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I study repeated games with anonymous random matching where players can add or remove 

signals from their records. The ability to manipulate records introduces monotonicity constraints on play- 

ers’ continuation values, under which sufficiently long-lived players will almost never cooperate. When 

players’ expected lifespans are intermediate, their ability to sustain cooperation depends on (i) whether 

their actions are complements or substitutes and (ii) whether manipulation takes the form of adding or 

removing signals.
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1. INTRODUCTION

When will a group of selfish individuals cooperate with one another? This classic question has 

motivated the game-theoretic literature on community enforcement. In small communities with 

relatively few players, Kandori (1992), Ellison (1994), and Deb et al. (2020) show that players 

can cooperate even when they have no information about others’ histories. In large communities 

with many players, which are usually modelled as a continuum, Takahashi (2010) shows that 

sustaining cooperation requires players to have some information about their partners’ histories. 

Such information is called a player’s record, which may consist of signals about his past actions 

and possibly also signals about his previous partners’ actions.
This paper studies community enforcement in large communities where players’ records are

endogenous in the sense that they can add or remove signals from their records. One domain of 

applications is online reviews in which firms may persuade consumers to erase negative reviews 

or to write positive ones. My analysis implies that (i) the maximal amount of cooperation a 

community can sustain is not monotone with respect to its members’ expected lifespans, and 

(ii) whether the complementarity of players’ actions is conducive to cooperation depends on 

whether manipulation takes the form of adding or removing signals.
To provide an overview of my model and results, consider a simple example with a con- 

tinuum of players. In each period, all the active players are randomly matched into pairs to 

play the prisoner’s dilemma. Each player’s action generates a signal, and his record consists
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2 REVIEW OF ECONOMIC STUDIES

of a sequence of signals. At the end of each period, a fixed fraction of players irreversibly exit 

the game (i.e. become inactive), replaced by the same mass of new players. This exit process 

introduces an additional source of discounting, alongside players’ time preferences. In the next 

period, the remaining active players are matched with new partners.
My modelling innovation is that before players are matched with new partners, they can 

manipulate their records subject to feasibility constraints. I consider two forms of manipulation, 

which correspond to two classes of feasibility constraints. I say that a player can erase signals 

if he can choose his record to be any subsequence of the signals generated by his past actions. I 

say that a player can add signals if he can choose any record such that the sequence of signals 

generated by his past actions is a subsequence of that record. I assume that their new partners 

can only observe their manipulated records but not their age in the game.
My main result, Theorem 1, shows that sufficiently long-lived players will almost never coop- 

erate in any equilibrium (i) if they can erase signals or (ii) if they can add signals and their signals 

are noisy.
The intuition behind Theorem 1 is that players’ ability to erase or add signals introduces

monotonicity constraints on their continuation values. In the case where a player can erase sig- 

nals, he can always replicate his current record in the next period. This implies that in any 

equilibrium, his continuation value must be non-decreasing over time. As a result, he has an 

incentive to cooperate only if doing so can significantly increase his continuation value, so the 

expected number of periods in which he cooperates must be bounded above. When this player 

has a sufficiently long expected lifespan, any bounded number of periods carry negligible weight, 

so the average probability with which he cooperates must be close to zero.
When a player can add signals, his continuation value is non-increasing over time since he 

can always replicate his future records in the current period. As a result, he has an incentive to 

cooperate only if his continuation value after he defects is significantly lower than his current 

continuation value. Assuming that the signals that monitor his actions are noisy, his continuation 

value after he cooperates must also be lower than his current continuation value. Hence, the 

expected number of periods in which the player has an incentive to cooperate is bounded above. 

By the same logic as in the case of erasing signals, when a player’s expected lifespan diverges 

to infinity, the average probability with which he cooperates vanishes to zero.
Theorem 1 suggests that sufficiently long-lived players will almost never cooperate. Suffi- 

ciently short-lived players have no incentive to cooperate since their discount factors are too 

low. A natural question is: Can players sustain some cooperation in some equilibria when their 

expected lifespans are intermediate?1

Theorem 2 shows that as long as players are not too impatient, have intermediate expected 

lifespans, and the signals that monitor their actions are precise enough, they can sustain some 

cooperation either when they can only erase signals and have submodular payoffs or when they 

can only add signals and have supermodular payoffs. This together with Theorem 1 suggests that 

the maximal level of cooperation is not monotone with respect to players’ expected lifespans.2

The cooperative equilibria I construct are purifiable, which means that they are robust when 

players have a small amount of private payoff information.

1. There is always an equilibrium where players always defect, which rules out sustaining cooperation in all 

equilibria. I also show that the average probability of cooperation is uniformly bounded below 1 in all equilibria under
all time preferences and expected lifespans (or equivalently, survival probabilities). This rules out the possibility of 

sustaining full cooperation.
2. Wiseman (2017) and Sandroni and Urgun (2018) also show that higher effective discount factors can under- 

mine cooperation. In contrast to the current paper that focuses on repeated games, their results are obtained in stochastic 

games with absorbing states.
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Pei COMMUNITY ENFORCEMENT WITH ENDOGENOUS RECORDS 3

Theorem 3 shows that regardless of their time preferences and survival probabilities, play- 

ers will always defect in all purifiable equilibria either when they can erase signals and have 

supermodular payoffs or when monitoring is noisy, they can add signals, and have submodu- 

lar payoffs. My result implies that when players can only erase signals, the complementarity of 

their actions undermines their abilities to sustain cooperation. This conclusion stands in con- 

trast to the ones in Takahashi (2010), Heller and Mohlin (2018), and Clark et al. (2021), which 

suggest that the complementarity of players’ actions is conducive to cooperation in community 

enforcement models where players can neither add nor erase signals.
This paper is related to the existing works on community enforcement, and in particular, 

those that analyse games with a continuum of players such as Takahashi (2010), Heller and 

Mohlin (2018), Bhaskar and Thomas (2019), and Clark et al. (2021). Friedman and Resnick 

(2001) study repeated prisoner’s dilemma in large populations where each player can either
disclose all of his past signals or erase all of them. In contrast, the players in my model can 

decide whether and when to erase or to add each signal.
Ali and Miller (2016) study repeated games with a finite number of players where play- 

ers can selectively disclose the actions of their previous partners to their current partners. Due 

to players’ incentives to conceal past deviations, equilibria that forgive past deviators can sus- 

tain more cooperation than those with permanent ostracism. My model of erasing signals can 

be interpreted as players selectively disclosing signals about their past actions to their current 

partners, which contrasts to the setting studied by Ali and Miller (2016).3

Smirnov and Starkov (2022), Hauser (2023), and Sun (2024) study dynamic censoring games 

where players’ payoffs depend on an exogenous state. In contrast, players’ payoffs depend only 

on their actions in my model. Pei (2023) studies a repeated game with incomplete information 

in which a long-lived player can erase past actions from his record. That paper presents a bad 

reputation result, driven by the observation that the speed of learning vanishes as the expected 

lifespan of the long-lived player diverges to infinity. By contrast, the current model has complete 

information so the speed of learning is irrelevant.
Ghosh and Ray (1996) and Fujiwara-Greve and Okuno-Fujiwara (2009) study repeated 

games with voluntary separation where players may interact with the same partner in multiple 

periods. In their models, each player’s outside option is his continuation value from separation 

and joining the unmatched pool. This feature contrasts to my model where each player’s outside 

option is his current or future continuation value.

2. THE BASELINE MODEL

I introduce a framework that allows for asymmetric stage games as well as erasing and adding 

signals. Consider a doubly infinite repeated game where time is indexed by k = · · · − 1, 0, 1, . . .. 

There are two populations of players i ∈ I ≡ {1, 2}. Each period, a unit mass of players from 

each population are active.
Each player discounts future payoffs for two reasons. First, by the end of each period, a 

fraction 1 − δi of the active players in population i irreversibly become inactive and are replaced 

by the same mass of new players, with δi ∈ [0, 1). Second, conditional on remaining active in 

period k + 1, each player in population i is indifferent between 1 unit of utility in period k + 1

3. Sugaya and Wolitzky (2020) establish an anti-folk theorem when there is a finite number of players, each player 

has private information about his type (rational or committed), and players face uncertainty regarding the composition 

of types in the population.
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4 REVIEW OF ECONOMIC STUDIES

and ˆ︁δi ∈ [0, 1) unit in period k. Hence, each player in population i has an expected lifespan
(1 − δi )

−1 and an effective discount factor δi ≡ ˆ︁δi · δi .4

Each period, all the active players are matched into pairs uniformly at random to play a two- 

player normal form game G ≡ (I, A, u), where A ≡ A1 × A2 is the set of action profiles with
Ai a finite set of actions for players from population i (which I refer to as player i) and ui :

A → R is player i’s stage-game payoff. Each player in population i maximizes the expected 

value of
∑︁

+∞

k=1(1 − δi )δ
k−1
i ui (ai,k, a−i,k) where (ai,k, a−i,k) ∈ Ai × A−i stands for the action 

profile played by his match in the kth period of his life.
For every match, players’ actions generate signals (s1, s2) according to f (·|ai , a−i ) ∈

Δ(S1 × S2), where si is player i’s signal with distribution fi (·|ai , a−i ) ∈ Δ(Si ). I assume that
S1 and S2 are finite sets.

Player i’s record consists of a sequence of elements in Si . Let Ri ≡
⋃︁

+∞

n=0 Sn 

i denote the set 

of player i’s records, with a typical element denoted by ri ∈ Ri . By definition, the empty record
∅ belongs to Ri .

My modelling innovation is that before each player is matched with a new partner, he may 

manipulate his record by erasing or adding signals. I discuss alternative forms of endogenous 

records in Section 5.
I say that player i can erase signals if before being matched in period k + 1, he can erase the 

signal si,k ∈ Si generated by his pair in period k as well as any signal that belongs to his period-k
record ri,k . Formally, this is to say that player i can choose any subsequence of (ri,k, si,k) to be 

his period-(k + 1) record. If player i can only erase signals, then before interacting with his first 

partner, his record must be ∅.
I say that player i can add signals if, before being matched with any partner, he can add any 

finite number of elements in Si to his record, in addition to that generated by his past match. In 

this case, a newly born player i can choose his record from Ri before being matched with his 

first partner. If ri,k is a player i’s record in period k and si,k ∈ Si is the signal generated by his 

pair’s action profile in period k, then player i can choose his period-(k + 1) record to be any
ri,k+1 ∈ Ri such that (ri,k, si,k) is a subsequence of ri,k+1.5

After each player i is matched, he observes his record ri and his partner’s record r−i (the one
after manipulation) before choosing ai . Players cannot directly observe any additional informa- 

tion about their partners, such as their partners’ age in the game and which signals were erased 

or added by their partners. Players can make inferences about these variables via Bayes rule after 

observing their partners’ records.
Player i’s strategy is denoted by σi ≡ (σ∅

i , σ a 

i , σ m 

i ), where σ∅
i ∈ Δ(Ri ) is his record choice 

before being matched with his first partner,6 σ a 

i : Ri × R−i → Δ(Ai ) is a mapping from his 

current record ri and his current partner’s record r−i to his current-period action, and σ m 

i : Ri ×

Si → Δ(Ri ) is a mapping from his current-period record ri and his current-period signal si to 

the record his next partner observes.

4. I distinguish between players’ time preferences and survival probabilities since they play different roles. This 

is reminiscent of the steady-state learning models in Fudenberg and Levine (1993), Fudenberg and He (2018), and Clark 

and Fudenberg (2021).
5. I comment on several extensions in Section 5, which include the newly added signals must come after

(ri,k , si,k ) in the sequence of signals, players can only observe the summary statistics of others’ signals but not the 

exact sequence, and so on.
6. As will become clear after I present the feasibility constraints, a player’s record choice before being matched 

with his first partner is relevant only if he can add signals. My main result, Theorem 1, extends when players cannot 

add signals before being matched with his first partner since his first-period action carries negligible weight when his 

survival probability is close to 1.
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Pei COMMUNITY ENFORCEMENT WITH ENDOGENOUS RECORDS 5

Depending on whether and how player i can manipulate records, his choice of (σ∅
i , σ m 

i ) faces 

different feasibility constraints. When player i can neither erase nor add signals as in Clark et al. 

(2021), σ m 

i (ri , si ) assigns probability 1 to (ri , si ). If player i can erase signals, then σ m 

i (ri , si )
can assign positive probability to any subsequence of (ri , si ). If player i can add signals, then σ∅

i
can assign positive probability to any element in Ri and σ m 

i (ri , si ) can assign positive probability 

to any r ′

i ∈ Ri such that (ri , si ) is a subsequence of r ′

i . As long as player i cannot add signals,
σ∅

i must assign probability 1 to ∅.
The solution concept is steady-state Nash equilibrium, or equilibrium for short, which con- 

sists of a strategy profile σ ≡ (σ1, σ2) and a record distribution µ ∈ Δ(R1 × R2) such that (i) 

for every i ∈ {1, 2}, σi maximizes the expected value of
∑︁

+∞

k=1(1 − δi )δ
k−1
i ui (ai,k, a−i,k) when 

the record distribution is µ and players in the other population use strategy σ−i and (ii) µ is a 

steady-state record distribution when players behave according to σ . An equilibrium exists in 

this repeated game since G is finite and players (i) always playing the same Nash equilibrium in
G and (ii) never erasing or adding any signal is part of an equilibrium.

3. MAIN RESULT: ANTI-FOLK THEOREM WITH SUFFICIENTLY LONG-LIVED 

PLAYERS

Even though players can erase or add signals, they may still have incentives to cooperate (i.e.
to take actions that are suboptimal in the stage game) when their effective discount factors are 

large enough. This is because: (i) in the case where players can only erase signals, they cannot 

fabricate good signals, so they may have incentives to cooperate if they are rewarded for having 

many good signals in their records; and (ii) in the case where players can only add signals, they 

cannot erase any bad signal generated by their actions, so they may have incentives to cooperate 

if they are punished for having many bad signals in their records.
My main result shows that the above logic breaks down when players are sufficiently 

long-lived. For any σ ≡ (σ1, σ2) and µ, the average probability with which players in pop- 

ulation i taking action ai ∈ Ai , denoted by Π(σ ,µ)
i (ai ), is defined as the probability that∑︁

(r1,r2)∈R1×R2
µ (r1, r2)σ

a 

i (r1, r2) assigns to ai .

Definition. Player i’s signal distribution fi has non-shifting support if for every a−i ∈ A−i , 

ai , a′

i ∈ Ai , and si ∈ Si , we have fi (si |ai , a−i ) > 0 if and only if fi (si |a′

i , a−i ) > 0.

My non-shifting support condition requires that the support of player i’s signal distribution 

to be independent of his own action, which is to say that monitoring is noisy. It is weaker than fi

having full support, a condition commonly used in repeated games and reputations (e.g. (Cripps
et al., 2004)).

Theorem 1. Suppose players in population i have a strictly dominant action a∗

i ∈ Ai .

(1) If players in population i can erase signals, then for every ˆ︁δi ∈ (0, 1) and ε > 0, there 

exists δ∗
∈ (0, 1) such that Π(σ ,µ)

i (a∗

i ) ≥ 1 − ε for every equilibrium (σ , µ) when δi > 

δ∗.
(2) If population i can add signals and fi has non-shifting support, then for everyˆ︁δi ∈ (0, 1)

and ε > 0, there exists δ∗
∈ (0, 1) such that Π(σ ,µ)

i (a∗

i ) ≥ 1 − ε for every equilibrium
(σ , µ) when δi > δ∗.7

7. To see why non-shifting support is not redundant in the case of adding signals, consider the prisoner’s dilemma 

and suppose Si = Ai and si perfectly reveals ai , i.e. fi (si = ai |ai , a−i ) = 1 for every i and ai . There is an equilibrium 

with full cooperation in grim-trigger strategies where each player cooperates if and only if no defect is contained in his 

and his partner’s record.
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6 REVIEW OF ECONOMIC STUDIES

Theorem 1 implies that as long as players are sufficiently long-lived and can either erase or
add signals, they will almost always take their strictly dominant actions in all equilibria. In the 

prisoner’s dilemma, it implies that sufficiently long-lived players will almost never cooperate. 

This result holds independently of the other population’s stage-game payoffs, survival probabil- 

ities, time preferences, and whether and how they can manipulate their records. It applies for all 

finite action sets and signal spaces, even when these sets are sufficiently rich. It also applies when 

player i’s effective discount factor δi is arbitrarily close to 1, such as when both ˆ︁δi and δi go to 

1 but δi goes to 1 faster than ˆ︁δi . This stands in contrast to the standard logic in repeated games, 

that fix player i’s time preference ˆ︁δi , an increase in his survival probability δi leads to a higher 

effective discount factor δi , which will strengthen his incentive to sacrifice his current-period 

payoff in exchange for a higher payoff in the future and hence, may lead to more cooperation in 

equilibrium.
I present the proof of Theorem 1 in Section 3.1. The intuition is that players’ ability to 

either erase or add signals introduces monotonicity constraints on their continuation values in 

the sense that their equilibrium continuation values must be either non-decreasing over time or
non-increasing over time.

Suppose first that player i can erase signals. He can always replicate his current record in 

the next period, by taking an arbitrary action and then erase his signal si . This implies that 

in equilibrium, his continuation value must be non-decreasing over time. In order to motivate 

player i to take any action a′

i that is not his strictly dominant action a∗

i , his expected continuation 

value after playing a′

i needs to increase by at least something proportional to 1 − δi . This implies 

that the expected number of periods in which player i taking actions other than a∗

i is no more 

than something proportional to (1 − δi )
−1. When players in population i are sufficiently long- 

lived (i.e. δi → 1), the bounded number of periods in which they have incentives to cooperate 

will carry negligible weight, so the average probability that they cooperate must be close to 0.
Suppose next that player i can add signals. His continuation value is non-increasing over 

time since he can always replicate his future record in the current period. This implies that at 

every history where player i has an incentive to take action a′

i ̸ = a∗

i , his expected continuation 

value after playing a∗

i needs to decrease by at least something proportional to 1 − δi relative to 

his current continuation value. Assuming that fi has non-shifting support, his expected continua- 

tion value after taking any other action also needs to decrease by at least something proportional 

to 1 − δi . By the same logic as in the case of erasing signals, the expected number of peri- 

ods in which player i has an incentive to cooperate is no more than something proportional to
(1 − δi )

−1. As player i’s expected lifespan diverges, the average probability of cooperation 

vanishes.
In Appendix A, I explain how to show Corollary 1, which is a result that applies to all stage 

games (including ones without dominant actions), by iteratively applying the above logic and 

by using the fact that the matching process is uniform. Let A∗

i ⊂ Ai denote the set of player i’s
rationalizable actions in G.

Corollary 1. Suppose for every i ∈ {1, 2}, either players in population i can erase signals, 

or they can add signals and fi has non-shifting support. For every ˆ︁δ1,ˆ︁δ2 ∈ (0, 1) and ε > 0, 

there exists δ∗
∈ (0, 1) such that when δ1, δ2 > δ∗, mini∈{1,2}

∑︁
ai ∈A∗

i
Π

(σ ,µ)
i (ai ) ≥ 1 − ε in every 

equilibrium (σ , µ).

3.1. Proof of Theorem 1

Fix an equilibrium (σ , µ). Recall that σ a 

i (ri , r−i ) ∈ Δ(Ai ) stands for player i’s equilibrium 

action when his record is ri and his matched partner’s record is r−i . Let R∗

i ⊂ Ri denote the
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Pei COMMUNITY ENFORCEMENT WITH ENDOGENOUS RECORDS 7

set of player i’s records that occur with positive probability under µ. Let V (ri ) denote player
i’s expected continuation value when his current-period record (after manipulation) is ri before
knowing his current match. Let V ≡ supri ∈R∗

i
V (ri ) and V ≡ infri ∈R∗

i
V (ri ) denote player i’s 

highest and lowest continuation values, respectively. Conditional on being active for at least
k ∈ N periods, let Vk denote player i’s expected continuation value in the kth period of his life 

and let πk denote his expected probability of taking actions that are not a∗

i in the kth period of his 

life. Let ui and ui denote player i’s highest stage-game payoff and minmax value, respectively. 

Let

c∗
≡ min

a′

i ̸ =a∗

i ,a−i ∈A−i

{︁
ui (a∗

i , a−i ) − ui (a′

i , a−i )
}︁

> 0, (1)

which is player i’s lowest stage-game cost of taking actions other than a∗

i . I consider two cases 

separately.
First, suppose player i can erase signals. For every ri ∈ R∗

i and si ∈ Si , let Ri (ri , si ) ⊂ R∗

i
denote the set of player i’s records that are subsequences of (ri , si ). Since ri is a subsequence of
(ri , si ) and ri ∈ R∗

i , we know that Ri (ri , si ) is a non-empty finite set. Hence, player i’s continu- 

ation value in the next period is maxr ′

i ∈Ri (ri ,si ) V (r ′

i ) when his current-period record is ri and his 

current-period signal is si . We know from ri ∈ Ri (ri , si ) that maxr ′

i ∈Ri (ri ,si ) V (r ′

i ) ≥ V (ri ). That 

is to say, player i’s continuation value is non-decreasing over time, regardless of the realization 

of signal si . When player i with record ri is matched with an opponent with record r−i , he has 

an incentive to take action a′

i ̸ = a∗

i only if

(1 − δi )ui (a′

i , σ a
−i (ri , r−i )) + δi

∑︂
si ∈Si

fi (si |a′

i , σ a
−i (ri , r−i )) max

r ′

i ∈Ri (ri ,si )
V (r ′

i )

≥ (1 − δi )ui (a∗

i , σ a
−i (ri , r−i )) + δi V (ri ),

where the RHS is player i’s payoff when he plays a∗

i and then erases signal si regardless of its 

realization. The above inequality together with the definition of c∗ implies that

∑︂
si ∈Si

fi (si |a′

i , σ a
−i (ri , r−i )) max

r ′

i ∈Ri (ri ,si )
V (r ′

i ) ≥ V (ri ) +
1 − δi

δi
c∗,

which is to say that as long as player i has an incentive to play a′

i at (ri , r−i ), his expected 

continuation value in the next period after playing a′

i , which equals
∑︁

si ∈Si
fi (si |a′

i , σ a
−i

(ri , r−i )) maxr ′

i ∈Ri (ri ,si ) V (r ′

i ), is at least 1−δi
δi

c∗ greater than his continuation value at ri . This 

leads to a lower bound on Vk+1 − Vk :

Vk+1 − Vk ≥
1 − δi

δi
c∗πk . (2)

Since ui ≤ V ≤ Vk ≤ V ≤ ui for every k ∈ N, summing up (2) for all k ∈ N, we have

1 − δi

δi
c∗ 

+∞∑︂
k=1

πk ≤

+∞∑︂
k=1

(Vk+1 − Vk) ≤ V − V ≤ ui − ui . (3)

Since player i survives with probability δi after each period, a fraction (1 − δi )δ
k−1
i of active 

player i has age k. Using (3), the law of total probabilities and the fact that πk ∈ [0, 1] for every
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8 REVIEW OF ECONOMIC STUDIES

k ∈ N, we have

1 −Π
(σ ,µ)
i (a∗

i ) =

+∞∑︂
k=1

(1 − δi )δ
k−1
i πk ≤ 1 − δ

∑︁
+∞

k=1 πk

i ≤ 1 − δ
ui −ui

c∗ ·
δi

1−δi
i . (4)

Since δi ≡ δi ·ˆ︁δi , once we fix any ˆ︁δi ∈ (0, 1) and let δi → 1, the RHS of (4) will 

converge to 0.
Second, suppose player i can add signals and fi has non-shifting support. For every ri ∈ R∗

i
and si ∈ Si , let ˆ︁Ri (ri ) denote the set of r ′

i ∈ R∗

i such that ri is a subsequence of r ′

i , and letˆ︁Ri (ri , si ) denote the set of r ′

i ∈ R∗

i such that (ri , si ) is a subsequence of r ′

i . Fix ri ∈ R∗

i , player
i’s continuation value in the next period is maxr ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i ) when (i) his current-period record 

is ri and (ii) his action and his current-period partner’s generate signal si .8 Since ˆ︁Ri (ri , si ) ⊂ˆ︁Ri (ri ), it must be the case that V (ri ) ≥ maxr ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i ). This is because otherwise, player i
will have a strict incentive to deviate by choosing arg maxr ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i ) before being matched 

with his current-period partner instead of choosing ri , which violates the hypothesis that ri ∈ R∗

i . 

This suggests that player i’s continuation value is non-increasing over time. When player i with 

record ri is matched with record r−i , he has an incentive to play a′

i ̸ = a∗

i only if

(1 − δi )ui (a′

i , σ a
−i (ri , r−i )) + δi

∑︂
si ∈Si

fi (si |a′

i , σ a
−i (ri , r−i )) max

r ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i )

≥ (1 − δi )ui (a∗

i , σ a
−i (ri , r−i )) + δi

∑︂
si ∈Si

fi (si |a∗

i , σ a
−i (ri , r−i )) max

r ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i ). (5)

Inequality (5) together with the fact that V (ri ) ≥ maxr ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i ) for every si ∈ Si implies 

that

(1 − δi )ui (a′

i , σ a
−i (ri , r−i )) + δi V (ri )

≥ (1 − δi )ui (a∗

i , σ a
−i (ri , r−i )) + δi

∑︂
si ∈Si

fi (si |a∗

i , σ a
−i (ri , r−i )) max

r ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i ).

The above inequality together with the definition of c∗ in (1) implies that

∑︂
si ∈Si

fi (si |a∗

i , σ a
−i (ri , r−i ))

{︄
V (ri ) − max

r ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i )

}︄
≥

1 − δi

δi
c∗. (6)

Since fi has non-shifting support, the set Si (a−i ) ≡ {si ∈ Si | fi (si |ai , a−i ) > 0} is well defined, 

so

q( fi ) ≡ min
a′

i ̸ =a∗

i ,a−i ∈A−i ,si ∈Si (a−i )

fi (si |a′

i , a−i )

fi (si |a∗

i , a−i )

8. The hypothesis that (σ , µ) is an equilibrium implies that player i has at least one best reply at every pos- 

itive probability information set where he needs to choose which additional signals to include in his record. Hence, 

maxr ′
i ∈

ˆ︁Ri (ri ,si )
V (r ′

i ) exists.
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Pei COMMUNITY ENFORCEMENT WITH ENDOGENOUS RECORDS 9

is strictly positive. Since V (ri ) − maxr ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i ) ≥ 0 for every si ∈ Si , inequality (6) 

implies that

∑︂
si ∈Si

fi (si |a′

i , σ a
−i (ri , r−i ))

{︄
V (ri ) − max

r ′

i ∈
ˆ︁Ri (ri ,si )

V (r ′

i )

}︄
≥

1 − δi

δi
c∗q( fi ) for every a′

i ∈ Ai .

(7)

Since (7) holds at every (ri , r−i ) where player i plays a′

i ̸ = a∗

i with positive probability, the def- 

initions of Vk, Vk+1, and πk imply that Vk − Vk+1 ≥
1−δi
δi

c∗q( fi )πk . Summing this inequality up 

for all k ∈ N, we have 1−δi
δi

c∗q( fi )
∑︁

+∞

k=1 πk ≤
∑︁

+∞

k=1(Vk − Vk+1) ≤ V − V ≤ ui − ui . Similar 

to the derivation of (4),

1 −Π
(σ ,µ)
i (a∗

i ) =

+∞∑︂
k=1

(1 − δi )δ
k−1
i πk ≤ 1 − δ

∑︁
+∞

k=1 πk

i ≤ 1 − δ
ui −ui

c∗q( fi )
·

δi
1−δi

i . (8)

The RHS of (8) vanishes to 0 once we fix any ˆ︁δi ∈ (0, 1) and fi with non-shifting support and 

let δi → 1.

4. COOPERATION BETWEEN PLAYERS WITH INTERMEDIATE EXPECTED 

LIFESPANS

Theorem 1 implies that sufficiently long-lived players will almost never cooperate. Sufficiently 

short-lived players have no incentive to cooperate since their effective discount factors are too 

low. The rest of this section examines whether players with intermediate expected lifespans can 

sustain cooperation.
I start from showing that the average probability of cooperation is uniformly bounded below 

1 for all δi and ˆ︁δi . Inequalities (4) and (8) imply that player i’s average probability of taking 

actions other than his dominant action a∗

i is no more than 1 − δ
ui −ui

x ·
δi

1−δi
i , where (i) x = c∗ when 

player i can erase signals and (ii) x = c∗q( fi ) when player i can add signals and fi has non- 

shifting support. Since δi log δi
1−δi

is decreasing in δi ∈ [0, 1),

δi log δi

1 − δi
≥

δi log δi

1 − δi
≥ lim

δ→1

δ log δ

1 − δ
= −1 for every δi ∈ [0, 1). (9)

Therefore, fixing the stage-game payoff ui and the signal distribution fi , we know that for all δi

and ˆ︁δi ,

1 −Π
(σ ,µ)
i (a∗

i ) ≤ 1 − exp
(︃

−
ui − ui

x

)︃
in every equilibrium (σ , µ). (10)

Inequality (10) implies that it is impossible to sustain full cooperation in any equilibrium either 

when players can erase signals or when players can add signals and their signal distribution 

has non-shifting support. The rest of this section examines whether some cooperation can be 

sustained in some equilibria.
I focus on equilibria that are purifiable as in Bhaskar and Thomas (2019) since mixed- 

strategy equilibria may not be robust to private payoff information. Formally, I refer to
G = (I, A, u) as the unperturbed stage game. For every ε > 0, an ε-perturbed stage game
G(ε ) ≡ (I, A, uε) is one where player i’s period k stage-game payoff is uε

i (ai , a−i ) ≡
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10 REVIEW OF ECONOMIC STUDIES

ui (ai , a−i ) + εzi,k(ai ), where zi,k(ai ) is a random payoff shock. The shocks zi,k(ai ) are i.i.d. 

across actions, players, and periods. Before player i acts in period k, he observes the realiza- 

tions of his own current-period payoff shocks {zi,k(ai )}ai ∈Ai but not the ones in the future and of 

others. An equilibrium (σ , µ) of the unperturbed repeated game is purifiable if fixing the distri- 

bution of zi,k(ai ) that has bounded support and no atom, for every sequence εn → 0, there exist 

a sequence of equilibria (σ (εn), µ (εn))n∈N of the repeated εn-perturbed stage games G(εn) that 

converge to (σ , µ).
As in the main results of Takahashi (2010), Heller and Mohlin (2018), and Clark et al. 

(2021), I restrict attention to records that are first-order, namely, the distribution of si , denoted 

by fi (·|ai , a−i ), is independent of a−i .9 I will write fi (·|ai ) instead of fi (·|ai , a−i ) in order to 

avoid cumbersome notation. I will state my results in the prisoner’s dilemma,10 with stage-game 

payoffs given by

Cooperate Defect

Cooperate 1, 1 −l, 1 + g
Defect 1 + g, −l 0, 0

with g, l > 0.
In the above prisoner’s dilemma, I say that players’ payoffs are weakly supermodular if g ≤

l, are strictly supermodular if g < l, are weakly submodular if g ≥ l, and are strictly submodular
if g > l.

Theorem 2 shows that when players have intermediate expected lifespans and their actions 

are precisely monitored, some cooperation can be sustained in purifiable equilibria either when 

players can only erase signals and their payoffs are strictly submodular, or when they can only
add signals and their payoffs are strictly supermodular. For every ε > 0, I say that the monitoring 

structure is ε-precise if for every i ∈ {1, 2}, there exists s∗

i ∈ Si such that fi (s∗

i |ai = C) ≥ 1 − ε
and fi (s∗

i |ai = D) ≤ ε. Hence, perfect monitoring is ε-precise. For each ε > 0, there exists fi

that is first order, ε-precise, and satisfies non-shifting support.

Theorem 2. Suppose all players’ records are first-order, either they can only erase signals and 

have strictly submodular payoffs, or they can only add signals and have strictly supermodular 

payoffs. There exist δ∗
∈ (0, 1) and ε > 0 such that when the monitoring structure is ε-precise 

and ˆ︁δ1,ˆ︁δ2 > δ∗, there exists a non-empty interval [δ′, δ′′
] ⊂ (0, 1) such that as long as δ1, δ2 ∈ 

[δ′, δ′′
], there exists a purifiable equilibrium (σ , µ) such that Π(σ ,µ)

i (C) > 0 for every i ∈ {1, 2}.

I explain the ideas behind the proof with details relegated to Appendix B. When players 

can only erase signals and have strictly submodular payoffs, I categorize them into juniors who 

have no s∗

i in their records and seniors who have at least one s∗

i . Seniors always defect. Juniors 

cooperate with seniors for sure and cooperate with other juniors with probability q j ∈ (0, 1). 

Since payoffs are strictly submodular, if juniors are indifferent between C and D when facing 

other juniors, then they strictly prefer C when facing seniors.
When players can only add signals and their payoffs are strictly supermodular, I categorize 

them into juniors with no bad signal (i.e. signals other than s∗

i ) in their records and seniors with 

at least one bad signal in their records. In equilibrium, seniors defect against everyone, juniors

9. The “first-order record” requirement can be relaxed for Theorem 2, but it will be needed for Theorem 3.
10. In a working paper version (Pei, 2024), I focus on general monotone games when players’ expected lifespans 

are intermediate.
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Pei COMMUNITY ENFORCEMENT WITH ENDOGENOUS RECORDS 11

cooperate with other juniors with probability qi ∈ (0, 1), and defect for sure against seniors. 

Since payoffs are strictly supermodular, if juniors are indifferent between C and D when facing 

juniors, then they strictly prefer D when facing seniors.
These strategy profiles are part of some purifiable equilibria when δ1 and δ2 are intermediate 

but not when they are close to 1. This is because when players are sufficiently long-lived, there 

will be too few juniors in the population to provide incentives, in which case juniors will have 

no incentive to cooperate.
Theorem 3 shows that the conditions in Theorem 2 on players’ payoffs are essential in 

the sense that when players can erase signals and have weakly supermodular payoffs, or can 

add signals and have weakly submodular payoffs, all players will always defect regardless of
(δ1, δ2,ˆ︁δ1,ˆ︁δ2) and the signal precision.

Theorem 3. If players’ records are first order and either (i) payoffs are weakly supermodular 

and one population i can erase signals or (ii) payoffs are weakly submodular, and one population 

i can add signals and fi has non-shifting support,11 then Π(σ ,µ)
1 (C) = Π

(σ ,µ)
2 (C) = 0 for every 

purifiable equilibrium (σ , µ).

The proof is in Appendix C, which uses the purifiability refinement as well as the fact that 

the matching is uniform. To see why, let us start from the case where players in population 2 can 

erase signals. Pick any player 1 and compare his incentives to cooperate with (i) player 2 who 

has the highest continuation value (call him player 2∗) and (ii) any other player 2. Player 2∗ will 

defect for sure due to his ability to erase signals. If players’ actions are complements (i.e. g ≤ l), 

any player 1 will have less incentive to cooperate with player 2∗ than with any other player 2. If 

this is the case, then it is impossible to deliver player 2∗ a strictly higher continuation value than 

to any other player 2.12 This will break down cooperation.
Similarly, when players in population 2 can add signals, player 2 with the lowest continuation 

value (call him player 2†) will defect for sure. If players’ actions are substitutes (i.e. g ≥ l), then 

any player 1 will have weakly stronger incentives to cooperate with player 2† than with any other 

player 2. This again implies that in all purifiable equilibria, it is impossible to deliver strictly 

lower continuation values to player 2† than to any other player 2. As a result, players will have 

no incentive to cooperate due to the lack of punishments.13

5. EXTENSIONS

Theorem 1 extends to other settings where players’ continuation value is either non-decreasing 

or non-increasing over time. For example, player i’s continuation value is non-increasing over 

time (i) when the additional signals he included in his current-period record do not have to 

appear in his future records, or (ii) before being matched with each new partner, all of a player’s

11. Recall that the non-shifting support condition only requires that the support of player i’s signal distribution 

to be independent of his actions. Hence, for every ε > 0, there exist signal distributions that are first order, ε-precise, 

and satisfy non-shifting support.
12. Purifiability is needed since in some non-purifiable equilibria, there exists player 1’s record r1 such that (i) 

all players from population 2 will defect against player 1 with record r1 but (ii) r1 will cooperate with player 2 who has 

the highest continuation value and will sometimes defect against player 2 with lower continuation values. This cannot 

happen in purifiable equilibria as players’ behaviours can condition only on payoff-relevant information. See Bhaskar 

(1998) and Bhaskar et al. (2013).
13. The non-shifting support condition is required when players can only add signals, since my argument only 

implies that player 2’s highest and lowest continuation values at positive probability histories must coincide in all 

purifiable equilibria. Under perfect monitoring, it cannot rule out grim-trigger equilibria since there will be only one 

continuation value on the equilibrium path.
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12 REVIEW OF ECONOMIC STUDIES

newly added signals in the current period must come after all the signals he generated and added 

before (in the sequence of signals).
In a working paper version (Pei, 2024), I present a model with general record systems where 

players’ continuation value is non-decreasing over time. This includes, for example, when play- 

ers can only erase their most recent signal but not the ones they generated before, and when 

they can choose a subset of the signals generated by their past actions and disclose those sig- 

nals to their current partner, i.e. the signals they did not disclose to their period-k partner can be 

disclosed to their period-(k + 1) partner.
Theorem 1 extends to settings where players can only observe a garbled version of their 

partners’ records, such as when players cannot observe the exact sequence of signals in their 

partners’ records and can only observe some summary statistics (e.g. the number of times that 

each signal realization occurred in the player’s record). It also extends to settings where players 

cannot perfectly control their partners’ observations, such as each player observes his partners’ 

records with some idiosyncratic observational noise.
Next, I extend Theorem 1 to settings where players’ continuation value is not necessarily 

monotone. This includes, for example, when players choose their actions, they face uncertainty 

regarding whether they can erase or add signals before being matched with their next partner. If 

this is the case, then players do not know whether they can preserve their current record in the 

next period and whether their next-period continuation value is no less than that in the period 

after next. The extension below nests my baseline model.
Formally, suppose whether each player i can erase or add signals before being matched with 

his period-k partner is determined by an i.i.d. random variable mi,k ∈ {erase, add, both, none},14

where pe ≡ Pr(mi,k = erase), pa ≡ Pr(mi,k = add), pb ≡ Pr(mi,k = both), and pn ≡ Pr(mi,k =

none). Player i observes the realization of mi,k when he chooses his period-k record before being 

matched with his period-k partner.
For any player i born before period k, suppose his period-(k − 1) record is ri,k−1 and his 

period-(k − 1) signal is si,k−1. If mi,k = erase, then he can choose his period-k record from any 

subsequence of (ri,k−1, si,k−1). If mi,k = add, then he can choose his period-k record to be any
r ′

i such that (ri,k−1, si,k−1) is a subsequence of r ′

i . If mi,k = both, then he can choose his period-k
record from the entire set Ri . If mi,k = none, then his record in period k must be (ri,k−1, si,k−1). 

For any player i born in period k, before being matched with his partner in period k, he can 

choose anything in Ri to be his period-k record if mi,k ∈ {add, both} and can only choose ∅ to 

be his period-k record if mi,k ∈ {erase, none}.

Theorem 4. Suppose players in population i have a strictly dominant action a∗

i ∈ Ai .

(1) For every ε > 0, there exists p∗
∈ (0, 1) such that when pb + pe ≥ p∗, for every ˆ︁δi ∈

(0, 1), there exists δ∗
∈ (0, 1) such that Π(σ ,µ)

i (a∗

i ) ≥ 1 − ε for every equilibrium (σ , µ)
when δi > δ∗.

(2) For every ε > 0, there exists p∗
∈ (0, 1) such that when pb + pa ≥ p∗, for every ˆ︁δi ∈

(0, 1) and fi that has non-shifting support, there exists δ∗
∈ (0, 1) such thatΠ(σ ,µ)

i (a∗

i ) ≥

1 − ε for every equilibrium (σ , µ) when δi > δ∗.

14. My result in this section, Theorem 4, applies both to the case where all players in population i face the same 

shock (i.e. in any given period, either all of them can only erase signals, or all of them can only add signals, or all of 

them can do both, or all of them cannot manipulate) and to the case where the shocks are i.i.d. across periods and players 

within population i.
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Theorem 4 implies that if player i has a dominant action and can either erase or add signals
with probability above some cutoff, then his average probability of cooperation is low when he 

is sufficiently long-lived.
Appendix D shows the first statement of Theorem 4, that is, the case where player i can erase 

signals with probability above p∗. The case where player i can add signals with high probability 

and fi having non-shifting support can be shown using a similar argument, which I omit in order 

to avoid repetition.
The main challenge is that unlike in the baseline model, it is unclear whether player i’s 

continuation value will increase or decrease over time: it may increase in periods where mi,k ∈ 

{erase, none} and it may decrease in periods where mi,k ∈ {add, none}. As a result, players’ 

continuation values are no longer monotone over time, which contrasts to the baseline model. 

In addition, players may have incentives to cooperate both when their continuation values reach 

the maximum and when their continuation values reach the minimum. Hence, their incentives to 

cooperate do not vanish over time, unlike in the baseline model.
To conclude this section, I consider situations where a third party (e.g. an online platform) 

can reset a player’s record. Such resets can be implemented either by erasing all signals from a 

player’s record, or by adding some signal to a player’s record (e.g. adding a signal that marks 

the beginning of a reset).
First, suppose player i can only erase signals and that after each period, a platform randomly 

selects a fraction pi ∈ [0, 1] of the active players in population i and erase all signals from 

their records.15 Since a player’s continuation value depends only on his record, once a player is 

selected by the platform, he will effectively become a newly born player in the next period, so 

each player’s expected lifespan is shortened from (1 − δi )
−1 to (1 − δi (1 − pi ))

−1. Although 

the extreme form of anti-folk theorem that players cooperate with probability close to 0 may 

not extend, my uniform upper bound (10) still applies: It implies that the average probability of 

cooperation is uniformly bounded below 1 regardless of pi . Hence, (10) illustrates the limits of 

fostering cooperation via such policies and implies that the folk theorem fails more generally.
Second, suppose after each period, a platform randomly selects a fraction pi ∈ [0, 1] of the 

active players in population i and adds a signal s∗

i to their records. If player i can erase signals, 

then Theorem 1 extends since before being matched with each new partner, player i can always 

erase the signal added by the platform and preserve his record in the period before, so his con- 

tinuation value is non-decreasing over time. If player i cannot erase signals but can add signals, 

then Theorem 1 extends since player i can replicate his future records in the current period (by 

adding s∗

i himself) so his continuation value is non-increasing over time.

6. CONCLUDING REMARKS

This paper establishes an anti-folk theorem in community enforcement models, which shows 

that sufficiently long-lived players will almost never cooperate. This result is driven by the mono- 

tonicity constraints on players’ continuation values and these constraints are implied by players’ 

abilities to add or erase signals.
In summary, when players’ continuation values are non-decreasing over time (which must 

be the case when they can erase signals from their records), they will have no incentive to 

cooperate once their continuation values are close to the maximum. As a result, each player will

15. If player i can add signals, then he can always add the erased signals back, in which case Theorem 1 still 

applies.
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14 REVIEW OF ECONOMIC STUDIES

only cooperate in a bounded number of periods and these periods carry negligible weight once 

the player is sufficiently long-lived.
When players’ continuation values are non-increasing over time (which must be the case 

when they can add signals), they will have no incentive to cooperate once their continuation 

values approach the minimum. If the signals that monitor players’ actions are noisy, then in order 

to provide incentives to cooperate, players’ continuation value needs to decrease significantly 

relative to their current continuation value regardless of the actions they take. This again suggests 

that each player has an incentive to cooperate for at most a bounded number of periods and these 

periods carry negligible weight once the player is sufficiently long-lived.
My approach to endogenous records has two limitations. First, Theorems 1 and 4 require

δi to be close to 1. When δi is bounded below 1, although I can derive a uniform upper bound 

on the average probability of cooperation, there is no precise characterization of the maximal 

probability of cooperation. Computing such a probability is hard even for the prisoner’s dilemma 

since very little is known about (i) the set of equilibria in repeated games when δi is bounded 

below 1 and (ii) the structure of steady-state Nash equilibria.
Second, when player i can only add signals, I focus on the case where he can include any

finite number of signals in any period. This modelling assumption ensures that his continuation 

value is non-increasing over time. However, if player i can add no more than K signals in each 

period, his continuation value may not be non-increasing over time. Whether Theorem 1 holds 

for a bounded K remains an open question.

APPENDIX

A. Proof of Corollary 1

Recall that in any finite 2-player game G, a pure action ai ∈ Ai is strictly dominated in the stage game if and only if it 

is never a best reply and there exists η > 0 such that regardless of player −i’s action α−i ∈ Δ(A−i ), player i’s payoff 

from playing ai is less than his payoff from playing a best reply minus η.
Using the same argument as that in the proof of Theorem 1, one can show that for every ˆ︁δi ∈ (0, 1), there exists

δ∗
∈ (0, 1) such that when δi > δ∗, the average probability that player i takes strictly dominated actions is less than

ε in all equilibria. Let A1
i ⊂ Ai denote the set of player i’s actions that survive the first round of deletion but not the 

second round. If A1
i is non-empty, then there exists η > 0 that depends only on ui such that all actions in A1

i are still 

strictly dominated by at least η when the probability that player −i takes strictly dominated actions is no more than η. 

According to the Markov’s inequality, if the average probability with which player −i takes strictly dominated actions is 

no more than ε, then histories where player −i takes strictly dominated actions with probability more than η occurs with 

probability less than ε /η. Using the argument in Theorem 1, we know that for every ˆ︁δi ∈ (0, 1), there exists δ∗
∈ (0, 1)

such that when δi > δ∗, the probability that player i takes actions in A1
i is at most ε + ε /η. The conclusion of Corollary

1 is obtained once we iterate the above process for at most |A1| + |A2| rounds.

B. Proof of Theorem 2

I focus on the case where players can erase signals and have strictly submodular payoffs. The case where players can 

add signals and have strictly supermodular payoffs is symmetric, which I omit to avoid repetition.
To simplify notation, let f ∗

i ≡ fi (s∗
i |ai = C) and f ′

i ≡ fi (s∗
i |ai = D). There exists ε > 0 such that for every

ε < ε, f ∗
i > f ′

i when ( f1, f2) is ε-precise. Let V i denote the continuation value of seniors in population i and let
V i denote the continuation value of juniors in population i. Let qi denote the probability that juniors play C against other 

juniors and let µi denote the fraction of players in population i that are juniors. A junior in population i’s indifference 

condition when facing a junior in population j is given by

(1 − δi )ui (C, q j C + (1 − q j )D) + δi ( f ∗
i V i + (1 − f ∗

i )V i ) = (1 − δi )ui (D, q j C + (1 − q j )D)

+ δi ( f ′
i V i + (1 − f ′

i )V i ),
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which implies that

V i − V i =
1 − δi

δi
·

1
f ∗
i − f ′

i
·
(︁
q j g + (1 − q j )l

)︁
. (B.1)

Since it is always weakly optimal for juniors to cooperate, his continuation value V i can be written as

V i = µ j
{︁
(1 − δi )ui (C, q j C + (1 − q j )D) + δi

(︁
f ∗
i V i + (1 − f ∗

i )V i
)︁}︁

+ (1 − µ j )
{︁
(1 − δi )ui (C, D) + δi

(︁
f ∗
i V i + (1 − f ∗

i )V i
)︁}︁

.

Plugging in (B.1) for the difference between V i and V i , we obtain that

V i = µ j q j − (1 − µ j q j )l +
f ∗
i

f ∗
i − f ′

i

(︂
q j g + (1 − q j )l

)︂
. (B.2)

A senior’s continuation value is V i = µ j (1 + g). This together with equations (B.1) and (B.2) implies that

µ j (1 + g) = µ j q j − (1 − µ j q j )l +
f ∗
i

f ∗
i − f ′

i

(︂
q j g + (1 − q j )l

)︂
+

1 − δi
δi

·
1

f ∗
i − f ′

i
·

(︂
q j g + (1 − q j )l

)︂
. (B.3)

For every η > 0, there exists ε > 0 such that as long as monitoring is ε-precise, there exists η ∈ (−η , η ) such that

(1 − q j )µ j =
1 − δi

δi
·

l
1 + g

+ q j
g − l
1 + g

(︂
δ−1
i − µ j

)︂
+ η . (B.4)

Since g > l, the LHS of (B.4) is strictly decreasing in q j and equals 0 when q j = 1 and the RHS of (B.4) is strictly 

increasing in q j and is always strictly positive when |η| < l
1+g ·

1−δi
δi

. This implies that there exists a solution to (B.4) 

for η small enough if and only if the LHS is greater than the RHS when q j = 0, or equivalently,

µ j >
1 − δi

δi
·

l
1 + g

for every i, j ∈ {1, 2} with i ̸ = j. (B.5)

where steady-state record distributions, µi and µ j , must satisfy

µi = (1 − δi ) + δi

{︂
µi µ j

(︁
(1 − qi )(1 − f ′

i ) + qi (1 − f ∗
i )

)︁
+ µi (1 − µ j )(1 − f ∗

i )
}︂
. (B.6)

Equation (B.6) implies that µi ≥ 1 − δi for every i ∈ {1, 2}, and therefore, it is sufficient to show that there exists a 

non-empty interval [δ′, δ′′
] ⊂ (0, 1) such that when δ1, δ2 ∈ [δ′, δ′′

], we have

µ j ≥ 1 − δ j >
1 − δi

δi
·

l
1 + g

. (B.7)

This is indeed the case when ˆ︁δi is close enough to 1 for every i ∈ {1, 2}, under which (B.7) is satisfied as long as δ j is 

not too close to 1. Such an equilibrium is purifiable since players have strict incentives at all except for one information 

set, which is when a junior is matched with another junior.

C. Proof of Theorem 3

Fix any equilibrium (σ , µ). Let R∗
i ⊂ Ri denote the set of player i’s records that occur with positive probability under

µ. Let Vi (ri ) denote player i’s continuation value when his record is ri before knowing his current partner’s record. 

Let V i ≡ supri ∈R∗
i

Vi (ri ) and let V i ≡ infri ∈R∗
i

Vi (ri ), which are player i’s highest and lowest continuation values, 

respectively, at records that occur with positive probability under µ.

Lemma 1. Suppose players in population 1 can erase signals or they can add signals and f1 has non-shifting support. 

If there exist an equilibrium (σ , µ) and a record profile (r1, r2) ∈ R∗
1 × R∗

2 such that player 1 plays C with positive 

probability at (r1, r2), then it must be the case that V 1 > V 1.
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Proof: First, suppose players in population 1 can erase signals. For each player 1, his incentive to play C at (r1, r2) ∈

R∗
1 × R∗

2 implies that

(1 − δ1)u1(C, σa
2 (r1, r2)) + δ1V 1 ≥ (1 − δ1)u1(D, σa

2 (r1, r2)) + δ1V1(r1). (C.1)

Therefore, V 1 > V1(r1) ≥ V 1 where the last inequality comes from the hypothesis that r1 ∈ R∗
1 .

Next, suppose players in population 1 can add signals. For each player 1, his incentive to play C at (r1, r2) ∈

R∗
1 × R∗

2 implies that

(1 − δ1)u1(C, σa
2 (r1, r2)) + δ1

∑︂
s1∈S1

f1(s1|C, σa
2 (r1, r2)) max

r ′
1∈ˆ︁R1(r1,s1)

V1(r ′
1)

≥ (1 − δ1)u1(D, σa
2 (r1, r2)) + δ1

∑︂
s1∈S1

f1(s1|D, σa
2 (r1, r2)) max

r ′
1∈ˆ︁R1(r1,s1)

V1(r ′
1). (C.2)

If f1 has non-shifting support, let S1(σa
2 (r1, r2)) denote the set of player 1’s signals that occur with positive probability 

when player 2’s action is σa
2 (r1, r2). This set is well defined in the sense that it does not depend on player 1’s action. 

Inequality (C.2) and the definitions of V 1, V 1 suggest that

V 1 ≥ max
s1∈S1(σa

2 (r1,r2))

{︄
max

r ′
1∈ˆ︁R1(r1,s1)

V1(r ′
1)

}︄
> min

s1∈S1(σa
2 (r1,r2))

{︄
max

r ′
1∈ˆ︁R1(r1,s1)

V1(r ′
1)

}︄
≥ V 1.

Suppose by way of contradiction that under the conditions of Theorem 3, there exists a purifiable equilibrium (σ , µ)

such that V 1 > V 1. Lemma 1 implies that any contradiction derived from this hypothesis will imply Theorem 3. Let

η ≡ min

{︄
V 1 − V 1

3
,

1 − δ1
2δ1

c∗

}︄
, (C.3)

which is strictly positive since V 1 > V 1. The definitions of V 1 and V 1 imply that there exist r1, r1 ∈ R∗
1 with V1(r1) ∈ 

[V 1 − η , V 1] and V1(r1) ∈ [V 1, V 1 + η]. The definition of η implies that V1(r1) > V1(r1). Recall from Section 3.1
that when player 1 can erase signals, his equilibrium continuation value is non-decreasing over time, and that when 

player 1 can add signals, his equilibrium continuation value is non-increasing over time. Lemma 2 is then implied by 

(C.1) and (C.2) as well as the monotonicity constraints.

Lemma 2. If population 1 can erase signals, then they have strict incentives to play D at any record r1 ∈ R∗
1 that 

satisfies V1(r1) ∈ [V 1 − η , V 1]. If population 1 can add signals and f1 has non-shifting support, then they have strict 

incentives to play D at any record r1 ∈ R∗
1 that satisfies V1(r1) ∈ [V 1, V 1 + η].

Lemma 3 establishes an implication of the purifiability refinement.

Lemma 3. Suppose players in population 2 have the first-order records.

If players in population 1 can erase signals and g ≤ l, then in every purifiable equilibrium, for every r1 ∈ R∗
1

that satisfies V1(r1) ≥ V 1 − η, every r1 ∈ R∗
1 , and every r2 ∈ R∗

2 , each player 2’s probability of playing C at
(r1, r2) is weakly less than his probability of playing C at (r1, r2).
If players in population 1 can add signals and g ≥ l, then in every purifiable equilibrium, for every r1 ∈ R∗

1
that satisfies V1(r1) < V 1 + η, every r1 ∈ R∗

1 , and every r2 ∈ R∗
2 , each player 2’s probability of playing C at

(r1, r2) is weakly more than his probability of playing C at (r1, r2).

Proof: I will only prove the first statement. The proof of the second statement is symmetric, which I omit in order to 

avoid repetition. Lemma 2 implies that player 1 has a strict incentive to play D when his record is r1. Since player 2’s 

records are first order, his payoff from playing a2 at (r1, r2) is (1 − δ2)u2(D, a2) + δ2E[V2|a2, r2], where E[V2|a2, r2]

stands for player 2’s continuation value in the next period given his current-period action and record. Fix any (r1, r2) ∈

R∗
1 × R∗

2 , if player 1’s (possibly mixed) action at (r1, r2) is α1 ∈ Δ{C, D}, then player 2’s payoff from playing a2
at (r1, r2) is (1 − δ2)u2(α1, a2) + δ2E[V2|a2, r2]. Since g ≤ l, maxa2∈A2 {(1 − δ2)u2(a1, a2) + δ2E[V2|a2, r2]} is a 

single-crossing function of a1. Theorem 5 in Milgrom and Shannon (1994) implies that once we order players’ actions by
C ≻ D, the set of maximizers when a1 = α1, denoted by A∗∗

2 , dominates the set of maximizers when a1 = D, denoted
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by A∗
2 , in strong set order. Consider any ε-perturbed stage game where player 2’s stage-game payoff from playing a2

is u2(a1, a2) + εz2(a2), where z2(a2) has bounded support and a non-atomic distribution. Since z2(a2) has bounded 

support, player 2 will only take actions in A∗
2 with positive probability at (r1, r2) and will only take actions in A∗∗

2 with 

positive probability at (r1, r2) when ε is small enough. When C /∈ A∗
2 or when D /∈ A∗∗

2 , the conclusion of Lemma 3 is 

trivially true. When C ∈ A∗
2 and D ∈ A∗∗

2 , A∗∗
2 dominates A∗

2 in strong set order implies that A∗
2 = A∗∗

2 = {C, D}, in 

which case both the probability that player 2 plays C at (r1, r2) and the probability that player 2 plays C at (r1, r2) are 

between the probability of the event that z2(C) > z2(D) and the probability of the event that z2(C) ≥ z2(D). Events
z2(C) > z2(D) and z2(C) ≥ z2(D) occur with the same probability when the distribution of z2 is atomless. This implies 

the conclusion of Lemma 3.

I use Lemmas 1–3 to show Theorem 3. I consider two cases separately, depending on whether player 1 can erase or 

can add signals. This part of my proof uses the assumption that matching is uniform, and in particular, a player’s record 

does not affect the distribution of opponents that he will be matched with.

Case 1

Suppose player 1 can erase signals. By Lemma 2, he will play D for sure at any record r1 that satisfies V1(r1) ≥ V 1 − η. 

Therefore, his equilibrium continuation value at r1 equals∑︂
r2∈R∗

2

µ2(r2)
{︁
(1 − δ1)u1(D, σa

2 (r1, r2)) + δ1E[V1|D, r1]
}︁
. (C.4)

For every r1 ∈ R∗
1 with V1(r1) < V1(r1), if player 1’s current-period record is r1 and he deviates by playing D and 

erasing every signal he generates, then his record remains r1, his payoff at r1 under this deviation is∑︂
r2∈R∗

2

µ2(r2)
{︁
(1 − δ1)u1(D, σa

2 (r1, r2)) + δ1V1(r1)
}︁
, (C.5)

which must be weakly lower than his equilibrium continuation value V1(r1). According to Lemma 3, σa
2 (r1, r2) assigns 

weakly higher probability to C than σa
2 (r1, r2), which implies that u1(a1, σa

2 (r1, r2)) ≤ u1(a1, σa
2 (r1, r2)) for every

a1 ∈ {C, D}. Since the difference between (C.4) and (C.5) is at least V1(r1) − V1(r1), one can obtain the following 

inequality by subtracting (C.5) from (C.4):

E[V1|D, r1] − V1(r1) ≥

(︂
V1(r1) − V1(r1)

)︂
δ−1 

1 . (C.6)

Let R1(r1) denote the set of player 1’s records that occur with positive probability in the next period when his current- 

period record is r1 and he plays his equilibrium strategy. Inequality (C.6) implies that

max
r ′
1∈R1(r1)

V1(r ′
1) − V (r1) ≥ E[V1|D, r1] − V1(r1) ≥

(︂
V1(r1) − V1(r1)

)︂
δ−1 

1 . (C.7)

Inequality (C.7) suggests that for any r1 ∈ R∗
1 that satisfies V1(r1) ∈ [V 1 − η , V 1], there exists r ′

1 ∈ R1(r1) such that

V1(r ′
1) − V1(r1) ≥ δ−1 

1 (V1(r1) − V1(r1)). This leads to a contradiction since there exists r1 ∈ R∗
1 that satisfies both

V 1 > V1(r1) and δ−1 

1 (V1(r1) − V1(r1)) > V 1 − V1(r1) for any r1 with V1(r1) < V1(r1), and any r ′
1 ∈ R1(r1) that 

satisfies V1(r ′
1) − V1(r1) ≥ δ−1 

1 (V1(r1) − V1(r1)) will have V1(r ′
1) > V 1. Hence,Π(σ ,µ)

1 (C) = 0. The conclusion that

Π
(σ ,µ)
1 (C) = 0 then implies that Π(σ ,µ)

2 (C) = 0.

Case 2

Suppose player 1 can add signals and the distribution of f1 has non-shifting support. For every record r1 ∈ R∗
1 that 

satisfies V1(r1) ≤ V 1 + η, Lemma 2 implies that player 1 will play D for sure at r1, and Lemma 3 implies that for every
r2 ∈ R∗

2 , the probability that player 2 plays C at (r1, r2) is weakly greater than the probability that he plays C at any
(r1, r2). Since player 1’s continuation value is non-increasing over time, starting from any such r1, any record of this 

player 1 that occurs with positive probability in the future, denote it by r ′
1, satisfies V1(r ′

1) ≤ V 1 + η. Since once player 

1’s continuation value satisfies V1(r1) ≤ V 1 + η, his continuation value will also satisfy that in the future, we know that 

player 1’s continuation value at r1 is weakly greater than his continuation value at every record in R∗
1 . This contradicts
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the hypothesis that V 1 > V 1, and Lemma 1 then implies that Π(σ ,µ)
1 (C) = 0. The conclusion that Π(σ ,µ)

1 (C) = 0 then 

implies that Π(σ ,µ)
2 (C) = 0.

D. Proof of Theorem 4: Statement 1

Fix an equilibrium (σ , µ). Recall from the proof of Theorem 1 that R∗
i denotes the set of player i’s records that occur 

with positive probability, V (ri ) denotes player i’s expected continuation value when his record is ri , Ri (ri , si ) ⊂ R∗
i

denotes the set of subsequences of (ri , si ), and ˆ︁Ri (ri , si ) ⊂ R∗
i denotes the set of r ′

i such that (ri , si ) is a subsequence of
r ′
i . Let ui and ui denote player i’s highest stage-game payoff and lowest stage-game payoff (as opposed to his minmax 

value), respectively. When mi,k = both, player i can choose any record from Ri before being matched with his partner 

in period k, so his continuation value in period k equals maxr ′
i ∈Ri

V (r ′
i ) regardless of whether he was born in period k

as well as his record ri and signal si in period k − 1 (in the case where he was born before period k). The definition of
c∗ in (1) implies that for each player i, he has an incentive to play a′

i ̸ = a∗
i at (ri , r−i ) only if

pe

⎧ ⎨ ⎩ 

∑︂
si ∈Si

fi (si |a
′
i , σa

−i (ri , r−i )) max
r ′
i ∈Ri (ri ,si )

V (r ′
i ) −

∑︂
si ∈Si

fi (si |a
∗
i , σa

−i (ri , r−i )) max
r ′
i ∈Ri (ri ,si )

V (r ′
i )

⎫ ⎬ ⎭
+ pa

⎧ ⎨ ⎩ 

∑︂
si ∈Si

fi (si |a
′
i , σa

−i (ri , r−i )) max
r ′
i ∈

ˆ︁Ri (ri ,si )
V (r ′

i ) −

∑︂
si ∈Si

fi (si |a
∗
i , σa

−i (ri , r−i )) max
r ′
i ∈

ˆ︁Ri (ri ,si )
V (r ′

i )

⎫ ⎬ ⎭
+ pn

⎧ ⎨ ⎩ 

∑︂
si ∈Si

fi (si |a
′
i , σa

−i (ri , r−i ))V (ri , si ) −

∑︂
si ∈Si

fi (si |a
∗
i , σa

−i (ri , r−i ))V (ri , si )

⎫ ⎬ ⎭ ≥
1 − δi

δi
c∗. (D.1)

For every ri and si , player i’s continuation value at any record r ′
i ∈ ˆ︁Ri (ri , si ) is at least his payoff from the following 

strategy (i) not manipulating his record by the end of period k if mi,k ∈ {none, add}, (ii) setting his record to ri by erasing 

signals by the end of period k if mi,k ∈ {erase, both}, and (iii) choosing ai according to his equilibrium strategy at every 

record profile. This implies that

V (r ′
i ) ≥ V (ri ) −

1 − δi
1 − δi (1 − pi )

(︂
V (ri ) − ui

)︂
for every r ′

i ∈ ˆ︁Ri (ri , si ), (D.2)

where the RHS is a lower bound on player i’s payoff if he uses the strategy I described. When player i plays a′
i ∈ Ai at

(ri , r−i ), the difference between his expected continuation value in the next period and V (ri ) is

pe
∑︂

si ∈Si

fi (si |a
′
i , σa

−i (ri , r−i )) max
r ′
i ∈Ri (ri ,si )

V (r ′
i ) + pn

∑︂
si ∈Si

fi (si |a
′
i , σa

−i (ri , r−i ))V (ri , si )

+ pb max
r ′
i ∈Ri

V (r ′
i ) + pa

∑︂
si ∈Si

fi (si |a
′
i , σa

−i (ri , r−i )) max
r ′
i ∈

ˆ︁Ri (ri ,si )
V (r ′

i ) − V (ri ). (D.3)

If any in equilibrium, for any (ri , r−i ) at which player i plays any a′
i ̸ = a∗

i with positive probability in equilibrium, then 

by (D.1) and (D.2), the value of expression (D.3) is at least

1 − δi
δi

c∗
− (pa + pn)

1 − δi
1 − δi (pa + pn) 

(ui − ui ). (D.4)

At any other (ri , r−i ), inequality (D.2) implies that the value of expression (D.3) is at least

−(pa + pn)
1 − δi

1 − δi (pa + pn) 

(ui − ui ). (D.5)

Recall the definitions of Vk and πk in the proof of Theorem 1. From (D.4) and (D.5), we know that

Vk+1 − Vk ≥ πk
1 − δi

δi
c∗

− (pa + pn)(ui − ui )
1 − δi

1 − δi (pa + pn) 

. (D.6)
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For every T ∈ N, summing up inequality (D.6) from k = 1 to k = T , we can obtain that

T∑︂
k=1

πk ≤

T∑︂
k=1

{︃
(pa + pn)

1 − δi
1 − δi (pa + pn)

·
ui − ui

c∗
+

Vk+1 − Vk
c∗

}︃
δi

1 − δi
≤ T G1 + G0, (D.7)

where G1 ≡
(pa+pn )(ui −ui )

c∗ ·
δi

1−δi (pa+pn ) and G0 ≡
ui −ui

c∗ ·
δi

1−δi
. Since πk ∈ [0, 1] for every k ∈ N, (D.7) implies 

that
+∞∑︂
k=1

(1 − δi )δ
k−1
i πk ≤ (1 − δi )

G0
1−G1 + δ

G0
1−G1
i G1 ≤ (1 − δi )

G0
1−G1 + G1. (D.8)

By the law of total probabilities, the LHS is the average probability with which player i takes actions other than a∗
i . Fix 

any ˆ︁δi ∈ (0, 1) and let δi → 1, the RHS of (D.8) equals G1, and G1 vanishes as pa + pn → 0.
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