LMath 7243-Machine Learning and Statistical Learning Theory — He Wang

Section 12 Recurrent Neural Network

e Recurrent Neural Network

* Computational Graph and backpropagation
e Applications of RNN

* Long Short Term Memory (LSTM)

» Types of Artificial Neural Networks

Artificial neural networks provide a powerful set of classifiers
since for any input shape dim(X) and any output shape dim(Y)
we have many deep architectures that may allows us to fit the
network to the problem at hand.

The challenge of course is filling in the middle for each of these
cases, while taking into consideration training time, data
composition and computational power. The appeal of neural
networks is that it's very easy to set a problem up computational
power alone will solve it.

Sometimes, this is the case as with the MNIST data set and the
perceptron networks. But often a clever solution requires more
complex architecture than just densely connected layers.

Modern artificial neural networks can be sorted into three broad categories
based on their structure:

Feed forward networks: A trained feed forward network acts like a function,
taking in a set of data at one end and returning a new set of data at the other.
Feed forward networks are the most common type, they take an input,
process it through a series of operations, and return some output.

Feed forward networks can be labeling or regression, but they can also be
generative networks (returning more data) or unsupervised, returning a
dimensional reduction, clustering or other description of the data. However, once
trained the weights 6 are fixed for all prediction.

Recurrent neural networks: Trained recurrent networks are stateful. That is, RNN's
take data and return an output but the remember the last M pieces of data sent
through in an internal state. (We will study RNN in this lecture.)

Symmetrically Connected Networks: A trained SCN is a densely connected
network with an update rule. For any initial value of the nodes, the function
“updates”, moving at each step towards a “lower energy state”. The result is
achieved when updating no longer changes the state.

Zoo of common architectures: https://www.asimovinstitute.org/author/fjodorvanveen/

https://www.asimovinstitute.org/author/fjodorvanveen/

» Recurrent Neural Networks (RNN)

In RNN, each of the neurons in hidden layers receives an input with a specific
delay in time. It allow previous outputs to be used as inputs while having
hidden states. (RNN usually has a short-term memory. Long-term memory is
also used in some research problems.)

Input Hidden Ouput
layer layer layer

A RNN can take in a series of inputs and produce a series of outputs, as in predicting
time series data like stock prices or traffic across a network.

Recurrent Neural Networks: Process Sequences (for sequence data.)

one to one

Vanilla
Neural
Networks

one to many many to one

Image Sentiment
Captioning Classification
(N}
=
} Sentiment analysis
so far has been
fantastic!

A baseball player
throws a ball

POSITIVE

many to many

Machine
Translation

many to many

Video
classification
on frame level

Word prediction:

Seed sequence of words Predicted word

Step 1: { the man is walking]m

Seed sequence of words

Predicted word

Step 2: the ‘[man is | walking down]“

Seed sequence of words Predicted word

Step 3: the man [] is walking down the]

Seed saquence of words

Predicted word

Step 4: {he ; man ' is [vwaAlk'f.ng dbwn 11 tﬁe sireei]-

Machine Translation:

Google Translate

Hp Text M Images B Documents @ Websites

English - Detected English Spanish French v Ping Chinese (Simplified) English Spanish v
Mathematics is the foundation of machine learning X HEENRFEINATE SERIER Y
and artificial intelligence ®
Shuxué shi jigi xuéxi hé réngdng zhinéng de jicht
Look up details Look up details

LD} 7715000 < 0 65 <

Sequential Processing of Non-Sequence Data.
1. Classify images by taking a series of “glimpses”

2. Generate images one piece at a time.

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

A recurrent neural network has state variables that can be changed at runtime and that
persist between prediction runs.

For example, in text prediction an RNN may predict one word at a time while
"remembering" its previous predictions.

A recurrent node is often represented in “wrapped” form. RNN’s are used extensively
in time series prediction and natural language processing.

Usually want to predict

a vector at some time tw,
steps
I’10 h1
State variables W
i A
hy
w

Sequence of vectors X by applying a recurrence formula at every time step:

RNN new hidden state

hy = fuw(he-q, ft)

fw : Function with parameters /.

X, : input vector at some time step.

RNN output

Yt = Gwy, (he)

gw : Function with parameters Wp,,,.

\4
\4
A4

<l

Notice: the same function and the same set
of parameters are used at every time step.

\

\

\d

:
Sy

Vanilla Recurrent Neural Networks
State space equations in feedback dynamical systems.

The state consists of a single “hidden” vector h:

he = fw(he—q, xt)

|

h, hy = tanh(Wpphe_q + Wypxe)

Ve = Wpyhy Or y; = softmax (Wyyh;)

RNN: Computational Graph

0 W 1 W 2
X1 x2

0 W 1 W 2
/ 1 T
W X, X,

RNN: Computational Graph: Many to Many

Y4 Ys Y3 Yr

A A A A

h0 —fW :h1 VfW >h2—>fW :hs—b-..—>h_l_
/ A A A 4 A
W X % X3

Loss function:

RNN: Computational Graph: Many to One

y
A
—_—] hT
RNN: Computational Graph: One to Many
Y, Y3 Y3 Yt
A A | A
h0 :fW :h1 :fW =h2 fW :h3—>---—>hT

Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output

sequence from single input vector
Many to one: Encode input

sequence in a single vector

y

b e g b
N Ny <

\:
X f—p(g "
NOX s
N
w X —bi-"
w
-

—

A basic example: Character-level Language Model

Vocabulary: {h,e,l,0}

one-hot vector:

hi = tanh(Whphi—1 + Wepat)

Example training sequence: “hello”

target chars:

output layer

hidden layer

input layer

input chars:

ine"

1.0
2.2
-3.0
4.1

|

0.3
-0.1
0.9

]
0
0
0

(‘h"

Y

|3

=200
O - &)[R S

Y

W_hh

At test-time sample characters one at a time, feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

1 ei\

t

.03

13
00
84
1
1.0
2.2
-3.0
4.1

|

0.3
-0.1

A

“I”

f

.25
.20
.05
.50

t

0.5
0.3
-1.0
1:2

0.9

1
0
0
0
lih"

Y

[

“I” “0”
t t
1M A1
Sl .02
.68 .08
.03 .79
t 4
0.1 0.2
0.5 -1.5
1.9 -0.1
-1.1 22
| T
0.1 |w hn! -0-3
> 05—+ 0.9
0.3 0.7
1 TW_xh
0 0
0 0
1 1
0 0

\f

Backpropagation through time

To train an RNN, we unroll it to the the number of steps we require to match out input
data shape and then perform standard autodiff backpropagation with input vector and
output vector.

Forward through entire sequence to compute loss, then backward through entire
sequence to compute gradient.

/[

.

R T I R N R N N R I N I R e N e)
O T I R R N N I I N I I e)
NN N N RERTRTRTN

Al

Truncated Backpropagation through time

| Loss |

Z7TTIN
Run forward and backward through chunks of the

LI T S N I N) sequence instead of whole sequence

Carry hidden states forward in time
LR N N A N M 2 I i M M) forever, but only backpropagate for some
NEREREREREREIR N RN R RIS smaller number of steps

;< ” Loss |

/1IN
N AN A . N
+ ¢+ ¢+t ¢t ¢t ¢t ¢+ ¢t ¢+ ¢t + |t + %t t+
iIIiIIIIIiIIIiIIijI
- B LB BN S EEEN N S g S L]

AV\
y

Code for RNN:

1. From Scratch: Minimal character-level language model with a Vanilla
Recurrent Neural Network, in Python/numpy. (112 lines of Python)

https://gist.github.com/karpathy/d4dee566867f8291f086

2. By tensorflow and keras

https://www.tensorflow.org/guide/keras/rnn

"\ model = keras.Sequential()
model.add(layers.Embedding(input_dim=1000, output_dim=64))
model.add(layers.LSTM(128))

model.add(layers.SimpleRNN(128))

model.add(layers.Dense(10))

model.summary()

https://gist.github.com/karpathy/d4dee566867f8291f086
https://www.tensorflow.org/guide/keras/rnn

Sentiment Classification Example

That was a great movie
5 8 3 120 35
E[5] E[8] E[3] E[120] | E[35]

Input

TextVectorization

Embedding

Bidirectional

Dense

Classification

POSITIVE va

TensorFlow 1

MATLAB
4

model = tf.keras.Sequential([

encoder,

tf.keras.layers.Embedding(
input_dim=len(encoder.get_vocabulary()),
output_dim=64,
Use masking to handle the variable sequence lengths
mask_zero=True),

tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),

tf.keras.layers.Dense(64, activation='relu’),

tf.keras.layers.Dense(1)

1)

inputSize = 1;

embeddingDimension = 50;
numHiddenUnits = 64;

numWords = enc.NumWords;
numClasses = numel(categories(YTrain));

layers = [... sequencelnputlLayer(inputSize)
wordEmbeddinglLayer(embeddingDimension,numWords)
bilstmLayer(numHiddenUnits,'OutputMode','last’)
fullyConnectedLayer(numClasses)

softmaxLayer

classificationLayer]

Application: Text generation:

The Sonnets

By William Shakespeare

From fairest creatures we desire increase,
That thereby beauty’s rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer "This fair child of mine
Shall sum my count, and make my old excuse,’
Proving his beauty by succession thine!

This were to be new made when thou art old,

And see thy blood warm when thou feel'st it cold.

at first:

tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

train more j

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more l

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

train more l

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Application: Generated C code

static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80);
if (state)
cmd = (int)(int_state " (in_8(&ch->ch flags) & Cmd) ? 2 : 1);
else
seq = 1;

for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
((count & 0x00000000fffffff8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec_handle, 0x20000000);
pipe set bytes(i, 0);
}
/* Free our user pages pointer to place camera if all dash */
subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);
/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq puts(s, "policy ");

Application: book/paper generation:
The Stacks Project: open source algebraic geometry textbook (7531 pages now.)

https://stacks.math.columbia.edu/

The Stacks pFOjECt bibliography blog Q keywords or a tag
Table of contents

Table of contents

numbers
v~ Expand all
»» Collapse all
v Part 1: Preliminaries « Part 1: Preliminaries
Chapter 1: Introduction pdf > = Part 2: Schemes
« Part 3: Topics in Scheme Theory
Chapter 2: Conventions pdf > « Part 4: Algebraic Spaces
Chapter 3: Set Theory pdf > « Part 5: Topics in Geometry
. « Part 6: Deformation Theory
Chapter 4: Categories pdf >

« Part 7: Algebraic Stacks
Chapter 5: Topology pdf > « Part 8: Topics in Moduli Theory
« Part 9: Miscellany

Chapter 6: Sheaves on Spaces pdf >
Chapter 7: Sites and Sheaves pdf > Download the book 15
Chapter 8: Stacks pdf >
Chapter 9: Fields pdf >
Chapter 10: Commutative Algebra pdf >
Chapter 11: Brauer groups pdf >
Chapter 12: Homological Algebra pdf >
Chapter 13: Derived Categories pdf >

Chapter 14: Simplicial Methods pdf >

https://stacks.math.columbia.edu/

RNN generated algebraic geometry:

Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Os, = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on X4 we

have
Ox(F) = {morphy xo (G.F)}
where G defines an isomorphism F — F of O-modules. O

Lemma 0.2. This s an inleger Z is injective.
Proof. See Spaces, Lemma 77, O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X' be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which s equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: X=2Y a4YaYa2Y xxY =X
be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

Randomly generated mathematics research papers (in 1 second!)

https://thatsmathematics.com/mathgen/

LINES OVER ANTI-GROTHENDIECK LINES
HE WANG

AssTrACT. Let ||7|| < q"”. It was Galileo who first asked whether f-essentially one-to-one, re-
versible, right-totally countable equations can be extended. We show that y is not isomorphic to
. This could shed important light on a conjecture of Atiyah. It is well known that every uni-
versally p-adic, embedded, embedded domain is left-algebraically meromorphic and continuously
left-irreducible.

1. INTRODUCTION

Recent interest in quasi-tangential graphs has centered on extending separable hulls. It was
Fermat who first asked whether essentially Sylvester primes can be extended. This could shed
important light on a conjecture of Banach.

Recent developments in constructive mechanics [16] have raised the question of whether

2
Az, (7 =) ~ [ROV - o0, ..., —i).

§'=1

In future work, we plan to address questions of uniqueness as well as countability. Next, in [16], the
authors constructed Kronecker, contra-arithmetic, parabolic scalars. Now the goal of the present
article is to construct associative morphisms. In [16], the authors studied isometric arrows. V.
Markov [13] improved upon the results of J. Zhao by deriving globally left-Einstein, convex planes.

In [20], the main result was the classification of essentially Brahmagupta, discretely pseudo-
Artinian, co-negative topoi. In [13], the authors address the integrability of Gaussian monoids
under the additional assumption that £€) ¢ I'. It has long been known that every continuously
Euclid modulus is quasi-Poincaré [16]. Now here, uniqueness is clearly a concern. So it is well
known that 2° = n. Here, invertibility is clearly a concern.

Is it possible to construct pairwise orthogonal isometries? It is not yet known whether there
exists a quasi-Jordan hull, although [20] does address the issue of degeneracy. The goal of the
present paper is to characterize functors. It is essential to consider that O” may be conditionally
trivial. Here, minimality is trivially a concern.

SPLITTING METHODS IN FORMAL GALOIS THEORY

HE WANG

ABSTRACT. Assume 8 = O. Recently, there has been much interest in
the classification of irreducible, right-algebraically geometric, globally
right-regular morphisms. We show that I' = V2. It would be interesting
to apply the techniques of [15] to Fourier-Gadel functions. Here, locality
is clearly a concern.

1. INTRODUCTION

Recently, there has been much interest in the construction of ideals. Every
student is aware that there exists a minimal and nonnegative Grassmann,
ultra-almost everywhere continuous, super-Brouwer plane. Therefore re-
cent interest in Grassmann, independent monoids has centered on extending
classes. Hence in [15], the authors constructed rings. It would be interest-
ing to apply the techniques of [26] to elements. It is not yet known whether
there exists a differentiable and canonically separable class, although [10]
does address the issue of existence. Thus K. Laplace [14] improved upon
the results of U. Lobachevsky by constructing elements. Recent interest in
lines has centered on constructing Kovalevskaya, standard factors. Every
student is aware that y # Z(w). On the other hand, it was Hippocrates
Artin who first asked whether dependent, Grassmann-Eisenstein equations
can be computed.

In [23], the authors extended ultra-combinatorially anti-reversible ele-
ments. In [26], the authors address the compactness of right-dependent
polytopes under the additional assumption that every right-Clifford category
is super-Artinian, conditionally associative, sub-Euclid and semi-compactly
reversible. This could shed important light on a conjecture of Wiles.

It is well known that ¢ C «'. In this setting, the ability to examine negative
subgroups is essential. Hence unfortunately, we cannot assume that © is
not greater than ®'. In [18], the authors examined onto equations. In this
setting. the ability to characterize semi-tangential functors is essential. In

https://thatsmathematics.com/mathgen/

Remarks on RNN

RNN Advantages:

e Can process any length input

 Computation for step t can (in theory) use information from many steps back
* Model size doesn’t increase for longer input

* Same weights applied on every timestep, so there is symmetry in how inputs

are processed.

RNN Disadvantages:

* Recurrent computation is slow

* |n practice, difficult to access information from many steps back

Application: Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

max_pool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000

__softmax

test image

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool
conv-512

conv-512
maxpool

~ FC-4096
FC-4096

\"

Wih

T

x0
<STA
RT>

<QTARTS

test image

before:
h = tanh(Wxh * x + Whh * h)

NOW.
h = tanh(Wxh * x + Whh * h + Wih * v)

image

| -

_FC-4096

conv-64
conv-64
maxpool
conv-128

conv-128
maxpool

conv-256
conv-256
maxpool

conv-512

conv-512

maxpool

conv-512
conv-512
maxpool

FC-4096

test image

\ sample

<END> token

yo y1 y2
hO —>{ hi h2

=> finish.

T

T

T

x0
<STA
RT>

straw

hat

<START>

Visual Question Answering

4096 output units from last hidden layer 1024
(VGGNet, Normalized)

y ~‘~\l :-\
5 R ~ _>
:_‘D :f_~ D e =

Fully-Connected

1024 1000 1000

Convolution Layer Fully-Connected MLP
Pooling Layer + Non-Linearity Pooling Layer

Convolution Layer
+ Non-Linearity

> “2”
2X2X512 LSTM

Fully-Connected

“How many horses are in this image?”

1024

Point-wise v Connected Softmax
multiplication

Agrawal et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2015

Image Captioning: Example Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

https://github.com/karpathy/neuraltalk?2

https://github.com/karpathy/neuraltalk2

Image Captioning: Failure Cases

A bird is perched on
~—~ atree branch

A woman is
in her hand

A manin a
baseball uniform
throwing a ball

A woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

https://github.com/karpathy/neuraltalk?

https://github.com/karpathy/neuraltalk2

More Applications:

1
2
3
4.
5.
6
7
8
9.

Picture Generation

Music Generation

Tweet sentiment classification

Machine Translation

Trajectory Prediction for Self-Driving Cars
Environmental Modeling

Weather prediction

Air quality prediction (lab4)

Stock prediction

10. Visual Language Navigation:
11. Visual Dialog: Conversations about images
12. ...

Recurrent networks are designed to predict not just one, but a whole series of events
while incorporating their previous predictions into future ones. They can analyze time
series data like stock prices, network trac, or team performance and produce an
arbitrary amount of new data. RNN's can work locally on large sequences, and so can
take in a much wider variety of data.

In addition, being stateful, they can interact with humans: You can ask them to predict
the 10 most likely next words in a sentence (or notes in a song) and have a human pick
the best one over and over. By training the network on different genres, new works in
old styles can be co-composed.

e human?

Generative Pre-trained Transformer (GPT)

100,000,000,000,000

GPT is a multimodal large language model created by OpenAl.

https://openai.com/research/gpt-4
https://arxiv.org/pdf/2303.08774.pdf

—

(&
G S‘.'.'ll(.:_) P(\ C »
a . . Gshard /
Conservative estimates " e

place the cost of one
training run of GPT-3 o
at $4.6 million. ‘

& 100b
(U]
-
@
-
o
© T-NLG
a . l 17b
nviDia *
MegatronlM
8.3b
o 10b v
L
6 /
/
o, /
- w /
E OpenAl //
S GPT2 Grover-Mega
Z 1.5b 1.5b
Ai2 * . A
1b Transformer 0 Ao
: 0
i Google A ELMo = XM i
BERT-large 465M par.pNN 665m ~ ROBERTa
340m 330m g 355m
e) ° o
Ai2 OpenAl g XLNET -
1
ELMo ot 340M oy HIBERT
S 110m .
SAm D s 66m
01b & !

ary-18

.FigL-Jre 1 Exponéhiial gfth of -nYL‘lmbervc')fpard-n')eterus; in DL models

https://openai.com/research/gpt-4
https://arxiv.org/pdf/2303.08774.pdf

1 Technical Problem in Gradient Descent- Backpropagation

Go back to RNN Training:

Standard Vanilla RNN Gradient Flow

Standard Vanilla RNN Forward Function:

b = tanh(Whhht_l -+ th$t)

= tanh ((Whh Whe) (hf;))
D)

Yi
A
4 I
W—>Q—> tanh
> stack >
ht-1 A ht
N J

Vanilla RNN Gradient Flow- Backward Gradient

oh
‘ = tanh’(Whhht_1 + thxt)Whh
Ohy_q
Yt
A
- ™
W<—_>¢ —» tanh
» stack >
h 1= A N,
_ 4
Xt

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”’, IEEE Transactions
on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

Vanilla RNN Gradient Flow-Backpropagation

Ys Y Y3 Y
4 2 @ r
W_—=()z tanh H W—(_)= tanh | W—(_)= tanh \ W—(_)= tanh ‘
' ' , v A
h g < —= stack T > h1 <> stack T P h2 <> stack T > h3 <" stack L — h4
= e
X1 X2 X3 X4
Total Cost: L =Ly + L, + -+ Ly
oL aL, oL, L,
ow ow ow ow
L, dL, dh, dh, dh
ow oh, dh,_, 0h, OW
dh; , , .
= tanh (Whhht—l + thxt)Whh Tanh (Z) = 1 — tanh (Z)

Oh¢_q

Explosion and Vanishing of Gradients

Computing gradient of h; involves many factors of W (and repeated tanh). The main
challenge with RNN's is that training is highly susceptible to gradient explosion and
vanishing, because recurrent nodes lead to highly nonlinear networks.

1. Largest singular value > 1: Exploding gradients

Gradient clipping: Scale gradient if its norm is too big

grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
grad *= (threshold / grad_norm)

2. Largest singular value < 1: Vanishing gradients

Change RNN architecture, e.g., Long Short Term Memory (LSTM), Gated
recurrent units (GRUs)

Long Short Term Memory (LSTM)

Standard Vanilla RNN LSTM
2 o
ht = tanh(Whhht_l + thxt) f _ o W ht_l
o0 o Lt
= tanh (W [h;‘ll) g et
‘ ctc=f0Oc_1+10g
hy = 0 ® tanh(c;)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

» Long Short Term Memory (LSTM). [Hochreiter et al., 1997]

vector from

below (x)
(} o
X sigmoid | —— | |
: =l 7 |w (hH)
h sigmoid | —— | f 0 & Lt
w g tanh

vector from sigmoid | —— | o :
before (h) ct=f0Oc-1+10g

tanh e ht =00 tanh(ct)

4h x 2h 4h 4*h

Gates are a way to optionally let information through. They are composed out of a
sigmoid neural net layer and a pointwise multiplication operation.

f: Forget gate, Whether to erase cell. (forget irrelevant information)

i: Input gate, whether to write to cell. (store relevant information from current input)
g: Gate gate, How much to write to cell.

o: Output gate, How much to reveal cell. (Return a filtered version of the cell state.)

The long term memory ¢; is a vector whose length is the same as the output.

i »O— +—C A
Ct.1 ;]I \t
W*?f:;},ca talnh
R] —
x'

o 11,74 (ht_1>
o Tt
tanh

fOa-1+10g
o ® tanh(c;)

In the diagram, the product and sum are the
component wise product and sum.

We only need to stipulate how to update the long term memory ¢; . We allow the long term memory to
“forget” by making at the first multiplication, and to then store new information in the memory, by
adding on a masked (non-liner) term dependent on the input x; , and the previous output h;_.

e

t1 - B gt
) P
> f

®

t-1

t

C
:£

<

hj—>

Backpropagation from ¢, to ¢;_1 only
elementwise multiplication by f, no

matrix multiply by W.

* The gradient contains the f gate’s vector of activations: allows better control

of gradients values, using suitable parameter updates of the forget gate f.

 Thef,i,g,and o gates better balance of gradient values.

Remarks:

 The LSTM architecture makes it easier for the RNN to preserve information over many
timesteps, e.g. if the f =1 and the i = 0, then the information of that cell is preserved
indefinitely.

* By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix W}, that
preserves info in hidden state.

* LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it does

provide an easier way for the model to learn long-distance dependencies

Uninterrupted gradient flow.

Similar to ResNet.

e

In between: Srivastava et al, “Highway Networks”, ICML DL Workshop 2015

Deep RNN Network:

1. Multilayer RNN:

2. LSTM

i
f

0
9

o
o
o
tanh

=fOc_1+i0@g
hl = 0 ® tanh(c})

Wt [4n x 2n]

1F tf.keras.layers.LSTM(num_units))

time

Gated recurrent units (GRU)

Gated recurrent units (GRU) [Learning phrase representations using RNN
encoder-decoder for statistical machine translation, Cho et al. 2014]

GRU is a simplified version of LSTM.

yIt]
rg= O'(erxt + Wtz -+ br) hit-1] > (] x N _JA_) hit]
S\
= o(Wyxs + Wi he b. rt] 1-
;Zt o(Ty hzhi—1 +0;) 0N o by
hy = tanh(Wypxe + Whp(re © he—1) + bn) | Hj I s I)—|taJnh]
- —

ht:Ztth_1+(1—Zt)@ht (. J

LSTM's are stronger than GRU'’s: https://arxiv.org/abs/1805.0490856

https://arxiv.org/abs/1805.0490856
https://arxiv.org/abs/1805.0490856

Summary:

* RNN is flexible in architectures.

* Vanilla RNNs are simple but don’t work very well.

e Common to use LSTM or GRU: their additive interactions improve gradient flow
o Backward flow of gradients in RNN can explode or vanish.
o Exploding is controlled with gradient clipping.
o Vanishing is controlled with additive interactions

» Better/simpler architectures are a hot topic of current research.

* Better understanding (both theoretical and empirical) is needed.

References:

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu/ (Main resource for this lecture)

* Book: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

https://github.com/ageron/handson-ml2

* MIT Introduction to Deep Learning | 6.5191

https://www.youtube.com/watch?v=5tvmMX8r OM

 Nate Bade’s notes:
https://tipthederiver.github.io/Math-7243-2020/index.html

* Understanding LSTM Networks
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://www.youtube.com/watch?v=5tvmMX8r_OM
http://cs231n.stanford.edu/
https://github.com/ageron/handson-ml2
https://tipthederiver.github.io/Math-7243-2020/index.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Multiple Object Recognition with Visual Attention
Jimmy Ba, Volodymyr Mnih, Koray Kavukcuoglu
https://arxiv.org/abs/1412.7755

DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra

https://arxiv.org/abs/1502.04623

Understanding LSTM Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

DL book RNN chapter
http://www.deeplearningbook.org/contents/rnn.html

https://arxiv.org/abs/1412.7755
https://arxiv.org/abs/1502.04623
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.deeplearningbook.org/contents/rnn.html

