
N-body simulations: methods 
BT2, §2.9



N-body codes
For general potentials, must use numerical codes to solve gravitational 

dynamics

Collisional N-body: evolve all N  particles (N  = # particles in system)

Collisionless N-body: follow N ≪ N  particles (representing the total mass)

‣ in principle most accurate, but very expensive

‣ a Monte Carlo (statistical) approach 

‣ necessary when N  is very large, e.g. galaxies (N ~1011), dark matter 

halos, cosmology 
‣ results accurate when trelax(N) ~ (0.1N/ln N) tcross ≫ age of system 

‣miss close encounters between stars (which can be important, e.g., in 
globulars)



Steps in N-body calculation

Particles Potential Forces New positions, 
velocities

Poisson solver Orbit integration

At each time step:

Repeat until system is evolved to desired time.



Poisson solvers: direct summation

Directly compute all forces (accelerations)

acceleration 
of particle α

Even using Newton’s 3rd law (Fij = Fji), requires N(N-1)/2 force 
evaluations, i.e. O(N2).

Largest direct summation simulations still limited to N≲106.

(e.g., N~500,000 globular cluster simulation of Heggie [2014] took 2 years and 8 
months on 12 CPU cores + 2 GPUs) 



Force softening

(for accurate integration, 
need Δt ≪ tdyn)

For collisional systems, this is physical (e.g., when two stars get very 

close), but can make the computation very slow

For collisionless systems, divergence is artifact of N ≪ N  (actual mass 

distribution is smoother).

As ,

‣ “soften" force to speed up (lose accuracy)

‣ softening can enhance accuracy



Force softening math

Softened force:

Softened potential:

Common choice is Plummer:

force softening kernel,  
→ r -2 for r > ε = softening length

where



How to choose the softening length?
Many factors, no single recipe:

‣ smaller ε in principle allows the simulation to resolve finer structures 
‣but the simulation will be more expensive since structures can collapse 

to higher densities (shorter tdyn) 

‣ cannot avoid limitations due to finite N 
- ε should be chosen such that, in regions of interest, each smoothing 

kernel contains a reasonable number of particles (say 32), otherwise 
the calculation will be affected by sampling noise 

- if ε is too small then the calculation is effectively not softened and 
collisional artifacts can be introduced when modeling a collisionless 
physical system

Common choice in galaxy simulations: ε ~ 1/50-1/20 mean particle separation 

In general, a numerical convergence analysis is needed to check results.



Poisson solvers: tree method

Barnes & Hut (1986): organize particles in oct-tree

‣ recursively divide 3D space into cubes 

‣ if cube contains >1 particles, divide into 8 identical cubes 

‣ continue until tree ‘leaves’ each contain 1 particle
Fig credit: Springel+01



Evaluating the gravitational force using the tree

θ

Define opening angle θ 

Group contributions from distant 

particles into largest parent cube that 

fits within θ 

‣ simplest: approximate cube by its center 

of mass 

‣more accurate: use a few Cartesian 

multipoles (math in BT2, §2.9.2)



Animation credit: John Dubinksi

Advantages of tree method

Much more efficient than direct 
summation for large N: 

‣O(ln N) to evaluate force on single 
particle, so O(N ln N) to evaluate 
force on all N particles 
‣ constructing tree is also O(N ln N) 

No grid:  

‣well suited for dense stellar systems 
moving through nearly empty space 
(e.g., galaxy mergers)



Poisson solvers: particle-mesh (PM) method
Interpolate particle mass onto grid (simplest: Cartesian) 

Solve Poisson eq. using Fourier method to get potential on the grid:

where

In 1D, recall: ,

Using FFT algorithm, this can be done in O(N ln N).



PM method (continued)
Once we have      on the grid, interpolate to compute force on each particle. 

Advance particles using orbit integration algorithm.

Advantages of PM method:

‣ easy to implement 
‣ for applications in which the mass is volume-filling, usually faster than 

tree (O(N ln N) pre-factor constant in smaller)

Disadvantages of PM method:

‣ force approximation is anisotropic on the grid (a particle that should 
produce a spherically symmetric force will be affected by errors that pick 
out grid-aligned directions)



Hybrid methods
Modern codes typically implement hybrid schemes to optimize accuracy-

performance balance.

Particle-particle particle-mesh (P3M):

‣ direct summation for nearby particles 
‣ PM for distant particles

TreePM:

‣ tree for nearby particles 
‣ PM for distant particles

commonly used for cosmological simulations, in which collisional effects 
are not important (so no need for direct summation), and in which distant 
gravitational interactions do not need to be computed as accurately as 
close ones (so PM is adequate)



Adaptive mesh refinement

Generally not as accurate as tree codes for gravity (grid not well matched to 
continuous particle orbits) but useful because hydro often solved on a grid, too.

Figure credit: Romain Teyssier

Accuracy of PM can be improved by using an adaptive grid.



Orbit integration 
BT2, §3.4



Basic orbit integration considerations
Once      is known, need to advance particles accurately.

Two main approaches:

High order integrators:

‣ error grows with a high power of time step h, e.g. O(h4) 
‣ h is small, so error decreases rapidly with finer time steps

Symplectic integrators:

‣preserve some properties of the exact solution (e.g., energy, angular 
momentum, …) 
‣ not necessarily high order, so can require shorter time steps to achieve same 

accuracy for modest-duration integrations 
‣but can be much more accurate for long-term integrations because they 

guarantee that integration does not diverge too much from a realistic solution



Euler integration

Exact solution would 
be (Taylor expansion):

Simplest integration method:

matches does not 
match

Error is O(h2), so the method is only first-order accurate.



Using midpoint for integration

In Euler, derivative at 
the starting point is 
extrapolated to find the 
next function value.

More accurate (2nd order) 
is to use the derivative at 
the midpoint of each 
interval.

Figures from numerical recipes



Leapfrog integration

Better method: drift

kick

Second-order accurate.



Desirable properties of leapfrog

1) Time reversible

3) Preserves phase-space density 
(symplectic)

2) In spherically-symmetric potential, 
conserves angular momentum exactly

see Peter Young’s notes linked on web for more details

Leapfrog obeys several relations satisfied by exact 
solutions of the Newtonian EOMs:

global stability



Fourth-order Runge-Kutta
For general ODE of the form , :

weighted average of 4 estimates of increment, 
constructed to yield 4th-order accuracy

derivative at starting point

use to estimate derivative at midpoint

a different derivative at midpoint

use to estimate derivative at endpoint



Fourth-order Runge-Kutta (continued)

Schematic of derivative 
estimates used in 4th order R-K

For a gravitational system:

Since higher order, more accurate than leapfrog for short integrations.

But not symplectic or time-
reversible, so errors (e.g., in 
energy) increase without 
bound over time.

Four force evaluations per time 
step, so increased accuracy 
relative to lower-order methods 
comes at computational cost.



see figure 3.21 in BT2 for more 

Comparison of different integrators

Fractional energy error vs. time for 
orbit in logarithmic potential, 

R-K and Hermite are 4th order but 
not symplectic 
‣most accurate at first but energy 

error diverges in long term

Leapfrog and modified Euler are 
symplectic but only 2nd order 
‣ energy error is bounded



Hydro simulations: 
overview of methods



What is smoothed particle hydrodynamics?
 

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh 
(volume elements)

representation by fluid elements 
(particles)

resolutions adjusts 
automatically to the flow

high accuracy (shock capturing), low 
numerical viscosity

collapse

principle advantage: principle advantage:

Hydro solvers: classic methods

grid-based Godunov schemes 
Athena, ENZO, RAMSES, …

smooth particle hydrodynamics (SPH)  
GADGET, Gasoline, …



Advantages of grid codes

Agertz+07

“Blob” test

Kelvin-Helmholtz instability test

Generally more accurate for 
pure hydro problems

Traditional SPH schemes are 
known to suppress the 
development of fluid mixing 
instabilities owing to artificial 
surface tension at contact 
discontinuities (P continuous 
but discontinuous ρ and T)

Grid codes can also generally 
resolve shocks discontinuities 
with fewer resolution elements

Correct

Correct



Advantages of SPH codes
Couple more accurately to 
gravity solvers (no grid 
artifacts), so can be 
preferable when gravitational 
forces are most important in 
the problem

SPH widely used for: 
- stellar collisions 
- galaxy mergers 
- cosmology

Antennae galaxies (NGC 4308/4309)

Toomre & Toomre 72 
central point masses+test particles model

e.g., tidal features in galaxy 
collisions primarily shaped by 
gravity



Modern SPH

Hopkins 13

Most recent SPH simulations 
use “improved" or “modern" 
SPH schemes (there are 
many approaches) that 
resolve the primary historical 
discrepancies between grid 
and SPH codes (though do 
not fully resolve them). 

They do so primarily by 
eliminating artificial surface 
tension at contact 
discontinuities.

Traditional (ρ-based) 
SPH suppresses K-H

Modern (P-based) 
SPH more accurately 

follows K-H



New hybrid hydro methods

Caveat: since relatively new, limitations not yet fully understood (e.g., effects 
of numerical noise associated with advecting the mesh)

Springel 10

Moving mesh:
‣ like SPH, can be more accurately 

coupled to gravity 
‣ like fixed grids, more accurate for 

shocks and fluid mixing 
instabilities (use same methods to 
compute fluxes between cells)

Meshless versions:
‣ can be generalized such that well-

defined cells boundaries need not 
be tracked (“fuzzy” cells) 
‣ e.g., the new "meshless finite 

mass" (MFM) method


