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Abstract: I analyze a novel reputation game between a patient seller and a sequence of myopic consumers,
in which the consumers have limited memories and do not know the exact sequence of the seller’s actions.
I focus on the case where each consumer only observes the number of times that the seller took each of
his actions in the last K periods and players have monotone-supermodular payoffs. I show that the patient
seller can approximately secure his commitment payoff in all equilibria as long as K is at least one. I also
show that the consumers can approximately attain their first-best welfare in all equilibria if and only if their
memory length K is lower than some cutoff. Although a longer memory enables more consumers to punish
the seller once the seller shirks, it weakens their incentives to punish after they observe shirking.
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1 Introduction

Economic agents benefit from good reputations. This idea has been formalized in the reputation literature
pioneered by Fudenberg and Levine (1989), which shows that a patient player (e.g., a seller) can secure a
high payoff if he builds a reputation in front of a sequence of short-run players (e.g., consumers). These
reputation results assume that the consumers can observe the full history of the seller’s actions, or can
observe a sufficiently long history of the seller’s actions including the exact sequence of these actions. The
intuition is that when the consumers observe that the seller has taken a particular action (e.g., exerting high
effort) for a long time, they will be convinced that he is likely to take that same action in the future.

In practice, however, consumers may not have long memories and may not know the exact sequence
of the seller’s actions. For example, eBay and eLance only disclose the number of positive and negative
ratings each seller received in the last 6 months but not the exact timing of these ratings (Dellarocas 2006).
A firm’s ranking in the Better Business Bureau is based on some aggregate statistics of its performance in
the last 36 months but not on the other details. This is also the case in markets without good record-keeping

institutions where consumers primarily learn by talking to other consumers: It is hard for the consumers to
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learn about the seller’s actions in the distant past since people who bought from the seller a long time ago
may forget their experiences. Although people who bought recently may share their experiences with future
consumers, they usually do not share all the details they know, such as who bought before them and what
they learnt from others. This makes it hard for the consumers to learn the exact sequence of actions.

This paper takes a first step to analyze reputation effects when the consumers have limited memories
and do not have detailed information about the seller’s history. I study a novel reputation model in which
every consumer can only observe some summary statistics of the seller’s last K actions but cannot observe
the exact sequence of these actionsﬂ This stands in contrast to the canonical reputation model of Fudenberg
and Levine (1989) and existing reputation models with limited memories such as Liu and Skrzypacz (2014)
which assume that the consumers can perfectly observe the exact sequence of the seller’s last K actions.

When the consumers do not have long memories, it is unclear whether the seller can still benefit from
building reputations. This is because the consumers may not be convinced that the seller will exert high
effort in the future if they can only observe him exerting high effort in the last few periods.

Nevertheless, I show that in a natural class of games, the seller can secure high returns from building
reputations regardless of the consumers’ memory length K. This stands in contrast to existing reputation
results, which require the consumers to have long enough memories. I also show that the consumers can
obtain their first-best welfare in all equilibria if and only if their memories are short enough. This stands in
contrast to existing reputation models where the consumers can observe the exact sequence of actions (e.g.,
Fudenberg and Levine 1989), in which there are equilibria where the consumers receive low payoffs.

I study an infinitely repeated game between a patient player and a sequence of short-run players. Players’
payoffs are monotone-supermodular (MSM) in the sense that there exists a complete order on each player’s
action set such that (i) the patient player’s payoff decreases in his own action and increases in his opponents’
action, and (ii) both players’ payoff functions have strictly increasing differencesE] A leading example that

satisfies my MSM condition is the product choice game in Mailath and Samuelson (2001, 2015):

seller \ consumer Trust No Trust

High Effort 1,1 —cn,x |With0 <cp <cyandz € (0,1).

Low Effort 14+cp,—x 0,0

"My reputation result extends when the short-run players can observe the summary statistics of the patient player’s entire history,
i.e., they observe the number of times that the patient player took each of his actions since the beginning of the game. In Section
I study an alternative model where the short-run players can observe the exact sequence of the patient player’s last /X actions.
2The seller’s payoff being monotone and the consumers’ payoff being supermodular are standard assumptions in the reputation
literature, which are also assumed in Mailath and Samuelson (2001), Liu (2011), Ekmekci (2011), Liu and Skrzypacz (2014),
among many others. The difference is that Liu (2011) and Liu and Skrzypacz (2014) assume that the seller’s payoff is submodular.
I motivate my supermodularity assumption in Section@ I study the case where the seller has submodular payoff in Section@



This game satisfies MSM once players’ actions are ranked according to ' >~ Land T > N.

The patient player privately observes his fype: He is either a commitment type who chooses his highest
action (in the example, high effort) in every period, or a strategic type who maximizes his discounted average
payoff. The patient player’s reputation is the probability his opponents assign to the commitment type.

For simplicity, my baseline model assumes that each short-run player can only observe the number of
times that the patient player took each of his actions in the last K € N periods but not the exact sequence
of these K actionsE] In order to be consistent with the existing literature on reputation games with limited
memories, such as Liu (2011), Liu and Skrzypacz (2014), and Levine (2021), I make a standard assumption
that the short-run players cannot directly observe how long the game has lasted (i.e., calendar time). They
have a prior belief about calendar time and update their beliefs via Bayes rule after observing their histories.

Theorem [I] shows that as long as K is at least 1, the patient player receives at least his commitment
payoff in every Nash equilibrium, and that he can secure this payoff by taking the highest action in every
period. In the product choice game, my theorem implies that the patient seller’s payoff is at least 1 in
every equilibrium. This conclusion stands in contrast to the repeated complete information game without
the commitment type, in which there are equilibria where the seller receives his minmax payoff 0.

To the best of my knowledge, Theorem (1] is the first reputation result that allows for arbitrary memory
length, and in particular, it allows the short-run players to have arbitrarily short memories. This aspect of
my result stands in contrast to the existing reputation results which assume that the short-run players have
infinite memories (e.g., Fudenberg and Levine 1989) or long enough memories (e.g., Theorem 2 in Liu and
Skrzypacz 2014)@ My result contributes to the reputation literature by showing that in a natural class of
games, the patient player can secure high returns from building reputations even when his opponents do not
have long memories and can only observe some summary statistics of his recent actions.

The challenge to prove this result comes from the observation that the short-run players may have arbi-
trarily short memories and cannot observe everything their predecessors observe. As a result, the standard
arguments in Fudenberg and Levine (1989,1992), Sorin (1999), and Gossner (2011) do not apply.

My proof circumvents this challenge by establishing a no-back-loop property, that it is never optimal
for the patient player to milk his reputation when it is strictly positive and later restore his reputation. 1

explain the intuition using the product choice game. Since the seller’s payoff increases in consumer’s trust

3My theorems are robust when there is a small amount of noise in consumers’ signals. My results are also robust when a small
fraction of consumers know the exact sequence of the seller’s last K actions. I also study an extension where there is a partition of
the seller’s action space such that the consumers can only observe which partition element the seller’s last K actions belong to.

“Theorem 2 in Liu and Skrzypacz (2014) shows that the patient player can secure his commitment payoff in all stationary
equilibria when the short-run players’ memory length K is greater than some cutoff K, where K depends on the prior probability
of the commitment type. That is to say, their reputation result requires the short-run players to have long enough memories.



but decreases in his effort, he has an incentive to restore his reputation only if the consumers trust him
with higher probability after he restores his reputation. Since the seller’s payoff is supermodular, he has a
stronger incentive to exert high effort when the consumers trust him with higher probability. Hence, if it is
optimal for the seller to restore his reputation when the consumers trust him with lower probability, then it
is not optimal for him to milk his reputation when the consumers trust him with higher probabilityE]

Since the seller’s equilibrium strategy satisfies the no-back-loop property, there is at most one period
over the infinite horizon where he has exerted high effort in all of the last K periods but will shirk in the
current period. Since the commitment type exerts high effort in every period, the consumers believe that the
seller will exert high effort with probability close to 1 after they observe him exerting high effort in all of
the last K periods, causing them to have a strict incentive to trust the seller. This implies Theorem |1} since
in any equilibrium, the patient seller obtains his commitment payoff 1 if he deviates to exerting high effort
in every period, and his equilibrium payoff must be weakly greater than his payoff under any deviation.

Next, I examine consumer welfare. This is not covered by Theorem[I] since it only shows that the patient
seller will obtain his commitment payoff if he deviates to exerting high effort in every period. However, there
might exist other strategies that give the seller weakly higher payoffs. As a result, it is unclear whether the
seller will exert high effort in equilibrium and whether the consumers can attain a high welfareE]

My next set of results establish an equivalence between (i) the short-run player’s memory length K is
below some cutoff, (ii) the patient player taking his highest action in almost all periods in all equilibria,
and (iii) the short-run players approximately obtaining their first-best welfare in all equilibria. I also show
that when K is below the cutoff, the patient player will take his highest action with probability close to one
except for the initial few periods and periods in the distant future that have negligible payoff consequences.

I explain the intuition using the product choice game. An increase in K has two effects on the seller’s
incentives. First, once the seller chooses L, more consumers can observe it when K is larger, in which case
more consumers have the ability to punish the seller. However, a larger K also makes it more difficult to
motivate the consumers to punish the seller. To see this, suppose the consumers believe that the strategic-
type seller will play L in periods K —1,2K —1, ... and will play H in other periods. If a consumer observes
that the seller played L once in the last K periods, then she knows that the seller is not the commitment
type. According to Bayes rule, she believes that the seller will play L in the current period with probability

close to % When K is large, % is small, so a consumer who does not observe calendar time believes that it

SThis argument is incomplete since it does not take into account the fact that the seller’s incentive in each period depends not
only on his stage-game payoff, but also on his continuation value. I present the complete argument in Section

SFor example, in the canonical reputation model of Fudenberg and Levine (1989), the patient player receives at least his com-
mitment payoff if he deviates to playing the commitment action in every period. However, there are also equilibria where he takes
the commitment action with low frequency and the short-run players receive their minmax payoff. See Li and Pei (2021) for details.



is unlikely that the seller will play L in the current period, and thus has no incentive to play N even though
she knows that the seller is not the commitment type. If the consumers play 7" when L occurred only once,
then the seller prefers playing L once every K periods to playing H in every period, making the consumers’
beliefs self-fulfilling. This leads to an equilibrium where the seller exerts low effort periodically

When K is small, I show that in every equilibrium, the patient player’s payoff is bounded below his
commitment payoff after he loses his reputation. Since Theorem|I|implies that the patient player can secure
his commitment payoff by taking the highest action in every period, he will do so in all equilibria.

My proof introduces new techniques that can characterize the common properties of the patient player’s
behavior in all equilibria. Some of my arguments require no assumption on players’ payoffs, which are
portable to other repeated games with limited records, repeated games where players observe random sam-
ples of their opponents’ past actions, and repeated games where players use finite automaton strategies.

I review the related literature in the rest of this section. I present my baseline model in Section 2] I state
my main results in Section [3] I study several extensions in Section 4] such as the case where the consumers
only observe noisy signals about the seller’s last K actions, and the case where there is a partition of the
seller’s action space such that the consumers only observe the number of times that the seller’s last K actions
belong to each partition element. Section [5| examines two alternative models that are only one-step-away
from my baseline model and the one in Liu and Skrzypacz (2014): one in which the seller’s payoff is
supermodular but the consumers observe the exact sequence of the seller’s last K actions, and another one

in which the consumers do not observe the exact sequence of actions but the seller’s payoff is submodular.

Related Literature: My paper contributes to three strands of literature: reputation effects with limited
memories, cooperation under limited information, and the sustainability of reputations.

In contrast to the existing reputation models with limited memories such as Liu (2011), Liu and Skrzy-
pacz (2014), and Pei (2022)1 introduce a novel reputation model in which the short-run players do not
know the exact sequence of actionsﬂ Compared to the reputation results in those papers which require long
enough memories, I show that the patient player can secure high returns from building reputations regardless

of his opponents’ memory length. My results also shed light on the effects of memory length on consumer

"Using similar ideas, one can construct equilibria where the seller exerts low effort n times every K periods, provided that the
consumers have no incentive to play N when they believe that the seller will exert low effort with probability no more than .

8Pei (2022) assumes that each short-run player can perfectly observe the exact sequence of the patient player’s last K actions
and her immediate predecessor’s action. He constructs an equilibrium in which the patient player receives his minmax payoff.

Levine (2021) assumes that the short-run players have 1-period memory, i.e., K = 1, in which case whether they can observe
the exact sequence of the last K actions is irrelevant. In Jehiel and Samuelson (2012), the short-run players mistakenly believe that
the strategic-type patient player uses a stationary strategy. In contrast, the short-run players in my model understand that the patient
player’s behavior when he has a positive reputation can be different from his behavior after he has lost his reputation.



welfare which, to the best of my knowledge, has not been examined in the existing reputation literaturem

My paper is also related to the literature on sustaining cooperation when players have limited information
about others’ past behaviors. This has been studied in repeated games with random matching by Kandori
(1992), Ellison (1994), Takahashi (2010), Heller and Mohlin (2018), and Clark, Fudenberg and Wolitzky
(2021). Most of these papers focus on the prisoner’s dilemma where all players are patientE] Their results
provide conditions on the monitoring technology under which either a folk theorem holds or players obtain
their minmax payoffs in all equilibria. In contrast, I study repeated games between a patient player and a
sequence of short-run players with one-sided lack of commitment (e.g., product choice games) instead of
the prisoner’s dilemma. I provide conditions under which players receive high payoffs in all equilibria.

Bhaskar and Thomas (2019) study a repeated complete information game between a patient player and
a sequence of short-run players. They assume that the short-run players do not have any information about
actions that were taken more than K periods ago. They find information structures under which players
can cooperate in some equilibria. By contrast, I study a repeated incomplete information game. I provide
conditions under which the consumers approximately attain their first-best payoft in all equilibria.

Ekmekci (2011) and Vong (2022) study repeated product choice games where the seller’s cost is inde-
pendent of the consumer’s action. They construct rating systems under which there exists an equilibrium
where the patient seller exerts high effort in almost all periods. Although the current paper does not explic-
itly study an information design problem, my results imply that when the seller’s effort and the consumer’s
action are complements, the consumers can attain their first-best welfare in all equilibria under a simple
disclosure rule, which is to reveal the summary statistics of the seller’s recent actions.

My results also contribute to the literature on reputation sustainability. Theorem [2] focuses on a novel
notion of reputation sustainability, namely, whether the patient player will take the commitment action with
discounted frequency close to 1. This notion of reputation sustainability is novel relative to the one in Cripps,
Mailath and Samuelson (2004) which focuses on the patient player’s behavior and reputation as t — —i—ooE]
My notion is better suited for evaluating consumer welfare. For example, if reputation is sustainable under
my notion, then the consumers can approximately attain their first-best welfare in all equilibria.

Pei (2020) and Ekmekci and Maestri (2022) study reputation models with interdependent values. They

provide conditions under which the patient player takes his commitment action in almost all periods in

10Kaya and Roy (2022) study a repeated signaling game where the consumer’s best reply depends only on the seller’s type. They
show that longer memories encourage the low-quality seller to imitate the high-quality one. In contrast, the consumer’s payoff in
my model depends only on players’ actions and longer memories undermine the seller’s incentive to imitate the commitment type.

"For games with general payoffs, see Deb (2020), Deb, Sugaya and Wolitzky (2020), and Sugaya and Wolitzky (2020).

2Ekmekci, Gossner and Wilson (2012) and Liu and Skrzypacz (2014) propose another notion of reputation sustainability, that
the patient player can secure his commitment payoff at every history in every equilibrium, rather than just securing his commitment
payoff in period 0. TheoremE]implies that in my model, reputation is sustainable under their notion as long as K > 1.



all equilibria. Nevertheless, the mechanism behind their results is different from that behind mine. The
patient player is guaranteed to be punished in their interdependent value settings since deviating from the
commitment action is a negative signal about the patient player’s type. By contrast, the current paper studies
a private-value model but the short-run players do not know the exact sequence of the patient player’s actions.
Since the short-run players cannot fine-tune their strategies based on the details of the game’s history, the
punishments needed to sustain cooperation inevitably punish the patient player at other histories, and harsher

punishments at a larger set of histories can deter the patient player from milking his reputation.

2 Baseline Model

Time is indexed by ¢ = 0, 1.... A long-lived player 1 (e.g., seller) interacts with a different player 2 (e.g.,
consumer) in each period. After each period, the game ends with probability 1 — § with 6 € (0, 1), after
which players’ stage-game payoffs are normalized to 0. In the baseline model, player 1 is indifferent between
receiving one unit of utility in the current period and in the next period, so he discounts his future payofts by
0. In period ¢, player 1 chooses a; € A and player 2; chooses b; € B simultaneously from finite sets A and
B, with |A|,|B| > 2. Players’ stage-game payoffs are uj(as, b;) and uz(ay, by). All my results in Sections

and E] are shown under the following monotone-supermodularity assumption on (u1, us):

Assumption 1. There exist a complete order = 4 on A and a complete order >=p on B such that first,
ui(a, b) is strictly increasing in b and is strictly decreasing in a, and second, both ui(a,b) and uz(a, b) have

strictly increasing differences in a and b.

The product choice game satisfies Assumption [I|under the rankings H >4 L and T' >p N, where the
requirements translate into (i) high effort is costly for the seller, (ii) the seller benefits from the consumers’
trust, (iii) the consumers have stronger incentives to trust when effort is higher, and (iv) the cost of effort
is lower when the consumers choose T'. The first three conditions are standard: They are satisfied in most
applications and most games analyzed in the reputation literature, including those in Mailath and Samuelson
(2001), Ekmekci (2011), Liu (2011), and Liu and Skrzypacz (2014). The assumption that the seller’s payoff
being supermodular stands in contrast to some of the existing papers. For example, Ekmekci (2011) assumes
that the seller’s cost is independent of the consumers’ actions, while Liu (2011) and Liu and Skrzypacz
(2014) assume that the seller’s cost is higher when the consumers trust him. I motivate my supermodularity
assumption in Section [2.1]and discuss the case where u; is weakly submodular in Section[5.2]

To highlight the mechanisms at work, my baseline model focuses on games where player 2’s action

choice is binary, i.e., | B| = 2. This class of games is a primary focus of the reputation literature, including



Mailath and Samuelson (2001), Ekmekci (2011), Liu (2011), and Levine (2021). Unlike those papers that
focus on 2 x 2 games, my baseline model allows the patient player to have any finite number of actions.
Section[4.2)extends my theorems to games where | B| > 3, which include but are not limited to the ones
in Liu and Skrzypacz (2014) where player 2 has a unique best reply to every o € A(A). My results also
hold when A is a lattice instead of a completely ordered set. This fits applications where player 1°s action
set is multi-dimensional such as a seller choosing the quality of both his product and his customer service.
Before choosing a;, player 1 observes all the past actions h* = {as, bs}i;%) and his perfectly persistent

* =

type w € {ws,w.}. Let w, stand for a commitment type who plays his highest action a max A, or his
commitment action, in every period. Let w; stand for a strategic type who maximizes his discounted average
payoff >7° (1 — 6)6%ui (ar, by). Let mp € (0,1) be the prior probability of the commitment type. Let 7; be
the probability that player 2;’s belief assigns to the commitment type, which I call player 1’s reputation.

Before choosing b, player 2; only observes the number of times that player 1 took each of his actions in
the last min{¢, K }periods, where K € {1,2, ...} is a parameter that measures the society’s memory length.
An implication is that player 2 does not know the order with which player 1 took his last K actions. For
example, if K = 2, then player 2 cannot distinguish between (a1, a2) = (a*,a’) and (a1, a2) = (da/,a*).

This is the key modeling innovation relative to existing reputation models with limited memories such
as Liu (2011), Liu and Skrzypacz (2014) and Pei (2022), all of which assume that the short-run players can
perfectly observe the patient player’s last K actions as well as the exact sequence of these K actions.

I also make a standard assumption in repeated games with limited memories that player 2 cannot directly
observe how long the game has lasted, i.e., calendar time. As in Liu and Skrzypacz (2014), I assume that
player 2 has a full support prior belief about calendar time and update their beliefs according to Bayes
rule after observing their histories. The standard interpretation for this assumption is that due to limited
memories, it is hard for the consumers to know exactly how long the seller has been in the market, especially
when the seller’s age in the market is much longer compared to the consumers’ memories. Nevertheless, the
consumers who arrive before period K can perfectly infer calendar time based on the history they observe.
This is consistent with my formulation, since the first K consumers observe fewer than K actions, so their
posterior beliefs assign probability 1 to the true calendar time.

What is a reasonable prior belief about calendar time? Recall that the game ends with probability 1 — §
after each period. Therefore, for every t € {0, 1, ...}, the probability player 2’s prior assigns to calendar
time being ¢ + 1 should equal § times the probability her prior assigns to calendar time being ¢. The unique
prior that satisfies this for every ¢ is the one that assigns probability (1 — §)&' to calendar time being ¢.

The set of player 1°s histories is H1 = {(as,bs)'_f s.t. t € Nand (as,bs) € A x B} with a typical



element denoted by ht. The set of player 2’s histories is Ho = {(n1, ..., n‘A‘) e NAlst.ng >0,..., nal >
Oand ny + ... + npq) < K}, where ny, ..., n4) denote the number of times that player 1 played each of his
actions in the last K periods. Strategic-type player 1’s strategy is o1 : H1 — A(A). Player 2’s strategy is
o9 : Ho — A(B). Let ; be the set of player i’s strategies, where ¢ € {1, 2}. Under my formulation, player
2’s action depends only on the history she observes. For example, player 2; and player 2.7 will take the
same (possibly mixed) action if they observe the same history. This is a standard requirement in reputation

models with limited memories, see for example Liu (2011), Liu and Skrzypacz (2014), and Levine (2021).

2.1 Discussion of Modeling Choices and Extensions

The consumers in my model cannot observe the exact sequence of the seller’s actions. This is motivated by
(i) online platforms such as eBay and eLance that only disclose the number of positive and negative ratings
each seller received in the last 6 months, (ii) rating institutions such as the Better Business Bureau whose
ranking depends only on some aggregate statistics of a firm’s performance in the last 36 months, and (iii)
markets without good record-keeping institutions, such as informal markets in developing countries, where
consumers cannot easily obtain information about the exact sequence of the seller’s behaviors. My results
extend to settings where a small fraction € of the consumers can observe the exact sequence of actions. I
discuss the case where the consumers can perfectly observe the exact sequence in Section[5.1]

My baseline model rules out imperfect monitoring by assuming that each consumer knows the number
of times that the seller took each of his actions in the last K periods. Due to the technical challenges in
analyzing repeated incomplete information games with bounded memories, most of the existing papers in
this literature including Liu (2011) and Liu and Skrzypacz (2014) also rule out imperfect monitoring by
assuming that player 2 can perfectly observe player 1’s last K actions

I study two extensions that allow for imperfect monitoring, which are motivated by situations such as
the consumers’ experiences (or the ratings) are noisy signals of the seller’s effort, or the consumers only
communicate coarse information about the seller’s action to future consumers. In Section[4.3] T assume that
there is some noisy signal a; about a; and player 2; observes the number of times that each signal realization
occurred in the last min{¢, K } periods. In Section I assume that the short-run players can only learn
from coarse summary statistics, which is characterized by a partition of A such that player 2; only observes
the number of times that player 1’s last min{¢, K} actions belong to each partition element. My baseline

model corresponds to the finest partition of A. Player 2 learns nothing under the coarsest partition of A.

13 Although Bhaskar and Thomas (2019) allow for imperfect monitoring, there is no incomplete information in their model.
Levine (2021) allows for imperfect monitoring but restricts attention to settings where the short-run player’s memory length is 1.



My baseline model assumes that the short-run players cannot directly observe calendar time, which is
also assumed in Liu and Skrzypacz (2014), Section 2 in Acemoglu and Wolitzky (2014), Cripps and Thomas
(2019), and Levine (2021) My baseline model focuses on an exponential prior belief about calendar time,
which is natural when 9 is interpreted as the probability with which the game continues after each period.
Hu (2020) provides a microfoundation for this prior belief by constructing a model with random entry order.

Section[d.I|extends my theorems to a model where player 1’s discount factor is different from the game’s
continuation probability. This is the case when player 1 exits the game with positive probability after each
period and values his utility in the current period more than his future utilities. As will become clear in my
proofs, my theorems extend to all prior beliefs as long as (i) the probability of any calendar time is close to
0, and (ii) the ratio between the probabilities of any two adjacent calendar times is close to 1.

My assumptions on players’ payoffs are standard except for u;(a, b) having strictly increasing differ-
ences. In the product choice game, my assumption requires that the seller’s effort and the consumer’s action
to be strategic complements. This assumption fits, for example, when each consumer chooses between buy-
ing a high-end version (action T") and a low-end version (action V) of a product, the seller decides whether
to provide good customer service, and providing good service requires him to exert high effort. It is reason-
able to assume that the seller’s cost of providing good service is lower when the consumers buy the high-end
version, since the high-end version breaks down less frequently compared to the low-end version.

My assumption also fits when the seller’s monetary cost of supplying high quality is independent of the
consumer’s action but players are altruistic and internalize a fraction of other players’ monetary payoffs.
Evidence for altruism has been widely documented by psychologists, see for example Batson and Shaw
(1991). Levine (1998) formalizes altruism using a model where each player maximizes a convex combina-
tion of his own monetary payoff and others’ monetary payoffs. In my setting, when the seller internalizes
a positive fraction of the consumers’ monetary payoffs, his real cost of effort is strictly lower when the
consumers choose 7" since the consumers benefit more from the seller’s effort when they choose 7'.

My baseline model assumes that there is only one commitment type who plays a stationary pure strategy.
This is also assumed in most of the existing reputation models with limited memories such as Liu (2011)
and Liu and Skrzypacz (2014). My theorems are robust when there are multiple stationary pure-strategy

commitment types, as long as the type who plays a¢* in every period occurs with positive probability.

“Liu (2011) and Heller and Mohlin (2018) focus on stationary equilibria where strategies are required to be time-independent,
which according to Liu (2011, first paragraph on page 1405), is equivalent to assuming that the short-run players have an improper
uniform prior belief about calendar time. My results extend to Liu (2011)’s setting where player 1’s discount factor is less than 1
and player 2 has an improper uniform prior about calendar time.

10



3 Results

Section [3.T]establishes a reputation result that allows for arbitrary memory length, that a sufficiently patient
player 1 receives at least his commitment payoff in all equilibria as long as K > 1. My proof uses a no-
back-loop property that applies to all of player 1’s best replies, regardless of his discount factor. Section
shows that player 2 can approximately attain their highest feasible payoff and the patient player will play a*
in almost all periods in all equilibria if and only if K is below some cutoff. Some of the arguments in my
proof, such as Lemmas and apply independently of players’ payoffs and incentives. They are
portable to other repeated games with limited memories, repeated games where players observe a random

sample of their opponents’ past actions, and repeated games where players use finite automaton strategies.

3.1 Reputation Result for Arbitrary Memory Length

My first result shows that for every K > 1 and mg, player 1 can approximately secure his commitment
payoft in all Nash equilibria as § — 1, and that he can secure this payoff by playing a* in every period.
Formally, let b* be player 2’s lowest best reply to a*. Following Fudenberg and Levine (1989), I call
up(a*, b*) player 1’s commitment payoff. Let a = min A be player 1’s lowest action. Let b be player 2’s
lowest best reply to a. For every myp € (0, 1), there exists d(mp) € (0,1) such that for every § > J(m),

each of player 2’s best reply to mixed action {1 S a is no less than b*. Such

1—5)(1—7r0)}a* + (1-6)(1—mo)
0

0 T
d(mp) € (0,1) exists for every myp € (0,1) since b* is defined as the lowest best reply to a*, the value of

(1=6)(1=mo)

P converges to 0 as 0 — 1, and best reply correspondences are upper-hemi-continuous.

Theorem 1. Suppose § > §(mp) and K > 1. Player 1’s payoff in any Nash equilibrium is at least
(1 — 6% uy(a*,b) + 6% uy(a*, b%). (3.1)

The payoff lower bound converges to uj(a*,b*) as § — 1. Therefore, Theorem |1| identifies a
natural class of games such that regardless of the short-run players’ memory length K[| a sufficiently
patient player can secure at least his commitment payoff u; (a*, b*) by building a reputation for playing a*.
As will become clear later in the proof, at every history of every Nash equilibrium, if player 1 deviates by
playing a* in every subsequent period, then his continuation value after K periods is at least uq(a*,b*).
By contrast, in the repeated complete information game without the commitment type, there are equilibria

where player 1 plays a and player 2 plays b in every period and player 1 receives his minmax payoff u; (a, b).

SWhen K = 400, one can use Fudenberg and Levine (1989)’s argument to show that player 1 can secure payoff approximately
u1(a*,b") in every Nash equilibrium as § — 1. My proof focuses on the novel case where K is finite.
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To the best of my knowledge, Theorem [1|is the first reputation result that allows the short-run players
to have arbitrary memory length, and in particular, they may have arbitrarily short memories. This aspect
of my result stands in contrast to existing reputation results which require the short-run players to have
infinite memories (e.g., Fudenberg and Levine 1989), or long enough memories (e.g., Theorem 2 in Liu and
Skrzypacz 2014)E-] or infinite memories about some noisy signal that can statistically identify the patient
player’s action (e.g., Fudenberg and Levine 1992, Gossner 2011, Theorem 2 in Pei 2022).

Since the short-run players have limited memories and cannot observe everything their predecessors
observe, the standard techniques to show reputation results in Fudenberg and Levine (1989, 1992), Sorin
(1999), and Gossner (2011) do not apply. To overcome these challenges, my proof uses an observation
called the no-back-loop property, that it is never optimal for the patient player to milk his reputation when
it is strictly positive and later restore his reputation. I state this observation as a lemma, provide a heuristic
explanation, and use this result to show Theorem|[I| by the end of this section.

Let H} = {(as, bs) 2y such thatt > K and (a;_f,...,ar—1) = (a*,..., a*)} be the set of player 1’s
histories where all of his last /& actions were a*. Let H1 (01, 02) be the set of histories that occur with
positive probability under (o1, 02). Let Uy (01, 02) be player 1’s discounted average payoff under (o1, 02).

Strategy 7 best replies to o3 if 01 € argmax,, ex, Ui(01,02).

No-Back-Loop Lemma. For every oy : Ho — A(B) and pure strategy o1 : H1 — A that best replies
t0 09, there exists no ht € H1(c1, 09) (\Hi such that when player 1 uses strategy &1, he plays an action

that is not a* at h' and reaches another history that belongs to H1 (71, 02) (\H? in the future.

My no-back-loop lemma rules out situations depicted in the left panel of Figure 1: Player 1’s best reply
o1 asks him to play a’(# a*) when his last K actions were a* (the green circle) and then returns to a history
where his last K actions were a*. That is to say, as soon as player 1 milks his reputation at a history where
his reputation is strictly positive, he will never return to any history where he has a positive reputation. This
property applies to all of player 1’s best replies in the repeated game, not just to his equilibrium strategies.
It also allows player 1 to have any discount factor § € (0, 1), i.e., it does not require player 1 to be patient.

The reputation cycles ruled out by my lemma occur in all equilibria in Liu and Skrzypacz (2014).
This is driven by two modeling differences. First, they assume that u; has strictly decreasing differences
while I assume that u; has strictly increasing differences. Second, they assume that player 2 can perfectly

observe the exact sequence of player 1’s last K actions while I assume that player 2 cannot observe the

1Theorem 2 in Liu and Skrzypacz (2014) shows that for every mo > 0, there exists K € N such that a patient player 1 can
approximately secure his commitment payoff in every equilibrium when K > K, i.e., K needs to be large enough.
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Player 1 uses strategy o Player 1 uses Deviation A Player 1 uses Deviation B
that violates no-back-loop

Figure 1: The green circle represents a history that belongs to H]. The white circle represents a history
where player 1 is one-period-away from H7. The blue circle represents a history that is reached after player
1 plays a’ at the green circle. The yellow circles represent histories that are reached when player 1 plays 7.
The pink circles represent histories where a” occurred once and a* occurred K — 1 times.

exact sequence of player 1’s last K actions. In Section [5 I study two alternative models that are only
one-step-away from both my baseline model and the one in Liu and Skrzypacz (2014).

The proof of my lemma does not follow from existing results on supermodular games, most of which
focus on static games. This is because even when player 1’s stage-game payoff u1 (a, b) has strictly increas-
ing differences, it is not necessarily the case that when the game is played repeatedly, player 1 has a stronger
incentive to play higher actions at histories where player 2’s actions are higher. This is because player 1’s
current-period action affects future player 2’s observations, which in turn affects future player 2’s actions as

well as player 1’s continuation value. I sketch a proof below. The detailed calculations are in Appendix [Al

Proof Sketch: Since player 2 has no information about player 1’s action more than K periods ago, it is
without loss to focus on player 1°s pure-strategy best replies that depend only on his last K actions, including
the order of these K actions. Suppose by way of contradiction that there exists o that best replies to oo
such that & plays a’ (# a*) at a history h! where (a;_g, ...,a;—1) = (a*,...,a*), and after a finite number
of periods, reaches a history h* that satisfies (as_f,...,as—1) = (a”,a*,...,a*) where a” # a*, and then
plays a* at h*® after which all of the last K actions are a* again. Note that a’ and a” can be the same.

I depict strategy &1 in the left panel of Figure 1, where h' is represented by the green circle and h* is

represented by the white circle. In what follows, I propose two deviations for player 1 starting from the

white circle. I will show that at least one of them is strictly profitable.

¢ Deviation A: Plays o’ at the white circle, and then follows strategy 7.
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* Deviation B: Plays a” at the white circle, then plays a* for K — 1 consecutive periods after which

play will reach the white circle again, and then follows strategy o7;.

These deviations are depicted in the middle and right panels of Figure 1. I compare player 1’s continuation

value at the white circle when he uses & to those under the two deviations:

1. Compared to o1, Deviation A takes a lower-cost action a’ at the white circle, skips the green circle,
and frontloads the payoffs along the blue lines (i.e., the blue, yellow, and white circles). If player 1
prefers o1 to Deviation A, then his average payoff from the circles along the blue lines (i.e., the payoff

that Deviation A frontloads) must be strictly lower than his stage-game payoff at the green circle.

2. Compared to o1, Deviation B takes a lower-cost action a” at the white circle, skips the green circle,
and induces payoffs along the red lines in the next K — 1 periods (i.e., the pink circles). If player 1
prefers o to Deviation B, then his average payoff along the red lines must be strictly smaller than a

convex combination of his payoff at the green circle and his average payoff along the blue lines.

If 71 is player 1’s best reply, then both Deviation A and Deviation B are unprofitable. Therefore, player 1’s
stage-game payoff at the green circle must be strictly greater than his average payoff along the red lines.

If o1 best replies to o2, then player 1 prefers a’ to a* at the green circle and prefers a* to a’ at the white
circle. No matter whether player 1 is currently at the green or the white circle, he will reach the green circle
after playing a* and will reach the blue circle after playing a’. Hence, the difference in player 1’s incentives
at the green and the white circles cannot be driven by his continuation value. This implies that such a
difference in incentives can only be driven by player 1’s stage-game payoff, which is affected by player 2’s
actions at the green and the white circles. Since uq(a,b) has strictly increasing differences and a* >4 d,
the Topkis Theorem implies that it cannot be the case that player 2’s mixed action at the green circle strictly
FOSDs her mixed action at the white circle. Therefore, player 2’s action at the white circle weakly FOSDs
her action at the green circle. Since player 2 cannot observe the order of player 1’s last K actions, player
2’s action at every circle along the red line coincides with her action at the white circle.

This leads to a contradiction since on the one hand, player 1’s stage-game payoff at the green circle
is strictly greater than his average payoff along the red lines, and on the other hand, player 2’s action at
the white circle weakly FOSDs her action at the green circle and player 1’s stage-game payoff is strictly
increasing in player 2’s action. This contradiction implies that at the white circle, either Deviation A or

Deviation B yields a strictly higher payoff for player 1 compared to strategy o1, so o7 is not a best reply. []

I use the no-back-loop lemma to show Theorem [I]

14



Proof of Theorem 1: For every t € N, let Iy be the event that player 1 is strategic and no action other than
a* was played from period max{0,t — K} to period t — 1. Fix any o1 € X7 and o3, let p;(01,02) be
the ex ante probability of event F; when the strategic-type player 1 plays o1 and player 2 plays o2. Since
player 1 is the commitment type with probability 7y, we have p;(o1,092) < 1 — m for every t € N. Let
N*(o1,09) C N be the set of calendar time ¢ such that p;(c1,02) > 0and ¢ > K. Forevery t € N*(01, 09),
let g; (01, 02) be the probability that player 1 does not play a* in period ¢ conditional on event E.

Let X7 be the set of player 1’s pure strategies that satisfy the no-back-loop property. For every o1 € X7,
the definition of the no-back-loop property implies that ZteN*(J 1,02) pi(o1,02)q(01,02) < 1 —mp.

Fix any arbitrary Nash equilibrium (1, 02), the no-back-loop lemma implies that ; € A(X7). For
every pure strategy o1 € X7, let o1(o1) be the probability with which mixed strategy &, assigns to oy,
which is well-defined since X7 is a countable set. Recall that player 2’s prior belief assigns probability
(1 — )8! to the calendar time being ¢. According to Bayes rule, at any history after period K where all of

player 1’s last K actions were a*, player 2 believes that player 1’s action is not a* with probability

D ores: OL01) Yoiens (o1,00) (1 = 0)0' (01, 02) @t (01, 072)
70 30k (1= 0)8! + 32, exr 51(01) X yene (0 o) (1 = 0)88p1 (01, 02)

(3.2)

The denominator of is at least oo™, Since ZteN*(o—l,@)Pt(gl,@)%(‘fl,@) < 1 — m for every
o1 € X7, X7 is a countable set, and ¢t > K for every ¢t € N*(o, 02), the numerator of is no more than
(1 —6)(1 — mp)d™. This suggests that li is no more than %&40). The definition of §(7) together
with ug(a, b) having strictly increasing differences implies that when § > §(), actions strictly lower than
b* are not optimal for player 2 when player 1’s last K actions were a*. Moreover, since b is player 2’s
lowest best reply to player 1’s lowest action a, actions strictly lower than b is never optimal for player 2.
Hence, in any Nash equilibrium, if player 1 plays a* in every period, his discounted average payoff is at

least (1 — 6% )uy(a*,b) + 6% uy(a*,b*). This is a lower bound for player 1’s equilibrium payoff. O

3.2 Equilibrium Behavior & Consumer Welfare

Although Theorem (1| shows that player 1 can secure his commitment payoff ui(a*, b*) if he plays a* in
every period, it does not imply that he will play a* in equilibrium. This is because there may exist other
strategies that give player 1 weakly higher payoffs. For example, Li and Pei (2021) show that in Fudenberg
and Levine (1989)’s reputation model, although player 1 can secure his commitment payoff by playing a*
in every period, there are many equilibria where he plays a* with low frequency. Understanding whether

player 1 will actually play a* is important since his action frequencies affect consumer welfare.
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My results in this section examine the patient player’s equilibrium behavior and consumer welfare.
Recall that the game ends with probability 1 — § after each period, the sum of the short-run players’ payoffs
isE” [ S 8tua(ag, by) |, where E7[-] denotes the expectation induced by o = (o1, 02). T use the following

normalized sum of the short-run players’ payoffs, denoted by Ug, to measure consumer welfare:

+0o0

Ug = E"[Z(l — 8)8 us(ar, bt)] (3.3)

t=0
By definition, U5 = >, e axp F7 (a, b)uz(a, b) where

400
F(a,b) = E”[Z(l — 8 1{as = a, b, = b} (3.4)
t=0
is called the discounted frequency (or the occupation measure) of action profile (a,b). Hence, consumer

welfare depends on o only through the discounted action frequencies {F'?(a, b)} (4 p)cax B-
Theorem 2. There exists a cutoff K € N that depends only on (uy,us) such that:

1. There exists a constant C € R that is independent of § such that for every 1 < K < K, we have

Y pepr F7(a*,0) > 1 — (1 —0)C in every Nash equilibrium o under K and .

2. There exists ) > 0 such that for every K > K, there exists § € (0,1) such that for every § > §, there
exists a Perfect Bayesian equilibrium (PBE) such that ), F7(a*,b) <1 — n.

I sketch the proof by the end of this section and the details can be found in Appendix [Bl Theorem
implies that (i) player 1 plays a* and player 2’s action is at least b* in almost all periods in all Nash
equilibria when player 2’s memory K is lower than some cutoff K, and (ii) there are PBEs in which player
1 plays a* with frequency bounded below 1 when K is above the cutoff. Note that the presence of the
commitment type is necessary for this result, since in a repeated complete information game without the
commitment type, there exist equilibria where players play (a, b) in every period regardless of § and K.

Although Theorem [2]focuses on player 1’s discounted action frequencies, it leads to a sharp prediction
on the dynamics of player 1’s behavior and reputation when K is small. My next result shows that if K

is below the cutoff K, then in every Nash equilibrium, the strategic-type of player 1 will have a strictly

”Theoremand Statement 1 of Theoremstudy the common properties of all equilibria, which are stronger when I use weaker
solution concepts such as Nash equilibrium. Statement 2 of Theorem 2] is about the existence of a type of equilibria, which is
stronger under stronger solution concepts such as PBE. In the proof of Statement 2 of Theorem [2|and other constructive proofs, I
construct PBEs that satisfy sequential rationality and no signaling what you don’t know in Fudenberg and Tirole (1991).
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positive reputation with probability close to 1 after the initial few periods, after which he will play a* with

probability close to 1 in every period until calendar time # is so large that &' is close to 0.

Corollary 1. Suppose 1 < K < K. For every € > 0, there exist a constant C. € R, and § € (0,1)

such that for every § > 6, every equilibrium under 6, and every t € N that satisfies 6' € (g,1 — €):
1. The probability that h' € Hj is at least 1 — (1 — §)C-..
2. The strategic-type player I plays a* with probability at least 1 — (1 — §)C¢ in period t.

The proof of Corollary [I]is in Online Appendix C, which uses Theorem [2]and the no-back-loop lemma.
In the product choice game, Corollary [T|implies that in every equilibrium under a small K, the strategic-type
of the seller will exert high effort with probability close to 1 in all periods except for the initial few periods
and periods in the distant future that have negligible payoff consequences.

Next, I examine consumer welfare. Theorem [2|implies that when K is below the cutoff K, consumer
welfare is arbitrarily close to ug(a*,b*) in all Nash equilibria. When usy(a, b) is strictly increasing in a,
i.e., the consumer’s payoff increases in the seller’s effort, uga(a*,b*) is the consumer’s highest feasible
payoff, or their first best welfare. This is because uz(a*,b) > uz(a,b) for every a # a* and b € B, and
ug(a*,b*) > ug(a*,b) for every b € B. Theorem [3]is a direct implication of Theorem 2} which provides a

necessary and sufficient condition under which the consumers attain their first best welfare in all equilibria.
Theorem 3. Suppose (u1,us2) satisfies Assumption|l|and usz(a,b) is strictly increasing in a.

1. There exists a constant Cy € R that is independent of § such that for every 1 < K < K, we have

Ug > ug(a*,b*) — Co(1 — 6) in every Nash equilibrium o under K and §.

2. There exists € > 0 such that for every K > K, there exists § € (0, 1) such that for every § > &, there

exists a PBE with strategy profile o such that U§ < ua(a*,b*) — &.

Theorem [3|implies that longer memories of the consumers (captured by a larger K') may lower consumer
welfare. In particular, the consumers obtain their first-best welfare in all equilibria when K is below the
cutoff K but their payoffs are bounded below first best in some equilibria when K is above the cutoff.

Two natural questions follow from Theorems |2 and [3| First, how to compute the cutoff K from the
primitives u; and u2? Second, how large can 7 be? My proof of Theorems [2] and [3| sheds light on these

questions as well. To preview the answers, I say that a* is player 1’s optimal pure commitment action if

*b%) > b). 3.5
u(a®,b") gﬁgbgél}g;%a)m(a,) (3.5
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If (up,us) violates , then K = 1 and 1) can be as large as 1 for every K > 1. That is, the frequency
with which player 1 plays a* is 0 in some PBEs no matter how small K is.
The interesting case is the one where (u1,usg) satisfies (3.5), i.e., a* is player 1’s optimal pure com-

mitment action. The cutoff K is the smallest integer K € N such that b* best replies to the mixed action
K-1

i a* + %a’ for some a’ # a*. Moreover, 7 can be as large as %, where m € {1,2, ..., K'} is such that b*

best replies to the mixed action K,}m a* + %a’ for some a’ # a*. As K — 400, 1) converges to n* where

n* is the largest 77 such that b* best replies to (1 — 7)a* + 7ja’ for some a’ # a*. In the product choice
game, players’ payoffs satisfy (3.5) since H is player 1’s highest action and committing to play H results in
a higher payoff for player 1 relative to committing to play L. The above algorithm implies that K = {ﬁw .

Back to consumer welfare, due to integer constraints, it is not necessarily the case that the consumers’
worst equilibrium payoff decreases in K. Nevertheless, as I explained earlier that when K — +o0, the
lowest frequency with which player 1 plays a* converges to n* where n* is the largest 77 such that b* best
replies to (1 — 77)a* + nja’ for some o’ # a*. Hence, there exists a uniform bound v’ < ug(a*, b*) such that
for every K > K, there exists an equilibrium where consumer welfare is no more than «/. In contrast, when

K is below K, consumer welfare is arbitrarily close to us(a*, b*) in all equilibria.

Mechanism Behind Theorem 2: I use the product choice game to explain the mechanism behind The-
orem |2} I argue that having a longer memory (i.e., a larger K) has two effects on the seller’s reputational
incentives. First, when K is larger, each of the seller’s actions is observed by more consumers, so that he
can be punished by more consumers after he shirks. This encourages him to exert high effort.

However, there is another countervailing effect, which is that a larger K makes it more difficult to
motivate the consumers to punish the seller. To the best of my knowledge, this effect has not been discussed
in the existing literature. In what follows, I explain this novel effect using a thought experiment. My
explanation also sheds light on how to derive the algorithm for computing K as well as how large 7 can be.

Suppose the consumers believe that the strategic-type seller will play L in periods K —1,2K —1, ... and
will play H in other periods. After the consumers observe that L was played once in the last K periods, their
posterior belief assigns probability close to % to L being played in the current period. Hence, the consumers
have an incentive to play 7' at such histories only when x < %, or equivalently when K > ﬁ If this
is the case, then the seller prefers exerting low effort once every K periods to exerting high effort in every
period, making the consumers’ belief self-fulfilling. If this is not the case (i.e., the consumers prefer to play
N after observing one L in the last K periods), then exerting low effort once every K periods gives the

seller a strictly lower payoff compared to exerting high effort in every period, so that in equilibrium, the
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consumers cannot entertain the belief that the seller will exert low effort once every K periods.

Using similar ideas, one can show that for every m € {1,..., K — 1} and o’ # a* such that b* best

replies to KI_(m a* + %a’ , there exists an equilibrium where in every K consecutive periods, player 1 plays

a’ in m periods and plays a* in K — m periods, and player 2 plays b* when she observes a’ being played at
most m times and a* being played at least K — m times in the last K periods. This provides an explanation

for how large ) can be, which I have already discussed after the statement of Theorem 2]

Comparison with Fudenberg and Levine (1989): When K < K, my results lead to sharp predictions
not only on the patient player’s equilibrium payoff, but also on his equilibrium behaviors as well as consumer
welfare. This aspect of my results stands in contrast to most of the existing results in the reputation literature,
including those in Fudenberg and Levine (1989), that focus exclusively on the patient player’s payoff but do
not lead to sharp predictions on consumer welfare and players’ behaviors.

For example, in Fudenberg and Levine (1989)’s model where player 2 can observe the full history, Li
and Pei (2021) characterize the action frequencies that can arise in equilibrium and find that a wide range of
behaviors are plausible. In the product choice game, their results imply that the discounted frequency with

which the seller exerts high effort can be anything between o and 1 and the consumers’ equilibrium

THT-aer
payoff can be anything between their highest feasible payoff 1 and their minmax payoff OPEI

According to Theorem [2, when the consumers have short memories and cannot observe the exact se-
quence of the seller’s actions, the only equilibria that survive are those where the seller exerts high effort in
almost all periods. It implies that the bad equilibria (i.e., those where the consumers receive a low payoff)
in Fudenberg and Levine (1989)’s model rely on consumer-strategies that depend either on events that hap-
pened in the distant past or on the fine details of the game’s history. These strategies sound less plausible
(1) in markets without good record-keeping institutions where it is hard for the consumers to learn the exact
sequence of the seller’s actions, (iii) in online platforms that only disclose some aggregate statistics of the
seller’s recent performances but do not disclose the exact timing of each individual rating, and (iii) when

consumers have limited capacity to process detailed information about the exact sequence of the seller’s

actions in which case their decisions are mostly based on some coarse summary statistics.

Proof Sketch: The idea behind the proof of the second part of these theorems is contained in the thought

experiment, with details in Appendix My technical contribution is in the proof of the first part.

'8In Online Appendix D, I compare the predictions on player 1’s discounted action frequency in Fudenberg and Levine (1989)’s
model to those in my model under any arbitrary K € N. I show that my model leads to sharper predictions in terms of the action
frequencies as long as a™ is player 1’s optimal pure commitment action, i.e., the discounted frequency with which player 1 plays
a™ is bounded above 0 in every Nash equilibrium of Fudenberg and Levine (1989)’s model.
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A major challenge is that characterizing a/l Nash equilibria in an infinitely repeated game is not tractable
in general. Ruling out the type of equilibria constructed in the proof for the second part is insufficient to
show that player 1 will play a* with frequency close to 1 in all equilibria. This is because a Bayesian player
2’s expectation of player 1’s current-period action may not be close to the empirical frequency of player 1’s
last K actions. For example, in the product choice game, there exist equilibria where the seller plays H with
probability bounded away from O even though he has played L in all of the last K periods.

I sketch the proof below with details in Appendix Some of my arguments such as Lemmas
and [3.3]do not depend on players’ payoff functions, which are portable to other repeated game settings with
limited memories and more generally, repeated games where players use finite automaton strategies.

I define a state as a sequence of player 1’s actions with length K, i.e., (a;_x, ...,a;_1). Let S = AX be
the set of states with s € S. Let s* = (a*, ..., a*). Fix a strategy profile 0 = (01, 02). For every s € S, let
11(s) be the probability that the current-period state is s conditional on the event that player 1 is the strategic
type and calendar time is at least K. For every pair of states s, s’ € S, let Q(s — s’) be the probability that
the state in the next period is s’ conditional on the state in the current period is s, player 1 is the strategic
type, and the calendar time is at least K. Let p(s) be the probability that the state is s conditional on calendar
time being K and player 1 is the strategic type. The goal is to show that x(s*) is close to 1 in all equilibria.
I state three lemmas which hold for all strategy profiles and all stage-game payoffs, i.e., they are portable to

other repeated games with limited memories or when players are required to use finite automaton strategies.

Lemma 3.1. Forany ¢ € (0,1) and any equilibrium under 6, we have

u(s’) = (1—=90)p(s') + 52/1(3)@(3 — &) for every s’ € S. (3.6)

seS

The proof is in Appendix Intuitively, Lemma|3.1|implies that the occupation measure of every state
s’ is a convex combination of its probability in period K and the expected probability that the state moves

to s’ after period K. For any non-empty subset of states S’ C S, let

Z(8) = > ) u(s)Qs — 5) (3.7)

s'eS’ s¢ S’

be the inflow to S’ from states that do not belong to S’, and let

oS = Z Z w(sHQ(s" — s) (3.8)

s'eS" s¢ S’
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be the outflow from S’ to states that do not belong to S’. By definition,

S =D us) (PR =9+ D3R 8) = 3D uNRE = 9+ > D ) > s).

s'es’ s'es’ ses’ s¢S’ s'eS’ ses’ s'eS’ s¢ S’

=1 =0(s")

For any S’ C S, by summing up the two sides of equation (3.6) for all s € S’, one can obtain that

DN uRE =)+ D) u(s)Qs = s = > us)+ > L0ty - psh) )
5

s'eS’ seS’ s'eS’ s¢ S’ s'es’ s'eS’

=7(5)

These equations imply that Z(S") = O(S") + >, cq 1%5{ wu(s') — p(s’ )} Since 1 and p are probability

measures on S, we have | >~ .o (1(s") — p(s"))| < 1. This leads to the following lemma:
Lemma 3.2. For every non-empty subset S’ C S, we have:

7(8') - O] = | 3 25 (uls') —p(s) | < 152 (.9

s'es’!

I partition the set of states according to S = Sy U ... U Sk so that Sj is the set of states where k of the
player 1’s last K actions were not a*. By definition, Sy = {s*}. I further partition every Sy, = U;-]ikl) Sk
according to player 2’s information structure, i.e., two states belong to the same partition element S ;, if and
only if player 2 distinguish between these two states. For every state that belongs to S, exactly one of the

following two statements is true, depending on whether player 1’s action K periods ago was a*:
1. The state in the next period belongs to Si_1 or Sy, depending on player 1’s current-period action.
2. The state in the next period belongs to Sy or Sk, depending on player 1’s current-period action.

Therefore, I partition each S ;. into 57, and S} . such that for every s € S; i, s € 57 if and only if player

I’s action K periods ago was a*, and s € S} ; otherwise. For any S’, S” C S with §' N .S" = 0, let

(8" — 8" = Z Z u(sHQ(s' — ") (3.10)

SleS/ Sllesll

be the expected flow from S’ to S”. According to Bayes rule, upon observing a state that belongs to S 1,
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player 2 believes that player 1’s action is a* with probability

QSik = Se—1)+ Y. > u(s)Q(s = ), (3.11)

SESJ’.‘Jc s'€S;k
and is not a* with probability Q(Sjx — Skt1) + Xsesr, 2ses, #(s)Q(s — ). The next lemma shows
!
that as long as both Q(S,_; — S, 1) and Q(S;; — Si—1) are bounded above by a linear function of 1 — 4,

either ) . S (s) is also bounded above by some linear function of 1 — §, or player 2 believes that player

1 will play a* with probability strictly less than % upon observing that the current state belongs to S, ;.

Lemma 3.3. Forevery z € R, there existy € Ry and § € (0, 1) such that for every equilibrium under
d > ¢ and every S; i, with k > 1. If max{Q(S;r — Sk—1), Q(Sk—1 = Sjk)} < 2(1 —0), then either

> uls) <y(1—3) (3.12)

SES]";Q

or

Q(Sjr — Sk—1) + Z Z 1(s)Q(s — ')

SEST, S'ESj K

QSjk = Ser) + Y. D u5)Q(s = )

! I
sES].’k s'eSk

<K-1. (3.13)

The proof requires some heavy algebra, which is in Appendix [B.1] Intuitively, in the case where (3.12))
is satisfied, the states in .S;; have negligible occupation measure as 9 — 1. In the case where is
satisfied and K < K, player 2 has no incentive to play actions b* or above after observing any state in .S ke

The next two steps make use of players’ incentive constraints. First, I use Lemma[3.2] and the no-back-

loop lemma to show that both the inflow to Sy = {s*} and the outflow from Sy are negligible as 6 — 1.

Lemma 3.4. For every ¢ and in every Nash equilibrium under 5, O(Sy) < 2(1(;5) and I(Sy) < 1%5.

Proof. Let S” denote a subset of states such that s € S’ if and only if (i) s # s*, and (ii) there exists
a best reply o1 such that s* is reached within a finite number of periods when the initial state is s. The

no-back-loop lemma implies that at least one of the two statements is true:
1. Player 1 has no incentive to play actions other than a* at s*.

2. Player 1 has an incentive to play actions other than a* at s*, and as long as player 1 plays any such

best reply, the state never reaches S’ when the initial state is s*.
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In the first case, O({s*}) = 0, and Lemma implies that Z({s*}) < 1%5. In the second case, the
definition of S’ implies that Z(S’) = 0. According to Lemma 3.2, O(S’) <
implies that Z({s*}) < O(S’),so Z({s*}) < 1%5. According to Lernma O{s*}) < 2(1(;6). O

10 The definition of S’

Lemma/[3.4]implies that the inflow to Sy and the outflow from Sy are both negligible. Lemma|3.3|implies
that for every S; 1, either the occupation measure of states in S} 1 is negligible, or player 2 has no incentive to
play b* at S; 1. The next lemma shows that it cannot be the case that states in .S7 have significant occupation
measure yet player 2 has no incentive to play b* at S; ;. This conclusion generalizes to every S} j, provided
that the flow from S to Sj 5, and that from S} ;. to Si_ are both negligible. Iteratively apply Lemma[3.3|

and Lemma [3.5] all states except for s* (i.e., the unique state in Sy) have negligible occupation measure.

Lemma 3.5. Suppose us is such that b* does not best reply to %a* + %a’ foreverya' # a*. For every
y > 0, there exist z > 0 and § € (0, 1) such that for every § > 0, every Nash equilibrium under 9, and every
ke {1a 2,.. K} IfmaX{Q(Sk—l — Sk)? Q(Sk — Sk—l)} < y(]' - 6)’ then ZSESk :U’(S) < Z(l - 6)

The proof is relegated to Appendix The intuition is that when both Q(Sx_1 — Si) and Q(S —
Sk—1) are negligible, Q(Sy—1 — S 1) and Q(S; — Sk_1) are also negligible for every j. Suppose by
way of contradiction that ) __ Sk p(s) is bounded away from 0, then Lemma implies that at every S,
where states in S ;, occur with occupation measure bounded above 0, player 2 has no incentive to play b*
at Sj . Since the flow from S} to Si_; is negligible, the flow from Sy to Si1 must be bounded above
0. Lemma @] then implies that the flow from Sy11 to Si is also bounded above 0. This implies that in
equilibrium, player 1 will take the most costly action a* at some states in S in order to reach states in
S; . Where player 2 has no incentive to play b*, i.e., player 1’s payoff is bounded below w1 (a*, b*) in states
that belong to S; ;. This is suboptimal for player 1 since he can secure payoff u;(a*, b*) by playing a* in

every period, which implies that for every k > 1, Y s, u(s) ~ 0 in all equilibria.

4 Extensions

Section {i.T| examines other prior beliefs about calendar time, for example, when the game’s continuation
probability is different from player 1’s discount factor. Section {.2] extends my results to games where
|B| > 3. Section extends my results to situations where each player 2 can only observe the summary
statistics of some noisy signals about player 1’s actions. Section [d.4]extends my results to situations where
player 2 observes coarse summary statistics about player 1’s last K actions and provides conditions under

which coarsening the summary statistics observed by the consumers can improve their welfare.
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4.1 Player 2’s Prior Belief about Calendar Time

Parameter § plays two roles in my baseline model: It is both the patient player’s discount factor as well as
the probability with which the game continues after each period. The latter affects the short-run player’s
incentives through their prior belief about calendar time.

I extend my results to environments where the patient player’s discount factor do not coincide with
the game’s continuation probability, and more generally, to environments where the short-run players have
alternative prior beliefs about calendar time. For example, suppose the short-run players’ prior belief assigns
probability (1 — S)Et to calendar time being ¢t € N, and the patient player’s discount factor is §, which I
assume is no more than d, i.e., 1 > & > & > 0. It models situations where the patient player discounts future
payoffs for two reasons. First, he is indifferent between receiving one unit of utility in period ¢ and receiving
/4 unit of utility in period t — 1. Second, the game ends with probability 1 — & after each period.

My no-back-loop lemma extends to this setting. This is because that conclusion applies independently
of player 1’s discount rate and the game’s continuation probability. The statement of Theorem I]is modified
as follows: Suppose (u1, uz) satisfies Assumption and the continuation probability § is large enough such
that all of player 2’s best replies to the mixed action {1 — (1_3)75%%) }a* + (1—3)75%7@@ are no less than
b*, then player 1’s payoff in every equilibrium is at least (1 — 6% )uy (a*,b) + 6% uy (a*, b*).

Hence, Theorem [I] applies to any discount factor of the patient player, as long as the probability with
which the game continues after each period is above some cutoff. Moreover, that cutoff depends only on the
prior probability of commitment type my and player 2’s stage-game payoff function wus. Intuitively, since the
patient player’s equilibrium strategy satisfies the no-back-loop property, there is at most one period over the
infinite horizon in which he has a positive reputation yet he plays an action other than a*. Therefore, every
short-run player has a strict incentive to play b* after observing a* in the last K periods when her prior belief
assigns a low enough probability to each calendar time. The latter is the case when § is large.

In order to state Theorem in this general setting, I redefine F'? (a, b) based on the game’s continuation

probability &:
+o0

F°(a,b) = E° [Z(l - E)Stl{at =a,by = b}]
t=0

The motivation for defining F'?(a, b) in this way is that under the interpretation that the game ends after the
patient player exits, the (normalized) expected sum of the short-run players’ payoff is:
+00

U2;EU[Z(1—5)StuQ(at,bt)]: S Fo(ab)us(a,b). @.1)

t=0 (a,b)€eAXB
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Hence, U depends on the strategy profile o only through {F“(a,b)}(,.)caxp- I restate Theorem Sup-

pose (u1,us) satisfies Assumption [1]and the discount factor 4 is larger than some cutoff § € (0,1),

1. Suppose a* is player 1’s optimal pure commitment action and b* does not best reply to the mixed
action %a* + %a’ for every a’ # a*. Then there exists a constant C' € R that is independent of §

and ¢ such that F7(a*,b*) > 1 — (1 — §)C for every Nash equilibrium o under discount factor 4.

2. Suppose either a* is not player 1’s optimal pure commitment action, or b* best replies to %a* + %a’
for some a’ # a*. There exist 6 € (0,1) and 7 > 0 such that for every § > §, there exists an

equilibrium o such that ) 5, _ 5 F7(a*,b) <1 — .

Hence, the occupation measure of (a*, b*) is arbitrarily close to 1 in all equilibria even when player 1’s
discount factor ¢ is bounded away from 1. The important parameter is §, the game’s continuation probability,
which affects player 2’s belief about calendar time. When K is small, the total occupation measure of action
profiles other than (a*, b*) is bounded above by some linear function of 1 — 4, i.e., it vanishes to zero as

long as the game continues after each period with probability arbitrarily close to 1.

Remark: My no-back-loop lemma is about the patient player’s best reply, which holds for all prior beliefs
about calendar time. The proofs of my theorems only use two properties of player 2’s prior belief about
calendar time. The proof of Theorem [I] uses the property that the prior probability of each individual
calendar time being close to 0, in which case the no-back-loop lemma implies that player 2 believes that a*
will occur with probability close to 1 in the current period after observing a* being played in all of the last
K periods. The proof of Theorems[2]and [3|uses the property that the ratio between the prior probability of ¢
and that of £ 4 1 being close to 1 for every ¢ € N. If this is the case, then in an equilibrium where the rational
type player 1 plays a/(# a*) once every K periods, player 2’s posterior belief assigns probability close to

1/K to player 1’s current period action being a’ after observing a’ occurred only once in the last K periods.

4.2 Games where |B| > 3

I generalize my theorems to games where player 2 has three or more actions, i.e., |B| > 3. In contrast to
games where | B| = 2, one cannot rank any pair of player 2’s mixed actions via FOSD. For example, when
B = {b1,be,b3} with by >=p by =p bs, mixed actions %bl + %bg and by cannot be ranked via FOSD.

Nevertheless, this issue does not arise in games where player 2’s mixed-strategy best replies can be ranked
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according to FOSD, which is satisfied by most of the games studied in the reputation literature. Let
B* = {B € A(B)‘ there exists & € A(A) such that 3 best replies to a}. (4.2)

Assumption 2. For every (3, B, € B*, either 8 = rosp ﬁ/ or ﬂ/ =rosp [ or both.

Assumption 2] has no bite when | B| = 2. In games where | B| > 3, Assumption [2]is satisfied in the class
of games studied by Liu and Skrzypacz (2014): They assume that player 2 has a unique best reply to every
a € A(A), which is the case when us(a, b) is strictly concave in b. In the games studied by their paper, all
actions in B* are pure, in which case any pair of them can be ranked according to FOSD.

A more general sufficient condition for Assumption [2|is that player 2 has a single-peaked preference
over her actions regardless of her belief about player 1’s action, i.e., us(a, b) is strictly quasi-concave in b.
This is because when player 2’s preference is single-peaked, either she has a unique best reply to «, or she
has two pure-strategy best replies to o which are adjacent elements in set B. Quah and Strulovici (2012)
provide a full characterization of this sufficient condition using the well-known single-crossing property.

I restate the no-back-loop lemma for games that satisfy Assumptions(I|and 2} For every oy : Ho — B*
and pure strategy o : H1 — A that best replies to o9, there is no h* € H1(51,09) () H} such that strategy
&1 plays an action that is not a* at ' and reaches a history in 4 (61, 02) ([ H] in the future. One can further
strengthen the no-back-loop result to every o9 : Ho — A(B) and pure strategy o1 : H1 — A such that 7,
best replies to o5 and oo (hl) € B* for every hl that occurs with positive probability under (71, 02).

My proof of the no-back-loop result in Appendix |A|covers these cases. Intuitively, since we only con-
sider player 2’s strategies where she plays a potentially mixed action that belongs to B* at every history,
player 2’s actions at any pair of histories can be ranked according to FOSD. Assumption |2|is used when ar-
guing that player 2’s action at the white circle weakly FOSDs her action at the green circle, since the Topkis
Theorem only implies that her action at the green circle cannot strictly FOSD her action at the white circle.
After establishing this generalized no-back-loop lemma, Theorem|[I|can be shown using the same argument
as that in Section[3.1] This is because at every history that occurs with positive probability, player 2’s mixed
action at that history must be a best reply to some o € A(A), which means that her action belongs to B*.

The proof of Theorems [2]and [3]in Appendix [B|covers games where |B| > 3 and us satisfies Assumption 2]

4.3 Noisy Information about Player 1’s Actions

My baseline model rules out imperfect monitoring by assuming that each consumer observes the number of

times that the seller took each of his actions in the last K periods. In practice, consumers learn from previous
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consumers’ experiences or from online ratings, which might be noisy signals of the seller’s actions.

This section examines settings where the consumers receive noisy signals about the seller’s actions. Let
a; € A be asignal of player 1’s action a; such that a; = a; with probability 1 — ¢, and a; is drawn according
to @ € A(A) with probability c. Player 1 observes the entire history ht = {as,bs,as}'—j. Player 2,
only observes the number of times that each signal realization occurred in the last min{¢, K'} periods. My
baseline model focuses on the special case where ¢ = 0, i.e., a; = a; with probability 1.

I show that a version of my no-back-loop lemma holds for all small enough €. For every ¢ > K, player
1’s incentive in period ¢ depends on the history only through (a;_f,...,a;_1). Let S = AKX be the set of
signal vectors of length K with a typical element denoted by s € S, which I call a state. Without loss of
generality, I focus on player 1’s strategies that are measurable with respect to the state, i.e., o1 : S — A(A).
I say that a pure strategy 01 : S — A induces an e-back-loop if there exist a subset of states {sg, ..., spr} C S
such that sp = sy = (a*,...,a*) and for every i € {0,1,..., M — 1}, if player 1 plays 1(s;) in state s;,

then it reaches state s;11 in the next period with probability more than 1 — ¢.

Corollary 2. There exists € > 0 such that for every o € A(A) and o9 : Ho — A(B), if a pure strategy
01 best replies to o4, then 71 does not induce any e-back-loop. If player 2 has three or more actions and us

satisfies Assumption 2] then this conclusion holds for all o9 : Ho — B*.

The proof is in Online Appendix E, which is similar to that of the no-back-loop lemma in the baseline
model. This corollary implies that although back loops may occur with positive probability due to noisy
signals, player 1 has no intention to induce any back loop as long as he plays a best reply. This implies that
when ¢ is close to 0, the probability of back loops is also close to 0.

The same argument can be used to show Theorem |1} that player 1 can guarantee himself a payoff of
(approximately) at least u;(a*,b*) when § is close enough to 1 and ¢ is small enough. This is because
conditional on observing (a;—g,...,a;—1) = (a*,...,a*), the probability that player 2 assigns to player
1 playing a* in the current period is close to 1. This implies that player 2’s action is at least b*, and
therefore, player 1’s payoff is approximately wu;(a*,b*) when he plays a* in every period. Theorem
can also be extended to environments where ¢ is small, i.e., the same cutoff K applies as long as ¢ is
small enough. Intuitively, this is because when € is small, the occupation measure of states other than
(at—fgy-ryap—1) = (a*,...,a*) is close to 0 since one can show that (i) when K is below the cutoff, the
probability that other states being generated by player 1’s deliberate behavior is close to 0, and (ii) when ¢

is close to 0, the probability that other states being generated by noise in player 2’s signal is also close to 0.
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4.4 Learning from Coarse Summary Statistics

This section studies an extension where the consumers can only learn from coarse summary statistics about
the seller’s last K actions. Following Acemoglu, Makhdoum, Malekian and Ozdaglar (2022), a coarse
summary statistics is characterized by a partition of A = Ay U...U A, so that for every ¢ € N, the short-run
player who arrives in period ¢ only observes the number of times player 1’s actions belong to each partition
element A; in the last min{¢, K'} periods. My baseline model considers the finest partition of A4, i.e., player
2 observes the number of times that player 1 took each of his actions in the last K periods. Under the
coarsest partition of A, player 2 receives no information about player 1’s past actions.

This extension fits when the consumers do not communicate precise information about the seller’s action
to future consumers. Instead, they can only describe which of the several broad categories the seller’s action
belongs to. For example, each consumer only tells future consumers whether she had a good experience or
a bad experience, but she finds it too time consuming to precisely describe the seller’s action (e.g., exactly
how good or how bad the experience was), particularly when the cardinality of A is large.

Since there exists a complete order > 4 on A and u;(a, b) is strictly decreasing in a, for every partition
element A;, the strategic-type player 1 will never choose action a € A; if there exists a’ € A; that satisfies
a >4 o. Hence, analyzing the game under an n-partition {Ay, ..., A, } of A is equivalent to analyzing a
game where player 1’s action set only contains the following n actions: {min Ay, ..., min 4, }.

When players’ stage-game payoffs satisfy Assumption (1} player 2 has no incentive to play b* unless
player 1 plays a* with positive probability. When the prior probability of commitment type my is small
enough such that player 2 has no incentive to play b* when player 1 plays a* with probability no more than
o, the strategic-type player 1 has no incentive to play a* and player 2 has no incentive to play b* unless the
partition element that contains a* is a singleton. If we partition A according to A = {a*} | (A\{a*}), ie.,
consumers only observe the number of times the seller chose a* in the last K periods but cannot distinguish
other actions, then consumers may receive a higher welfare under some intermediate K. Intuitively, such a
partition helps the seller to credibly commit not to take any action other than his commitment action a* and
his lowest-cost action ¢ = min A. This provides consumers a stronger incentive to punish the seller after
the seller loses his reputation, since consumers know that the seller will take the lowest action as long as he

does not take the highest action. Such an effect motivates the seller to play a* in every period.
Corollary 3. Suppose players’ stage-game payoffs (u1, ua) satisfy Assumptions and

1. If the partition element that contains a* is not a singleton, then the discounted frequency with which

the strategic-type of player 1 plays a™ is 0 in all Nash equilibria.
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2. Ifthe partition element that contains o™ is a singleton (without loss of generality, let A1 = {a*}), then
when § > §(mg), the strategic-type player 1’s payoff is at least (1 — 6% )u1(a*,b) + 6% uy(a*,b*) in

every Nash equilibrium. Furthermore, there exists an integer K € N such that

(i) There exists C € R that is independent of § such that for every 1 < K < K, we have
F?(a*,b*) > 1 — (1 —9)C for every Nash equilibrium o under K and J.

(ii) There exists n > 0 such that for every K > K, there exists § € (0,1) such that for every § > §,
there exists a PBE such that ), p F7(a*,b) <1 -1

Corollary [3|directly follows from Theorems|I|and[2] the proof of which is omitted in order to avoid repe-
tition. The way to compute the cutoff K is similar to that in the baseline model. If (3.5) is violated, then K =
1 and there exists an equilibrium in which the strategic type plays a* with zero frequency. If (3.3 is satisfied,

K—-1_x 1 : .
Sat + g minjego 1 {min 4;}.

then K is the smallest K such that b* best replies to the mixed action

Hence, for any K € N, if there exists a partition of A under which player 1 plays a* with frequency
arbitrarily close to one in all equilibria, then player 1 plays a* with frequency arbitrarily close to one in
all equilibria under partition A = {a*} | (A\{a*}). That is to say, if the objective is to maximize the
consumers’ payoffs in the worst equilibrium, then it is optimal to disclose to consumers only the number of
times that the seller chose the commitment action a™* in the last K periods.

Corollary [3| also implies that coarsening the summary statistics cannot improve consumers’ welfare
when |A| = 2. However, doing so may improve consumers’ welfare when |A| > 3 and K is intermediate
such that (i) b* does not best reply to KK Lo* 4 Ka and (ii) b* is a strict best reply to =L a* + Ka for some
a’ ¢ {a*,a}. The intuition is that by pooling actions other than a*, consumers believe that the seller’s action

is his lowest action @ whenever his action is not a*. This provides consumers stronger incentives to punish

the seller after the seller loses his reputation. This in turn encourages the seller to sustain his reputation.

5 Discussions

My baseline model makes the standard assumptions that (i) u; (a, b) is strictly increasing in b and is strictly
decreasing in a, and (ii) u2(a,b) has strictly increasing differences. These assumptions are satisfied in
most of the applications in business transactions and are assumed in the reputation models of Mailath and
Samuelson (2001,2015), Ekmekci (2011), Liu (2011), Liu and Skrzypacz (2014), among many others. I also
assume that the short-run players cannot directly observe calendar time, which is a standard assumption in

reputation models with limited memories such as Liu (2011), Liu and Skrzypacz (2014), and Levine (2021).
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This section discusses the two assumptions that distinguish my model from the model of Liu and Skrzy-
pacz (2014). I examine two alternative models which are only one-step-away from both my baseline model
and the model of Liu and Skrzypacz (2014). Section studies a model where w; is supermodular but
player 2 can observe the exact sequence of player 1’s last K actions. Section studies a model where

player 2 cannot observe the exact sequence of player 1’s last K actions but w, is submodular.

5.1 Observing the Exact Sequence of Player 1’s Last K’ Actions

I modify the assumption that player 2 cannot observe the exact sequence of player 1’s last K actions while
maintaining all other assumptions in my baseline model. My theorems in Section [3|extend to the case where
each player 2 knows the exact sequence of player 1’s last K actions with some small probability €. The proof
of this robustness result is similar to the robustness result under noisy information, which I have discussed
in Section 4.3as well as Online Appendix E. I omit the details in order to avoid repetition.

Next, I consider the other extreme case where player 2 can perfectly observe the exact sequence of player
1’s last K actions, which is assumed in Liu and Skrzypacz (2014). First, I show that for every K > 1, there
always exists a PBE where actions are (a*,b*) in every period and players’ payoffs are uj(a*,b*) and
ug(a*, b*). This stands in contrast to the conclusion in Liu and Skrzypacz (2014), that reputation cycles
(ones where player 1 milks his reputation when it is strictly positive and later restore his reputation) occur
in all equilibria. This difference explains how the supermodularity or submodularity of player 1’s stage-
game payoff affects the dynamics of his behavior. Second, I show that in the supermodular product choice
game, for all large enough K P;ql there also exist equilibria with reputation cycles in which players’ payoffs
are strictly bounded below w1 (a*, b*) and ug(a*, b*). This implies that when players’ actions are strategic
complements, allowing the consumers to observe the exact sequence of actions can generate bad equilibria
if consumers’ memories are long enough. This stands in contrast to games with submodular payoffs studied

by Liu and Skrzypacz (2014) in which the seller can secure his commitment payoff when K is large enough.

Proposition 1. Suppose (u1,uz) satisfies Assumption || and inequality , and that for every t € N,

player 2y can observe player 1’s last min{t, K} actions including the exact sequence of these actions.

1. For every K > 1, there exists § € (0,1) such that when § > §, there exists a PBE where player 1

obtains payoff ui(a*, b*) and player 2 obtains payoff uz(a*, b*).

2. In the product choice game, there exist K € N, © € (0,1), and n > 0 such that when my € (0,7)

“The requirement that K being large enough is needed. To see this, note that when K = 1, whether player 2 can observe the
order of player 1’s last K actions is irrelevant, in which case all my results in Section still apply.

30



and K > K ,@ for every § large enough,@ there exists a PBE where player 1’s payoff is no more than

ui(a*,b*) — n and player 2’s payoff is no more than ua(a*, b*) — .

The proof is in Online Appendix F. According to Proposition|l} when players’ actions are strategic com-
plements and the consumers can observe the order of the seller’s last K actions, there still exist equilibria in
which the seller attains his commitment payoff u (a*, b*) and the consumers attain payoff us(a*, b*). How-
ever, observing the order of actions together with a long enough memory can also generate bad equilibria in
which both players’ payoffs are strictly bounded below u;(a*, b*) and ug(a*, b*).

Comparing this model to Liu and Skrzypacz (2014), the only difference is that they assume that u; is
submodular while I assume that wu; is supermodular. This leads to two differences in terms of the results.
First, they show that reputation cycles, ones where player 1 milks his reputation when it is strictly posi-
tive and later restores his reputation, will occur in all equilibria, while I show that there always exists an
equilibrium where reputation cycles do not occur. Second, they show that the patient player can secure his
commitment payoff in all equilibria when K is large enough. In contrast, I show that there exist equilibria
where the patient player’s payoff is bounded below his commitment payoff when K is large enough.

The comparison between this result, the no-back-loop lemma in my baseline model, and the result in
Liu and Skrzypacz (2014) implies that whether reputation cycles occur in equilibrium hinges on whether
players’ actions are complements or substitutes in the stage game and whether the consumers can observe
the exact sequence of the seller’s actions. In particular, (i) reputation cycles will inevitably occur when
players’ actions are substitutes, (ii) reputation cycles may not occur when their actions are complements,
and (iii) reputation cycles will never occur when their actions are complements and the short-run players’
decisions depend only on the summary statistics of the patient player’s recent actions.

Proposition[I|also implies that the patient player’s worst equilibrium payoff is not monotone with respect
to the quality of the short-run players’ information, measured in the sense of Blackwell. Theorem [I] and
Fudenberg and Levine (1989)’s result imply that the patient player can secure his commitment payoff in
all equilibria when the short-run players can observe the full history or when they can only observe the
summary statistics of the patient player’s last K actions. In contrast, the patient player’s lowest equilibrium
payoff is bounded below his commitment payoff when the short-run players can observe his actions in the
last K (> K) periods as well as the exact sequence of these actions. One can also show that when the short-

run players can observe the exact sequence of the patient player’s last K actions, the patient player’s worst

The requirement that 7y being small enough is necessary for the existence of a low-payoff equilibrium. This is because when
mo is large enough, player 2 has a strict incentive to play 7" upon observing (H, ..., H) given that the commitment type plays H in
every period, in which case player 1 can secure his commitment payoff by playing H in every period.

21 As in Liu and Skrzypacz (2014), reputation cycles can occur only if § is large enough. This is because restoring reputation
requires player 1 to play the strictly dominated action H. Hence, he has no incentive to restore his reputation when § is low.
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equilibrium payoff is weakly decreasing in K, which means that a more informative monitoring technology
lowers the patient player’s worst equilibrium payoff. The proof is available upon request.

The comparison between Proposition [1| and Theorem [1| also suggests that allowing the myopic unin-
formed players to observe the exact sequence of the informed player’s actions changes the set of equilibrium
payoffs. This stands in contrast to repeated Bayesian games where the uninformed player is patient in which
Renault, Solan and Vieille (2013) show that it is sufficient for the patient uninformed player to check the

frequency with which the informed player played each of his actions.

5.2 The Patient Player Has Submodular Payoffs

I relax the assumption that u1(a, b) has strictly increasing differences while maintaining all other assump-
tions in my baseline model. I study the case where wu;(a,b) has weakly decreasing differences. The only
difference between this model and the one in Liu and Skrzypacz (2014) is that player 2 knows the exact
sequence of player 1’s last K actions in their model while they do not know that in the current model.

Due to the complications in constructing equilibria, I focus on the product choice game, which is also the
primary focus of Liu (2011) and Liu and Skrzypacz (2014). The weakly decreasing difference assumption
translates into ¢ > cy. I show that when ¢ is large enough, (i) the no-back-loop lemma fails, i.e., there
exists a best reply of the patient player in which he milks his reputation when it is strictly positive and
then restores his reputation, and (ii) if in addition, that the prior probability of commitment type g is not
too large, there exist equilibria where player 1’s payoff being bounded below his commitment payoff when

u1(a, b) is sufficiently submodular, i.e., cp is large enough relative to cy.
Proposition 2. In the product choice game where uy(a,b) has weakly decreasing differences.

1. Forevery K > 1 and cp > cy > 0, there exists § € (0,1) such that for every § > ¢, there exist oy

and a pure strategy 0 that best replies to oo such that the no-back-loop property fails under (1, 02).

2. Suppose cr is large enough such that 1 + c¢p > K(1 + ¢y). There exist § € (0,1), 79 > 0, and
n > 0 such that for every § > 0 and my < T, there exists a PBE where player 1’s payoff is lower

than uy(a*, b*) — n and the discounted frequency with which he plays a* is no more than 1 — .

The comparison between Proposition 2] and the conclusions in my baseline model implies that whether
reputation cycles occur in equilibrium hinges on the supermodularity or submodularity of the seller’s stage-
game payoff function. In particular, a patient seller has an incentive to milk and then rebuild his reputation
when his effort and consumers’ trust are strategic substitutes, but has no incentive to do so when his effort

and consumers’ trust are strategic complements.
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The proof is in Online Appendix G. For some intuition, consider the case where K = 1. When cp >
cy > 0, it is still true that consumer ¢ plays 1" with strictly higher probability when a;—; = H. However,
the seller has a stronger incentive to exert high effort when a;_; = L. As a result, he may find it optimal to
first milk his reputation and then restore his reputation. This back loop that contains the clean history, which
is ruled out in the case with supermodular payoffs, provides consumers a rationale for not trusting the seller
even after they observe high effort in the period before. My proof constructs an equilibrium where the seller
exerts low effort when a;_1 = H and mixes between high and low effort when a;_; = L. Consumer ¢ plays

N when a;—1 = L and plays T’ with probability between 0 and 1 when a;—; = H.

6 Conclusion

I analyze a novel reputation model in which the consumers have limited memories and do not know the exact
sequence of the seller’s actions. I show that when players’ stage-game payoffs are monotone-supermodular,
it is never optimal for the seller to milk his reputation and later restore his reputation. This stands in contrast
to Liu and Skrzypacz (2014) in which the reputation cycles I ruled out occur in all equilibria.

I show that a sufficiently patient seller receives at least his commitment payoft in all equilibria regardless
of the consumers’ memory length, which to the best of my knowledge, is the first reputation result that allows
for arbitrary memory length. I also show that the patient seller will play his commitment action in almost
all periods in all equilibria, and that the consumers can approximately attain their first best welfare in all
equilibria if and only if the consumers’ memory length K is lower than some cutoff. The intuition is that
although a larger K enables more consumers to punish the seller once the seller shirks, it is more difficult to

motivate the consumers to punish the seller once they observe shirking.
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A Proof of the No-Back-Loop Lemma

I provide a unified proof for the no-back-loop lemmas stated in Sections[3.TJand#.2] For every t > K, player
2;’s incentive depends only on the number of times that player 1 takes each action in the last K periods.
Therefore, player 1’s continuation value and incentive in period ¢ depend only on (a;—, ..., a;—1). Although
the order of actions in the vector (a;—g, ..., a;—1) does not affect player 2’s action, it can affect player 1’s
incentives. Moreover, player 1’s action in period ¢t may depend on variables other than (a;—, ..., a;—1),
such as his actions more than K periods ago and previous player 2’s actions.

Fix any o9 : Ho — B*. Let V(a4—x,...,a;—1) be player 1’s continuation value in period ¢. Let
B* € A(B) be player 2’s action at histories that belong to H} under o2. For every a # a*, let 5(a) be
player 2’s action under o2 when exactly one of player 1’s last K actions was a and the other K — 1 actions
were a*. A pure strategy o7 is canonical if it depends only on the last K actions of player 1’s. For every
strategy profile (o1, 02) and ht € H1, let H1 (01, 02|ht) be the set of histories h® satisfying h® = h! and h*
occurring with positive probability when the game starts from history k! and players use strategies (o1, 02).
If 7 is canonical, then H1 (51, 02|ht) = H1(51, oh|h) for every o2, b, and h'.

Since player 2’s action depends only on player 1’s actions in the last K periods, for every o, there exists
a canonical pure strategy o7 that best replies to oo. Therefore, as long as there exists a pure strategy that
best replies to o9 and violates the no-back-loop property with respect to o, there also exists a canonical
pure strategy the best replies to oo and violates the no-back-loop property with respect to o2. Hence, the
no-back-loop lemma is implied by the following no-back-loop lemma*, which I show next.

No-Back-Loop Lemma*. For any oo : Ho — B* and any canonical pure strategy o1 that best replies
to 0. If there exists ht € Hi (\H1(01,02) such that 51(h') # a*, then H1 (71, 02|ht) \H; = 0.

Suppose by way of contradiction that there exists a canonical pure strategy o7 that best replies to o such
that there exist two histories h', h* € H} (\H1(51, 02) that satisfy h® € H1(51, 02|ht), and 71 (h') = o
for some a’ # a*. Without loss of generality, let h* be the first history in 7} that succeeds h' when player 1
behaves according to 71. Let h*~! = (ag, ..., as—2) € H1(G1,02|h?). Since h* is the first history in ] that
succeeds h', it must be the case that h*~! ¢ H¥, 50 (as_f_1,...,as_2) = (a”,a*,...,a*) for some a”’ # a*.
Since h*® € H7, player 1 plays a* at h*~! when he uses strategy 7. This implies that

(1 —&)uy(a*, B(a")) + 6V (a*,a*,...,a*,a*) > (1 — §)ui(d, B(a")) + 6V (a*,a*,...,a*,d’).  (A.1)
Since 1 (h') = d’, player 1 weakly prefers a’ to a* at histories in H?, we have:
(1= d0)ui(a*, B*) + 6V (a*,a*,...,a*,a*) < (1 = 0)uy(d, %) + 6V (a*,a*, ...,a*,d). (A2)

Since the seller’s stage-game payoff function is strictly supermodular, and 8* and (a”) can be ranked
according to FOSD under Assumption 2, inequalities (A.1)) and (A.2) imply that 8* <posp B(a”). Let

S 8w (G1(hT), oa(R7))
Ziﬁﬂ ot

be player 1’s discounted average payoff from period ¢ 4 1 to period s — 2 when his period ¢ history is h* and
players play according to (o1, 02). Since the strategic-type player 1’s incentive depends only on his actions
in the last K periods, when (as—_g 1, ..., as—2) = (a”,a*, ..., a*), the following strategy is optimal for him:

U=

(A3)

* Strategy *: Play a* in period s — 1, play a’ in period s, play o1 (h7) in period 7 + (s — t) for every
T €{t+1,...,s — 2}, and play the same action that he has played s — ¢ periods ago in every period
after period 2s — ¢t — 1.
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Since Strategy * is optimal for player 1, it must yield a weakly greater payoff compared to any of the
following two deviations starting from a period s — 1 history where (as_x 1, ...,as—2) = (a”,a*, ...,a*):

* Deviation A: Play o’ in period s — 1, 51 (h") inperiod 7+ (s —t — 1) forevery 7 € {t +1,...,s — 2},
and play the same action that he has played s — ¢ — 1 periods ago in every period after 2s — ¢t — 2.

e Deviation B: Play a” in period s — 1, play a* from period s to s + K — 2, and play the same action
that he has played K periods ago in every period after s + K — 1.

Player 1 prefers Strategy * to Deviation A, which implies that:

(1 = d)yus(a’, B(a")) + (6 — 8*"2)U
1 — §s—t—2

(1 =0)usr(a*, B(a”)) + (1 — 0)dus(d, B*) + (52 _ 5s—t—1)U
1 — §s—t—1

<
This leads to the following upper bound on U':

(6—=6"HU < (1-6 ") ug(a*, B(d")+6(1 =6 uy (o, %) — (1 =6 ""Yui(d, B(a”)). (A4)
Player 1 prefers Strategy * to Deviation B, which implies that:

(1 = 8)ur(a”, B(a")) + (6 — 6%)uy(a*, B(a")) < (1 —0)uy(a*, B(a")) + (1 — 8)duy(a’, B*) + (62 — 651U
16K = [ gt '

(A.S)
This leads to a lower bound on U. The left-hand-side of (A.3) equals

ur(a®, 8(6") + 1 {wr(a”, 5(a") — (e, 5a")}.

>0, since a’’ <a* and u; is decreasing in a

and inequality (A.4) implies that the right-hand-side of (A.5)) is no more than:

w(a”,Ba") +6  {u(d,8) —u(dBa")}

<0, since S(a’)>=B* and uy is increasing in b

Since uq (a, b) is strictly increasing in b and is strictly decreasing in a, a* > a”, and 3(a”) = 3*, inequality
(A.5) cannot be true. This leads to a contradiction and implies the no-back-loop lemma.

B Proof of Theorems 2 and 3

In Section I complete the proof in Section and show that when K < K, the patient player plays a*
with frequency arbitrarily close to 1 in all equilibria. I focus on the case where is satisfied since when
is not satisfied, K = 1 and there is no K that meets the requirement of Statement 1, i.e., the statement
is trivially satisfied. In Section[B.2] I construct equilibria where the patient player plays a* with frequency
bounded away from 1 when s satisfied and K > K, as well as equilibria where the patient player
plays a* with zero frequency when is violated.

B.1 The Frequency of ¢* Being Close to 1 in All Equilibria

I start from the proof of Lemma[3.1]
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Proof of Lemma 3.1: For every t € N, let p;(s) be the probability that the state is s in period K + ¢ con-
ditional on player 1 being the strategic type, and let ¢;(s — s’) be the probability that the state in period
t + K + 1is s’ conditional on the state being s in period ¢t + K and player 1 being the strategic type. By
definition, po(s) = p(s) and p1(s) = D cgpi(s')Q(s" = s). According to Bayes rule, we have

400 +00 t /
, (1 =06)0"pi(s)qr(s — &)
5) = —8)8'pi(s) and s — §') = ==0 .
o) = 30 -5'n(s) and Qs ) e
This implies that
+00 too ¥oo
S )Qs > ) = 303 (=0 n()uls ) = S (1-0)0" Y ils)a(s > 8) = 3 (1-0)5 ()
ses seS t=0 t=0 seS t=0
1 1 (X =
S{nls) = (1=} = 5{ 3= 00l = (L= 0)pls) } = D (1= )8 praa(s).
t=0 t=0
These two equations together imply (3.6). O

Next, I show Lemma[3.3]

Proof of Lemma 3.3: Since Q(Sjr — Sk—1) = Q(S’ — Sk—1), Q(Sjr — Skt1) = Q(Sj’f‘jk — Sk+1)s
and under the hypothesis that Q(S; 1, — Si—1) < z(l —0)and Q(Sk—1 — Sj ) < 2(1 —6), we have:

S 3 w)Qs )+ QS = Sec) < S nls) — QST — Sper) + 2(1 - 8),

* !/ . *
sGSj,k s'€S; 1 <2(1-6) sGSM

:Zses;kp(s) Q(S k—>Sk+1)

D D ue)Qs = 8+ QSjk = Si1) = D wls) + Qx> Sker) — 2(1-0).

ses’  s'€Sy N ses’,
Jok =Q(57 x> Sk+1) Ik

=Taes), 1)~ QS = 851)

. . 2ses;, Ms) o .
Suppose there exists no such y € R, that is, % can be arbitrarily large as § — 1. Since the sum

of ZSES;.",C u(s) — QST — Sk+1) +2(1 — (5) and ZSGS/ n(s) + QS5 — Sk+1) — 2(1 — &) equals
Zsesj i w(s), we know that when § is close to 1, is 1mphed by:

ZsGS}ik p(s) — QST ), = Sk+1)
ZSGS;JC pu(s) + Q(S7 ), = Sk+1)

< K -1,

or equivalently,

> ouls) < (K —=1) Y puls) + KQ(Sj), — Skr1)- (B.1)

SGS;JC sES; &

I derive a lower bound for Q(S7, — Sk+1). Since O(Sjk) = Q(S7; — Skt1) + Q(Sjx — Sk—1) +
Q(Sjx — Sk\S; k), under the hypothesm that max{Q(S;r — Sk—1), Q(Sk 1= Sjk)} < z(l —0),

Q(S7 1 = Sky1) = O(Sjk)—Q(S} ;. = Sk—1)—Q(Sjk = Sk\Sjr) > O(Sj k) —Q(Sjr = Sk\Sjr)—2(1-9).
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According to Lemma we have Q(S7, — Sit1) > Z(Sjk) — Q(Sjk — Sk\Sjik) — Wsﬂ- Since
atevery s € S, the state in the next period belongs to Sy if player 1 does not play a™ at s, and belongs
to S; i, if player 1 plays a* at s, we have Q(S* — Sk\S] %) = 0. This implies that Q(S; ;, — Sk\S; k) =
(S 1, — Sk\Sjx). Since Z(S; 1) = Z(S; ) +I( W) = QSE, = 81— QS = S5,

(1 =96)(1+ 29)

QSjk = Skr1) = I(Sjk) — LSk = Sk\Sjik) — 5

= Z(Sjx) + Z(Sjk) = QSTs = Sjw) = QSGk = Sjix) = QS = Sk\Sjk) — (1_)551+Z§)
> TS5 — QS = Shp) + O(S) — QS = Sk\Sx) — Q(Sy = Six) _(1—f5)((52+2<5>
>0
> I(S5) — Q(SEy = Sip) — <1—5>§2+5>
Since Q(S%, = §,) < O(S%,) and Q(S%, — S%,) < I(S,,).
QS5 — Sjp) < %O( k) %I( ') < %I( )+ %0( )+ %;5

This together with the lower bound on Q(S7;, — Sk+1) that we derived earlier implies that:

7(5},) - 0(8},)) - T2

Since O(5} ;) = Q(S%, — Sk\Sjk) + Q(Sjx — Six) + QS — Sk—1), and Q(S%; — Sy—1) is
assumed to be less than z(1 — §), we know that

K-1
QST = Sk+1) = 7(

QS5 = Sin) = B (TS30) — QS 8\84) - QS §7)) - L EE2)
Hence, when ¢ is close to 1, inequality is implied by
S ous) < (K=D{ 3 uls) ~ QS — Si\Sin) }
sest, seS!,
+ (K = D{Z(S75) = S} = S5 }- (B.2)

I say that a sequence of states {s1, ..., s;} C 51 form a connected sequence if forevery i € {1,2,...,i—
1}, there exists a; € A such that the state in the next period is s;11 when the state in the current period is s;
and player 1 takes action a;. A useful observation is that for every s € S, 1, there exists a unique state s’ in
S; 1 such that playing some a € A in state s’ leads to state s. Using this observation, we construct for any
s1 € S}k, a finite sequence of states {si, ..., S;m} C S; 1. with length m at least one such that (i) for every
i €{1,2,...,m — 1}, there exists an action a; € A such that playing a; in state s; leads to state s;;1 in the
next period, (i) if m > 2, then {s2, ..., S} C S]* &» and (iii) no matter which action player 1 takes in state
Sm. the state in the next period does not belong to S x o OF equivalently, there exists an action a € A such
that taking action a at state s, leads to a state that belongs to S’ Lemrna implies that

p(s2) < wp(s1)Q(s1 — s2) + Q(S\Sjk — {s2}) + %
= 1) = Qfs1} = 5\Sj) + QS\Sa > {s2]) + 50 ®3)
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and for every ¢ > 2, we have:

—)
pw(siv1) < p(si)Q(si = sip1) + QS\Sjk = {si+1}) + 1T
= pls) + QS\Sj = fsian)) + (B.4)

Iteratively apply (B.4) and (B.3) for every ¢ > 2, we obtain:

(1(s:) < p(s1) + Q(S\Sjx — {52, 8:}) — Q({s1} — SK\Sjx) + “_(5?“1) (B.5)

Summing up inequality (B.5) for i € {2, ...,m}, we obtain:

m

;“(Si) < (m - 1){:“(81) + Q(Sik — {52, ...,Sm}) - Q({Sl} — Sk\S]Jg)} + m(m —216)(1 - 5)
= (m— 1){ p(s1) — Q({s1} — Sk\Sjk) }
+(m — 1){ Q(S\S;k = {52,y 5m}) — Q(Sh), — {52, s Sm}) } N m(m —215)(1 - 9)

>0

< (K- 1){u(31) - Q({s1} — Sk\Sj,k)}

K(1-96)

+(K — ){ (S\S7 i = {52,y m}) — Q)1 — {52, ...,sm})} n {m(m —21)(1 =9 .

o

One can obtain (B.2] . by summing up the above equation for every s; € S, and taking & — 1. This
is because the left-hand-side of this sum equals ) __ Sty (s). Therefore, after ignoring the last term that

vanishes to 0 as § — 1, the additive property of the operator Q implies that the right-hand-side equals

(K=1{ 3= nls) = QSji = S\ | + (K = D{Z(S},) — QS = S5 }-

SES;, b
This establishes inequality and leads to the conclusion of Lemma 3.3. O
Then I show Lemma [3.3]

Proof of Lemma 3.5: Suppose by way of contradiction that for every y > 0 and § € (0, 1), there exist
d > 4, an equilibrium under 6, and £ > 1, such that in this equilibrium, max{Q(Sy_1 — Sj ), Q(Sk —
Sk-1)} <yl —8)but 3 g p(s) > z(1 —6). Pick a large enough z, Lemmaimplies that for every
Sixr C Sk, either Zses . 1(s) < 5% (1 — d), or player 2 has a strict incentive not to play a* at S ;. The
hypothesis that } ¢ 1 ( ) > z(1 —0) implies that there exists at least one partition element S; ;, such that
player 2 has a strict incentive not to play a* at S; ;. Let S}, be the union of such partition elements.

I start from deriving an upper bound on the ratio between s, p(s) and Q(S;, — Sk_1). Let V(s)
be player 1’s continuation value in state s and let V' = max,cs V(s). Let v be player 1’s lowest stage-
game payoff. Let v/ = max,ea p<p+ u1(a,b) and v* = wuy(a*,b*). Assumptions [I| and inequality
together imply that v* > v’ > v. Since player 1 can reach any state within K periods, we have V' (s) >
(1 — 6%)v + 6KV for every s € S. Theorem 1| suggests that player 1’s continuation value at s* is at least
uy(a*,b*). Therefore, V > v*. Let M be the largest integer m such that

(1— 0™ + 6™V > (1 — %)+ 65V, (B.6)
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v

forany t € N and s € S, and under any pure-strategy best reply of player 1, if the state is s in period ¢,
then there exists 7 € {t + 1, ..., ¢ + M} such that when player 1 uses this pure-strategy best reply, the state

Dsest 1(8)
5(55,’9 <3 }[(fi{é). When § — 1, the RHS of the above

Applying the L'Hospital Rule, implies that when § is close to 1, we have M < K VV__% Therefore,

in period 7 does not belong to S;.. Therefore,
inequality converges to M, which implies that

> us) K -———=-0(S). (B.7)

s€S),

Since 3 oeg,\ s/ () is bounded above by some linear function of 1 —d, it must be the case that Q(S_1 —
Deesy W) . . ~
Sy) > % This implies that there exists s € Sk and a canonical pure best reply o such that:

1. the state in the next period, denoted by s’, belongs to S}, and the state belongs to .S; for m periods,

2. the state returns to Sy, after these m periods, returns to s after a finite number of periods, and the
state never reaches UfL;é Sy when play starts from s.

By definition, player 1 plays a* in state s under o1 and o induces a cycle of states. Moreover, it is without
loss of generality to focus on best replies that induce a cycle where each state occurs at most once.

I show that m < K — 1. Suppose by way of contradiction that m > K, namely, after reaching state
s', the state belongs to S}, for at least K periods under player 1’s pure-strategy best reply 7. Recall the
definition of a minimal connected sequence. Every minimal connected sequence contains either one state
(if K = K) or K states in category k. Therefore, the category k state after K periods is also s’. As a
result, there exists a best-reply of player 1 such that under this best reply and starting from state s’, the state
remains in category k forever. Due to the hypothesis that player 2 has no incentive to play b* when the state
belongs to .S, player 1’s continuation value under such a best reply is at most v/, which is strictly less than
his guaranteed continuation value (1 — 6%)v + 6% v*. This contradicts the conclusion of Theorem

Given that m < K — 1, let us consider an alternative strategy of player 1 under which he plays an action
other than a* in state s, then follows strategy . Starting from state s, this strategy and o7 lead to the same
state after m + 1 periods. This strategy leads to a strictly higher payoff since the stage-game payoff at state
s is strictly greater, and the payoffs after the first period are weakly greater. This contradicts the hypothesis
that o1 is player 1’s best reply to player 2’s equilibrium strategy. O

In summary, Lemma [3.4| implies that max{Q(Syp — 51), Q(S1 — So)} < @. Lemma [3.3| and
Lemma [3.5| together imply that g 4(s) is bounded from above by a linear function of 1 — ¢ given
that max{Z(Sp), O(S)} < 2(15_5), which then implies that Q(S7 — S2) and Q(S2 — Sp) are also
bounded from above by a linear function of 1 — §. Iteratively apply this argument, we obtain that for every
ke{l,2,...K}, > g, #(s) is bounded from above by a linear function of 1 — 4.

B.2 Constructing Equilibria where a* Occurs with Low Frequency

Case 1: I consider the case where (u1,uz) satisfies (3.5) but K > K. Since K > K, b* best replies to

E-Lla* + La for some a' # a*. Inequality li implies that every best reply to a’ is strictly lower than

b*. Hence, K > 2 and there exists a € (0, %%) such that {b*,0'} C BRy(aa* + (1 — a)a’) for some
b <p b*. Let b” be player 2’s lowest best reply to a’. Since usg(a, b) has strictly increasing differences,
we know that b” <p V' <p b*. Let H]* be the set of histories such that player 2 observes at most one a’
and does not observe any action other than a* and a’, which will contain the set of histories that occur with
positive probability. Player 2’s belief is derived from Bayes rule at every history that belongs to H]*. For

player 2’s belief at histories that occur with zero probability,
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1. If player 2; observes two or more a’ and observes no action other than a* and o/, then she believes
that (a¢—2,a:—1) = (d’,d’).

2. If player 2 observes a” ¢ {a*, a’}, then she believes that the action in the period before is a”.

Then I describe player 1°s equilibrium strategy. At every history that belongs to H}*, player 1 plays a’
inperiod tift = K — 1 ort > K and (ayin{0,—K+1}5---@t—1) = (a*,...,a*). Player 1 plays a* in period
t at other histories that belong to H]*. Histories that do not belong to H]* occur with zero probability, at
which player 1’s behavior is given by:

1. Player 1 plays a* if (a;—2,a;—1) # (a’,a’) and the last min{ K, ¢t} actions are either a* or a'.

2. Player 1 plays a* with probability « and plays a’ with probability 1 — avif (a;—2,a¢—1) = (a’,a’) and
actions in the last min{ K, ¢t} periods are either a* or a'.

3. Player 1 plays o’ in period ¢ if actions other than a* and a’ occurred in period ¢ — 1.

Player 2 plays b* at every history that belongs to H}*. At every history that (i) does not belong to 7™,
and (ii) actions other than a* and a’ do not occur in the last K periods, player 2 plays b* with probability 3
and plays b’ with probability 1 — /3, where

Buy (', b*) + (1 — Bur(d, b)) = (1 — 651) (Bul(a*, ) + (1 — B)us(a”, b’))

LK up(a’,b%) + (8 + 62 + ... + 85 Huy(a*, b*)
1+6+..+6K1 )
=Vk

(B.8)

Since uq(a’,b*) > uy(a*,b*) > ui(a’, V') > ui(a*, V'), B is strictly between 0 and 1. At every history that
does not belong to H;* and actions other than a* and a’ occurred in the last K periods, player 2 plays b”.

Player 2’s incentive constraint at every history that occurs with zero probability is satisfied under her
belief since (i) she mixes between b* and b’ whenever she believes that player 1 plays aa* + (1 — a)d/,
and (ii) she plays b” whenever she believes that player 1 plays a’. At histories that occur with positive
probability, player 2 believes that a’ is played with probability 1 — g and a* is played with probability 7 in
period 0, so she plays a best reply to this mixed action. From period 1 to K — 1, player 2 believes that a* is
played by both types, so she plays her best reply b*. After period K, player 2’s belief assigns probability 1
to the commitment type upon observing any history where player 1’s last K actions were a*, and therefore,
she has a strict incentive to play b*. For player 2’s incentive constraints at histories where a’ occurred only
once, she believes that (a;_, ...,a;—1) = (a’,a*, ..., a*) with probability

5K71

1+6+...+6K-1

(B.9)

and (a¢—f,...,at—1) # (d’,a*,...,a*) with complementary probability. When § — 1, expression is
less than but converges to % Since player 1 plays o’ when (a;_g, ...,a;—1) = (d’,a*, ...,a*) and plays a*
at other histories where a’ occurred once, player 2 believes that player 1’s current period action is a’ with
probability less than % and is a* with probability more than % Hence, there exists § € (0, 1) such that
when § > 4, player 2s have a strict incentive to play b* if a’ occurred only once in the last K periods.

I verify player 1’s incentive constraint: (i) he has no incentive to reach any history that occurs with zero
probability starting from any history that occurs with positive probability, and (ii) he has an incentive to
play @’ when (a;—2,a;—1) = (a’,a’) or when a;—1 ¢ {a’,a*}. When (a;—2,a:—1) = (d’,d’), player 1 is
indifferent between playing a’ and a* in period t.
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Next, I show that player 1 has no incentive to play @’ at every history that belongs to H}* where
(at—K41y-yai—1) # (a*,...,a*). Forevery m € {1,2,...,K}, let s, be the state where a;—,, = a’
and all actions that belong to {a;_f, .., a;—1 }\{at—m } are a*. Let V;,, player 1’s continuation value in state
Sm. Forevery m € {1,2,..., K — 1}, player 1 prefers a* to @’ in state s, if

Vin > (1= 8)ui(a,0*) + 6(1 — 65" ™)y (a*, B) + (05T — 65y (a*,0*) + 65 Vk.  (B.10)

Since
Vin = (1 = 6)5"™uy(a*,b*) + 65 ""Vk forevery 1 <m < K,
we have:
(1= 6)(1 — 65 ™)uy (a*, b") + 8(1 — 5K—™) (ul(a*, b*) — i (a*, 5))

—(1 = 8)uy(d,b*) 4+ 6571 = 6™V, — (65— — 55wy (a*,b%) > 0. (B.11)
Dividing the above expression by 1 — ¢, and then taking the limit where 4 — 1, we obtain that inequality
(B.TT) is true when ¢ is close to 1 if

(K —m) (ul(a*,b*) - ul(a*,ﬁ)) +mVg — (m — Duy(a*,b*) — uy(a',b*) > 0,

or equivalently,

(K —m)(1 - B) (ul(a*, b*) — ua (a, b’)) > (m—1) (ul(a*, b*) — VK> —i—(ul(a’, b — VK>. (B.12)

21 <0

When 6 is close to 1,
K—-1

K

U1(a/,b*) + ul(a*;b*)7

1
VK%E

and therefore,

w(a@,b) -V  K—-1 w(d,b)—u(a"b") K—-1 u(d,b")—ui(a”,b")

1-8= ~ :
p ui(a’,b*) — uq(a’, V') K ul(a’,b*)—ul(a’,b’)> K w(a*,b*) —ui(a*, b))’

where the last inequality follows from w4 (a, b) having strictly increasing differences. This implies that

(1= 8) (wa(a”,0%) —wa(a”, 1)) > w0, b7) — Ve K}; ! (sa(a, %) — s (@, 7)).

Inequality is true when § is close to 1 since K — m > 1 and wu;(a’,b*) — Vi converges to
KL (uy(d,b%) — ui(a*,b%)) as 6 — 1.

Next, I show that player 1 has no incentive to play actions other than a’ and a* at every history that
belongs to H7*. It is straightforward to show that he has no incentive to play any action that does not belong
to {a*, d’, a}, since playing a leads to a strictly higher stage-game payoff for player 1 while not lowering his
continuation value. Hence, I only need to show that when a’ # a, player 1 has no incentive to play a at any
history that belongs to H]*. This is because his payoff at any history that occurs with positive probability
is bounded from below by Vi ~ %uy(a,b*) + L2y (a*,b%) > ui(a*,b*). Inequality implies that
player 1’s stage-game payoff is strictly less than u;(a*, b*) when player 2’s action is strictly lower than
b*. Since player 2 plays b” when actions other than a* and a’ occurred in the last K periods, player 1’s
continuation value when he plays a is at most:

(1 —6)ur(a,b*) + (5 — 8*)ur(a, ) + (6% — 85wy (a*, V') + 5 Vg
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Since V] < V5 < ... < Vi, itis sufficient to show that

Vi = (1=6%"Nuy (a*, b")+0" "V > (1=8)ur(a, b*)+(0—0)ur (o, b')+(6* =" T Yus (a*, ¥ )+ V.
or equivalently,

(1=0E"Yuy(a*, 0*)+ (65 —6EF Y Ve —(1=0)uy (a, b*)— (6— 6D uy (a/, b)) — (6% =65 ) uy (a*, ) > 0.

Dividing the left-hand-side of the above inequality by 1 — § and then taking the 6 — 1 limit, we know that
the above inequality is true when ¢ is close to 1 if

(K — Duyg(a®,b*) + 2V > uy(a,b*) +ui(a’,b') + (K — 1)ug(a*,b'). (B.13)
Since u; has strictly increasing differences, we have:
uy(a,b*) < wui(a’,b*) —uy(a,0') +ui(a, b)) <wui(a,b*) —ui(a,b') +ui(a*,b")

<uy(a*,b*) +ui(a, b)) —ui(a*,0') —ui(a’,b') +ui(a*,b*) = 2ui(a*, b*) — ui(a*, V).

So the right-hand-side of is bounded from above by 2u;(a*,b*) + (K — 2)u;(a*, V') + ui(d’, V'),
which is strictly less than (K + 1)ug(a*, b*). Since Vi > uj(a*, b*), the left-hand-side of is strictly
greater than (K + 1)uq(a*, b*). This establishes inequality (B.13).

In the last step, I show that if any action other than a* and a’ occurred in period ¢ — 1, player 1 has an
incentive to play «’ in period ¢. Since a;—1 ¢ {a*,a’}, player 2’s actions from period ¢ to period ¢t + K — 1
are b” regardless of player 1’s behavior in those periods, and moreover, player 2 has an incentive to play
actions greater than b” in period s(> ¢t + K) only if player 1 has played a* at least K — 1 times and o’ at
least once after the last time they played actions other than a* and o’. Since Vi > Vx_1 > ... > Vi, player
1’s continuation value in period ¢ is bounded from above by:

(1= 0)ui(a',b") + (6 — 6% )ur(a*,b") 4+ 65 V.

This upper bound is attained when player 1 plays @’ in period ¢ and plays a* in the next K — 1 periods, after
which play reaches state sy and player 1’s continuation value is V. This verifies his incentive to play o’
when his previous period action was neither a* nor o’

Case 2: I consider the case where (u1, us) violates . Then there exist @’ # a* and V' (notice that o/
may equal b*) such that b’ best replies to a’ and u(a’,b’) > max,ea maxycpr, () U1(a,b). By definition,
ui(a’, ') > wui(a*,b*). 1 construct equilibria where the rational-type of player 1 plays o’ in every period
and for every ¢ > 1, player 2; plays b* if a* was played in each of the last K periods and plays b’ if the
former is not the case and no action except for a* and o’ appeared in the last min{¢, K } periods. The rest of
the construction considers two subcases separately.

If o’ is player 1°s lowest action, then at every history that occurs with positive probability, player 1 plays
a’ and player 2 plays b'. Obviously, player 1 has no incentive to play actions other than a’ at any history and
player 2’s strategy is also optimal given her belief, which verifies that this is an equilibrium.

If @’ is not player 1’s lowest action, then let a”’ be player 1’s lowest action. By definition, there exists
¢ € (0,1) such that b’ as well as an action strictly lower than &', denoted by b”, are both best replies to
a = ¢a’ + (1 — ¢)a”. Upon observing any history that occurs with zero probability, if there exists any
action that is neither @’ nor a*, player 2 believes that it occurred in the period before. At every history that
occurs with zero probability, player 1 plays a if a;—1 € {a*,a'} and plays « if a;—1 ¢ {a*,a’}. Since
player 2 assigns probability 1 to a;—1 ¢ {a’,a*} when she observes at least one action that is not a’ and a*,
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she has an incentive to mix between b’ and b”, where his probability of playing b is denoted by 5 and is
given by

Bui(a”, b)) + (1 = Bui(a”,b") = (1 — 6%) (,Bul(a’, b))+ (1 — B)us(d, b”)) + 65wy (d’,b). (B.14)

This implies that at a history where a;—1 ¢ {a*,a’}, player 1 is indifferent between playing o’ and a”, and
given that uj (a*,b*) < uy(a’,b'), he strictly prefers a” to any action that is not a’ or a”. What remains to be
verified is that at a history where the last K actions were a/, player 1 has no incentive to play actions other
than a’. First, playing a* is suboptimal given that u (a*, b*) < uy(a’,b’) and playing actions other than a*
and a’ is strictly dominated by playing a”. Hence, I only need to verify that player 1 has no incentive to play
a”. Player 1’s payoff when he plays a” at history (a;—g, ...,at—1) = (d/, ...,a’) is

(1= 8)ur(a”, V) +6(1 = 6%) <5U1(a,, b) + (1= Bua(d, b”)) + 65y (o, 1), (B.15)

which by the definition of 3 in (B.14) as well as the assumption that u; has strictly increasing differences,
implies that (B.15) is strictly smaller than u; (a’, b’). This verifies that player 1 has no incentive to deviate.
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