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Abstract

What is the role of working memory over the course of non-native speech category learning?

Prior work has predominantly focused on how working memory might influence learning

assessed at a single timepoint. Here, we substantially extend this prior work by examining

the role of working memory on speech learning performance over time (i.e., over several

months) and leverage a multifaceted approach that provides key insights into how working

memory influences learning accuracy, maintenance of knowledge over time, generalization

ability, and decision processes. We found that the role of working memory in non-native

speech learning depends on the timepoint of learning and whether individuals learned the

categories at all. Among learners, across all stages of learning, working memory was asso-

ciated with higher accuracy as well as faster and slightly more cautious decision making.

Further, while learners and non-learners did not have substantially different working mem-

ory performance, learners had faster evidence accumulation and more cautious decision

thresholds throughout all sessions. Working memory may enhance learning by facilitating

rapid category acquisition in initial stages and enabling faster and slightly more careful deci-

sion-making strategies that may reduce the overall effort needed to learn. Our results have

important implications for developing interventions to improve learning in naturalistic lan-

guage contexts.

Introduction

Categorization involves mapping variable inputs to discrete labels and is an important process

that supports complex cognitive processes, such as object recognition [1] and speech percep-

tion [2]. Humans can learn novel categories throughout the lifespan across different perceptual

modalities. However, there are also large individual differences in the underlying learning pro-

cesses and outcomes [3, 4]. As such, there is a need to better understand what contributes to

successful or less successful learning. In this study, we systematically examine the
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contributions of an ability that has been linked to category learning in prior work–working

memory capacity.

Working memory (WM) reflects the resources available for the temporary storage and

manipulation of information relevant for a given task [5, 6]. Category learning involves many

processes that are dependent on WM. Learners need to attend to task-relevant features and

ignore task-irrelevant features, maintain features of a stimulus in mind as relevant or irrelevant

for a decision, hold hypotheses in mind about stimulus-category-response mapping, compare

representations of the stimulus to previous stimuli or rules, and incorporate feedback to

update existing category representations and hypotheses about category identity. The ability to

learn categories across sensory modalities has generally been found to be positively associated

with WM [7–12]. WM is thought to support faster initial category learning [7] by allowing

learners to hold multiple hypotheses about category identity at mind and test these hypotheses

and specifically to rapidly and efficiently find a useful hypothesis [13].

Importantly, prior studies have primarily focused on the role of WM in initial learning,

and, as a result, it is unclear how WM may play a role in maintenance of performance or learn-

ing patterns over time. In the earliest stages of learning, learners must be highly flexible with

their behavior and search a large pool of potential hypotheses about category identity. As per-

formance improves and becomes more stable over time, WM processes may be less relevant

because learners may be making small refinements to existing rules rather than keeping many

competing hypotheses in mind. As a result, it is necessary to examine learning beyond very ini-

tial learning especially for categories that are difficult or challenging to acquire within a single

session.

In the current study, we examine a specific case of category learning that is an important

skill in second language acquisition–non-native speech category learning. The ability to learn

a new language has been positively associated with individual abilities like WM capacity [14–

17]. Assessed in a single session, the ability to learn sounds of a non-native language in adult-

hood has been positively linked to WM capacity [11, 12]. However, other studies examining

learning across longer training periods (e.g., multiple sessions across many days) have found

that WM ability does not predict the ability to learn non-native speech categories [18, 19]. The

role of WM across the trajectory of non-native speech category learning is not yet clear. It is

possible that WM supports initial, but not later speech learning.

In the current study, we train participants on non-native Mandarin tone categories. In

Mandarin, distinct pitch patterns are lexically contrastive–the same syllable produced with

four different pitch patterns (e.g., high-flat, low-rising, low-dipping, and high-falling) alters

the meaning. Learning to distinguish sounds based on these pitch patterns can be difficult for

non-native listeners and there are large individual differences in learning [3, 20–24].

For both speech and artificial perceptual categories, training beyond one session can be

very successful, leading to significant learning and retention over time. In studies not focused

on WM, participants learn through extensive training over several weeks [24–29] and then

sometimes are brought back for a test of retention months later (e.g., [27]– 3 months; [24]– 8

weeks). Neural representations of categories rapidly emerge within a single session of initial

learning [30, 31], but continue developing over time with more experience [24].

The role of WM beyond initial category acquisition is not well understood. Whereas initial

learning involves testing a large range of possible hypotheses about stimulus-response map-

ping and using feedback to update these hypotheses, learning beyond the novice stage involves

refining existing hypotheses, learning about idiosyncratic stimuli, and continuing to develop

and refine representations. Additionally, after a delay in experience, learners must reactivate

existing representations and hypotheses to continue refining their category knowledge. It is

possible that these processes rely less on WM than initial testing among multiple hypotheses as
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is necessary during initial learning. In the current study, we examine the role of WM in both

an initial learning session and learning sessions after one and three months from the initial

session.

Our approach involves inviting participants who previously completed a single session of

training on Mandarin tone categories [12] back for additional training sessions. McHaney

et al. [12] demonstrated that WM abilities were related to success in initial non-native speech

category learning across two experiments–one behavioral (revisited here) and one with pupil-

lometry. Specifically, individuals with higher WM capacity were better at learning, better at

finding task-appropriate strategies, and had pupil responses that reflected better stimulus-

related attention. Based on this, McHaney et al. [12] concluded that WM may support learning

by enhancing attention to task-relevant information. Critically, because this prior study tested

only a single session of learning, it is possible this conclusion may only apply to initial learning.

In the current study, we invite participants from Experiment 1 of McHaney et al. [12] back for

two additional sessions–one session one month after their initial training and another session

two months after the second session. We follow up with the same sample from McHaney et al.

[12] to understand how individual differences in WM relate to individual differences in learn-

ing beyond initial acquisition.

An important aspect of understanding individual differences in learning is the acknowl-

edgement that many individuals perform at chance levels even after extensive training. We see

two main possibilities that could explain this pattern–(1) these participants are actively

engaged and trying but persistently fail to learn and/or (2) these participants are actively disen-

gaged and are not trying to learn, so they fail to learn. Disentangling these two possibilities is

challenging. Prior work on category learning takes one of two approaches regarding partici-

pants performing at chance levels. Some studies remove these participants entirely, typically

by removing participants who perform at or below chance levels by the end of learning [32–

35]. Other studies retain these participants in the sample as it is impossible to know if their

performance reflects a true inability to learn or whether they are disengaged [36–39]. The lack

of consistency in these approaches across studies makes it difficult to understand this poor per-

forming subset of the population. In the current study, we take a hybrid version of these

approaches to better understand the underlying challenges facing less successful performers.

We examine both the entire set of participants and participants who perform at above-chance

levels (i.e., learners vs. non-learners who do not perform at above-chance levels). By examining

the patterns while considering if participants eventually learned or not, we can better under-

stand behaviors and abilities that lead to success.

We employ a multifaceted approach to understand what WM does or does not do for initial

and later learning of speech categories. Specifically, we assess if WM is related to (1) perfor-

mance in initial and later learning sessions, (2) maintenance of category knowledge over time,

(3) generalization of category knowledge to different talkers, (4) rate of evidence accumulation

and (5) response caution during decision making (Table 1).

Initial and later learning

Based on prior work, we expect that higher WM will be beneficial to initial acquisition (i.e.,

session 1) of non-native speech categories [12]. This prediction stems from prior work that has

demonstrated that higher WM is associated with faster and better initial artificial category

learning [7–9, 11, 40–42]. We also expect to observe this pattern given that the first session of

training was published in McHaney et al. [12] where among all 195 participants, WM was pos-

itively related to learning. A subset of these participants (107/195) returned for the current

study.
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Building on the prior study, we will probe the extent to which WM is related to perfor-

mance in subsequent learning sessions. It is possible that WM provides benefits only in initial

learning by quickly allowing learners to test many different hypotheses and find the ones that

maximize their performance (e.g., [13]) and that WM is unrelated to learning beyond this nov-

ice stage. This prediction would be consistent with the observation that WM is not related to

speech category learning when assessed after eight days of training [18, 19]. However, it is also

possible that WM provides benefits to learning beyond initial acquisition, allowing for

enhanced further refinement of category representations.

Maintenance of category knowledge

By probing performance after one and two months of no additional exposure or training, we

will examine the maintenance of performance over time. One possibility is that higher WM

may allow learners to quickly reactivate and flexibly use their category representations devel-

oped in prior session(s). However, it is possible that maintenance of performance over time

may be independent of WM and could reflect long-term memory abilities instead.

Generalization

The ability to accurately identify novel category exemplars is a hallmark of categorization. We

will assess generalization in each session by presenting learners with novel stimuli spoken by

novel talkers that they do not encounter during training, without providing feedback about

the correct category. To successfully generalize to these novel talkers, they will need to apply

their existing knowledge flexibly to the new context. It is possible that generalization relies on

WM, as the ability to flexibly apply rules (e.g., cognitive flexibility) is correlated with WM

capacity [43, 44] and generalization to novel contexts is related to individual differences in

WM capacity [45, 46].

Decision processes during learning

Using a drift diffusion modeling (DDM) approach [47, 48], we will examine whether different

components of the decision process (e.g., rate of evidence accumulation and response caution)

are related to WM. DDMs are popular tools to understand decision making processes from

accuracy and response time measures [49–53]. DDMs assume that during decision making,

sensory evidence for multiple decision alternatives is accumulated in the human brain at vary-

ing rates, and a decision is made when such evidence reaches a particular boundary [47, 48].

Table 1. Hypothesized role of working memory across measures.

Hypothesized role of working memory Relevant measure(s) in current study

Initial learning Hold multiple hypotheses in mind, better and faster learning Accuracy in session 1

Later learning Enhanced attention and motivation Accuracy in sessions 2 and 3

Maintenance of category

knowledge

Quickly reactivate and flexibly use existing representations Accuracy in first block of sessions 2 and 3 compared to final

block of sessions 1 and 2

Generalization Flexibly apply rules to new contexts Accuracy in generalization test with different talkers and no

feedback

Evidence accumulation More efficient processing, mobilization of attentional resources Evidence accumulation (drift) rate parameter from drift

diffusion modeling

Response caution More cautious, gather more information and test against multiple

hypotheses before a decision is made

Decision threshold (boundary) parameter from drift

diffusion modeling

Working memory capacity is operationalized by the operation span score (OSPAN).

https://doi.org/10.1371/journal.pone.0297917.t001
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In the case of learning non-native speech sound categories like Mandarin tone categories, as a

participant hears a stimulus, they begin accumulating evidence towards all four response

options (e.g., high-flat, low-rising, low-dipping, high-falling). Each of the four response

options has its own decision threshold, with higher thresholds requiring more evidence to be

accumulated before the decision will be made, reflecting more cautious responding. Evidence

is also accumulated toward each threshold at its own rate, with faster rates reflecting higher

quality of evidence extracted from the stimulus. Below we consider the possibility that WM

relates to these two components of the decision process.

The classical literature on DDMs has focused almost exclusively on binary decision-making

in static settings and typically focuses on group-level analyses rather than heterogeneity across

individuals. Recently, Paulon et al. [53] extended these models significantly, accounting for sit-

uations with more than two decision alternatives, heterogeneity across individuals, and longi-

tudinal evolution of the decision-making processes by considering individual-specific and

time-varying accumulators of evidence. As such, we will examine decision processes over time

with estimates at both the group and individual subject level.
Rate of evidence accumulation. We predict that more WM resources may enable learners

to acquire information from the stimulus more quickly, thereby reducing the perceived diffi-

culty of the task and effort needed to learn. The rate of evidence accumulation reflects the qual-

ity of information extracted from the stimulus, with faster rates reflecting a faster evidence

accumulation process. The evidence accumulation process may also reflect efficiency of

retrieval or access to categorization exemplars or other representations in memory. Faster evi-

dence accumulation rates are associated with motivation and better task performance [54].

Prior work has demonstrated that evidence accumulation rates are related to WM abilities,

with faster evidence accumulation associated with higher WM capacity [55, 56].

Response caution. We predict that more WM resources may allow learners to be more

cautious and less impulsive in their responses and to collect more evidence for a particular

category response before making a decision. Response caution is reflected in the decision

threshold. Higher thresholds reflect more cautious responses that need more evidence

before a decision is made, whereas lower thresholds reflect more impulsive responses based

on less evidence [57]. More difficult tasks result in more cautious response patterns, requir-

ing that participants gather more information to make decisions [48, 58]. Individuals with

higher WM capacity may have sufficient resources to gather and consult more information

during decision making. As such, they may be more cautious in their responses, gathering

more information to hold in WM as they learn to make more accurate decisions. This may

ensure that the learner builds up enough of a representation of the stimulus before they

make a response and, thus, enhance learning. Alternatively, individuals with higher WM

capacity may have sufficient resources to maintain similar decision thresholds as individu-

als with lower WM capacity, enabling them to respond faster without making sacrifices in

accuracy.

Summary

To summarize, we examine the relationship between WM capacity and non-native Mandarin

tone speech category learning in an extended training task with three sessions separated by

one and two months, respectively. To gain mechanistic insights on the putative relationship

between WM and individual differences in category learning over time, we assess behavior

from multiple angles. Specifically, we examine how initial and later learning performance,

maintenance of performance across delays, generalization to novel talkers, rate of evidence

accumulation, and response caution are related to WM capacity (Table 1).
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Methods

Participants completed three sessions of Mandarin tone category learning separated by at least

one and two months (Session 1 to 2: M = 32.1 days, SD = 0.68, range 31.7–35.6 days; Session 2

to 3: M = 61.4 days, SD = 2.56, range 56.6–70.9 days). Data from the first session appeared in a

previously published study [12], and the second and third sessions have not appeared

elsewhere.

Participants

Participants were adults ages 18–35 recruited from Prolific (prolific.co) and participated via

Gorilla Experiment Builder [59]. A total of 198 participants completed session 1 (99 Female

(F), 99 Male (M), M = 25.0 years, SD = 4.97). Three participants were excluded because they

did not follow instructions on the WM task, leaving a total of 195 participants in session 1 (98

F, 97 M, M = 24.9 years, SD = 4.89). There was substantial attrition from session-to-session,

and we excluded participants who did not complete all sessions– 153 completed session 2 (70

F, 83 M, M = 24.9 years, SD = 5.05), and 107 completed session 3 (47 F, 60 M, M = 24.8 years,

SD = 5.07). Participants who completed only one or two sessions did not differ in WM or cate-

gorization accuracy compared to those who completed all sessions (Fig A in S1 File).

Participants completed a language history questionnaire prior to participating. All partici-

pants were native speakers of non-tonal languages and reported no prior experience with any

tonal languages, including Mandarin. Participants were given a sound check before the start of

each session to ensure they could hear the sounds and were wearing headphones. Participants

received $10/session for their participation (total up to $30 across three sessions). Informed

consent was obtained from all participants. The study protocol was approved by the Institu-

tional Review Board at the University of Pittsburgh.

Stimuli

The stimuli were natural speech productions recorded from four native speakers (2 M, 2 F) of

Mandarin Chinese (Fig 1A). Each tone category (e.g., high-flat, low-rising, low-dipping, and

high-falling) was produced by each speaker in five syllable contexts (/bu/, /di/, /lu/, /ma/, and

/mi/) for a total of 80 stimuli (20/category). The stimuli from two speakers (1 F, 1 M) were

Fig 1. Stimuli and procedure. A. Two-dimensional representation of stimuli used during category learning and generalization with colors reflecting different

tone categories. B. Session procedure. C. Task procedure.

https://doi.org/10.1371/journal.pone.0297917.g001
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used during the training blocks and the stimuli from the other speakers (1 F, 1 M) were with-

held for the generalization block. The same 40 generalization stimuli were presented in the

generalization block of each session and participants never received feedback about these sti-

muli. To reduce incidental differences in duration across categories, the stimuli were dura-

tion-normalized to 440 ms and RMS-amplitude normalized to 70 dB. The stimuli are shown

in Fig 1A in a two-dimensional space (relative pitch, pitch change) that can be used to separate

the stimuli into categories and is linked to neural representations of these categories [60, 61].

Procedure

Category learning. Participants completed three separate sessions of category learning

(Fig 1B). Sessions 1 and 2 were separated by one month. Sessions 2 and 3 were separated by

two months. In each session, participants completed six blocks of an identical category learn-

ing task and an additional generalization block with different stimuli and no feedback. The sti-

muli were the same across sessions. Participants never received feedback about the

generalization stimuli. At the beginning of the experiment, participants were told that they

would be grouping sounds into different categories based on corrective feedback. They were

not given any specific instructions about the stimuli or what might differentiate the categories

from one another.

In the category learning task, there were six blocks of 40 trials each. In the generalization

task, there was one block of 40 trials. Participants heard the 440 ms duration sound, followed

by a prompt about the category identity (“Which category?”) (Fig 1C). They pressed the 1, 2, 3,

and 4 buttons on the keyboard to respond. Participants received trial-by-trial feedback in the

category learning task where they were informed about whether their decision was ‘Correct’ or

‘Incorrect.’ The feedback was presented immediately for 750 ms. Participants did not receive

feedback in the generalization task. In both tasks, there was an intertrial interval of 1 sec.

Working memory capacity. In the first session, participants first completed the category

learning and generalization blocks and then completed an operation span task [62] as a mea-

sure of WM capacity. Participants were shown simple arithmetic problems and reported

whether the presented solutions were correct or incorrect (e.g., (1 + 7) x 2 = 16) and were then

shown a letter on the screen (e.g., A). A sequence of these arithmetic problems and letters

from three to seven items in length made up a trial. After a full sequence was presented, partic-

ipants were instructed to recall the letters presented in order. There were 15 trials. Participants’

WM capacity was calculated based on the OSPAN score–the sum of the length of all correctly

recalled spans. For example, if a participant correctly recalled a sequence of four letters (e.g., A,

I, D, F), four points were added to their score. The minimum possible OSPAN score is 0 and

the maximum possible OSPAN score is 75. We did not filter scores based on accuracy on the

arithmetic problems [63] and participants were generally very accurate (M = 85%, SD = 14%;

Fig B in S1 File).

Drift diffusion modeling

We applied a variant of the DDMs developed in Paulon et al. [53]. The model estimates the evi-

dence accumulation rate (i.e., drift) μd,s for each combination of decision response d and stim-

ulus category s and decision thresholds (i.e., boundaries) bd for each decision response d.

Additionally, the model also fits offset parameters δs for each stimulus category, which charac-

terize the times taken by the actions that are not directly relevant to the actual decision-making

processes (e.g., the time required to encode the s-th stimulus before evidence accumulation

begins, to press a computer key, to record a response after a decision is reached, etc.). The

model lets the parameters μd,s bd and δs to vary between participants, which accommodates the
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substantial variability across participants. Importantly, the model also allows μd,s and bd to

evolve smoothly over time (across training blocks), explaining the changes in the decision-

making processes as the participants learn over time. We allowed the drift rates to vary across

both stimulus category and response and assume that participants gather evidence towards

each of the four possible response options at different rates depending on the true identity of

the stimulus category. The decisions participants make in this task are tied directly to the

sound category. Exemplars from within a sound category share characteristics and differ from

exemplars from other sound categories. Due to the stimulus characteristics, participants may

accumulate evidence at different rates for the different stimulus-response combinations.

Boundaries only varied across response and different levels of response caution were not

dependent on the true stimulus category.

The data were filtered to exclude very fast and very slow responses by removing the top and

bottom 1% of all trials across all participants based on reaction time. The remaining data, com-

prising both correct and incorrect trials, were used to estimate the parameters. Since gradual

improvements in making correct decisions characterize learning, in our discussions below, we

emphasize heavily on inferring the drift rates associated with successful identification of the

stimulus (μd,s for correct responses with s = d). Consideration of all responses does not change

the overall results (see Fig D in S1 File, Table D in S1 File).

We adopted a Bayesian framework for these analyses, assigning priors to the parameters

and relying on samples drawn from the posterior using a Markov chain Monte Carlo

(MCMC) algorithm for estimation and inference. The algorithm was run for 6,000 iterations

with the initial 2,000 iterations discarded as burn-in. The remaining samples were further

thinned by an interval of 5 to reduce autocorrelation. MCMC diagnostics such as trace-plots

of the parameters, Geweke test for stationarity of the chains, etc. indicated no convergence or

mixing-related issues. Posterior predictive checks indicated good model fit. Finally, posterior

means are reported as point estimates and pointwise credible intervals are used to assess

uncertainty. For more details on the implementation of these models, see S1 File.

Data were visualized and analyzed using R, version 4.3.1 [64] and the following R packages:

tidyverse, version 1.3.2, [65], ggplot2, version 3.4.3 [66], ggthemes, version 4.2.4 [67], lddmm,

version 0.4.2 [68], lme4, version 1.1.34 [69], lmerTest, version 3.1.3 [70], rstatix, version 0.7.2

[71].

Results

Learning performance

On average, participants learned the Mandarin tone categories with substantial individual vari-

ability in performance (Fig 2A). For context, we also plot the reaction times (Fig 2B). We note

that for visualization of performance across blocks, we grouped participants by their WM

scores based on a median split (Mdn = 46), with values equal to or higher than the median

defined as high WM and values lower than the median being defined as low WM. The analyses

were conducted using raw OSPAN scores as a continuous variable with linear mixed effects

models using the lme4 package in R [69] and are also shown (Fig 2C).

We examined the extent to which WM capacity, indexed by the OSPAN score, was associ-

ated with performance in the category learning task. We used linear mixed effects models with

session (as categorical variable), block, WM capacity, all possible interactions as fixed effects,

participant (intercept) as a random effect, and average accuracy across a block as the continu-

ous outcome variable. Session 1 was treated as the baseline session. Full results are presented

in Table 2.
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Overall, accuracy improved linearly across blocks in all sessions (βBlock = 1.84, SE = 0.62, p
= .0032; βBlock*Session2 = -0.28, SE = 0.88, p = .75; βBlock*Session3 = -1.12, SE = 0.88, p = .20) and

improved marginally in session 2 from session 1 (βSession2 = 6.51, SE = 3.43, p = .058) and sig-

nificantly in session 3 from session 1 (βSession3 = 14.5, SE = 3.43, p< .0001).

Fig 2. Working memory and learning performance across all participants. A. Accuracy and B. Reaction times after removing the

shortest and longest 1% of responses. Error bars reflect SEM. For purposes of illustration, high and low working memory groups are

defined based on a median split of working memory (OSPAN) scores. C. Relation between OSPAN score and proportion correct

across blocks and sessions for all participants.

https://doi.org/10.1371/journal.pone.0297917.g002
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Collapsing across blocks, the relationship between WM score and accuracy was not signifi-

cant in session 1 (βOSPAN = -0.011, SE = 0.11, p = .92), but was significantly stronger in sessions

2 and 3 (βOSPAN*Session2 = 0.31, SE = 0.074, p< .0001; βOSPAN*Session3 = 0.22, SE = 0.074, p =

.0026). Importantly, the relationship between WM score and accuracy interacted with both

block and session. In session 1, there was a positive relationship between WM and accuracy

that became stronger across blocks (βOSPAN*Block = 0.055, SE = 0.013, p< .0001). A one unit

increase in WM score was associated with an additional 0.055% increase in accuracy in each

block. While in the first block, the relationship between WM score and accuracy was very

weak (0.044%), by the final block, the relationship was clearly positive (0.32%). As a reminder,

WM scores could range from 0 to 75, so even a relatively modest increase in WM score of 10

points would be associated with an additional increase in accuracy of 3.2% in the final block of

session 1. A larger difference in WM score of 30 points would be associated with an additional

increase in accuracy of 9.6% in this block.

One month later, in session 2, there was a positive relationship between WM and accuracy.

While the relationship between WM and accuracy became stronger across blocks, the relative

change was significantly smaller than in session 1 (βOSPAN*Block*Session2 = -0.053, SE = 0.019, p
= .0057). In session 2, a one unit increase in WM score was associated with an additional

0.002% increase in accuracy in each block. Across blocks, the relationship between WM score

and accuracy was similar to session 1 (range 0.30% - 0.31%).

Two months after session 2, in session 3, there was a positive relationship between WM and

accuracy that became stronger across blocks in a way that was not significantly different from

session 1 (βOSPAN*Block*Session3 = -0.032, SE = 0.019, p = .095). In session 3, a one unit increase

in WM score was associated with an additional 0.023% increase in accuracy in each block. In

the first block, the relationship between WM score and accuracy was 0.24% and by the final

block, the relationship was similar to the final blocks of the other sessions (0.35%).

Taken together, we found that working memory ability was positively associated with

speech category learning accuracy across training sessions, becoming relatively stronger across

blocks in sessions 1 and 3 and was stable in session 2. While in the very initial stages of learn-

ing, WM score was not significantly related to accuracy (0.044% in first block of session 1), by

the end of session 1 and persisting through the other sessions, WM score was positively related

to accuracy (range 0.24% to 0.35%). The positive relationship between WM ability and

Table 2. Summary of results on WM capacity and category learning performance.

β SE p
Intercept 26.0 5.09 < .0001

OSPAN -0.011 0.11 .92

Block 1.84 0.62 .0032

Session 2 6.51 3.43 .058

Session 3 14.5 3.43 < .0001

OSPAN * Block 0.055 0.013 < .0001

OSPAN * Session 2 0.31 0.074 < .0001

OSPAN * Session 3 0.22 0.074 .0026

Block * Session 2 -0.28 0.88 .75

Block * Session 3 -1.12 0.88 .20

OSPAN * Block * Session 2 -0.053 0.019 .0057

OSPAN * Block * Session 3 -0.032 0.019 .095

β, estimate. SE, standard error of estimate. p, p-value. OSPAN, operation span score.

https://doi.org/10.1371/journal.pone.0297917.t002
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performance emerged within the first session and remained relatively stable throughout follow

up sessions 2 and 3.

Learners and non-learners. Importantly, we also aimed to understand if the relationship

between WM capacity and accuracy was present when considering only participants who

learned the categories. We identified participants who performed at or below chance levels in

the final block of session 3 (defined by 95% cumulative binomial probability, 40 trials, 0.25

probability of correct response = 25% +/- 10%) as ‘non-learners’ and those who performed bet-

ter than chance as ‘learners’ (Fig 3A). Even though the non-learners were defined based on

their accuracy in the final block of session 3, non-learners had significantly lower accuracy

throughout all blocks (Bonferroni-corrected pairwise comparisons, p< .001), except for the

first block of session 1 (p = .078). This underlines the necessity of considering learners sepa-

rately from non-learners.

A total of 32% (34/107) of participants were classified as non-learners. WM scores for learn-

ers (M = 44.1) were marginally higher than non-learners (M = 36.7; t(65.6) = 1.79, p = .078,

95% CI [-0.84, 15.6]). This may indicate that individuals with lower WM may be more likely to

be non-learners. It is important to note that we cannot completely rule out that non-learners

with seemingly lower WM may have been generally disengaged in the experiment, leading to

poorer performance in both the WM task and the category learning task. If this is the case,

WM scores for these individuals may not reflect their true WM abilities. As post-hoc evidence

that some participants may have been disengaged across tasks, we found that learners

(M = 90%) performed better than non-learners (M = 79%) at identifying the arithmetic equa-

tions as correct or incorrect in the WM task (t(44) = 3.49, p = .0011, 95% CI [4.58, 17.1]; Fig B

in S1 File). In the following analyses, we focus on the remaining 68% (73/107) of participants

who are operationally defined as ‘learners’ in the category learning task. Because the accuracies

of non-learners were within a low and highly restricted range by definition, we examined the

relationship between WM score and accuracy for learners only.

To understand if the relationship between WM and category learning performance was

present when examining learners only, we ran the same linear model analysis with learners

only (Fig 3B; Table 3). Session 1 was treated as a baseline.

Of critical interest is whether WM score and accuracy were still positively related when

examining only those who learned the categories. In session 1 ignoring block, the relationship

between WM and accuracy was not significant (βOSPAN = -0.029, SE = 0.10, p = .76). However,

this relationship became stronger across blocks (βOSPAN*Block = 0.050, SE = 0.015, p = .00059;

βOSPAN*Block*NonLearners = -0.043, SE = 0.026, p = .11). A one unit increase in WM score was

associated with an additional 0.050% increase in accuracy in each block for learners. By the

final block of session 1, a one unit increase in WM score was associated with a 0.27% increase

in accuracy for learners.

In session 2, the relationship between WM and accuracy was positive and significantly

stronger than session 1 (βOSPAN*Session2 = 0.30, SE = 0.081, p = .00018). Ignoring block, a one

unit increase in WM was associated with an increase in accuracy of 0.27%. This relationship

was relatively stable, becoming mildly weaker across blocks. The relationship between WM

score and accuracy across blocks was significantly different from session 1 (βOSPAN*Block*Session2

= -0.058, SE = 0.021, p = .0048). A one unit increase in WM score was associated with an addi-

tional 0.008% decrease in accuracy in each block. By the final block of session 2, a one unit

increase in WM score was associated with a 0.23% increase in accuracy for learners.

In session 3, the relationship between WM and accuracy was positive and significantly

stronger than session 1 (βOSPAN*Session3 = 0.18, SE = 0.081, p = .023). Ignoring block, a one unit

increase in WM was associated with an increase in accuracy of 0.15%. The relationship was rel-

atively stable, becoming mildly stronger across blocks. The relationship between WM score
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Fig 3. Working memory and learning performance across learners and non-learners. A. Accuracy and B. Reaction

times after removing the shortest and longest 1% of responses. Error bars reflect SEM. For purposes of illustration,

high and low working memory groups are defined based on a median split of working memory (OSPAN) scores.

Groups are additionally separated into learners and non-learners based on session 3 block 6 accuracy and whether it

was greater (learners) or less than (non-learners) chance performance. C. Relation between OSPAN score and

proportion correct across blocks for learners only.

https://doi.org/10.1371/journal.pone.0297917.g003
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and accuracy across blocks was significantly different from session 1 (βOSPAN*Block*Session3 =

-0.043, SE = 0.021, p = .039). A one unit increase in WM score was associated with an addi-

tional 0.007% increase in accuracy in each block for learners. By the final block of session 3, a

one unit increase in WM score was associated with a 0.20% increase in accuracy for learners.

Among learners only, higher WM ability was associated with better non-native speech cate-

gory learning performance. This relationship emerged within the first session and was persis-

tent across sessions 2 and 3 and, unsurprisingly, was slightly weaker than the relationship

including all participants. The slope of the relationship between WM score and accuracy was

0.27% in the final block of session 1, 0.23% in the final block of session 2, and 0.20% in the

final block of session 3.

Maintenance of category knowledge over time

By examining learning across several sessions separated by one and two months, respectively,

we can assess the maintenance of categorization performance and category knowledge over

time. We assessed category knowledge maintenance by comparing adjacent training blocks

that were either separated by no delay (i.e., blocks 5 and 6 of the same session) or a delay of

one or two months (i.e., block 6 of one session and block 1 of the next session). Performance

across these blocks and sessions for learners and non-learners separately is shown in Fig 4A.

Because we are interested in how knowledge is retained over time, we focus our analyses only

on learners.

Learners were somewhat able to maintain their category knowledge after a month or more

of no additional training. Between sessions 1 and 2, accuracy fell an average of 7.2% (58.0% in

block 6 to 50.9% in block 1) and between sessions 2 and 3, accuracy fell an average of 7.0%

(65.6% in block 6 to 58.6% in block 1). In contrast, accuracy was relatively stable in the end of

the sessions with accuracy increasing by 1.8% in session 1 (56.0% in block 5 to 57.8% in block

6) and by 0.3% in session 2 (65.2% in block 5 to 65.5% to block 6).

The ability to maintain category performance in adjacent blocks both with no delay (i.e.,

block 5 vs block 6) and after a one- or two-month delay (i.e., block 6 and block 1 of the next

session) was unrelated to learners’ WM capacity (Fig 4B, Table B in S1 File). We examined the

percent difference between adjacent blocks across sessions using a linear mixed effects model

with time (session 1 to 2 as baseline), delay (delay as baseline), WM score (OSPAN), and all

Table 3. Summary of results on WM capacity and category learning performance across groups.

β SE p
Intercept 27.5 4.94 < .0001

OSPAN -0.029 0.10 .78

Block 3.46 0.71 < .0001

Session 2 13.0 3.90 .00090

Session 3 25.0 3.90 < .0001

OSPAN * Block 0.050 0.015 .00059

OSPAN * Session 2 0.30 0.081 .00018

OSPAN * Session 3 0.18 0.081 .023

Block * Session 2 -0.56 1.00 .58

Block * Session 3 -1.12 1.00 .26

OSPAN * Block * Session 2 -0.058 0.021 .0048

OSPAN * Block * Session 3 -0.043 0.021 .039

β, estimate. SE, standard error of estimate. p, p-value. OSPAN, operation span score.

https://doi.org/10.1371/journal.pone.0297917.t003
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interactions as fixed effects and participant as a random effect. WM was unrelated to the reten-

tion of performance across sessions 1 to 2 (βOSPAN = 0.032, SE = 0.068, p = .64) and 2 and 3

(βOSPAN*Sessions 2 to 3 = 0.020, SE = 0.094, p = .83). The relationship between WM and retention

did not depend on whether there was a delay of a month (βOSPAN*Delay = 0.012, SE = 0.094, p =

.90) or two months (βOSPAN*Delay*Sessions 2 to 3 = -0.14, SE = 0.13, p = .29).

Generalization to novel speakers

By examining how participants respond to new speakers about which they never receive feed-

back, we can assess the generalizability of their category knowledge. We first calculated a gen-

eralization score by subtracting the final training block accuracy from the test accuracy.

Overall, learners were successful at generalizing their knowledge to the new speakers (Fig 5A).

Once again, we focus our analyses on learners as there is no clear category knowledge for non-

learners to generalize. We examined whether generalization performance across sessions was

related to WM capacity by examining session (session 1 as baseline), WM score (OSPAN), and

the interaction between session and WM score as fixed effects and participant as a random

effect (Fig 5B, Table C in S1 File).

WM ability was not significantly related to learners’ generalization ability in session 1

(βOSPAN = 0.080, SE = 0.055, p = .14). There were no significant differences in the relationship

between WM and generalization accuracy in sessions 1 and 2 (βOSPAN*Session2 = -0.049,

SE = 0.076, p = .52) or sessions 1 and 3 (βOSPAN*Session3 = -0.085, SE = 0.076, p = .26). Overall,

these results demonstrate that, among learners, WM ability is not significantly related to the

ability to generalize Mandarin tone category knowledge to novel speakers.

Decision processes

We examined participants’ decision processes based on the parameters from the drift diffusion

models. We focus on the evidence accumulation rate (i.e., drift rate; Fig 6A) and decision

threshold (i.e., boundary; Fig 6C) parameters. As these are Bayesian analyses, we interpret

Fig 4. Working memory and performance maintenance. A. Error bars reflect SEM. For purposes of illustration, high and low working memory groups are

defined based on a median split of working memory (OSPAN) scores. Groups are additionally separated into learners and non-learners based on session 3

block 6 accuracy and whether it was greater (learners) or less than (non-learners) chance performance. B. Relation between OSPAN score and percent

difference from block 5 to 6 within a session (No Delay) and block 6 to block 1 (Delay) for learners only.

https://doi.org/10.1371/journal.pone.0297917.g004
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differences between groups where there is no overlap in the 95% credible intervals. We esti-

mated the parameters for each individual and block, separately across sessions, with all subjects

together (i.e., both learners and non-learners). As in prior work, we focus on the results for

drift rates for accumulators where the stimulus category is the same as the response category

(i.e., correct responses) [51]. This allows for examination of decision processes at play on trials

where participants made correct responses. The overall pattern of results does not change

when examining responses from all accumulators (Fig D in S1 File, Table D in S1 File).

First, we note the difference between learners and non-learners. Learners had higher evi-

dence accumulation rates and higher decision thresholds than non-learners. In learners, the

evidence accumulation rates increased over time, indicating that they became faster at accu-

mulating evidence towards the correct decision. In contrast, the evidence accumulation rates

in non-learners were low and flat throughout training, providing evidence of their general dis-

engagement from the task. The decision thresholds were lower in non-learners than learners

throughout the sessions deviating from one another after the very first block of training, indi-

cating that non-learners needed less evidence to make their decision. This pattern may indicate

that non-learners’ decisions were based on optimizing speed rather than categorization

accuracy.

Critically, our modeling approach enables estimation of the decision parameters at the indi-
vidual participant level, allowing for examination of how these parameters relate to WM capac-

ity. To understand how decision parameters differed based on WM in learners, we ran

separate linear mixed effects models on the two parameters with block, session, WM score

(OSPAN), and all interactions as fixed effects and participant as a random effect. Session 1 was

treated as a baseline. Full results are shown in Tables 4 and 5. We focus on the results on the

relationship between WM capacity and evidence accumulation rates and decision thresholds.

Fig 5. Working memory and category generalization. A. Error bars reflect SEM. For purposes of illustration, high and low working memory groups are

defined based on a median split of working memory (OSPAN) scores. Groups are additionally separated into learners and non-learners based on session 3

block 6 accuracy and whether it was greater (learners) or less than (non-learners) chance performance. B. Relation between OSPAN score and generalization

test score (mean generalization accuracy–mean block 6 accuracy) across sessions for learners only.

https://doi.org/10.1371/journal.pone.0297917.g005
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Overall, learners with higher WM capacity accumulated evidence more quickly towards the

correct decision in each session (Fig 6B). In session 1, there was not a significant relationship

between WM and evidence accumulation rate (βOSPAN = 0.00075, SE = 0.0035, p = .83).

Fig 6. Working memory and decision processes. A and C: error bars reflect 95% credible intervals. For purposes of illustration, high and low working

memory groups are defined based on a median split of working memory (OSPAN) scores. Groups are additionally separated into learners and non-learners

based on session 3 block 6 accuracy and whether it was greater (learners) or less than (non-learners) chance performance. B and D: relation between OSPAN

score and evidence accumulation rate and decision threshold for learners only.

https://doi.org/10.1371/journal.pone.0297917.g006

Table 4. Summary of results on WM capacity and evidence accumulation rate.

β SE p
Intercept 0.15 0.17 .38

OSPAN 0.00075 0.0035 .83

Block 0.11 0.021 < .0001

Session 2 0.47 0.12 < .0001

Session 3 0.64 0.12 < .0001

OSPAN * Block 0.0013 0.00044 .0030

OSPAN * Session 2 0.0064 0.0024 .0084

OSPAN * Session 3 0.0072 0.0024 .0030

Block * Session 2 -0.066 0.030 .029

Block * Session 3 -0.051 0.030 .087

OSPAN * Block * Session 2 -0.00059 0.00062 .34

OSPAN * Block * Session 3 -0.00065 0.00062 .29

β, estimate. SE, standard error of estimate. p, p-value. OSPAN, operation span score.

https://doi.org/10.1371/journal.pone.0297917.t004
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However, the relationship became significantly stronger across blocks (βOSPAN*Block = 0.0013,

SE = 0.00044, p = .0030). A one unit increase in WM score was associated with an increase in

evidence accumulation rate of 0.0021 units for learners in the first block of session 1 and

0.0086 units for learners in the final block of session 1.

The strength of the relationship between WM score and evidence accumulation rate also

increased across sessions (βOSPAN*Session2 = 0.0064, SE = 0.0024, p = .0084; βOSPAN*Session3 =

0.0072, SE = 0.0024, p = .0030). In session 2, a one unit increase in WM score was associated

with an increase in evidence accumulation rate of 0.0071 units for learners and this relation-

ship was not significantly different across blocks (βOSPAN*Block*Session2 = -0.00059 SE = 0.00062,

p = .34). In session 3, a one unit increase in WM score was associated with an increase in evi-

dence accumulation rate of 0.0079 units for learners and this relationship was not significantly

different across blocks (βOSPAN*Block*Session3 = -0.00065, SE = 0.00062, p = .29).

In contrast, there was no clear relationship between WM capacity and decision thresholds

in any session (Fig 6B). In session 1, a one unit increase in WM score was associated with a

non-significant decrease in threshold of 0.0024 units for learners (βOSPAN = -0.0024,

SE = 0.0018, p = .17). The relationship between WM and threshold became slightly less nega-

tive across blocks in session 1 (βOSPAN*Block = 0.00063, SE = 0.00028, p = .022). A one unit

increase in WM score was associated with a decrease in threshold of 0.0018 units for learners

in the first block but an increase of 0.0014 units in the final block of session 1. Overall, in ses-

sion 1, there was no clear relationship between WM score and decision threshold.

The relationship between WM and threshold differed in sessions 2 and 3 compared to ses-

sion 1 (βOSPAN*Session2 = 0.0047, SE = 0.0015, p = .0022; βOSPAN*Session3 = 0.0035, SE = 0.0015, p
= .021). However, this difference appears to stem from changing from a negligible negative

relationship in session 1 to a negligible positive relationship in sessions 2 and 3. In session 2,

one unit increase in WM score was associated with an increase in threshold of 0.0023 for learn-

ers, which did not significantly differ across blocks (βOSPAN*Block*Session2 = -0.00074,

SE = 0.00039, p = .058). In session 3, a one unit increase in WM score was associated with an

increase in threshold of 0.0011 units for learners, which did not significantly differ across

blocks (βOSPAN*Block*Session3 = -0.00066, SE = 0.00039, p = .090). In sum, decision thresholds

did not strongly relate to WM capacity in any session.

Table 5. Summary of results on WM capacity and decision threshold.

β SE p
Intercept 1.35 0.085 < .0001

OSPAN -0.0024 0.0018 .17

Block -0.014 0.013 .31

Session 2 0.0023 0.074 .98

Session 3 -0.049 0.074 .51

OSPAN * Block 0.00063 0.00028 .022

OSPAN * Session 2 0.0047 0.0015 .0022

OSPAN * Session 3 0.0035 0.0015 .021

Block * Session 2 -0.0091 0.019 .63

Block * Session 3 0.035 0.019 .068

OSPAN * Block * Session 2 -0.00074 0.00039 .058

OSPAN * Block * Session 3 -0.00066 0.00039 .090

β, estimate. SE, standard error of estimate. p, p-value. OSPAN, operation span score.

https://doi.org/10.1371/journal.pone.0297917.t005
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Overall, learners with higher WM capacity had faster evidence accumulation rates. The

relationship began to emerge in the first session and was clearly present in the second and

third sessions. In contrast, learners’ decision thresholds did not depend on WM capacity.

Together, these results indicate that WM capacity impacts specific elements of decision-mak-

ing differently across the trajectory of learning.

Discussion

We investigated non-native speech category learning in initial learning sessions and in two fol-

low up sessions with one and two months between each session, respectively. We examined

the extent to which WM capacity was related to initial and later learning sessions and in which

ways (Fig 7). Considering all participants, higher WM was associated with better speech cate-

gory learning across learning stages. Participants with higher WM may also have been more

likely to learn the categories than participants with lower WM. When considering only indi-

viduals who performed at above-chance levels (i.e., learners), WM was associated with better

performance by later blocks of initial acquisition (session 1) and in intermediate and later ses-

sions (session 2–3) becoming somewhat weaker over time. WM ability was generally unrelated

to maintenance of category knowledge over delays or generalization of category knowledge to

new talkers. Finally, among learners, higher WM capacity was associated with faster evidence

accumulation rates across learning sessions and was not associated with decision thresholds in

any session.

Learners and non-learners

Our results demonstrate that simply grouping all participants together does not tell a complete

story because some participants clearly do not demonstrate learning, performing at chance lev-

els even after extensive training. However, swiftly removing these non-learners as is common

practice in the field [32–35] may obscure parts of the story as well. Participants who performed

at or below chance levels at the end of three sessions of training were consistently poor per-

formers across all blocks and sessions had marginally lower WM scores than learners. Impor-

tantly, it is possible that non-learners with lower WM scores may have been generally

Fig 7. Role of working memory in different stages of category learning. Visualization of relationship between behavioral measures and working memory for

learners based on the regression model coefficients. Error bars reflect SEM.

https://doi.org/10.1371/journal.pone.0297917.g007
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disengaged in the experiment, performing poorly across all measures (Fig B in S1 File). In sup-

port of the interpretation that non-learners were generally disengaged in the task, they had

very low and flat evidence accumulation rates across learning, which may be indicative of gen-

eral task disengagement [54, 72].

Regardless of WM ability, we found that a substantial number of participants (32%) were

classified as non-learners. These individuals returned for three separate sessions of the same

task that they were unable to consistently perform above chance levels. It is important to con-

sider participants’ goals and motivation for completing the task and compare this with experi-

menter-defined goals. Whereas we instructed them to respond as accurately as possible, their

goal seemed to be to respond as quickly as possible regardless of accuracy evidenced by non-

learners’ much lower decision thresholds than learners. Decision thresholds (i.e., response cau-

tion) are related to the speed-accuracy tradeoff [57], with lower decision thresholds reflecting

favoring speed over accuracy. As such, we interpret these low decision thresholds as a mark of

these participants’ disengagement in the category learning task. Importantly, favoring speed

over accuracy is an adaptive strategy if your goal is not to learn the categories, but instead to

complete the experiment as quickly as possible [73].

It is necessary to understand and adapt to the goals of our participants. This study was con-

ducted using an online population, rather than a more typical convenience sample of college

students leveraged in prior studies. This approach presents challenges, but also highlights that

the goals and motivations to perform a simple experimental task may be different among a

broader population than in student populations often examined in experimental psychology

research.

It is important to understand how task disengagement is related to WM ability to under-

stand potential interventions to improve learning. It is unclear if some non-learners want to

learn, but they are unable to or if they are actively deciding to disengage from the task. Future

work should include dynamic measures of task engagement, such as pupil dilation, to better

understand how task engagement is related to WM and contributes to differences learning

outcomes. If task disengagement is truly related to WM and we want to improve learning for

individuals with lower WM, a first step should be ensuring that they are engaged in the task in

the first place.

Together, these results highlight the importance of consideration of individual differences

in learning. In particular, these results call for the need of special consideration of individuals

who may be disengaged from the task. It is possible that a role that WM plays in learning is

ensuring that resources are available for engagement in complex tasks.

Initial learning and learning over time

The main goal of the current study was to understand the role of working memory in learning

beyond initial acquisition. In line with prior work, we found that WM was positively related to

learning by the end of the first session [7–12]. The benefit of higher WM in initial learning may

stem from the ability to hold in mind many possible hypotheses which helps learners home in

on the best one and use it faster and more efficiently [7, 12, 13]. Our results are in line with this

prior work and suggest a role for WM in initial non-native speech category acquisition.

As a novel contribution, our results extend these findings and demonstrate that among par-

ticipants who eventually learn the speech categories, WM was related to learning performance

starting at the end of session 1 and persisting in sessions 2 and 3. This pattern of results con-

flicts with other work on speech category learning that demonstrates that given multiple days

of training, there is no clear link between WM and performance [18, 19]. However, these prior

studies trained participants on across days separated by very short delays, rather than delays of
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over a month or more without additional training. Our results indicate that WM helps in ini-

tial acquisition of category knowledge, but individuals with lower WM may be able to ‘catch

up’ given more time. Specifically, our results provide some preliminary evidence that the rela-

tionship between WM and non-native speech category learning may become weaker over

time. Lower WM is not a sentence to poor learning forever. As long as participants remain

engaged, they are able to learn.

This work also connects with prior investigations of learning from initial acquisition in

novices to overtrained performance in experts in both language (e.g., [24]) and other percep-

tual contexts (e.g., [74]). While category representations start to emerge within a single session

of training [30, 75], it is clear that further learning continues to shape representations and the

networks supporting learning. For example, as individuals move from initial acquisition to

highly experienced experts, there is a decrease in activation in sensory and frontal brain

regions [76, 77], potentially reflecting increased neural efficiency with learning. Research from

visual category learning demonstrates that similar neural networks support initial and well-

learned categorization behavior, but that these networks become more coordinated with

extensive practice [78]. Together, these results highlight the need to understand how learning

and the cognitive abilities and processes that support categorization change from the very ini-

tial novice stages of learning to behavior in overtrained experts. This is particularly relevant for

speech and language learning contexts, where expert or even genuinely stable levels of perfor-

mance are unlikely to emerge in a single training session.

Task difficulty and effort

We found that WM was consistently related to faster evidence accumulation among learners.

These results are in line with prior work that demonstrates that evidence accumulation rates

are linked to individual differences in WM [55, 56]. Faster evidence accumulation rates reflect

higher motivation [54], faster mobilization of attentional resources [79], and lower task diffi-

culty [80–84].

We then might interpret the persistently higher evidence accumulation rate in learners with

higher WM as reflective of heightened motivation, rapid mobilization of available attentional

resources, and perhaps perceived difficulty of the task. That is, even when accuracies were simi-

lar, learners with higher WM may have achieved that level of performance with lower perceived

difficulty and perceived or exerted effort. Conversely, lower evidence accumulation rates

observed in learners with lower WM may be associated with slower mobilization of motiva-

tional or attentional resources and more perceived difficulty in the task. Future research should

clarify how WM relates to perceived difficulty and perceived and exerted effort during learning.

In summary, these results indicate that higher WM capacity is not a guarantee of better

learning. Rather, it reflects better initial acquisition and general performance due to the ability

to hold multiple hypotheses in mind and more rapid decision-making processes throughout

learning. Lower WM also does not doom one to poor performance and, instead, lower WM

may be linked to more time and resource-dependent decision processes which may be more

effortful for the learner. Future work should address the perceived and exerted effort in learn-

ing and how this is related to WM.

Limitations

We note that there was significant attrition across sessions. Whereas 195 individuals com-

pleted the first session, only 107 returned for both follow up sessions. This is a challenge for

longitudinal designs using online samples but is a necessary challenge to overcome to under-

stand learning beyond initial acquisition. While we considered non-learners who completed
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all three sessions, it is also important to consider participants who failed to complete all parts

of the experiment. In future work, it will be important to understand participants’ reasons for

returning or not returning to better understand what is motivating their performance in the

task. Importantly, we found that WM did not differ based on how many sessions participants

completed (Fig A-a in S1 File). This indicates that it was not just lower or higher WM individ-

uals who failed to return for follow up sessions. There was also no difference in categorization

accuracy based on the number of sessions participants completed. That is, within the same ses-

sion, those who completed one, two, or all three sessions did not differ in their accuracy (Fig

A-b in S1 File).

Another limitation of the current work is that we used a single measure of WM, measured at a

single timepoint [85]. Specifically, we used an operation span measure based on ability to manipu-

late and remember a sequence of letters given a mathematical task interference. Operation span is

extensively used and is a highly reliable measure of WM [85, 86]. Even still, one measure likely

does not reflect the true complexity of WM. Further, because of the nature of the complex span

task we used to assess WM capacity, it is possible that performance was influenced by some com-

bination of WM and long-term memory [87]. As a result, the observed relationship between WM

score and speech category learning performance may reflect the ability to hold onto and manipu-

late information in WM as well as retrieve exemplars or rules from long-term memory. However,

it is important to note that measures that should theoretically be related to long-term memory or

activation of exemplars stored in memory (e.g., maintenance, generalization) were not signifi-

cantly related to WM score. Future studies should collect multiple measures of WM including

visuospatial and auditory WM as well as measures of long-term memory to better understand

how speech category learning relies on WM and long-term memory abilities.

Finally, participants learned four difficult categories with minimal feedback (e.g., “correct”

or “incorrect”). Because this kind of feedback is ambiguous when the response is incorrect, it

is possible that performance may have improved if we had provided full feedback (e.g., “cor-

rect, that was category 1”). However, prior work has demonstrated that Mandarin tone learn-

ing, as we examined here, is better with minimal feedback relative to full feedback [88]. Future

studies will need to address the role of WM in learning with full and minimal feedback.

Conclusion

We examined the relationship between WM and non-native speech category learning, mainte-

nance of category knowledge across sessions, generalization to novel talkers, and decision pro-

cesses involved in learning. The results demonstrate that higher WM is not a guarantee of

learning, nor is lower WM a sentence to long-term learning difficulties. WM is one important

ability in supervised category learning. Here, we highlight the need for a nuanced approach

that considers the stage of learning and whether participants eventually learn. By leveraging a

drift diffusion modeling approach and examining behavior from several angles over time, we

conclude that WM may help learners by facilitating rapid category acquisition in initial stages

and enhanced performance during subsequent stages of learning due to rapid evidence accu-

mulation that may reduce the effort needed to learn. These results have important implications

for developing interventions to improve learning in naturalistic language contexts and under-

standing what it means to be engaged in a task.
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