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ABSTRACT

Self-assembled monolayers (SAMs) formed on the adsorption of long-
chain alkanethiols to the surface of gold or alkylsilanes to hydroxylated
surfaces are well-ordered organic surfaces that permit control over the
properties of the interface at the molecular scale. The abililty to present
molecules, peptides, and proteins at the interface make SAMs especially
useful for fundamental studies of protein adsorption and cell adhesion.
Microcontact printing is a simple technique that can pattern the forma-
tion of SAMs in the plane of the monolayer with dimensions on the
micron scale. The convenience and broad application offered by SAMs
and microcontact printing make this combination of techniques useful
for studying a variety of fundamental phenomena in biointerfacial sci-
ence.
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PERSPECTIVES AND OVERVIEW

Man-made surfaces in contact with biological environments are impor-
tant in biology, biotechnology, and medicine. These surfaces occur in
tools and reagents for studies in molecular and cell biology; in sub-
strates for enzyme-linked immunosorbent assay (ELISA), cell culture,
and tissue engineering; in materials for contact lenses, dental
prostheses, and devices for drug delivery; in coatings for catheters,
indwelling sensors, and implant devices; and in materials for chroma-
tography and storage of proteins (50, 65). The first event that usually
occurs on contact of the synthetic material with a medium that contains
dissolved protein is the adsorption of protein to the surface: other re-
sponses, such as the attachment of cells, are secondary and depend
on the nature of the adsorbed layer of protein. Because of its central
importance, the adsorption of protein to man-made surfaces has been
studied extensively. Although much has been learned, there are still no
mechanistic models that rationalize (or predict) the interaction of a
protein with a surface in molecular detail. A broad goal of research in
this area is to understand the interactions of proteins with surfaces
at the level of detail that is now common for characterization of the
interactions of proteins with water, ligands, and other proteins in solu-
tion.

Model systems designed to elucidate these mechanisms must have
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three components: (@) a protein with known high-resolution structure
and properties (e.g. stability, conformational dynamics, and tendency
to aggregate); (b) a structurally well-defined surface with properties
that can be tailored and controlled simply and allows the complex
functionality relevant to biochemistry to be introduced at the surface;
and (c) one or several analytical techniques that can measure adsorption
of protein in situ and in real time. Numerous proteins suitable for these
types of studies are now available. Analytical methodologies appropri-
ate for these studies (e.g. surface plasmon resonance spectroscopy and
fluorescence spectroscopy) are becoming available. However, X-ray
and electron diffraction studies of adsorbed crystalline monolayers are
still the only techniques that can provide information at the molecular
scale, and these techniques are applicable only in special cases. The
absence of methods to prepare well-defined surfaces has been a prob-
lem; for those surfaces that are well defined, such as metals, metal
oxides, and crystals, surface properties cannot be controlled precisely.

Self-assembled monolayers (SAMs)—particularly those formed by
the adsorption of long-chain alkanethiols on gold—are a recently devel-
oped class of organic surfaces that are well suited for studying interac-
tions of surfaces with proteins and cells. The ability to control the
composition and properties of SAMs precisely through synthesis, com-
bined with the simple methods that can pattern their functional groups
in the plane of the monolayer, makes this class of surfaces the best now
available for fundamental mechanistic studies of protein adsorption
and cell adhesion. Here we review the use of two classes of SAMs,
alkanethiolates on gold and alkylsiloxanes on hydroxylated surfaces,
in the study of processes that occur at the interface between a man-
made surface and a biological medium. We do not discuss much of the
excellent work in which other classes of surfaces, such as Langmuir-
Blodgett films, lipid bilayers, and polymers, have been used (for re-
views, see 44, 60, 61, 75).

BACKGROUND
Man-Made Surfaces That Contact Biological Media

Many early studies of the interactions of artificial surfaces with biologi-
cal media were motivated by problems associated with the formation
of thrombus on foreign surfaces that contact blood—a process that is
now relatively well understood and involves the adsorption of proteins
intimately (73). For the past 3 decades, researchers have sought to
understand the interactions of man-made materials with proteins (and
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processes dependent on protein adsorption), with applications in bio-
compatible materials as a central motivation. Although many materials
have been identified that are compatible with tissue to varying degrees
[e.g. titanium (implants), polymethylmethacrylate (contact lenses), ce-
ramics (dental prosthesis), polyurethanes (artificial heart), pyrolytic
carbon (heart valves)] there has been much less progress in the elucida-
tion of the mechanisms by which these materials function.

Adsorption of Protein

A survey of the extensive literature on the adsorption of proteins to
man-made surfaces is not practical in this review (for reviews, see 44,
61, 63, 75). The adsorption processes are complicated. Even in the
simplest case, where a single, well-defined protein adsorbs to a uniform,
well-defined surface, a substantial range of processes is usually in-
volved (Figure 1). After an initial adsorption of a protein to a surface,
the protein can (Figure 1a) dissociate from the surface and return to
solution; (d) change orientation; (d) change conformation but retain
biological activity; (f) denature and lose activity; or (g) exchange with
other proteins in solution. These processes are complicated further by
a range of conformationally altered and/or denatured states accessible
to the adsorbed protein and by the many different microenvironments
at the surface created by heterogeneities in the surface and the presence
and conformations of other proteins. Lateral protein—protein interac-
tions may dominate the protein—surface interactions. Because many of
these processes are essentially irreversible, models must emphasize the
kinetic aspects of protein adsorption (59).

ORIENTATION AND CONFORMATION OF ADSORBED PROTEIN Most studies
have generated empirical models by analyzing the amount and rates of

Solution

o O 0O
T
< O =00 =00 20
Surface VAV /7 / /

Figure I The complexities associated with studies of protein adsorption. Several equi-
libria must be considered on adsorption of a protein to a surface (a); lateral mobility
of the adsorbed protein (b); dissociation of a protein adjacent to another protein (c);
reversible denaturation and changes in conformation of the protein (d); dissociation of
the altered protein (¢); denaturation of the protein that results in irreversible adsorption
(); and exchange of the protein with a protein from solution (g). This scheme is not
complete but is complicated further by the many different conformations and environ-
ments available to an adsorbed protein.
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protein adsorption; few have investigated adsorption at the molecular
level. The information required for a detailed molecular description of
these processes, including information concerning the orientation and
conformation of adsorbed proteins as a function of time and conditions,
has been difficult to obtain. Few analytical methods exist—and none
with the power to reveal structure comparable to X-ray crystallography
or multidimensional NMR spectroscopy—that can characterize the
conformation and orientation of proteins adsorbed to surfaces. Infrared
spectroscopy has been used to assess the degree of denaturation of
fibronectin adsorbed to SAMs that present different functional groups
(7). Lee & Belfort (37) correlated the activity of adsorbed RNase A to
a model that involved conversion between two orientations of the pro-
tein at the surface. Darst et al (14) probed the orientation and conforma-
tion of myoglobin adsorbed to a polydimethylsiloxane surface by using
a panel of five monoclonal antibodies that had known epitopes on the
protein. This latter method and related footprinting methods that use
proteases (87) or selective chemical reagents for modification of resi-
dues of proteins (69) are perhaps the most general methods for the
direct characterization of unlabeled proteins adsorbed to surfaces. Korn-
berg and coworkers (13) have used electron diffraction to determine
the structure of two-dimensional crystals of the protein streptavidin
adsorbed to a biotinylated lipid layer. Rennie and coworkers (18) have
used neutron reflection to determine the structure of B-casein adsorbed
to hydrophobic alkylsiloxane monolayers. An emerging technique
based on X-ray standing waves also provides direct structural informa-
tion with near-atomic resolution for cases in which the layer of protein
is ordered (6).

MEASURING PROTEIN ADSORPTION ~ The most useful of the many analyti-
cal techniques that have been used to measure protein adsorption are
those that are compatible with a variety of surfaces and that provide
measurements in situ and in real time (59). Methods that measure the
dielectric properties of an interface [surface plasmon resonance (SPR)
spectroscopy (41), waveguide interferometry (62), and ellipsometry
(45)] and those that measure changes in the resonance frequency of a
piezoelectric material [quartz crystal microbalance (77), surface acous-
tic wave (77), and acoustic plate mode (12) devices] are particularly
well suited. The primary drawback of these methods is that they mea-
sure bulk properties of the interface and provide little or no detail about
atomic-level interactions. Surface plasmon resonance spectroscopy is
particularly well suited for use in conjunction with SAMs, because both
techniques use thin films of gold as substrates: A commercial SPR
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Figure 2 Models for SAMs of alkanethiolates on gold and alkylsiloxanes on hydroxy-
lated surfaces. (A) The thiol groups coordinate to the hollow threefold sites of the gold
(111) surface, and the alkyl chains pack in a quasi-crystalline array. (B) The conforma-
tions of alkylsilanes and the details of their bonding to surface hydroxyl groups
are less clear; a mixture of possible conformations and geometries is probably involved.
The surface properties of both SAMs are controlled by controlling the terminal function
group X.

instrument has demonstrated many of the characteristics required for
efficient studies of adsorption of proteins to functionalized SAMs on
gold (53).

Self-Assembled Monolayers of Alkanethiolates on Gold

Self-assembled monolayers of alkanethiolates on gold form on the ad-
sorption of a long-chain alkanethiol [X(CH,),SH, n = 11 — 18) from
solution (or vapor) to a gold surface (Equation 1). The structure of
these SAMs is now well established (16, 79):

RSH + Au(0), — RS~ Au(l) Au(0),+ %Hx(?).

The sulfur atoms coordinate to the gold atoms of the surface, and the
trans-extended alkyl chains are tilted approximately 30 degrees from
the normal to the surface (Figure 2). The properties of the interface
depend on the terminal functional group X of the precursor alkanethiol;
even structurally complex groups can be introduced onto the surface
through straightforward synthesis. The surface chemistry of SAMs can
be controlled further by forming so-called mixed SAMs from solutions
of two or more alkanethiols. Self-assembled monolayers are stable in
air or in contact with water or ethanol for periods of several months;
they desorb at temperatures greater than 70°C or when irradiated with
UV light in the presence of oxygen. They have been used in cell culture
for periods of days. Self-assembled monolayers that are supported on
gold 5-10 nm in thickness (on glass slides) are transparent, and those
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supported on gold of thickness greater than 100 nm are opaque and
reflective (15); even the thin films of gold are electrically conductive.

Self-assembled Monolayers of Alkylsiloxanes

Alkylsiloxanes are obtained by reaction of a hydroxylated surface (usu-
ally the native oxide of silicon or glass) with a solution of alkyltrichloro-
silane (or alkyltriethoxysilane) (48, 56, 72). The reactive siloxane
groups condense with water and with hydroxyl groups of the surface
and neighboring siloxanes to form a cross-linked network; the bonding
arrangement is not well defined but depends on the conditions used to
form the SAM (Figure 2). These SAMs are significantly more stable
thermally than alkanethiolates on gold and do not require evaporation
of a layer of metal for preparation of substrates. The siloxane monolay-
ers are limited, however, in the range of functional groups that can be
displayed at the surface by the reactivity of the alkyltrichlorosilane
groups of the precursors and by the technical difficulty of introducing
functional groups once the monolayer has formed.

The Physical-Organic Chemistry of Self-Assembled
Monolayers

An important goal in interfacial science is to understand the relationship
between the microscopic structure of a surface and its macroscopic
properties; this relationship is particularly relevant in studies of protein
adsorption where hydrophobic forces are dominant (71). Self-assem-
bled monolayers on gold—and, to a lesser extent, alkylsiloxanes—of-
fer the level of structural control required for detailed studies of adsorp-
tion processes. Studies of the influence of a terminal functional group
X of a SAM on the wettability of the surface reveal that the hydropho-
bicity of the surfaces can be controlled precisely (2). Self-assembled
monolayers that present polar functional groups (e.g. carboxylic acid
and hydroxyl) are wetted by water. Those that present nonpolar, organic
groups (e.g. trifluoromethyl and methyl) are autophobic and emerge
dry from water. Monolayers that present fluorinated groups are more
water repellent than Teflon.

INTERACTIONS OF PROTEINS WITH
SELF-ASSEMBLED MONOLAYERS
Adsorption of Proteins to Self-Assembled Monolayers

The adsorption of several model proteins to SAMs that present different
functional groups (e.g. alkyl, perfluoroalkyl, amide, ester, alcohol, ni-
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trile, carboxylic acid, phosphonic, boric acids, amines, and heterocy-
cles) correlates approximately with the hydrophobicity of the surfaces
(43, 57); the degree of denaturation, as inferred by the density of a
layer of adsorbed protein, increases with the hydrophobicity of the
surface and decreases with the concentration of protein in the contacting
solution. Adsorption on hydrophobic surfaces often is irreversible ki-
netically, but the protein adlayer can be removed with detergents or
replaced by other proteins in solution. Although SAMs that present
ionic groups have been used extensively to control protein adsorption,
less is known about the relationships between the properties of charged
surfaces and the structure and properties of the layer of protein. Vroman
(73) has used ellipsometry and immunologic identification of adsorbed
proteins to characterize the exchange of plasma proteins at hydrophilic
glass surfaces.

Surfaces That Resist the Adsorption of Proteins

Much effort has been directed toward the identification of biologically
“‘inert’” materials, i.e. materials that resist the adsorption of protein.
The most successful method to confer this resistance to the adsorption
of protein has been to coat the surface with poly(ethylene glycol) (PEG)
(20, 22); a variety of methods, including adsorption, covalent immobili-
zation, and radiation cross-linking, have been used to modify surfaces
with PEG (22). Polymers that comprise carbohydrate units also passi-
vate surfaces, but these materials are less stable and less effective than
PEG (41, 76). A widely used strategy is to preadsorb a protein—usually
bovine serum albumin—that resists adsorption of other proteins. This
strategy suffers from problems associated with denaturation of the
blocking protein over time (3) or exchange of this protein with others
in solution. A further limitation of this strategy is the inability to present
other groups (e.g. ligands, antibodies) at the surface in controlled envi-
ronments.

Self-assembled monolayers that are prepared from alkanethiols
terminated in short oligomers of the ethylene glycol group
[HS(CH,),;(OCH,CH,),OH: n = 2 — 7] resist the adsorption of sev-
eral model proteins, as measured by both ex situ ellipsometry and in
situ SPR spectroscopy (53, 58). Even SAMs that contain as much as
50% methyl-terminated alkanethiolates, if mixed with oligo(ethylene
glycol)-terminated alkanethiolates, resist the adsorption of protein.
Self-assembled monolayers that present oligo(ethylene glycol) groups
are useful as controls in studies of the adsorption of proteins to surfaces.
The ability to prepare SAMs that present derivatives of these and other


http://www.annualreviews.org/aronline

N

Annu. Rev. Biophys. Biomol. Struct. 1996.25:55-78. Downloaded from www.annualreviews.org
Access provided by Northwestern University on 06/23/20. For personal use only

Annual Reviews .
www.annualreviews.org/aronline

INTERACTIONS OF SAMS WITH PROTEINS 63

groups will be useful for investigating the mechanisms by which these
surfaces resist adsorption.

De Gennes, Andrade, and coworkers (29, 30) have proposed that
surfaces modified with long PEG chains resist the adsorption of protein
by “‘steric stabilization.”’ In aqueous solution, the PEG chains are sol-
vated and disordered. Adsorption of protein to the surface causes the
glycol chains to compress, with concomitant desolvation. Both the ener-
getic penalty of transferring water to the bulk and the entropic penalty
incurred on compression of the layer serve to resist protein adsorption.
It is not clear that this analysis applies to thin, dense films of oligo(ethy-
lene glycol) groups, as De Gennes and Andrade predicted that surfaces
comprising densely packed, nearly crystalline chains of PEG might not
resist the adsorption of protein. It is remarkable that SAMs presenting
densely packed tri(ethylene glycol) groups resist the adsorption of pro-
tein. These layers are almost certainly different in comformational flexi-
bility and solvation than are long, dilute PEG chains. We presume there
is sufficient free volume in the glycol layer of the SAMs to allow
solvation by water. An understanding of the properties of these SAMs
may permit the design of new classes of inert surfaces.

Immobilization of Proteins to Self-Assembled Monolayers

The immobilization of proteins to substrates is important in many areas,
ranging from ELISA and cell culture to biosensors; consequently, many
strategies have been developed to confine proteins to surfaces (51,
63). Methods that rely on noncovalent association of proteins with
surfaces—with the use of both hydrophobic and electrostatic interac-
tions—are the most common and experimentally simplest, but they are
also the least well controlled.

Methods that rely on covalent coupling of proteins to surfaces are
inherently more controlled and give layers of protein that cannot disso-
ciate from the surface or exchange with other proteins in solution. A
variety of surface chemistries have been used; the most successful have
been based on the formation of amide and disulfide bonds (26, 74, 78).
The selectivity and rapid reaction of thiols with a-haloacetyl groups
constitutes a particularly attractive protocol (38). The use of well-de-
fined surfaces and proteins that have only a small number of reactive
groups permits a high degree of control over the attached protein. For
example, genetic engineering was used to construct a mutant of cyto-
chrome c that had only a single cysteine group; immobilization of this
protein to a SAM terminated in thiol groups gave a uniformly oriented
layer of protein (26).
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A common problem that limits the use of immobilized proteins is
denaturation of the protein, with concomitant loss in activity. Methods
to increase the lifetimes of these proteins have involved coupling to
‘“‘inert’’ materials (76). A commercial SPR instrument that quantitates
protein—protein interactions uses a gel layer of carboxylated dextran
to stabilize immobilized proteins (41). Self-assembled monolayers that
are terminated in oligo(ethylene glycol) groups may have broad useful-
ness as inert supports, because a variety of reactive groups can be
incorporated in SAMs in controlled environments.

Biospecific Adsorption of Proteins to Self-Assembled
Monolayers

The design of surfaces to which analytes bind specifically is important
for biosensors and other technologies, e.g. affinity chromatography,
cell culture, coatings for implants, and artificial organs. These surfaces
must possess specificity for a particular protein and simultaneously
resist the nonspecific adsorption of other proteins.

Immobilization schemes based on the biotin—streptavidin interaction
have been investigated widely. Spinke et al (68) studied the recognition
of streptavidin by SAMs that present biotin ligands. The effectively
irreversible complexation in this system is useful for many applications,
such as immobilization of proteins or nucleic acids, but is not relevant
to the weak, reversible recognition that is more common in biology.
In an early model system, Mosbach and coworkers (45) used ellipsome-
try to characterize the reversible binding of lactate dehydrogenase to
SAMs that present analogues of nicotinamide adenine dinucleotide
(NAD). Several groups have studied the recognition of immobilized
antigen by antibodies, because of the availability of antibodies to a
variety of antigens and the high specificity displayed by antibodies
(35).

Self-assembled monolayers that present oligo(ethylene glycol)
groups were used as supports to which ligands for proteins were at-
tached (Figure 3). With the use of SPR spectroscopy, Sigal et al (64)
measured the binding of a His-tagged T-cell receptor to a SAM present-
ing a Ni(Il) complex. Likewise, carbonic anhydrase bound to SAMs
that presented a benzenesulfonamide group (Figure 4) (52). In both
cases, the amount of protein that bound increased with the density of
ligand on the SAM. Both SAMs also resisted the nonspecific adsorption
of other proteins. The SAM terminated in benzenesulfonamide groups
could be used to measure the concentration of carbonic anhydrase (CA)
in a complex mixture that contains several other proteins (52). The
effectiveness of the oligo(ethylene glycol) groups to resist nonspecific
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Figure3 Design of SAMs for biospecific adsorption. Mixed SAMs that present ligands
and oligo(ethylene glycol) groups permit control over the density of adsorbed protein.
The glycol layer is effective at preventing nonspecific adsorption of protein.
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Figure 4 Surface plasmon resonance spectroscopy was used to measure the rate and
quantity of binding of CA to a SAM terminated in EG; groups and benzenesulfonamide
groups (A). The change in resonance angle (46) of light reflected from the SAM/gold
is plotted against time; the time over which the solution of CA (5§ uM) was allowed to
flow through the cell is indicated at the top of the plot (B). (upper curve) Binding (and
dissociation) of CA to a SAM containing approximately 5% of the ligand-terminated
alkanethiolate. Carbonic anhydrase did not adsorb to a SAM that presented only ethylene
glycol groups (lower curve). A response caused by the change in index of refraction of
the CA-containing solution was observed on introduction of protein into the flow cell
(evident in lower curve). The difference between the measured response and this back-
ground signal represents binding of the CA to the SAM.
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adsorption, combined with the ability of SAMs to present a range of
groups in controlled environments, makes this system well suited for
other studies of biospecific adsorption and for applications dependent
on specific adsorption.

Attachment of Cells to Self-Assembled Monolayers

The attachment and spreading of anchorage-dependent cells to surfaces
are mediated by proteins of the extracellular matrix, e.g. fibronectin,
laminin, and collagen. A common strategy for controlling the attach-
ment of cells to a surface therefore relies on controlling the adsorption
of matrix proteins to the surface. Both hydrophobic (42, 46), and ionic
(34) SAMs have been used as substrates for cell culture. A significant
problem with these preparations is the lack of control over the adsorp-
tion process. It generally has been assumed that the density of matrix
protein is the parameter that influences the behavior of attached cells.
Studies of the differentiation response of fibroblasts and neuroblastoma
cells on siloxane SAMs terminated in different groups that had been
coated with fibronectin suggested that cell behavior depended on the
conformation of fibronectin and not on the density of protein (7, 40).
The role of protein adsorption in most instances remains poorly under-
stood.

Cell attachment to and spreading on fibronectin involve binding of
integrin receptors of the cell to the tripeptide RGD of the matrix. Mas-
sia & Hubbell (47) demonstrated that a siloxane SAM that presents the
RGD peptide supported the attachment and spreading of fibroblast cells.
These synthetic culture substrates have advantages over the traditional
matrix-coated substrates of increased reproducibility in culture and util-
ity for fundamental studies of cell-matrix interactions. Corresponding
work has focused on the development of substrates for serum-free cell
culture by immobilizing essential growth factors at the surface of the
substrate (86).

CONTROL OVER SPATIAL ADSORPTION
OF PROTEIN

Patterning Self-Assembled Monolayers

MICROCONTACT PRINTING Microcontact printing (uCP) (36, 54, 81)
provides a new and convenient method for patterning SAMs of alka-
nethiolates on gold with features of sizes ranging down to 1 um (Figure
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Figure 5 Microcontact printing starts with a master template containing a pattern of
relief (a); this master can be fabricated by photolithography or by other methods. A
PDMS stamp cast from this master (b) is inked with a solution of alkanethiol in ethanol
(c) and used to transfer the alkanethiol to surface of gold (d); a SAM is formed only at
those regions where the stamp contacts the surface (e). The bare regions of gold can
then be derivatized with a different SAM by rinsing with a solution of a second alkanethiol
(f). The initial patterned SAM can also be used to protect the underlying gold from
dissolution in a corrosive etchant (g). Anisotropic etching of the exposed silicon gives
contoured surfaces (h). The gold mask can be removed by washing with aqua regiai;
the resulting silicon substrates are useful as new masters from which stamps can be cast
or as substrates for a variety of applications.

5); features as small as 200 nm have been formed with the use of this
technique (85). Microcontact printing starts with an appropriate relief
structure from which an elastomeric stamp is cast; this ‘‘master’’ tem-
plate usually is generated photolithographically, but any substrate that
has an appropriate pattern of relief can be used. The polydimethylsilox-
ane (PDMS) stamp is ‘‘inked’” with a solution of alkanethiol in ethanol,
dried, and manually brought into contact with a surface of gold. The
alkanethiol is transferred to the surface only at those regions where the
stamp contacts the surface. This process produces a pattern of SAM
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that is defined by the pattern of the stamp. Conformal contact between
the elastomeric stamp and surface allow surfaces that are rough (at the
scale of 100 nm) to be patterned over areas several square centimeters
in size with edge resolution of the features better than 50 nm. Multiple
stamps can be cast from a single master, and each stamp can be used
hundreds of times. Microcontact printing also was used to pattern silox-
anes on the surfaces of SiO, and glass (84) and to pattern SAMs on
nonplanar and contoured surfaces (27). Because uCP relies on molecu-
lar self-assembly and does not require stringent control over the labora-
tory environment, it can produce um-scale patterns conveniently and
at low cost relative to methods that use photolithography.

PHOTOLITHOGRAPHY Photolithographic methods illuminate a surface
with UV light through a mask (5, 17, 34). In the common ‘‘lift-off”’
method (34), a silicon oxide substrate is coated with a thin layer of
photoresist. The resist is exposed to UV light through a mask, and the
exposed regions are subsequently removed in a developing bath; this
process creates a pattern of silicon dioxide that can be derivatized with
an alkylsiloxane SAM. The remaining regions of photoresist are then
removed, and a different SAM is formed on the complementary regions.
Other variants of photolithography create patterns by using UV light
to damage, or modify, a SAM. Wrighton and coworkers (19) prepared
SAMs of alkanethiolates terminated in an aryl azide group; near-UV
irradiation of the SAM through a lithographic mask and a thin film of
an amine resulted in the attachment of the amine in the exposed regions.
Hickman et al (24) irradiated thiol-terminated siloxanes through a mask
in the presence of oxygen to form sulfonate groups. These methods are
less well controlled and less general than such methods as xCP, which
pattern the adsorption of preformed components. Photolithographic
methods can produce patterns that have features down to 1 um conven-
iently. Capital costs for the equipment and controlled environment facil-
ities, however, make this technique expensive and inconvenient for the
biological researcher.

FABRICATION OF CONTOURED SURFACES Both uCP (32) and photoli-
thography (10) have been used to pattern silicon substrates with a layer
of resist that protects the substrate from dissolution in a chemical et-
chant (Figure 4). Chemical etching of these patterned substrates pro-
duces contoured features whose shapes depend on the orientation of
the silicon and the time of etching; anisotropic etching of a silicon
(100) surface produces controlled V-shaped grooves. The properties of
these etched substrates can be tailored either by forming an alkylsilox-
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ane SAM or by evaporating a layer of gold and forming a SAM of
alkanethiolates. Alternatively, the topographic pattern can be trans-
ferred to other substrates (e.g. prepolymers) with the use of a PDMS
stamp cast from the etched master.

Patterning Adsorption of Protein on Self-Assembled
Monolayers

Patterned SAMs on gold have been used extensively to control the
adsorption of protein to surfaces (Figure 6). This method relies on the
ability of a SAM terminated in oligo(ethylene glycol) groups to resist
the adsorption of protein. Microcontact printing was used to pattern a
SAM into regions terminated in methyl groups and oligo(ethylene gly-
col) groups (42, 54). Immersion of these SAMs in aqueous solutions
that contain proteins resulted in the adsorption of a monolayer of protein
only on the methyl-terminated regions; this pattern of protein could be
imaged by scanning electron microscopy (43). Bhatia et al (4) patterned
a siloxane film terminated in thiol groups by irradiation with UV light
through a mask. The fluorescent protein phycoerythrin was immobi-
lized to the thiol groups in regions that were protected from the UV
light with the mask; photo-induced oxidation of the thiol groups in
regions of the surface that were irradiated presumably gave negatively
charged sulfonate groups, which resisted the adsorption of protein.

Patterned Attachment of Cells on Self-Assembled
Monolayers

The same methods used to pattern the adsorption of proteins to surfaces
have been used to direct the attachment of cells to surfaces (5, 23, 34,
66, 67). In an early example, Kleinfeld et al (34) used photolithography
to pattern siloxane SAMs into regions terminated in methyl and amino
groups. When plated in the presence of serum, neural cells attached
and spread selectively on the amino-terminated regions; in the absence
of serum, the cells attached to all regions. Others have also found that
amino-terminated siloxanes are excellent substrates for culture of neural
cells (24). We presume that proteins of the serum that do not support
cell attachment adsorbed to the hydrophobic areas. Regions terminated
in perfluoro groups have also been used to resist the attachment of cells
3, 67, 70).

Self-assembled monolayers patterned into regions terminated in
methyl and oligo(ethylene glycol) groups permit spatial control over
the attachment of cells. Microcontact printing was used to pattern SAMs
into adhesive lines ranging from 10 to 100 xm in width; after coating
these substrates with fibronectin, endothelial cells were confined to
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CH;/
Protein EG60H

R
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Figure 6 Scanning electron micrograph of fibrinogen adsorbed on a patterned SAM.
A patterned hexadecanethiolate SAM on gold was formed by 4CP, and the remainder
of the surface was derivatized by immersion in a solution containing a hexa(ethylene
glycol)-terminated alkanethiol [HS(CH,);,(OCH,CH,)sOH]. The patterned substrate was
immersed in a solution of fibrinogen (1 mg/mL) in phosphate-buffered saline for 2 h,
removed from solution, rinsed with water, and dried. Fibrinogen adsorbed only to the
methyl-terminated regions of the SAM, as illustrated by the dark regions in the mi-

crograph: Secondary electron emission from the underlying gold is attenuated by the
protein adlayer.
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Figure 7 Control over the attachment of bovine capillary endothelial cells to planar
substrates that were patterned into regions terminated in methyl groups and tri(ethylene
glycol) groups using #CP. The substrates were coated with fibronectin before cell attach-
ment; fibronectin adsorbed only to the regions of methyl-terminated SAM. (A) An optical
micrograph showing attachment of endothelial cells to a nonpatterned region (leff) and
to lines 30 um in width. (B) A view at higher magnification of cells attached to the
lines.

grow on these lines (Figure 7). This technique was also used to pattern
SAMs into adhesive regions approximately 20 X 50 um in size that
were surrounded by EGe-terminated SAM (66). After the hydrophobic
regions were coated with laminin, hepatocytes attached to the rectangu-
lar islands and conformed to the shape of the underlying pattern. The
size of the islands controlled DNA synthesis, cell growth, and protein
secretion of the attached cells. The ability to pattern the attachment of
individual cells may be useful for single cell manipulation, toxicology
and drug screening.

Access provided by Northwestern University on 06/23/20. For personal use only.

Attachment of Cells on Contoured Surfaces

Annu. Rev. Biophys. Biomol. Struct. 1996.25:55-78. Downloaded from www.annualreviews.org

Several groups have used surfaces contoured into grooves and ridges,
which were fabricated with the use of photo- or electron-beam lithogra-
phy, to study their effects on the behavior and growth of attached cells
(9, 10, 25, 49). Chou et al (9) found that human fibroblasts adherent
to surfaces contoured into V-shaped grooves had increased levels of
fibronectin synthesis and secretion. Surfaces with arrays of grooves of
varying dimensions controlled the alignment and orientation of attached
mammalian cells (10, 49). Surfaces with arrays of ridges directed the
motility and induced differentiation of the fungus Uromyces (25).

A simple technique based on uCP and micromolding (33) was
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Me/FN

50 um

Figure 8 Control over the attachment of endothelial cells to contoured surfaces using
SAMs. The substrates are films of polyurethane (supported on glass slides) that were
coated with gold and modified with SAMs of alkanethiolates terminated in methyl groups
and tri(ethylene glycol) groups; the substrates were coated with fibronectin before cell
attachment. (Jeft) Cells attached to both the ridges and grooves of substrates that present
fibronectin at all regions. (right) Cells attached only to the ridges when the grooves were
modified with a SAM presenting tri(ethylene glycol) groups.

used to fabricate contoured surfaces of optically transparent films
of polyurethane on glass coverslips. After evaporating a thin film
of gold onto these substrates, the ridges were derivatized with a
SAM by stamping with a flat PDMS stamp; a different SAM was
formed in the grooves by immersing the substrate in a solution of
alkanethiol. By modifying the ridges with a SAM of hexadecanethio-
late, and the grooves with a SAM terminated in oligo(ethylene glycol)
groups, endothelial cells were confined to attach and spread only
on the ridges (Figure 8). By the reverse process, cells were confined
to attach and grow in the grooves.

APPLICATIONS OF SURFACES BASED ON SELF-
ASSEMBLED MONOLAYERS IN BIOCHEMISTRY

Drug Design and Screening

Several combinatorial strategies for drug design screen mixtures of
potential ligands to identify those with a desired property—usually the
ability to bind a protein. Methods that use immobilized libraries have
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the primary advantage that the identity of each ligand is defined by its
location in the matrix; amplification and sequencing of selected ligands
are not required. Fodor and colleagues (28) used photolithography and
solid-phase synthesis to pattern SAMs of siloxanes into arrays of
hundreds of different peptides. Confocal microscopy was used to assay
the in situ binding of a monoclonal antibody to each of these peptides
in a single experiment. This technology also was used to create an array
containing 256 octanucleotides that served as a hybridization probe
for sequencing DNA. The demonstration of libraries that contain non-
natural biopolymers (8), and the potential to screen for reactions at
surfaces (78), widens the scope of this technology. Scanning probe
microscopies may be useful for screening libraries, because these tech-
niques can assay functionalized surfaces at the sub-micron scale rapidly
(39, 80).

Biosensors

Self-assembled monolayers are finding increasing use to tailor the mo-
lecular recognition properties of surfaces used in biosensing. The sur-
face of a TiO,—Si0O, waveguide was modified with an alkylsiloxane
monolayer terminated in amino groups to which the antibody anti-
HBsAg was conjugated; this difference interferometer measured the
binding of hepatitis B down to a concentration of 2 X 107! M in
undiluted serum (62). Self-assembled monolayers have been used in
similar ways to control the properties of sensors on the basis of the
quartz crystal microbalance (77), acoustic plate modes (31), and surface
plasmon resonance (52, 53, 64). Nonspecific adsorption of protein is
a common problem with these devices. A commercial technology uses
gel layers of dextran to control unwanted adsorption (41), although
most applications use bovine serum albumin—coated surfaces. Recent
work with ligands immobilized on SAMs terminated in oligo(ethylene
glycol) groups provides a route to biospecific surfaces with a high
control over the properties of the surfaces (52, 64).

Electrochemical Methods

Self-assembled monolayers can either mediate or inhibit the transfer
of electrons from the underlying gold to electrolytes in solution. The
properties of SAMs terminated in electroactive groups (e.g. ferrocene
or quinone groups) could be switched reversibly by adjusting the poten-
tial at the underlying gold (1). Several groups have studied the transfer
of electrons from gold to electroactive proteins immobilized to SAMs
(11, 82). There is now commercial technology for analysis of biological
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analytes on the basis of electrochemiluminescence from tris-bipyridine
ruthenium(IT) tags (21): This technology is well suited for SAMs.

PROSPECTS FOR SELF-ASSEMBLED MONOLAYERS
IN BIOLOGY

Self-Assembled Monolayers as Model Surfaces

Self-assembled monolayers of alkanethiolates on gold provide the best
system available with which to understand interactions of proteins and
cells with man-made surfaces. The ease with which complex and deli-
cate groups of the sorts relevant to biochemistry can be presented in
controlled environments, combined with simple methods that can pat-
tern the formation of SAMs in the plane of the monolayer, make these
surfaces well suited for studies of fundamental aspects of biointerfacial
science. Other advantages with this system include the optical transpar-
ency of SAMs when supported on thin films of gold, the electrical
conductivity of the underlying gold, the compatibility of these sub-
strates with a range of analytical methodologies, the stability of these
substrates during storage and in contact with biological media, and the
range of surfaces, including curved and nonplanar substrates, that can
be used.

Self-Assembled Monolayers in Cell Biology

Designed substrates permit strategies for the noninvasive control over
the activity of attached cells. Langer and coworkers (83) cultured endo-
thelial cells on optically transparent films of electrically conducting
polypyrrole. Cells attached and spread normally on fibronectin-coated
polypyrrole in the oxidized state; on application of a reducing potential,
however, the extension of cells and the synthesis of DNA were both
inhibited. Okano et al (55) grafted thermoresponsive gels of poly(N-
isopropylacrylamide on cell culture substrates. Hepatocytes attached to
the substrates normally at 37°C; when the culture was chilled to 4°C,
the cells detached from the substrate. The features of SAMs described
in this review make them well-suited model surfaces for studies in
biology that require substrates with tailored properties.

Any Annual Review chapter, as well as any article cited in an
Annual Review chapter, may be purchased from the
Annual Reviews Preprints and Reprints service.
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