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Abstract

I develop a theory of communication in which a sender gathers costly information before giving advice 
to a receiver. In a general setting, I show that the sender always communicates all her information to the 
receiver in every equilibrium. In the uniform-quadratic model in which the sender can choose any finite 
partition as her information structure, an upwardly biased sender can convey more precise information 
when recommending a larger action.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Experts often collect costly information before advising decision makers. Imagine an invest-
ment banker (she) persuading her customer (call him the CEO) on the acquisition of a firm, she 
has little idea about its value before mobilizing her research team to gather the relevant infor-
mation. Needless to say, acquiring such information usually incurs cost. Similar situations arise 
when doctors diagnosing patients, lobbyists studying regulation policies, etc.

Motivated by these applications, I study the strategic information transmission problem in 
Crawford and Sobel (1982), with the innovation that the sender acquires her information en-
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dogenously before communicating with the receiver. I find that when information gathering is 
costly, the interaction between moral hazard in acquiring information and adverse selection in 
reporting information overturns many predictions in CS.

In my model, the sender chooses a partition of the state space as her information structure. This 
process is unobservable to the receiver and costly for the sender. My first result shows that the 
sender communicates everything she knows to the receiver in every equilibrium, with virtually 
no restriction on the state space as well as the players’ preferences. Formally speaking, full 
communication is guaranteed whenever the sender can always coarsen her information partition, 
and a strictly coarser partition costs less to acquire. The intuition behind this result is simple: if 
the sender has an incentive to withhold information, then why does she acquire that information 
in the first place? By studying the problem in less detail, she achieves the same outcome at a 
lower cost.

Following this general result, I analyze the well-known ‘uniform-quadratic’ model with an 
‘upwardly biased sender’ (her favorite action is always strictly larger than the receiver’s), which 
has been the main focus of the strategic communication literature. When the cost of an in-
formation structure is proportional to its value (cubic cost),1 I show that every equilibrium is 
characterized by an interval partition with decreasing interval lengths if information acquisition 
cost is large enough. This reverses the characterization result in CS, in which the interval lengths 
are increasing.

For some rough intuition, this ‘reverse informativeness’ result is driven by the commitment 
effect of costly information acquisition. Our cubic cost function implies that given the number of 
elements in the partition, an information structure is more costly if the lengths of the intervals are 
more uniform. Since the sender is upwardly biased, and due to the covert nature of information 
acquisition, decreasing interval equilibria cannot be sustained when the cost of information ac-
quisition is too small. This is because the sender strictly prefers the larger action at the partition 
point, so she has an incentive to move the partition point to the left, and to acquire an information 
structure which is more costly. However, when the cost of information acquisition is sufficiently 
large, this deviation is no longer profitable. Hence, higher information acquisition cost gives the 
sender more commitment power, which helps to sustain informative equilibria with decreasing 
interval lengths.

Related literature My work is closely related to a contemporaneous paper by Argenziano et 
al. (2014), in which the sender chooses the precision of her information by deciding how many 
rounds of Bernoulli Experiments to conduct.2 They study equilibrium outcomes both when the 
sender’s information structure is observable (overt) and when it is non-observable (covert), and 
apply their results to revisit the trade-off between delegation and communication. Both papers 
enrich the sender’s informational choice comparing with earlier contributions, where the sender 
is either perfectly informed or completely ignorant.3 When uncertainty is 1-dimensional, the 

1 Although this result is shown under the cubic cost function, the qualitative feature of the equilibrium is robust to 
more general cost functions. In Section 2 of the Online Appendix, I display a general cost functions under which ‘reverse 
informativeness’ holds.

2 In Argenziano et al. (2014), the state θ is uniformly distributed in [0, 1], the outcome of a Bernoulli experiment is 
binary: either 0 or 1, and outcome 1 occurs with probability θ . In their framework, the sender chooses how many rounds 
of independent experiments to conduct.

3 For example, Aghion and Tirole (1997), Austen-Smith (1994), Hellwig and Veldkamp (2009), etc.
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sender typically has a finite number of interim types, since she has no incentive to be fully 
informed when facing incentive problems in communication.

The main difference between the papers is the amount of flexibility allowed in the sender’s 
informational choice. Their Bernoulli Experiment approach is better micro-founded by explicitly 
describing the information acquisition process, and fits better into applications where players 
cannot finetune their information structures.4

In contrast, my approach enables the sender to flexibly allocate her ‘search effort’ over the 
entire state space. By allowing the sender to choose from the set of partitions, my model deliv-
ers clear comparisons between interval partition equilibria under costly information acquisition 
and CS equilibria. In practice, acquiring a partition information structure can be achieved by 
seeking answers for a set of deliberately chosen survey questions (for example, the customer’s 
age; whether his income is below or above average, etc.), or examining a subset of the relevant 
attributes.

Flexible information acquisition stems from of idea of ‘rational inattention’ (Sims, 2003) and 
has been adopted to study global games (Yang, 2014), security design (Yang, 2015) as well as 
disclosure games (Gentzkow and Kamenica, 2012; Kamenica and Gentzkow, 2011).

Yang (2014) shows that flexibility in players’ informational choices leads to multiple equilib-
ria and enables efficient coordination, which is in sharp contrast to the standard results in global 
games with rigid information. Analogously, my full communication and reverse informative-
ness results illustrate the impact of flexible information acquisition on the outcome of cheap talk 
games.

Layout The rest of the paper is organized as follows. Section 2 introduces a general setup and 
presents the full communication result. Section 3 focuses on the uniform-quadratic model and 
presents the reverse informativeness result. Section 4 concludes.

2. The general model

In this section, I setup a general model in which the sender acquires her information at a 
cost before communicating with the receiver (Fig. 1). I show that every equilibrium achieves 
full communication when the set of available information structures is ‘rich’ and the cost of 
information acquisition satisfies ‘monotonicity’. I also discuss why full communication cannot 
be achieved when the receiver can observe the sender’s information structure.

2.1. Setup

Primitives The receiver (he) needs to make a decision a ∈ A on an unfamiliar project. The 
sender’s and the receiver’s gains from the project are us(a, θ) and ur(a, θ) respectively, both 
depending on the receiver’s action and the state of the world θ ∈ �. Both A and � are compact 
subsets of Rn.

For any set X, I use �(X) to denote the set of distributions over X. Players share a common 
prior μ0 ∈ �(�) over θ . For any �′ ⊂ �, μ0(�

′) denotes the probability of �′ under μ0.

4 Notice that the ‘richness’ assumption in my model is violated in Argenziano et al. (2014), and neither is implied by 
the other.
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Fig. 1. Timeline.

Information acquisition An information structure ψ is a finite partition of �,5 with ψ(θ) (⊂ �) 
the partition element containing θ . I assume that every partition element occurs with strictly 
positive probability, i.e. μ0(ψ(θ)) > 0 for every θ ∈ �.

Let � be the set of ‘available information structures’. At the information acquisition stage, 
the sender chooses ψ ∈ � at cost C(ψ). This choice is non-observable to the receiver. The 
sender’s total payoff equals to her expected gain from the project minus C(ψ).

Every partition element (or signal realization) ψ(θ) leads to a posterior belief : μs
ψ(θ) ∈ �(�), 

which I call the sender’s ‘type’. The standard definition of partition coarseness provides a partial 
ordering of information structures:

Condition 1 (Strictly coarser). ψ ′ is ‘strictly coarser’ than ψ if:

1. ψ(θ) ⊆ ψ ′(θ) for every θ ∈ �.
2. There exists θ ∈ � such that ψ(θ) �= ψ ′(θ).

Next, I introduce the key assumptions of my model:

Assumption 1 (Richness). If ψ ∈ � and ψ ′ is strictly coarser than ψ , then ψ ′ ∈ � .

Assumption 2 (Monotonicity). If ψ ′ is strictly coarser than ψ , then C(ψ ′) < C(ψ).

In a nutshell, richness allows the sender to ‘coarsen’ her information, and she strictly saves 
cost through coarsening when monotonicity holds.

Communication Let M be the set of messages, with cardinality greater or equal to that of �. 
Under information structure ψ , the sender’s communication rule after receiving ψ(θ) is σψ(θ) ∈
�(M). Let μr

m ∈ �(�) be the receiver’s posterior belief after receiving m. Let αm ∈ �(A) be 
his (mixed) action after receiving m.6

2.2. Full communication

Let μs ≡ (μs
ψ(θ))ψ(θ)∈ψ , σ ≡ (σψ(θ))ψ(θ)∈ψ , μr ≡ (μr

m)m∈M and α ≡ (αm)m∈M . A Perfect 
Bayesian Equilibrium (hereafter, equilibrium) is characterized by (ψ, μs, σ, μr, α), and satis-
fies7:

5 A partition is a set of subsets of �, i.e. ψ = {�1, . . . , �n} where �i ⊂ � for all i, ∪n
i=1�i = �, �i ∩ �j = ∅ for 

any i �= j , and n = 1, 2, . . . . By definition, ψ(θ) is the partition element containing θ , so if ψ = {�1, �2, . . . , �n}, there 
exists k ∈ {1, 2, . . . , n} such that ψ(θ) = �k .

6 Formally, for conditional probabilities to be well-defined, I require that σψ(θ) and αm to be Borel probability mea-
sures of Polish spaces M and A, respectively.

7 For notation simplicity, I only write down the equilibrium conditions when the sender is using a pure strategy to 
acquire information.
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1. Given μr and α, every type of sender sends messages which maximize her interim expected 
gain from the project, i.e. for every ψ(θ) ∈ ψ , σψ(θ) assigns probability 1 to the following 
subset of messages8:

arg max
m∈M

∫
θ̃

us(αm, θ̃)dμs
ψ(θ)(θ̃ ).

2. Given μr and α, ψ is chosen to maximize the sender’s expected payoff:

max
ψ∈�

{ ∑
ψ(θ)∈ψ

μ0

(
ψ(θ)

)
︸ ︷︷ ︸
Prob. of ψ(θ)

max
m∈M

{
∫
θ̃

us(αm, θ̃)dμs
ψ(θ)(θ̃ )}

︸ ︷︷ ︸
S’s expected gain under ψ(θ).

−C(ψ)
}
.9

3. The receiver chooses actions which maximize his expected payoff given his posterior belief, 
i.e. for every m ∈ M , αm assigns probability 1 to the following subset of actions:

arg max
a∈A

∫
θ̃

ur (a, θ̃)dμr
m(θ̃).

4. Players’ beliefs are updated according to Bayes Rule whenever applicable.

An equilibrium achieves ‘full communication’ if the sender’s and the receiver’s posterior beliefs 
are always the same. Intuitively, in such equilibria, the sender tells the receiver everything she 
knows. Now, I state my first result:

Proposition 1. When � is rich and C satisfies monotonicity, every pure strategy equilibrium 
achieves full communication.

By ‘pure strategy’, I only restrict the sender to use pure strategies when acquiring informa-
tion, i.e. I allow her to use mixed strategies when sending messages and the receiver to use 
mixed strategies when taking actions. When the sender uses a mixed strategy to acquire informa-
tion, then full communication cannot be guaranteed. However, in every equilibrium, the sender 
will never send the same message under two different signal realizations within one information 
structure. I show this claim in Section 3 of the Online Appendix, and will present an example of 
such mixed strategy equilibrium. I will also discuss cases when the receiver is consulting multi-
ple senders, when the sender is communicating with multiple receivers, or when the receiver can 
also acquire information himself.

8 For every α ∈ �(A), us(α, θ) and ur (α, θ) are defined in their natural ways:

us(α, θ) ≡
∫

a∈A

us(a, θ)dα(a), ur (α, θ) ≡
∫

a∈A

ur (a, θ)dα(a).

9 ‘
∑

ψ(θ)∈ψ ’ means summing over all partition elements in ψ , i.e. if ψ = {�1, . . . , �n}, then 
∑

ψ(θ)∈ψ is equivalent 
to the sum over all �i (i from 1 to n).
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Proof of Proposition 1. The proof is done by contradiction. Suppose there exists an equilib-
rium (ψ, μs, σ, μr, α), such that there exist two partition elements of ψ , ψ(θ1) and ψ(θ2), with 
ψ(θ1) �= ψ(θ2), and a message m ∈ M , satisfying:

m ∈ arg max
m̃∈M

∫
θ̃

us(αm̃, θ̃ )dμs
ψ(θj )(θ̃ ), (1)

for j = 1, 2.
Define ψ̃ to be the partition information structure where:

ψ̃(θ) =
{

ψ(θ) when θ /∈ ψ(θ1) ∪ ψ(θ2)

ψ(θ1) ∪ ψ(θ2) when θ ∈ ψ(θ1) ∪ ψ(θ2).

By definition, ψ̃ is strictly coarser than ψ . Define σ̃ to be the communication rule where10:

σ̃ψ̃(θ) =
{

σψ(θ) when θ /∈ ψ(θ1) ∪ ψ(θ2)

m when θ ∈ ψ(θ1) ∪ ψ(θ2)

Fixing (μr, α), consider the following deviation of the sender: acquiring information structure ψ̃
at the information acquisition stage, and uses σ̃ at the communication stage.

I show that this deviation is strictly profitable. First, ψ̃ is available by Assumption 1 (rich-
ness). Second, (1) implies that the sender’s expected gain from the project under (ψ̃, σ̃ ) is the 
same as her expected gain from the project under (ψ, σ). Third, C(ψ̃) < C(ψ) by Assump-
tion 2 (monotonicity). Hence, I have shown that this is a profitable deviation, which leads to a 
contradiction.

This implies that when the sender uses a pure strategy to acquire information, each message 
is sent by at most one type of sender in any given equilibrium. From Bayes Rule, the receiver 
can fully infer the sender’s type. Since they share a common prior, their posterior beliefs are 
equal. �

Proposition 1 shows that when the sender has no superior knowledge ex ante, no alternative 
usage of information, but enjoys sufficient flexibility in choosing information structures, she has 
no incentive to withhold her information. This result provides a necessary condition for equilib-
rium characterization. It also contrasts one of the key features of CS, that the sender’s information 
is not fully transmitted due to the conflict of interests.

Remark Note that the sender’s choice of information structure being unobserved by the receiver 
is crucial to this result. When the receiver observes the sender’s informational choice, the sender’s 
deviation at the information acquisition stage can change the receiver’s action rule, which can 
lower her expected gain from the project. When the sender’s expected loss from the project 
exceeds her gain from saving information acquisition cost, she will have an incentive to acquire 
information that cannot be fully transmitted.

10 I abuse notation, and σ̃ ˜ = m means that σ̃ ˜ assigns probability 1 to message m.

ψ(θ) ψ(θ)
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3. The uniform-quadratic model

In this section, I adopt the framework in Section 2 to study the celebrated 1-dimensional 
‘uniform-quadratic’ model, which has been the main focus of the communication literature, and 
has been broadly applied in political economy as well as organizational design.11

Let � = A = [0, 1]. θ is uniformly distributed on �, and players’ payoffs are given by:

us(a, θ) = −(a − θ − b)2, ur(a, θ) = −(a − θ)2

with 0 < b < 1
4 . I show that when information acquisition cost is large enough, an ‘upwardly 

biased’ sender conveys more precise information when θ is large, which reverses the prediction 
in CS.

3.1. Information acquisition cost

Let � be the set of finite partitions on �. Let �0(⊂ �) be the set of interval partitions, where 
every partition element is an interval. I assume the cost of acquiring partition {�1, . . . , �n} takes 
the following cubic form:

C(�1, . . . ,�n) = c
[
1 −

n∑
i=1

μ0(�i)
3
]
, (2)

where μ0(·) is the Lebesgue Measure, and c > 0 measures the cost of information acquisition.
I will present my main result under the cubic cost function, and will discuss the reverse infor-

mativeness result under a more general class of cost functions in the Online Appendix.12

Remark This cubic function has a natural interpretation, that the cost of an interval partition 
information structure is proportional to its ‘value’13 – the expected utility gain of a decision 
maker when he has access to this information. To see this, first, let us compute the receiver’s 
expected payoff from the project when he has no information about θ :

max
a

{ 1∫
0

−(a − θ)2dθ
}

= − 1

12
.

Next, let us compute his expected payoff from the project when his information about θ is given 
by the following interval partition: {[θ0, θ1], (θ1, θ2], . . . , (θn−1, θn]}, where 0 = θ0 < θ1 < . . . <

θn−1 < θn = 1, which is:

max
a1,...,an

{ n∑
i=1

θi∫
θi−1

−(ai − θ)2dθ
}

= − 1

12

n∑
i=1

(θi − θi−1)
3.

Comparing with no information, the receiver’s payoff is increased by:

1

12
− 1

12

n∑
i=1

(θi − θi−1)
3.

11 For recent contributions based on the uniform-quadratic model, see Argenziano et al. (2014), Ivanov (2010), etc.
12 The general class of cost function I consider incorporates the Shannon’s Entropy, which has been frequently seen in 
information economics, for example, Sims (2003), Yang (2014, 2015), etc.
13 Later on, I will show in Lemma 3.1 that only interval partition information structures can arise in equilibrium.
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I call this difference: ‘the value of interval partition information structure {[θ0, θ1], (θ1, θ2], . . . ,
(θn−1, θn]}’.

Under the cubic cost function, the cost of that information structure is

c
[
1 −

n∑
i=1

(θi − θi−1)
3
]
,

which is proportional to its value.14

3.2. Some preliminary analysis

As in Section 2, I focus on equilibria in which the sender uses a pure strategy to acquire 
information. It is easy to check that � is rich and C satisfies monotonicity.15 I show in the next 
Lemma that the sender always acquires an interval partition information structure in equilibrium.

Lemma 3.1. The sender chooses an interval partition information structure in every equilibrium.

The proof is in Appendix A, which uses the fact that the sender’s preference exhibits strictly 
increasing differences in a and θ ,16 as well as the cost of information acquisition only depends 
on the measure of each partition element.

Lemma 3.1 implies that it is without loss of generality to focus on interval partition infor-
mation structures. Let (θ0, . . . , θn) be the partition points of an interval partition information 
structure with 0 = θ0 < θ1 < . . . < θn−1 < θn = 1. A necessary condition for (θ0, . . . , θn) to be 
an equilibrium information structure is:

(θ0, θ1, . . . , θn) ∈ arg max
(θ ′

0,θ
′
1,...,θ

′
n)

{
−

n∑
i=1

θ ′
i∫

θ ′
i−1

(a∗
i − θ − b)2dθ − c

(
1 −

n∑
i=1

(θ ′
i − θ ′

i−1)
3
)}

,

subject to 0 = θ ′
0 ≤ θ ′

1 ≤ . . . ≤ θ ′
n−1 ≤ θ ′

n = 1 and a∗
i = θi−1 + θi

2
for every 1 ≤ i ≤ n.17 (3)

This conditions says that given the receiver’s strategy, the sender cannot strictly gain from 
the following class of deviations: acquiring a different interval partition information structure 

14 We can obtain the same conclusion by doing this exercise on the sender’s preference.
15 However, �0 does not satisfy the richness condition.
16 us exhibits strictly increasing differences in a and θ if for every a > a′ , θ > θ ′

us(a, θ) − us(a, θ ′) > us(a′, θ) − us(a′, θ ′).
This condition is satisfied in our setting.
17 Notice that a∗

i
≡ θi−1+θi

2 is the receiver’s equilibrium action after the sender tells him that θ ∈ (θi−1, θi ]. Since the 
receiver only has n equilibrium actions, partitions with more than n elements are never optimal for the sender, and hence, 
can be safely ignored.

If the sender chooses a partition with less than n elements, it can also be represented by (θ ′
0, . . . , θ ′

n) with 0 =
θ ′

0 ≤ θ ′
1 ≤ . . . ≤ θ ′

n = 1. Of course, there will be degenerate partition elements, i.e. θ ′
i−1 = θ ′

i
, for some i. In this case, 

we should view the sender as acquiring an m-interval partition, where m is the number of non-degenerate elements in 
{[θ ′

0, θ ′
1], . . . , (θ ′

n−1, θ ′
n]}.

Also when referring to an interval in the partition, I will use (θi−1, θi ], although the reader should keep in mind that 
when i = 1, it should be [θ0, θ1].
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Fig. 2. Two types of equilibria.

{[θ ′
0, θ

′
1], . . . , (θ ′

n−1, θ
′
n]}, and inducing a∗

i when θ ∈ (θ ′
i−1, θ

′
i ]. The next Lemma says that the 

above condition is also sufficient for an equilibrium.

Lemma 3.2. (θ0, . . . , θn) is an equilibrium information structure if and only if it satisfies (3).

3.3. Reverse informativeness

I present my main result in this subsection, which examines the following feature of in-
formative interval partition equilibria: whether the interval lengths are increasing or decreas-
ing (from left to right). Fig. 2 shows the two types of equilibria, and intuitively, in ‘in-
creasing interval equilibria’, the sender conveys more precise information when θ is small; 
in ‘decreasing interval equilibria’, the sender conveys more precise information when θ is 
large.

When b > 0, only increasing interval equilibria exist in CS. Hence, the implications on com-
munication informativeness is reversed only when decreasing interval equilibria occur. Proposi-
tion 2 characterizes the range of parameter values, (b, c), under which each type of equilibrium 
exists:

Proposition 2 (Reverse Informativeness). Increasing interval equilibria exist if and only if: c ∈
(0, 1

12 (1 − 4b)); Decreasing interval equilibria exist if and only if: c ∈ ( 1
12 (1 + 4b), 16 ].

Proposition 2 implies that when the sender’s information is costly acquired, the qualitative 
feature of equilibria depends not only on the players’ preferences, but also on the cost of infor-
mation acquisition. When information acquisition cost is large enough, the sender’s message 
is more informative when she recommends a larger action even though she is upwardly bi-
ased.

Proof of Proposition 2. The proof is done in three steps. First, I derive the first order condition 
for θi , which is necessary for any informative equilibrium. Second, I argue that no informa-
tive equilibrium exists when c > 1

6 by exhibiting an incentive constraint that is violated. Third, 
I show by construction that informative equilibria exist when c ∈ (0, 1

12 (1 − 4b)) ∪ ( 1
12 (1 +

4b), 16 ].
Step 1: Consider maximization program (3). If (θ0, . . . , θn), with 0 = θ0 < θ1 < . . . < θn = 1
and n ≥ 2, are the partition points of an equilibrium information structure, then conditional on 
the sender choosing θ ′

0 = θ0, . . . , θ ′
i−1 = θi−1 and θ ′

i+1 = θi+1, . . . , θ ′
n = θn, she has no incentive 

to deviate from θi when choosing θ ′
i . Since θi ∈ (θi−1, θi+1), i.e. the optimum is interior, hence, 

the first order condition with respect to θi has to be satisfied:
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Lemma 3.3. In every informative equilibrium (n ≥ 2), the difference in length between any two 
adjacent intervals equals to 4b

1−12c
, that is, for every 1 ≤ i ≤ n − 1:

(θi+1 − θi) − (θi − θi−1) = 4b

1 − 12c
. (4)

Proof of Lemma. Take the first order condition with respect to θ ′
i on the sender’s objective 

function, and evaluate the derivative at (θ ′
0, . . . , θ

′
n) = (θ0, . . . , θn), we have:

−(a∗
i − θi − b)2 + (a∗

i+1 − θi − b)2 + 3c(θi − θi−1)
2 − 3c(θi+1 − θi)

2 = 0.

Rearranging terms and plugging in a∗
i = θi−1+θi

2 and a∗
i+1 = θi+θi+1

2 , we have:

−θi+1 − θi−1

2

(θi+1 − 2θi + θi−1

2
− 2b

)
+ 3c(θi+1 − 2θi + θi−1)(θi+1 − θi−1) = 0.

Canceling out θi+1 − θi−1 and rearranging terms, we get: θi+1 − 2θi + θi−1 = 4b
1−12c

. �
Since θi+1 −2θi +θi−1 is the difference in length between two adjacent intervals, this Lemma 

also implies:

• When 4b
1−12c

∈ [0, 1) (or c < 1−4b
12 ), only increasing interval equilibria may exist;

• When 4b
1−12c

∈ (−1, 0] (or c > 1+4b
12 ), only decreasing interval equilibria may exist;

• When | 4b
1−12c

| ≥ 1 (or c ∈ [ 1−4b
12 , 1+4b

12 ]), no informative equilibrium exists.

Moreover, as in Crawford and Sobel (1982), this necessary condition also uniquely pins down 
the partition point(s) given the size of the partition.

Step 2: I use the necessary condition derived in Step 1 and show that no informative equilibrium 
exists when c > 1

6 . The proof is done by contradiction. If (θ0, . . . , θn) is an equilibrium, then the 
following deviation cannot be profitable for the sender:

• Pooling intervals (θi−1, θi] and (θi, θi+1] together at the information acquisition stage, and 
inducing action a∗

i = θi−1+θi

2 when θ ∈ (θi−1, θi+1].

Since the equilibrium outcome remains unchanged for θ /∈ (θi−1, θi+1] under this deviation, we 
only examine her expected loss when θ ∈ (θi−1, θi+1]. Her expected loss in equilibrium is smaller 
than her expected loss after deviating if:

i+1∑
j=i

{ θj∫
θj−1

(a∗
j − θ − b)2dθ − c(θj − θj−1)

3
}

≤
θi+1∫

θi−1

(a∗
i − θ − b)2dθ − c(θi+1 − θi−1)

3.

Re-arranging terms, we get:

c(θi+1 − θi−1)
3 − c(θi − θi−1)

3 − c(θi+1 − θi)
3

≤
θi+1∫

(a∗
i − θ − b)2dθ −

θi+1∫
(a∗

i+1 − θ − b)2dθ.
θi θi
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The left hand side of this inequality equals to 3c(θi+1 − θi)(θi − θi−1)(θi+1 − θi−1), while the 
right hand side equals to (a∗

i − a∗
i+1)(θi+1 − θi)(a

∗
i+1 + a∗

i − 2b − θi+1 − θi).

Plugging a∗
i = θi+θi−1

2 and a∗
i+1 = θi+θi+1

2 into the right hand side, the original inequality is 
equivalent to:

3c(θi+1 − θi)(θi − θi−1)(θi+1 − θi−1) ≤ 1

2
(θi+1 − θi)(θi+1 − θi−1)(2b + θi+1 − θi−1

2
).

Since θi+1 > θi > θi−1, we can cancel (θi+1 − θi)(θi+1 − θi−1) on both sides, which gives:

6c(θi − θi−1) ≤ 2b + θi+1 − θi−1

2
= 2b + θi+1 − θi

2
+ θi − θi−1

2
.

The necessary condition we have derived in Step 1 requires (θi+1 − θi) − (θi − θi−1) = 4b
1−12c

, 
which means that

6c
(
θi+1 − θi − 4b

1 − 12c

)
≤ 2b + 1

2
(θi+1 − θi) + 1

2

(
θi+1 − θi − 4b

1 − 12c

)
.

This is equivalent to:

(1 − 6c)(θi+1 − θi) + 2b − 2b

1 − 12c
+ 6c

4b

1 − 12c
≥ 0.

When c > 1
6 , 2b − 2b

1−12c
+ 6c 4b

1−12c
= 0, and (1 − 6c)(θi+1 − θi) < 0, this is a contradiction. 

Hence, no informative equilibrium exists when c > 1
6 .

Step 3: I construct 2-partition equilibria when c ∈ (0, 1−4b
12 ) ∪ ( 4b+1

12 , 16 ]. Consider the following 
strategy profile:

• The sender acquires interval partition information structure {[0, 12 − 2b
1−12c

], ( 1
2 − 2b

1−12c
, 1]}. 

She claims that the state is low when θ ∈ [0, 12 − 2b
1−12c

], and claims that the state is high 
when θ ∈ ( 1

2 − 2b
1−12c

, 1].
• The receiver chooses a∗

1 ≡ 1
4 − b

1−12c
when the sender claims that the state is low, and 

chooses a∗
2 ≡ 3

4 − b
1−12c

when the sender claims that the state is high.

I show that this is an equilibrium. First, conditional on the sender’s strategy, the receiver’s strategy 
is sequentially rational since θ1

2 = a∗
1 and θ1+1

2 = a∗
2 . Second, according to Lemmas 3.1 and 3.2, 

conditional on the receiver’s strategy, the sender’s incentive constraint is satisfied if and only if 
θ1 = 1

2 − 2b
1−12c

is the solution to the following optimization program:

max
θ1∈[0,1]

{
−

θ1∫
0

(a∗
1 − θ − b)2dθ −

1∫
θ1

(a∗
2 − θ − b)2dθ − c

(
1 − θ3

1 − (1 − θ1)
3)}.

Take the first order condition with respect to θ1, we have:

−(a∗
1 − θ1 − b)2 + (a∗

2 − θ1 − b)2 + 3cθ2
1 − 3c(1 − θ1)

2 = 0.
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Fig. 3. Existence of informative equilibria.

The above equation is equivalent to:

3c(2θ1 − 1) + (a∗
2 − a∗

1)(a∗
1 + a∗

2 − 2θ1 − 2b) = 0

Plugging in the value of a∗
1 and a∗

2 , we get a linear equation of θ1, with solution:

θ1 = 1

2
− 2b

1 − 12c
= 1

2

(
1 − 4b

1 − 12c

)
,

and 1
2 − 2b

1−12c
∈ (0, 1) when c ∈ ( 4b+1

12 , 16 ] ⋃(0, 1−4b
12 ).

Next, the second order derivative of the objective function with respect to θ1 equals to:

−2(θ1 + b − a∗
1) + 2(θ1 + b − a∗

2) + 6cθ1 + 6c(1 − θ1)

= −2(a∗
2 − a∗

1) + 6c = −1 + 6c ≤ 0,

and hence, the objective function is concave when θ1 ∈ [0, 1], which shows that the first order 
condition is sufficient for a global maximum. Hence, θ1 = 1

2 − 2b
1−12c

solves the optimization 
problem, and thus, the sender’s strategy is a best response to the receiver’s strategy. �

This result is shown graphically in Fig. 3, which displays the set of parameter values under 
which informative equilibria exist, and whether they take the form of increasing or decreasing 
intervals. Fixing b ∈ (0, 14 ), when c ∈ (0, 1−4b

12 ) ∪ ( 1+4b
12 , 16 ], the equilibrium partition point in a 

2-partition equilibrium is given by:

θ1 = 1

2
− 2b

1 − 12c
.

This relationship is depicted in Fig. 4.

3.4. Discussion

I explain the logic behind the reverse informativeness result using 2-partition equilibria. Since 
the sender’s information acquisition process is covert, and she cannot commit to an information 
structure, her marginal benefit and her marginal cost of increasing the partition point, θ1, must 
be equal in equilibrium. In what follows, I compute this marginal benefit and marginal cost when 
the receiver’s equilibrium actions are a∗ ≡ θ1 and a∗ ≡ 1+θ1 respectively.
1 2 2 2
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Fig. 4. Equilibrium partition point in 2-partition equilibria (b = 1
16 ).

• The sender’s expected payoff from the project is: − 
∫ θ1

0 (a∗
1 −θ −b)2dθ −∫ 1

θ1
(a∗

2 −θ −b)2dθ . 
Taking the derivative with respect to θ1, her marginal benefit (MB) is given by:

MB = (a∗
2 − θ1 − b)2 − (a∗

1 − θ1 − b)2 = (a∗
2 − a∗

1︸ ︷︷ ︸
= 1

2

)(a∗
1 + a∗

2︸ ︷︷ ︸
=θ1+ 1

2

−2θ1 − 2b)

= −1

2
θ1 + 1

4
(1 − 4b)

• Her cost of information acquisition is c
(

1 − θ3
1 − (1 − θ1)

3
)

. Her marginal cost (MC) is:

MC =
∂c

(
1 − θ3

1 − (1 − θ1)
3
)

∂θ1
= 3c(1 − 2θ1) = 6c(

1

2
− θ1).

Since the cost of information acquisition is maximized at θ1 = 1
2 , so the marginal cost is 

positive when θ1 < 1
2 , and negative when θ1 > 1

2 . The marginal cost at θ1 = 1
2 is always 0.

Fig. 5 depicts the sender’s marginal benefit and the marginal cost as functions of θ1. When 
c increases, the marginal cost curve becomes steeper and rotates clockwise around the point 
( 1

2 , 0). The equilibrium partition point is where the two lines intersect. From the left panel to 
the right, we have increasing interval equilibrium, non-existence of informative equilibrium, and 
decreasing interval equilibrium.

For some intuition, since the sender is upwardly biased (b > 0), when c = 0, θ1 must be 
below 1

2 , because otherwise, the sender will have an incentive to reduce θ1. When c is low (c ∈
(0, 1−4b

12 )), an increase in c makes this deviation more tempting, because when θ1 < 1
2 , reducing 

θ1 also reduces the cost of information acquisition. As a result, θ1 decreases with c. However, 
when c becomes sufficiently large (c ∈ ( 1+4b

12 , 16 ]), a high information acquisition cost helps to 
sender to commit not to acquire a more expensive information structure. This commitment effect 
is stronger when c increases, and the 2-partition equilibrium becomes more informative when c
increases.

The existence of informative equilibria is not monotone with respect to c because when c ∈
[ 1−4b

12 , 1+4b
12 ], the information acquisition cost is too large to support equilibria where θ1 < 1

2
(since the sender is too tempted to reduce θ1), while it is not large enough to commit the sender 
to acquire an information structure with θ1 > 1

2 (the cost is too small such that the sender is 
tempted to reduce θ1 and acquire a more expensive information structure, since her marginal 
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Fig. 5. Marginal benefit & marginal cost of increasing θ1.

benefit of doing so is very large). Thus, no informative equilibrium exists.18 When c is too 
large (c > 1

6 ), the sender has a profitable ‘non-local’ deviation by pooling the two intervals 
together and acquiring no information, thus the only equilibrium in this case is the babbling 
equilibrium.

4. Conclusion

I introduce endogenous information acquisition into cheap talk games and find that contrary 
to the conventional wisdom in Crawford and Sobel (1982), conflict of interest between players 
never causes the sender to withhold information; and their paper’s implication on communication 
informativeness is reversed when information acquisition cost is sufficiently large. However, 
my benchmark result is sensitive to the flexibility of the sender’s informational choice and the 
receiver’s knowledge about the sender’s information structure.19
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146 H.D. Pei / Journal of Economic Theory 160 (2015) 132–149
Appendix A. Remaining proofs

Proof of Lemma 3.1. I show by contradiction that partitions which are not interval partitions 
cannot be equilibrium information structures. The proof is done by constructing a profitable 
deviation for the sender.

Formally, let A∗ = {a∗
1 , . . . , a∗

n} be the equilibrium action set,20 with a∗
1 < . . . < a∗

n . Suppose 
the sender’s equilibrium strategy is:

• Acquiring partition information structure {�1, . . . , �n} at the information acquisition stage, 
and inducing action a∗

i when θ ∈ �i ,

where there exists i such that �i is not an interval.
Let pi ≡ μ0(�i), �′

1 ≡ [0, p1], and �′
i ≡ (

∑i−1
j=1 pj , 

∑i
j=1 pj ] for every i ≥ 2. Since ∑n

i=1 pi = 1, {�′
1, . . . , �

′
n} is an interval partition of [0, 1].

I show that the sender’s strategy that I have just described is dominated by the following 
strategy:

• Acquiring interval partition information structure {�′
1, . . . , �

′
n} at the information acquisi-

tion stage, and inducing action a∗
i when θ ∈ �′

i .

Furthermore, this domination is strict if there exists i ∈ {1, 2, . . . , n}, such that either �i\(�i ∩
�′

i ) or �′
i\(�i ∩ �′

i ) has strictly positive measure.
Since θ is uniformly distributed on [0, 1], μ0(�

′
i ) = pi = μ0(�i) for all i. Since the cost of an 

information structure only depends on the measures of its partition elements, the two information 
structures cost the same. Hence, we only need to show that:

−
n∑

i=1

∫
�i

(a∗
i − θ − b)2dθ

︸ ︷︷ ︸
payoff under non-interval partition information structure

≤ −
n∑

i=1

∫
�′

i

(a∗
i − θ − b)2dθ

︸ ︷︷ ︸
payoff under interval partition information structure

.

Since

n∑
i=1

∫
�i

(a∗
i − θ − b)2dθ

=
n∑

i=1

μ0(�i)a
∗2
i +

1∫
0

θ2dθ +
1∫

0

b2dθ + 2b

1∫
0

θdθ − 2b

n∑
i=1

μ0(�i)a
∗
i

− 2
n∑

i=1

∫
�i

a∗
i θdθ,

and

20 From the conclusion of Proposition 1 as well as the assumption that the number of partition element is finite in every 
available information structure, it is without loss of generality to focus on finite equilibrium action sets.
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n∑
i=1

∫
�′

i

(a∗
i − θ − b)2dθ

=
n∑

i=1

μ0(�
′
i )a

∗2
i +

1∫
0

θ2dθ +
1∫

0

b2dθ + 2b

1∫
0

θdθ − 2b

n∑
i=1

μ0(�
′
i )a

∗
i

− 2
n∑

i=1

∫
�′

i

a∗
i θdθ,

as well as μ0(�i) = μ0(�
′
i ) = pi for all i, the two expressions differ only in their last terms. 

Hence what we need to show is:
n∑

i=1

∫
�i

a∗
i θdθ ≤

n∑
i=1

∫
�′

i

a∗
i θdθ. (A.1)

To show this inequality, let

Qi ≡
∫

θ∈�i

θdθ, Q′
i ≡

∫
θ∈�′

i

θdθ.

Since �i and �′
i have the same Lebesgue measure, a useful observation is that:

n∑
i=k

Qi ≤
n∑

i=k

Q′
i =

1∫
p1+...+pk−1

θdθ,

for all k ∈ {1, 2, . . . , n}. Using summation by parts, we have:

n∑
i=1

∫
�i

a∗
i θdθ =

n∑
i=1

a∗
i Qi

= a∗
1

n∑
j=1

Qj +
n∑

i=2

(a∗
i − a∗

i−1)
( n∑

j=i

Qj

)

≤ a∗
1

n∑
j=1

Q′
j +

n∑
i=2

(a∗
i − a∗

i−1)
( n∑

j=i

Q′
j

)

=
n∑

i=1

a∗
i Q′

i =
n∑

i=1

∫
�′

i

a∗
i θdθ.

The inequality in the third line is true since a∗
1 < . . . < a∗

n as well as 
∑n

i=k Qi ≤ ∑n
i=k Q′

i for 
all k, which proves (A.1). �
Proof of Lemma 3.2. The ‘only if ’ part ((3) is necessary) is obvious. I show the ‘if ’ part ((3) is 
sufficient) by showing that the following strategy profile constitutes a Perfect Bayesian Equilib-
rium if (3) holds:
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• The sender acquires interval partition information structure

{[θ0, θ1], (θ1, θ2], . . . , (θn−1, θn]}

and induces a∗
i ≡ θi−1+θi

2 when θ ∈ (θi−1, θi];
• The receiver chooses a∗

i after the sender telling him that θ ∈ (θi−1, θi];
• Every message the sender sends induces an action in {a∗

1, . . . , a∗
n}.

First, fixing the sender’s strategy, the receiver’s action rule is sequentially rational. Hence, we 
only need to show that given the receiver’s action rule, the sender’s strategy is a best response.21

Let A∗ ≡ {a∗
1 , . . . , a∗

n} with a∗
i defined as above. Whenever she acquires an interval partition 

information structure, a strategy of the sender can be characterized by {θ ′
0, . . . , θ

′
n, a1, . . . , an}

where 0 = θ ′
0 ≤ θ ′

1 ≤ . . . ≤ θ ′
n = 1 is the information structure she acquires and ai ∈ A∗ is the 

equilibrium action the sender induces after knowing that θ ∈ (θ ′
i−1, θ

′
i ].22

I show by contradiction that {θ0, . . . , θn, a∗
1 , . . . , a∗

n} is the sender’s best response. Suppose 
the sender’s best response is {θ ′

0, . . . , θ
′
n, a1, . . . , an}, and it delivers her a strictly higher expected 

payoff comparing with {θ0, . . . , θn, a∗
1 , . . . , a∗

n}. I introduce three useful observations.

• Observation 1: Since us(a, θ) exhibits strictly increasing differences in a and θ , by Topkis 
Theorem (Topkis, 1998), a1 ≤ a2 ≤ . . . ≤ an.

• Observation 2: Every equilibrium action can be induced in at most one non-degenerate 
interval, or formally, for every 1 ≤ k ≤ n, there exists at most one j (1 ≤ j ≤ n), such that 
θj−1 < θj and aj = a∗

k .
The proof shares the same idea as Proposition 1. Suppose towards a contradiction, that there 
exists such i and j , such that 1 ≤ i < j ≤ n with θ ′

i−1 < θ ′
i , θ

′
j−1 < θ ′

j and ai = aj = a∗
k . 

Then the sender’s expected payoff strictly increases when she pools intervals (θ ′
i−1, θ

′
i ] and 

(θ ′
j−1, θ

′
j ] together at the information acquisition stage (she can do this since the set of in-

formation structures is rich), and induces action a∗
k when θ ∈ (θ ′

i−1, θ
′
i ] ∪ (θ ′

j−1, θ
′
j ]. This is 

because the alternative strategy strictly saves information acquisition cost (by monotonicity) 
while her expected gain from the project remains unchanged.

• Observation 3: Eq. (3) implies that the sender’s payoff is (weakly) higher under {θ0, . . . , θn,

a∗
1 , . . . , a∗

n} comparing with {θ∗
0 , . . . , θ∗

n , a∗
1 , . . . , a∗

n} for every 0 = θ∗
0 ≤ θ∗

1 ≤ . . . ≤ θ∗
n−1 ≤

θ∗
n = 1.

In what follows, I use these three observations to show that {θ0, . . . , θn, a∗
1 , . . . , a∗

n} is the 
sender’s best response (given the receiver’s strategy). Specifically, I show that if an alterna-
tive strategy, {θ ′

0, . . . , θ
′
n, a1, . . . , an}, is the sender’s best response, then there exists another 

strategy {θ ′′
0 , . . . , θ ′′

n , a∗
1 , . . . , a∗

n}, which achieves the same expected payoff for the sender as 
in {θ ′

0, . . . , θ
′
n, a1, . . . , an}, but this payoff is weakly smaller than the sender’s expected payoff 

under {θ0, . . . , θn, a∗
1 , . . . , a∗

n}. Thus, the sender has no profitable deviation.

21 In this proof, I only consider the sender’s ex ante incentives. Her incentive constraints at the interim stage has been 
implied since θi−1 < θi for all i, and hence, θ ∈ (θi−1, θi ] happens with strictly positive probability.
22 When θ ′

i−1 = θ ′
i
, the interval (θ ′

i−1, θ ′
i
] is degenerate, meaning that the sender is acquiring an information structure 

with fewer than n partition elements. Also, since we are interested in the sender’s best responses, it is without loss of 
generality to focus on pure strategies.
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Suppose {θ ′
0, . . . , θ

′
n, a1, . . . , an} is the sender’s best response, define set I as:

I ≡
{
i

∣∣∣∃j, s.t. θ ′
j−1 �= θ ′

j , and aj = a∗
i

}
.

By definition, {a∗
i |i ∈ I} is the set of actions induced with strictly positive probability under 

{θ ′
0, . . . , θ

′
n, a1, . . . , an}. From Observations 1 and 2, and because {θ ′

0, . . . , θ
′
n, a1, . . . , an} is a 

best response, for every i ∈ I , there exists a unique j such that θ ′
j−1 �= θ ′

j and aj = a∗
i . Let 

k(i) = j , and hence, k(i) is uniquely defined for all i ∈ I . This implies that:⋃
i∈I

(
θ ′
k(i)−1, θ

′
k(i)

]
= [0,1].

Next, let us define (θ ′′
0 , . . . , θ ′′

n ). For every i ∈ I , let

θ ′′
i−1 ≡ θ ′

k(i)−1, θ ′′
i ≡ θ ′

k(i).

From Observation 1, for every i ∈ I or i + 1 ∈ I , θ ′′
i is well-defined and is weakly increasing in 

its index i.
For all other 0 ≤ i ≤ n, i.e. i /∈ I and i + 1 /∈ I , θ ′′

i is uniquely defined by the constraint: 
0 = θ ′′

0 ≤ θ ′′
1 ≤ . . . ≤ θ ′′

n−1 ≤ θ ′′
n = 1. Since⋃

i∈I

(
θ ′
k(i)−1, θ

′
k(i)

]
= [0,1].

{[θ ′′
0 , θ ′′

1 ], . . . , (θ ′′
n−1, θ

′′
n ]} is an interval partition information structure.

Consider strategy {θ ′′
0 , . . . , θ ′′

n , a∗
1 , . . . , a∗

n}. By definition, it delivers her the same expected 
payoff as strategy {θ ′

0, . . . , θ
′
n, a1, . . . , an}. From Observation 3, the sender’s expected payoff 

is weakly greater under {θ0, . . . , θn, a∗
1 , . . . , a∗

n} comparing with {θ ′′
0 , . . . , θ ′′

n , a∗
1 , . . . , a∗

n}, which 
contradicts the assumption that strategy {θ ′

0, . . . , θ
′
n, a1, . . . , an} gives the sender a strictly higher 

payoff comparing to {θ0, . . . , θn, a∗
1 , . . . , a∗

n}.
Hence, there exists no strictly profitable deviation, which implies that (3) is also sufficient. �

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2015.08.011.

References

Aghion, P., Tirole, J., 1997. Formal and real authority in organizations. J. Polit. Econ. 105, 1–29.
Argenziano, R., Severinov, S., Squintani, F., 2014. Strategic information acquisition and transmission. Working paper. 

University of Essex.
Austen-Smith, D., 1994. Strategic transmission of costly information. Econometrica 62, 955–963.
Crawford, V., Sobel, J., 1982. Strategic information transmission. Econometrica 50, 1431–1451.
Gentzkow, M., Kamenica, E., 2012. Disclosure of endogenous information. Working paper. University of Chicago.
Hellwig, C., Veldkamp, L., 2009. Knowing what others know: coordination motives in information acquisition. Rev. 

Econ. Stud. 76, 223–251.
Ivanov, M., 2010. Informational control and organizational design. J. Econ. Theory 145, 721–751.
Kamenica, E., Gentzkow, M., 2011. Bayesian persuasion. Am. Econ. Rev. 101, 2590–2615.
Sims, C., 2003. Implications of rational inattention. J. Monet. Econ. 50, 665–690.
Topkis, D., 1998. Supermodularity and Complementarity. Princeton University Press.
Yang, M., 2014. Coordination with flexible information acquisition. J. Econ. Theory. Forthcoming.
Yang, M., 2015. Optimality of debt under flexible information acquisition. Working paper. Duke University.

http://dx.doi.org/10.1016/j.jet.2015.08.011
http://dx.doi.org/10.1016/j.jet.2015.08.011
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib41543937s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib4153533134s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib4153533134s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib413934s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib43533832s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib474B3132s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib48563039s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib48563039s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib493130s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib4B473131s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib533033s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib543938s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib593134s1
http://refhub.elsevier.com/S0022-0531(15)00170-2/bib593135s1

	Communication with endogenous information acquisition
	1 Introduction
	2 The general model
	2.1 Setup
	2.2 Full communication

	3 The uniform-quadratic model
	3.1 Information acquisition cost
	3.2 Some preliminary analysis
	3.3 Reverse informativeness
	3.4 Discussion

	4 Conclusion
	Acknowledgments
	Appendix A Remaining proofs
	Appendix B Supplementary material
	References


