′

By Proposition 5.12,

N :=
⊕

s≥0,ε=0,1

H2s(p−1)−ε(Σp, H
0(Σp;Fp)⊗p)

is the only non-trivial summand in λ′p surviving to the E∞. Hence, there exists an isomorphic copy
of ker d in λ′p/ im a′p−1, call it K, such that

d′ : ker d ∼= K → λ′p/ im a′p−1
∼= K ⊕N

is an embedding. Besides, since there does not exist an admissible set (ε1, s1, ε2, s2) of length 2
such that ε2 = s2 = 0, we have corGH(N) = 0. Together this shows corGH ◦ d′ is surjective, hence, D′

must be surjective as well. These terms in the spectral sequence fall into the vanishing range by
Corollary 3.10, and this is the last chance to vanish for kerD. Hence, D′ must be an isomorphism.
After the page Ep(p−1)+1, every λi vanishes for i = 0, 1, . . . , p in the spectral sequence for the braid
group. To not contradict with Corollary 3.10 again, this implies the differential dT at the Ep must
be injective. Last, dT does not land in the H0(Σp,−) part of λ0 is due to im dT ⊆ ker a0

∼= M . �

5.5. A model for the partition (p2). The previous lemma indicates that to have a model for the
partition (p2), we need to look at the image of

HomΣp

(
W∗,

(
S(0,0)

)⊗p)
and ⊕

t≥1,ε=0,1

HomΣp

(
W∗,

(
DI(t,ε)

)⊗p)
under corGH where H = Σp o Σp and G = Σp2 over Fp. We keep the T ′ intact because T ′ are these
H0(Σp,−) parts which shall always be mapped to their isomorphic copies in H∗(Σp2 ;Fp).

Lemma 5.14. In the spectral sequence for the braid group Bp2(R2),

U(p2) := V(0,0) ⊕
⊕

t2≥1,ε2=0,1
t1≥0,ε1=0,1

UÎ(t1,ε1,t2,ε2) ⊕ E
∗,∗(T ′),

provides a model for Sp2 = {(p2), λ0, λ1, . . . , λp}, where Î is from 5.15 and 5.16, and E∗,∗(T ′) is
from 5.11.
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Proof. Since the spectral sequence for HomΣp

(
W∗,

(
S(0,0)

)⊗p)
is isomorphic to

H2s(p−1)−ε(Σp, H
0(Σp;Fp)⊗p) ⊆ H∗(Σp o Σp;Fp).

Under corGH : H∗(ΣpoΣp;Fp)→ H∗(Σp2 ;Fp), there does not exist an admissible sequence (ε1, s1, ε2, s2)
such that s1 ≥ 1 and ε2 = s2 = 0. That is to say

corGH

(
H2s(p−1)−ε(Σp, H

0(Σp;Fp)⊗p)
)
∼=
{
H0(Σp2 ;Fp) ∼= Fp if s = ε = 0
0 Otherwise

and this can be modeled by V(0,0) again. For⊕
t2≥1,ε2=0,1

HomΣp

(
W∗,

(
DI(t2,ε2)

)⊗p)
,

we divide this into 2 cases. For the first case, fix a t2 ≥ 1 and let ε2 = 1, then 2t2(p− 1)− ε2 − 1

is even. By Proposition 4.6, the spectral sequence for HomΣp

(
W∗,

(
DI(t2,1)

)⊗p)
is isomorphic to⊕

t1≥0,ε1=0,1

UĪ(t1,ε1,t2,1),

where Ī(t1, ε1, t2, 1) =
(
p(2t2(p− 1)− 1− p) + 2t1(p− 1)− ε1, p(2t2(p− 1)− 2) + 2t1(p− 1)− ε1, r̄

)
with

r̄ =

{
p if t1 = 0
p(p− 1) + 1 if t1 ≥ 1

Under corGH , we have that for an admissible sequence (ε1, s1, 1, s2), it must satisfy

ps2 − 1 ≥ s1 >
2s2(p− 1)− 1

2
.

In this case, t2 = s2 and t1 = s1− s2(p− 1) + 1, so for fixed t2, we have 1 ≤ t1 ≤ t2. In other words,
the summand

H2t1(p−1)−ε1(Σp, H
2t2(p−1)−1(Σp;Fp)⊗p)

under corGH will be mapped to an isomorphic copy in H∗(Σp2 ;Fp) for 1 ≤ t1 ≤ t2. Next, the rest

of components in H∗(Σp o Σp;Fp) that are of the trivial images under corGH , i.e., when t1 ≥ t2 + 1,
indicates that the components in H∗(Σp oΣp; (Mp)

⊗p) which would be killed by the long differentials,
i.e., d(p−1)(p−1)+1 and dp(p−1)+1 in Proposition 5.12, in the wreath product spectral sequence shall

be killed by the differential coming from the partition (p2) in the spectral sequence of Bp2 by Lemma
5.13. Hence, we can build a model to conclude all these conditions with a fix t2 and ε2 = 1:

UÎ(0,0,t2,1) ⊕
⊕

1≤t1≤t2,ε1=0,1

UÎ((t1,ε1,t2,1)) ⊕
⊕

t1≥t2+1,ε1=0,1

UÎ((t1,ε1,t2,1)),

where

(5.15) Î(t1, ε1, t2, 1) =

{
Ī(t1, ε1, t2, 1) if 0 ≤ t1 ≤ t2
(a, a+ p2 − 1, p) if t1 ≥ t2 + 1

with a := p(2t2(p− 1)− 1− p)− p + 2t1(p− 1)− ε1. Note that the reason we separate UÎ(0,0,t2,1)

out is due to the special black differential dr in Figure 4.
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For the second case, fix a t2 ≥ 1 and let ε2 = 0, then 2t2(p−1)−ε2−1 is odd. It is similar to the

even case. By Proposition 4.8, the spectral sequence for HomΣp

(
W∗,

(
UI(t2,0)

)⊗p)
is isomorphic to⊕

t1≥0,ε1=0,1

UĪ(t1,ε1,t2,0),

where Ī(t1, ε1, t2, 0) =
(
p(2t2(p−1)−p)+2t1(p−1)+p−1−ε1, p(2t2(p−1)−1)+2t1(p−1)+p−1−ε1, r̄

)
with

r̄ =

{
(p− ε1)(p− 1) + 1 if t1 = 0
p(p− 1) + 1 if t1 ≥ 1

Hence, the new model takes the form:

UÎ(0,1,t2,0) ⊕ UÎ(0,0,t2,0) ⊕
⊕

1≤t1≤t2,ε1=0,1

UÎ((t1,ε1,t2,0)) ⊕
⊕

t1≥t2+1,ε1=0,1

UÎ((t1,ε1,t2,0)),

where

(5.16) Î(t1, ε1, t2, 0) =

{
Ī(t1, ε1, t2, 0) if 0 ≤ t1 ≤ t2
(b, b+ p2 − 1, p) if t1 ≥ t2 + 1

with b := p(2t2(p− 1)− p)− p+ (2t1 + 1)(p− 1)− ε1. Note that the reason we separate UÎ(0,1,t2,0)

and UÎ(0,0,t2,0) out is due to the first two black differentials d(p−1)(r−1)+1 and dp(r−1)+1 in Figure

5.
�

5.6. A model for the partition (2p2). The whole k = 2p2 argument is similar to the k = p2

case, where we use a Σp o Σ2p-equivariant maps out Conf2p2 → (Conf2p)
p instead.

In the spectral sequence of k = 2p2, we care about the partitions (2p2), and for l = 0, 1, . . . , p,

(5.17) µl :=
(
2p, 2p, . . . , 2p︸ ︷︷ ︸

p− l

, 2, 2, . . . , 2︸ ︷︷ ︸
lp

)
.

Let

D(2p) := S(p−2,2p−2) ⊕ S(p−1,2p−1) ⊕
⊕

t≥1,ε=0,1

DJ(t,ε),

such that the spectral sequence for D(2p), i.e., U(2p), provides a model for the partition (2p) by
Proposition 5.7. Following the similar argument, it suffices to look at

(5.18) S := HomΣp(W∗, (D(2p))⊗p),

which is isomorphic to

HomΣp

(
W∗,

(
S(p−2,2p−2) ⊕ S(p−1,2p−1)

)⊗p)⊕ ⊕
t2≥1,ε2=0,1

HomΣp

(
W∗,

(
DJ(t2,ε2)

)⊗p)⊕ S′,
where S′ is the complement and its summand takes the form:

HomΣp

(
W∗,

⊕
a1+a2+b1+···=p

Ind
Σp
Σa1×Σa2×Σb1×...

S⊗a1(p−2,2p−2) ⊗ S
⊗a2
(p−1,2p−1) ⊗D

⊗b1
J(t1,ε1) ⊗ . . .

)
.

Again, the corresponding spectral sequence for S′ is isomorphic to the tensor product of spectral
sequences of the form from Lemma 4.9 with Ep+1 = · · · = E∞ = 0. We use the symbol E∗,∗(S′) to
denote its spectral sequence.
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Lemma 5.19. In the spectral sequence for the braid group B2p2(R2), the differential coming out of
the top row

ds,2p
2−1

p : Es,2p
2−1

p
∼= Hs(Σ2p2 ;M2p2)→ Es+p,p(2p−1)

p

is injective and its image is a summand in the H>0(Σp,−) part of µ0 for s ≥ 1.

Proof. It is similar to Lemma 5.13 where we look at the surjective corestriction map

corGH : H∗(Σp o Σp;Fsgnp )→ H∗(Σp2 ;Fsgnp ),

with H = Σp o Σp and G = Σp2 . �

The previous lemma indicates that to have a model for the partition (2p2), we need to look at

HomΣp

(
W∗,

(
S(p−2,2p−2) ⊕ S(p−12p−1)

)⊗p)
and ⊕

t≥1,ε=0,1

HomΣp

(
W∗,

(
DJ(t,ε)

)⊗p)
under corGH where H = Σp oΣp and G = Σp2 over Fsgnp . We keep the S′ intact because S′ are these

H0(Σp,−) parts which shall always be mapped to its isomorphic copy in H∗(Σp2 ,Fsgnp ).

Lemma 5.20. In the spectral sequence for the braid group B2p2(R2),

U(2p2) := V(
p(p−2),p(2p−2)

) ⊕ V(
(p−1)(p−1),p(2p−2)+1

)
⊕ V(

p−2+p(p−1),p−2+p(2p−1)
) ⊕ V(

p−1+p(p−1),p−1+p(2p−1)
)

⊕
⊕

t2≥1,ε2=0,1
t1≥0,ε1=0,1

UĴ(t1,ε1,t2,ε2) ⊕ S
′

provides a model for S2p2 = {(2p2), µ0, µ1, . . . , µp}, where Ĵ is from 5.21 and 5.22, and E∗,∗(S′) is
from 5.18.

Proof. Since HomΣp

(
W∗,

(
S(p−2,2p−2) ⊕ S(p−12p−1)

)⊗p)
is isomorphic to

HomΣp(W∗, (S(p−2,2p−2))
⊗p)⊕HomΣp(W∗, (S(p−1,2p−1))

⊗p)⊕⊕
a+b=p
a,b<p

HomΣp(W∗, Ind
Σp
Σa×Σb

(S(p−2,2p−2))
⊗a ⊗ (S(p−1,2p−1))

⊗b),

we need to look at each summand individually. First, HomΣp(W∗, (S(p−2,2p−2))
⊗p) is isomorphic to

H2s(p−1)−ε(Σp, H
p−2(Σp;Fp[1]⊗p)⊗p) ⊆ H∗(Σp o Σp;Fsgnp ).

Under corGH : H∗(Σp o Σp;Fsgnp ) → H∗(Σp2 ;Fsgnp ), there does not exist an admissible sequence
(ε1, s1, ε2, s2) such that ε2 = 1 and s2 = 1/2. The only term under the corestriction with non-
trivial image is

H0(Σp, H
p−2(Σp;Fp[1]⊗p)⊗p) ⊆ H∗(Σp o Σp;Fsgnp ),
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and this can be modeled by V(
p(p−2),p(2p−2)

). Similarly, for HomΣp(W∗, (S(p−1,2p−1))
⊗p), under

corGH , there exists a length 2 admissible set (ε1, s1, ε2, s2) such that ε1 = 0 or 1, s1 = 5/2, ε2 = 0
and s2 = 1/2. The terms under the corestriction with non-trivial image are

Hp−1−δ(Σp, H
p−1(Σp;Fp[1]⊗p)⊗p) ⊆ H∗(Σp o Σp;Fsgnp ).

Hence, this can be modeled by V(
p−2+p(p−1),p−2+p(2p−1)

) ⊕ V(
p−1+p(p−1),p−1+p(2p−1)

). Since the

spectral sequence for HomΣp(W∗, Ind
Σp
Σa×Σb

(S(p−2,2p−2))
⊗a ⊗ (S(p−1,2p−1))

⊗b) is isomorphic to the
spectral sequence for the filtered complexes

HomΣa(W a
∗ , (S(p−2,2p−2))

⊗a)⊗HomΣb(W
b
∗ , (S(p−1,2p−1))

⊗b).

Since the E2 of the second spectral sequence shall be trivial unless b = 1, i.e., a = p − 1, this
is saying that the spectral sequence can be modeled by V(

(p−1)(p−2),(p−1)(2p−2)
) ⊗ V(

p−1,2p−1
) ∼=

V(
(p−1)(p−1),p(2p−2)+1

).
For ⊕

t2≥1,ε2=0,1

HomΣp(W∗, (DJ(t2,ε2))
⊗p),

similar to the k = p2 case, we divide it into 2 cases. For the first case, fix a t2 ≥ 1 and let ε2 = 1,
then (2t2 + 1)(p− 1)− ε2 + p− 1 is odd. Then, by Proposition 4.8, we have

HomΣp

(
W∗,

(
UJ(t2,1)

)⊗p) ∼= ⊕
t1≥0,ε1=0,1

UJ̄(t1,ε1,t2,1),

where

J̄(t1, ε1, t2, 1) =
(
p((2t2+1)(p−1)−p−1)+2t1(p−1)+p−1−ε1, p((2t2+1)(p−1)+p−2)+2t1(p−1)+p−1−ε1, r̄

)
with

r̄ =

{
(p− ε1)(p− 1) + 1 if t1 = 0
p(p− 1) + 1 if t1 ≥ 1

Under corGH , we have that for an admissible sequence (ε1, s1, 1, s2), it must satisfy

ps2 − 1 ≥ s1 >
2s2(p− 1)− 1

2
.

In this case, t2 = 2s2−1
2 and t1 = s1 − s2(p− 1) + 1

2 , so for fixed t2, it results 1 ≤ t1 ≤ t2. In other
words, the summand

H2t1(p−1)+p−1−ε1(Σp, H
(2t2+1)(p−1)−1(Σp;Fp[1]⊗p)⊗p)

under corGH will be mapped to an isomorphic copy in H∗(Σp2 ;Fsgnp ) for 1 ≤ t1 ≤ t2. Next, the rest of

components in H∗(Σp oΣp;Fsgnp ) that are of the trivial images under corGH , i.e., t1 ≥ t2 +1, indicates

that the components in H∗(Σp o Σp; (M2p)
⊗p) which would be killed by the long differentials, i.e.,

d(p−1)(p−1)+1 and d(p(p−1)+1 from Proposition 5.12, in the wreath product of spectral sequences

shall be killed by the differential coming from the partition (2p2) in the spectral sequence of B2p2

by Lemma 5.19. Hence, we can build a model to conclude all these conditions with fixed t2 and
ε2 = 1:

UĴ(0,1,t2,1) ⊕ UĴ(0,0,t2,1) ⊕
⊕

1≤t1≤t2,ε1=0,1

UĴ((t1,ε1,t2,1)) ⊕
⊕

t1≥t2+1,ε1=0,1

UĴ((t1,ε1,t2,1)),
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where

(5.21) Ĵ(t1, ε1, t2, 1) =

{
J̄(t1, ε1, t2, 1) if 0 ≤ t1 ≤ t2
(a, a+ 2p2 − 1, p) if t1 ≥ t2 + 1

and a := p((2t2 + 1)(p− 1)− p− 1)− p+ (2t1 + 1)(p− 1)− ε1. For the second case, fix a t2 ≥ 1 and
let ε2 = 0, then (2t2 + 1)(p− 1) + p− 1 is even. By Proposition 4.6, we have

HomΣp

(
W∗,

(
UJ(t2,0)

)⊗p) ∼= ⊕
t1≥0,ε1=0,1

UJ̄(t1,ε1,t2,0),

where

J̄(t1, ε1, t2, 0) =
(
p((2t2 +1)(p−1)−p)+2t1(p−1)−ε1, p((2t2 +1)(p−1)+p−1)+2t1(p−1)−ε1, r̄

)
with

r̄ =

{
p if t1 = 0
p(p− 1) + 1 if t1 ≥ 1

Under corGH , we have that for an admissible sequence (ε1, s1, 1, s2), it must satisfy

ps2 ≥ s1 > s2(p− 1).

In this case, t2 = 2s2−1
2 and t1 = s1 − s2(p− 1) + 1

2 , so for fixed t2, it results that 1 ≤ t1 ≤ t2 + 1.
Hence, the new model takes the form:

UĴ(0,0,t2,0) ⊕
⊕

1≤t1≤t2+1,ε1=0,1

UĴ((t1,ε1,t2,0)) ⊕
⊕

t1≥t2+2,ε1=0,1

UĴ((t1,ε1,t2,0)),

where

(5.22) Ĵ(t1, ε1, t2, 0) =

{
J̄(t1, ε1, t2, 0) if 0 ≤ t1 ≤ t2 + 1
(b, b+ 2p2 − 1, p) if t1 ≥ t2 + 2

and b := p((2t2 + 1)(p− 1) + p− 1)− p+ 2t1(p− 1)− ε1. �

5.7. Cohomology of the braid group and Kjaer’s theorem. Since we have already con-
structed the models for various partition, we can define the following spectral sequences. Let

D(k) =
⊕

µ∈Π̂CNT
k

⊗
i≥0

U(pi)⊗ai ⊗ U(2pi)⊗bi .

and its invariant

D̂(k) =
⊕

µ∈Π̂CNT
k

⊗
i≥0

H0
(

Σai ,
(
U(pi)

)⊗ai)⊗H0
(

Σbi ,
(
U(2pi)

)⊗bi)
,

where E∞(D̂(k)) is the invariant of E∞(D(k)) as well. Similar to Lemma 5.4, by summing over all

partitions in Π̂CNT
k , we have the composition of spectral sequences

f̄ ◦ ḡ : C(k)→ D(k)→ C(k),

which is an isomorphism at E2.

Theorem 5.23. Let k ≤ 2p2, then f̄ |D̂(k) : D̂(k) → C(k) is an isomorphism of spectral sequences

at E∞.
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Proof. Fix a µ ∈ ΠCNT
k , by decomposing U(pi) and U(2pi) using universal spectral sequences V ’s

and U ’s and combing terms, we can rewrite D(k) =
⊕

µ∈Π̂CNT
k

Vµ ⊕ Uµ. Note that at the E2 page,

by subjectivity, we have

E2(D(k)) ∼=
⊕

µ∈Π̂CNT
k

E2(Vµ)⊕ E2(Uµ)
f̄2:=f̄−−−−→ E2(C(k)) ∼=

⊕
µ∈Π̂CNT

k

f̄2(E2(Vµ))⊕ f̄2(E2(Uµ)).

By Lemma 5.1, we have the following commutative diagram at the Er page for r ≥ 2

f̄r(E
s,t
r (Uµ)) Es,tr (Uµ) f̄r(E

s,t
r (Uµ))

f̄r(E
s+r,t−r+1
r (Uµ)) Es+r,t−r+1

r (Uµ) f̄r(E
s+r,t−r+1
r (Uµ))

ḡr

dr

f̄r

dr(Uµ) dr

ḡr f̄r

If dr(Uµ) = 0, then dr = 0. Besides, if dr(Uµ) is an isomorphism, then dr is also an isomorphism.
As for Vµ, we have the following commutative diagram

0 0

Es,tr (Vµ) f̄r(E
s,t
r (Vµ))

0 0

f̄r

Since this holds for all r ≥ 2, we have f̄∞(Es,t∞ (Vµ)) ∼= f̄2(Es,t2 (Vµ)). Combing these two arguments
for Vµ and Uµ, we get that E∞(C(k)) ∼=

⊕
µ f̄2(E2(Vµ)). Besides, f̄2 is a composition of an

isomorphism and a co-restriction map, so E∞(D̂(k)), the invariant of E∞(D(k)), is isomorphic to

f̄2(E∞(D(k))). Last, we have
⊕

µ f̄2(E2(Vµ)) ∼=
⊕

µ f̄2(E∞(Vµ)) ∼= f̄2(E∞(D(k))) ∼= E∞(D̂(k)).
�

Corollary 5.24. Let l ≥ 1 such that 2lp < p2 and ε = 0, 1, then

H∗(Bp2(R2);Fp) ∼=

 Fp if ∗ = 0, 1, (2p− 2)l, (2p− 2)l + 2
Fp ⊕ Fp if ∗ = (2p− 2)l + 1
0 otherwise

Corollary 5.25. Let l = 1, 2, . . . , p− 1 and ε = 0, 1, then

H∗(B2p2(R2);Fp) ∼=


Fp if ∗ = 0, 1, (2p− 2)l, (2p− 2)l + 2
Fp ⊕ Fp if ∗ = (2p− 2)l + 1
Fp if ∗ = 2p2 − 2p+ ε, 2p2 − 2 + ε
0 otherwise

Theorem 5.26. Through degree 2p2,
⊕

k>0H
∗(Bk(R2);Fp) is a free divided power algebra on

generators of bidegree
|xi| = (2pi − 2, 2pi), |yi| = (2pi − 1, 2pi)

for i = 1, 2, where the first degree is the cohomological degree and the second degree is the number
of points in configuration spaces.

Theorem 5.27. Over Fp and R2, the dimension of Hs(Σp2 ,Mp2) and the dimension of Hs(Σ2p2 ,M2p2).
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