
N-body simulations: methods
BT2, §2.9

N-body codes
For general potentials, must use numerical codes to solve gravitational

dynamics

Collisional N-body: evolve all N particles (N = # particles in system)

Collisionless N-body: follow N ≪ N particles (representing the total mass)

‣ in principle most accurate, but very expensive

‣ a Monte Carlo (statistical) approach

‣ necessary when N is very large, e.g. galaxies (N ~1011), dark matter

halos, cosmology
‣ results accurate when trelax(N) ~ (0.1N/ln N) tcross ≫ age of system

‣miss close encounters between stars (which can be important, e.g., in
globulars)

Steps in N-body calculation

Particles Potential Forces New positions,
velocities

Poisson solver Orbit integration

At each time step:

Repeat until system is evolved to desired time.

Poisson solvers: direct summation

Directly compute all forces (accelerations)

acceleration
of particle α

Even using Newton’s 3rd law (Fij = Fji), requires N(N-1)/2 force
evaluations, i.e. O(N2).

Largest direct summation simulations still limited to N≲106.

(e.g., N~500,000 globular cluster simulation of Heggie [2014] took 2 years and 8
months on 12 CPU cores + 2 GPUs)

Force softening

(for accurate integration,
need Δt ≪ tdyn)

For collisional systems, this is physical (e.g., when two stars get very

close), but can make the computation very slow

For collisionless systems, divergence is artifact of N ≪ N (actual mass

distribution is smoother).

As ,

‣ “soften" force to speed up (lose accuracy)

‣ softening can enhance accuracy

Force softening math

Softened force:

Softened potential:

Common choice is Plummer:

force softening kernel,
→ r -2 for r > ε = softening length

where

How to choose the softening length?
Many factors, no single recipe:

‣ smaller ε in principle allows the simulation to resolve finer structures
‣but the simulation will be more expensive since structures can collapse

to higher densities (shorter tdyn)

‣ cannot avoid limitations due to finite N
- ε should be chosen such that, in regions of interest, each smoothing

kernel contains a reasonable number of particles (say 32), otherwise
the calculation will be affected by sampling noise

- if ε is too small then the calculation is effectively not softened and
collisional artifacts can be introduced when modeling a collisionless
physical system

Common choice in galaxy simulations: ε ~ 1/50-1/20 mean particle separation

In general, a numerical convergence analysis is needed to check results.

Poisson solvers: tree method

Barnes & Hut (1986): organize particles in oct-tree

‣ recursively divide 3D space into cubes

‣ if cube contains >1 particles, divide into 8 identical cubes

‣ continue until tree ‘leaves’ each contain 1 particle
Fig credit: Springel+01

Evaluating the gravitational force using the tree

θ

Define opening angle θ

Group contributions from distant

particles into largest parent cube that

fits within θ

‣ simplest: approximate cube by its center

of mass

‣more accurate: use a few Cartesian

multipoles (math in BT2, §2.9.2)

Animation credit: John Dubinksi

Advantages of tree method

Much more efficient than direct
summation for large N:

‣O(ln N) to evaluate force on single
particle, so O(N ln N) to evaluate
force on all N particles
‣ constructing tree is also O(N ln N)

No grid:

‣well suited for dense stellar systems
moving through nearly empty space
(e.g., galaxy mergers)

Poisson solvers: particle-mesh (PM) method
Interpolate particle mass onto grid (simplest: Cartesian)

Solve Poisson eq. using Fourier method to get potential on the grid:

where

In 1D, recall: ,

Using FFT algorithm, this can be done in O(N ln N).

PM method (continued)
Once we have on the grid, interpolate to compute force on each particle.

Advance particles using orbit integration algorithm.

Advantages of PM method:

‣ easy to implement
‣ for applications in which the mass is volume-filling, usually faster than

tree (O(N ln N) pre-factor constant in smaller)

Disadvantages of PM method:

‣ force approximation is anisotropic on the grid (a particle that should
produce a spherically symmetric force will be affected by errors that pick
out grid-aligned directions)

Hybrid methods
Modern codes typically implement hybrid schemes to optimize accuracy-

performance balance.

Particle-particle particle-mesh (P3M):

‣ direct summation for nearby particles
‣ PM for distant particles

TreePM:

‣ tree for nearby particles
‣ PM for distant particles

commonly used for cosmological simulations, in which collisional effects
are not important (so no need for direct summation), and in which distant
gravitational interactions do not need to be computed as accurately as
close ones (so PM is adequate)

Adaptive mesh refinement

Generally not as accurate as tree codes for gravity (grid not well matched to
continuous particle orbits) but useful because hydro often solved on a grid, too.

Figure credit: Romain Teyssier

Accuracy of PM can be improved by using an adaptive grid.

Orbit integration
BT2, §3.4

Basic orbit integration considerations
Once is known, need to advance particles accurately.

Two main approaches:

High order integrators:

‣ error grows with a high power of time step h, e.g. O(h4)
‣ h is small, so error decreases rapidly with finer time steps

Symplectic integrators:

‣preserve some properties of the exact solution (e.g., energy, angular
momentum, …)
‣ not necessarily high order, so can require shorter time steps to achieve same

accuracy for modest-duration integrations
‣but can be much more accurate for long-term integrations because they

guarantee that integration does not diverge too much from a realistic solution

Euler integration

Exact solution would
be (Taylor expansion):

Simplest integration method:

matches does not
match

Error is O(h2), so the method is only first-order accurate.

Using midpoint for integration

In Euler, derivative at
the starting point is
extrapolated to find the
next function value.

More accurate (2nd order)
is to use the derivative at
the midpoint of each
interval.

Figures from numerical recipes

Leapfrog integration

Better method: drift

kick

Second-order accurate.

Desirable properties of leapfrog

1) Time reversible

3) Preserves phase-space density
(symplectic)

2) In spherically-symmetric potential,
conserves angular momentum exactly

see Peter Young’s notes linked on web for more details

Leapfrog obeys several relations satisfied by exact
solutions of the Newtonian EOMs:

global stability

Fourth-order Runge-Kutta
For general ODE of the form , :

weighted average of 4 estimates of increment,
constructed to yield 4th-order accuracy

derivative at starting point

use to estimate derivative at midpoint

a different derivative at midpoint

use to estimate derivative at endpoint

Fourth-order Runge-Kutta (continued)

Schematic of derivative
estimates used in 4th order R-K

For a gravitational system:

Since higher order, more accurate than leapfrog for short integrations.

But not symplectic or time-
reversible, so errors (e.g., in
energy) increase without
bound over time.

Four force evaluations per time
step, so increased accuracy
relative to lower-order methods
comes at computational cost.

see figure 3.21 in BT2 for more

Comparison of different integrators

Fractional energy error vs. time for
orbit in logarithmic potential,

R-K and Hermite are 4th order but
not symplectic
‣most accurate at first but energy

error diverges in long term

Leapfrog and modified Euler are
symplectic but only 2nd order
‣ energy error is bounded

Hydro simulations:
overview of methods

What is smoothed particle hydrodynamics?

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh
(volume elements)

representation by fluid elements
(particles)

resolutions adjusts
automatically to the flow

high accuracy (shock capturing), low
numerical viscosity

collapse

principle advantage: principle advantage:

Hydro solvers: classic methods

grid-based Godunov schemes
Athena, ENZO, RAMSES, …

smooth particle hydrodynamics (SPH)
GADGET, Gasoline, …

Advantages of grid codes

Agertz+07

“Blob” test

Kelvin-Helmholtz instability test

Generally more accurate for
pure hydro problems

Traditional SPH schemes are
known to suppress the
development of fluid mixing
instabilities owing to artificial
surface tension at contact
discontinuities (P continuous
but discontinuous ρ and T)

Grid codes can also generally
resolve shocks discontinuities
with fewer resolution elements

Correct

Correct

Advantages of SPH codes
Couple more accurately to
gravity solvers (no grid
artifacts), so can be
preferable when gravitational
forces are most important in
the problem

SPH widely used for:
- stellar collisions
- galaxy mergers
- cosmology

Antennae galaxies (NGC 4308/4309)

Toomre & Toomre 72
central point masses+test particles model

e.g., tidal features in galaxy
collisions primarily shaped by
gravity

Modern SPH

Hopkins 13

Most recent SPH simulations
use “improved" or “modern"
SPH schemes (there are
many approaches) that
resolve the primary historical
discrepancies between grid
and SPH codes (though do
not fully resolve them).

They do so primarily by
eliminating artificial surface
tension at contact
discontinuities.

Traditional (ρ-based)
SPH suppresses K-H

Modern (P-based)
SPH more accurately

follows K-H

New hybrid hydro methods

Caveat: since relatively new, limitations not yet fully understood (e.g., effects
of numerical noise associated with advecting the mesh)

Springel 10

Moving mesh:
‣ like SPH, can be more accurately

coupled to gravity
‣ like fixed grids, more accurate for

shocks and fluid mixing
instabilities (use same methods to
compute fluxes between cells)

Meshless versions:
‣ can be generalized such that well-

defined cells boundaries need not
be tracked (“fuzzy” cells)
‣ e.g., the new "meshless finite

mass" (MFM) method

