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What is this course about?

1. Repeated games and reputation effects.

• What will happen when players can build reputations?
• When will reputations work and when will they break down?

2. Bargaining under incomplete information.

• Can people trade efficiently when they have private information?

3. Bayesian social learning (Ben will teach DeGroot learning).

• When can observational learning aggregate information?

4. Sustaining cooperation with limited information.

• Community enforcement.
• Repeated games with limited memories.
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• Instructor: Harry Pei.

Email: harrydp@northwestern.edu

Office: KGH 3391.

• Lectures: Tuesdays and Thursdays, 3:30-5:20 pm, KGH 3301.

• Proposal: Lectures on Thursdays 3:30-7:30 pm, KGH 3301.

• We have two guest lectures:

Krishna Dasaratha on May 4th: Behavioral social learning.

Daniel Clark on June 1st: Community enforcement.

Zoom Meeting ID: 915 7004 8164.

• Office hour: by appointment.
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Evaluation

Requirements:

• 1 hour presentation: a paper I suggested in class, or a paper you
propose, or an on-going work of yours (theory/empirics).

If you present other people’s paper, you should read it carefully and
critically, and provide thoughtful comments.

• Write up: solve a problem I mentioned in class, or solve a problem you
come up by yourself, or write a literature review, or submit a research
proposal, or submit an on-going work of yours.

Unsolicited advice:

• Grades don’t matter in grad school.

• Go to seminars (theory, strategy, political econ, finance, macro).

• Try to find opportunities to present and to talk about your work.

• Don’t do anything only for the sake of pleasing your advisors.
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Rules for my Lectures

• Please ask questions.

• Let me know if I am going too slow or too fast.

• Interrupt me if:

• I made a mistake (highly likely)

• There is something unclear,

• There is something you don’t understand.

• Email me if you have suggestions.
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What is a reputation?

Google: A widespread belief that someone or something has a particular
habit or characteristic.

Two approaches to study reputations:

1. The habit view: Players convince their opponents that they will behave
in a particular way (e.g., always cooperate, tit-for-tat).

2. The characteristic view: Players signal payoff-relevant characteristics
over time (e.g., low production cost, high ability, high quality).

Similarity: Dynamic games with incomplete information, one informed
player facing one/multiple uninformed opponent(s).

Difference: Nature of the informed player’s private info.

We will start from the habit view and might move to the characteristic view.
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Intellectual History: The Chainstore Paradox

• A monopolist has branches in T ∈ N locations, with T finite.

He faces one potential competitor in each location.

• In period s ∈ {1, 2, ...,T}, the monopolist plays against the competitor
in the s-th location.

In Out

F A

C

M
(2, 0)

(0, −1) (1, 1)

• Monopolist’s total payoff is the sum of payoffs in T locations.

• Every competitor perfectly observes all actions chosen before.
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The Chainstore Paradox

There is a unique subgame perfect equilibrium:

• Every competitor chooses In and monopolist chooses Accommodate.

What is wrong with this prediction?

• No matter how long the time horizon is, the monopolist never fights.

• Even if a competitor observes the monopolist fighting the past 1000
entrants, he still believes that he will be accommodated with prob 1.

Something is missing in complete information game repeated games.
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Intellectual History: Commitment Type Models

How to fix this? Gang of four.

• Kreps and Wilson (1982), Milgrom and Roberts (1982).

Idea: Perturb the game with a small prob of commitment type.

• With probability ε > 0, the monopolist is irrational,

doesn’t care about payoffs, and mechanically fights in every period.

• With probability 1 − ε, the monopolist is rational,

maximizes the sum of his payoffs across periods.
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Result: Gang of Four

Theorem: Gang of Four

For every ε > 0, there exists T∗ ∈ N such that if T ≥ T∗,

then on the equilibrium path of every sequential equilibrium,

• The rational monopolist chooses F & each potential entrant chooses

Out in all except for the last T∗ periods

Proof: Backward induction.

Takeaway: The option to build reputations can dramatically affect patient
players’ incentives and behaviors.
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Proof: Take Home Exercise
Bonus Question: Figure out why sequential equilibrium

Proof Idea: Characterize the equilibrium via backward induction.

Equilibrium Behavior:

• In the first T − t∗ periods, rational incumbent plays F and entrant stays
out. No learning takes place.

• In the last t∗ periods, entrant enters with positive prob, rational
incumbent mixes between F and A. Learning happens gradually.

Probability of entry makes the rational incumbent indifferent, and
rational incumbent’s mixing probability makes the entrant indifferent.

Establish Uniqueness of Sequential Equilibrium Outcome: Pin down the
entrants’ on-path beliefs in the last few periods.
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Robustness of the Gang of Four Insight?

Gang of four result requires:

• Finite horizon and backward induction.

• Particular stage-game payoff functions.

• Entrant can perfectly observe monopolist’s action.

• Sequential equilibrium.
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Robustness of the Gang of Four Insight?

Another concern: Does it rely on the specification of incomplete info?

• Let G = (N,A, u) be an n-player normal form game.

• Let α∗ ∈ ×n
i=1∆(Ai) be a stage-game NE with payoff w ∈ Rn.

Folk Theorem under Incomplete Information: Fudenberg and Maskin (1986)

For any ε > 0 and any payoff vector v > w, there exists T∗ ∈ N such that

for any T > T∗, there exists a strategy profile {si}i∈N such that in the T-fold

repetition of G with public randomization where each player i is rational

with probability 1 − ε and is committed to si with probability ε,

there is an equilibrium where players’ average payoff is within ε of v.

Not directly applicable to gang-of-four since it requires n long-run players.

• Takeaway: Predictions sensitive to the specification of incomplete info?
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Proof: Fudenberg and Maskin’s Folk Theorem

For every player i, define strategy si as:

• plays according to α ∈ ∆(A) if everyone played according to α before,

and plays α∗
i otherwise.

where α is a mixed action profile that gives players payoff v.

Consider an auxiliary repeated game where:

• After any normal-type player deviates from α, they can only play α∗.

We show that every equilibrium in the auxiliary game satisfies:

• Each player i prefers to follow si except for the last few periods.
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Proof: Fudenberg and Maskin’s Folk Theorem

We show that every equilibrium in the auxiliary game satisfies:

• Each player i prefers to follow si except for the last few periods.

Suppose there are T∗ periods left and I consider whether to deviate:

• My loss from deviation: When all opponents are committed, I will be
punished for at least for T∗ periods.

• My gain from deviation: I can gain in at most one period, since all
players revert to static Nash afterwards.

When T∗ is large relative to 1
εN−1 , each player prefers to follow si in all

except for the last T∗ periods.
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Proof: Fudenberg and Maskin’s Folk Theorem

Fix any equilibrium in the auxiliary game where:

• If any normal-type player deviates from α, he can only play α∗.

This remains an equilibrium in the original game.

Because α∗ is a stage-game Nash, i.e., no player can do better when others
play α∗.

Let

T∗ ≡
⌈
max

i

vi − (1 − εn−1)vi

εn−1(vi − wi)

⌉
.

Take T ≫ T∗, players’ average payoffs in these equilibria are close to v.
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Lectures 1 and 2: Fudenberg and Levine (1989, 1992)

Extend the gang of four insights to

• environments with an infinite horizon.

• general stage game payoffs.

• imperfect monitoring.

• weaker solution concepts.

• not sensitive to the details of incomplete info.

I will present all results in games with an infinite horizon.

• Their results also apply to games with long but finite horizon.
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Infinitely Repeated Game with One Long-Run Player

• Time: t = 0, 1, 2, ...

• Long-lived player 1 (P1) vs a sequence of short-lived player 2s (P2).

(alternative interpretation: P2 is a continuum of small players)

• Players simultaneously choose their actions a1 ∈ A1 and a2 ∈ A2.

Actions in period t: a1,t ∈ A1 and a2,t ∈ A2.

• Stage-game payoffs: u1(a1,t, a2,t), u2(a1,t, a2,t).

P1’s discounted average payoff :
∑∞

t=0(1 − δ)δtu1(a1,t, a2,t).

• Public signal in period t: yt ∈ Y ,

which is distributed according to ρ(·|a1,t, a2,t) ∈ ∆(Y).
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Introducing Commitment Types

P1 has a perfectly persistent type ω ∈ Ω ≡ {ωr}
⋃
Ωm.

1. ωr denotes the rational type, who can flexibly choose his actions in
order to maximize his discounted average payoff.

2. Each α∗
1 ∈ Ωm ⊂ ∆(A1) represents a commitment type,

who does not care about payoffs and plays α∗
1 in every period.

P2’s prior belief: π ∈ ∆(Ω).

What can players observe?

• Player 1’s history: ht
1 ∈ Ht

1 ≡ Ω× {A1 × Y}t.

• Player 2’s history: ht
2 ∈ Ht

2 ≡ Y t.

Assumptions: A1,A2,Y and Ωm are finite, π has full support.
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Commitment Payoff Theorem: Perfect Monitoring

Let’s make two simplifying assumptions:

1. Perfect monitoring: Y = A1 × A2 and ρ(a1, a2|a1, a2) = 1.

2. There exists a commitment type that plays a pure action a∗1 ∈ A1.

For every commitment action a∗1 ∈ Ωm, P1’s commitment payoff from a∗
1 :

v∗1(a
∗
1) ≡ min

a2∈BR2(a∗1 )
u1(a∗

1 , a2).

Let u1 be P1’s lowest stage-game payoff.

Commitment Payoff Theorem: Fudenberg and Levine (1989)

For every ε > 0, there exists T ∈ N,

such that when π assigns prob more than ε to commitment type a∗1 ∈ Ωm,

rational P1’s payoff in any Bayes Nash equilibrium is at least:

(1 − δT)u1 + δTv∗1(a
∗
1).
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Commitment Payoff Theorem: δ → 1 Limit

Commitment Payoff Theorem: Fudenberg and Levine (1989)

For every ε > 0, there exists T ∈ N,

such that when π assigns prob more than ε to commitment type a∗1 ∈ Ωm,

rational P1’s payoff in any Bayes Nash equilibrium is at least:

(1 − δT)u1 + δTv∗1(a
∗
1).

What happens when the informed player is patient, i.e., δ → 1?

• P1’s payoff lower bound → v∗1(a
∗
1).

• Patient P1 receives at least his commitment payoff from a∗1 .

The payoff lower bound does not depend on the details of the type space.

• It only requires commitment type a∗1 to occur with positive prob.
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Proof: Overview

Commitment Payoff Theorem: Fudenberg and Levine (1989)

For every ε > 0, there exists T ∈ N,

such that when π assigns prob more than ε to commitment type a∗1 ∈ Ωm,

rational P1’s payoff in any Bayes Nash Equilibrium is at least:

(1 − δT)u1 + δTv∗1(a
∗
1).

Fix the parameters (π, δ). For every Bayes Nash Equilibrium (σ1, σ2),

• Consider rational-type P1’s payoff

if he deviates from σ1 and mechanically plays a∗1 in every period.

• Let this payoff be U∗
1 .

• By definition, rational P1’s equilibrium payoff ≥ U∗
1 .
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Proof: P1’s payoff if he deviates and plays a∗
1

In every period,

• either P2’s action is supported in BR2(a∗
1).

or P2 has an incentive to play actions outside BR2(a∗1).

In the 1st case, P1’s stage-game payoff ≥ v∗1(a
∗
1).

In the 2nd case, there exists γ > 0 such that:

• P2 believes that a∗1 is played with prob less than 1 − γ in that period.

Such γ depends only on players’ stage-game payoff functions.

• After P2 observes P1 plays a∗
1 in that period, Bayes Rule suggests that:

Posterior Prob of Type a∗1 =
(Prior Prob of Type a∗1 ) · Pr(a∗

1 |type a∗
1)

unconditional prob of a∗1

≥ Prior Prob of Type a∗1
1 − γ

.

• This can happen in at most T ≡ ⌈log ε/ log(1 − γ)⌉ periods.
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Proof: Wrap up

What is rational P1’s payoff if he deviates and plays a∗
1 in every period?

In periods where P2’s action is supported in BR2(a∗1).

• P1’s stage game payoff ≥ v∗1(a
∗
1).

In periods where P2’s action is not supported in BR2(a∗1).

• P1 may receive low stage-game payoff,

• But there can be at most T ≡ ⌈log ε/ log(1 − γ)⌉ such periods.

Lower bound on rational P1’s payoff from playing a∗
1 in every period:

(1 − δT)u1 + δTv∗1(a
∗
1).

This is also a lower bound for the rational-type P1’s equilibrium payoff.
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How to Interpret Commitment Type?

Commitment type(s) capture the intuition that:

• Once we observe a player behaving in certain ways for a long time,

we tend to believe that they will behave similarly in the future.

• This logic is missing in complete information game models.

• Commitment type is a modeling device that can capture this logic.

The proof captures this logic:

• Either P2 believes that P1 will play a∗1 and best replies to a∗1 .

• Or P2 does not believe that P1 will play a∗1 ,

but after observing P1 plays a∗1 , she will be surprised

and the probability she assigns to commitment type a∗1 increases.
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Refinement for Repeated Complete Info Games
Fudenberg, Kreps and Maskin (1990): Folk theorem under complete information

The set of P2’s mixed strategy best replies:

A2 ≡ {α2 ∈ ∆(A2)|α2 best replies against some α1 ∈ ∆(A1)}

Patient P1’s lowest equilibrium payoff:

vmin ≡ min
α2∈A2

max
a1∈A1

u1(a1, α2).

P1’s highest equilibrium payoff:

vmax ≡ max
{(α1,α2)s.t.α2∈BR2(α1)}

min
a1∈supp(α1)

u1(a1, α2).

In many games of interest, the option to build a reputation selects a subset of
high payoffs for P1. Sometimes, it selects P1’s highest equilibrium payoff.
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Product Choice Game (Mailath and Samuelson 2001)

A firm (P1) and a sequence of consumers (P2s).

– T N
H 2, 1 −1, 0
L 3,−1 0, 0

Repeated complete information game:

• P1’s payoff can be anything within [0, 2].

Positive prob of commitment type that mechanically plays H.

• Rational firm guarantees payoff ≈ 2 in every BNE.
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Some Common Misunderstandings

1. Can rational P1 convince P2s that he is a commitment type?

Not with high prob on the equilibrium path! Belief is a martingale.

Example: Think about a pooling equilibrium.

2. Will the rational-type P1 build a reputation?

Not necessarily in the infinite horizon game. He may find it strictly
optimal to separate from the commitment type in period 0.

3. Does it say much about the short-run players’ welfare?

No. Because rational-type P1’s behavior cannot be pinned down.
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Predictions on P1’s Behavior?

Suppose there is a commitment type that plays P1’s optimal pure
commitment action a∗

1 in every period, then

• What’s the frequency with which the rational-type P1 plays a∗
1 ?

X(σ1,σ2)(a∗1) ≡ E(σ1,σ2)
[ ∞∑

t=0

(1 − δ)δt1{a1,t = a∗1}
]

Li and Pei (2021): In many games of interest, any action frequency that is
compatible with

• P1 receiving payoff at least v1(a∗1),

• P2’s myopic incentives

can arise in some equilibria of the reputation game.
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Li and Pei (2021)’s Theorem

Assumptions on stage-game payoffs:

• P1 has a unique optimal commitment action a∗
1 and BR2(a∗

1) = {a∗2}.

• a∗1 /∈ BR1(a∗2).

• u1(a∗
1 , a∗2) > vmin ≡ minα2∈A2 maxa1∈A1 u1(a1, α2).

Let

F∗(u1, u2) ≡ min
(α′

1,α
′′
1 ,a′2,a

′′
2 ,q)∈∆(A1)×∆(A1)×A2×A2×[0,1]

{
qα′

1(a
∗
1)+(1−q)α′′

1 (a
∗
1)
}
,

subject to a′
2 ∈ BR2(α

′
1), a′′

2 ∈ BR2(α
′′
1 ), and

qu1(α
′
1, a′

2) + (1 − q)u1(α
′′
1 , a′′2 ) ≥ u1(a∗1 , a∗2).

Theorem: When δ is close enough to 1, rational-type P1’s discounted
frequency of playing a∗1 can be anything between F∗(u1, u2) and 1.

What about long finite horizon? Sharper predictions?
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Next Lecture

Commitment payoff theorem with imperfect monitoring:

• the public signals are noisy,

• commitment payoff from mixed commitment actions.

Papers to read:

• Fudenberg and Levine (1992), Gossner (2011).

• Kalai and Lehrer (1993), Sorin (1999).
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