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ABSTRACT

We introduce the Microsoft-Northwestern-WITNESS deepfake detection benchmark, a dataset to help
evaluate and improve algorithms to detect AI-generated audio, video, and image content. This dataset
consists of more than 50,000 artifacts (images, videos and audio files) all generated by us. It also
includes real-world examples of AI-manipulated or suspicious media encountered by journalists
and human rights defenders globally, annotated by experts, ensuring that the benchmark reflects
the practical and high-stakes conditions under which detection tools are needed. The MNW dataset
will be periodically updated to cover as many generators as possible. Our dataset also contains
adversarial examples produced with state-of-the-art attacks. This project is a collaborative effort, and
we encourage developers and providers of generative-AI models to help us keep this dataset always
up-to-date. This dataset is intended for evaluation purposes and cannot be used for training or
for commercial purposes. As we cannot prevent detector builders to do so, we recommend entities
willing to purchase a detection solution not to use our dataset to evaluate commercial detection tools.
Our objective is to set a high bar for developers and increase the reliability of detection systems.
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1 Introduction

In recent years, generative AI - especially diffusion-based models - have advanced rapidly. With the help of cloud
computing, the ability to create realistic AI-generated content such as images, audio, and video is now accessible to
anyone through a simple text prompt, reference image, or voice input. This technology has been widely embraced by
artists, content creators, and communication professionals to enhance creativity and productivity. However, it is also
increasingly used for harmful purposes, including misinformation and disinformation, propaganda, fraud and online
harassment. Figure 1 shows some sample AI-Generated images from 2025. While image manipulation techniques have
existed long before the digital age, the speed and ease of AI-driven content generation is unlike anything seen before.

Figure 1: Examples of AI-generated images circa 2025

AI-generated media and deepfake detection has been an active research area for almost a decade. However, the past
three years have seen rapid breakthroughs in generative models, along with a surge in the number of providers of
generative models. What was once a niche domain with a few techniques (GANs, VAEs) has now evolved into a
fast-moving landscape, with new generative models and updates released regularly. Midjourney, for instance, launched
its seventh image generation model earlier this year. Despite their realism, generative models leave behind subtle,
model-specific artifacts. While some detectors can generalize to unseen new generators, our findings show that high
and consistent detection performance also depends on exposure to a diverse range of generators during training. In this
context, it has become challenging to evaluate the performance of AI detectors.

Effective benchmarks should also reflect real-world conditions including compressed, low-resolution, and contextually
complex media, as well as the diverse linguistic and regional contexts in which journalists and fact-checkers operate.
Detection systems must be designed for technical performance as well as for the real-world, where stakes and potential
harms can be high.

1.1 The Need for Comprehensive and Up-to-date benchmarks

Historically, evaluation of deepfake detection models was based on large datasets opened-up during ‘detection chal-
lenges’. These datasets typically had a lot of depth but little breadth. Table4 in the appendix shows a list of deepfake
benchmarks. Such benchmarks were suitable for the previous era when GANs were the dominant method for media
generation. However, these benchmarks are not up to the challenge posed by the new generative AI landscape and the
evolving types of risks they pose. Such risks include scams, fraud, non-consensual intimate image and video generation,
and misinformation and disinformation at scale.

Though the evaluation of detection tools should reflect the evolution of the generative AI landscape, the vast majority
of benchmarks available today still mostly cover GAN-based images and deepfake videos, while the few that contain
media generated with diffusion-based methods only gather samples from a few open-source generative models. For
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example, Pellegrini and al. 2025 [45] cover only 8 diffusion-based image generators, half of which are versions of
Stable Diffusion and exclude the last two updates Stable Diffusion 3 and 3.5.

Our novel Microsoft-Northwestern-Witness (MNW) benchmark introduces a comprehensive dataset of over 50K
artifacts designed to cover a broad range of AI content generators including all three types of artifacts: audio, video,
and image. Our goal is to keep our dataset up-to-date by continuously integrating samples from newly released models.
We believe that effective evaluation of detection systems does not require millions of examples from a few generators,
but rather a relatively small number of samples from as broad a set of generators as possible. Our research shows that
generative models leave behind subtle yet distinct artifacts, and that cross-generator detection remains a significant
challenge for most detectors. The MNW dataset can be downloaded from: https://github.com/nsail-lab/MNW
for non-commercial use.

We conceive this project as a collaborative endeavor and invite both the research community and model developers to
support this initiative by contributing samples from new generative models, helping to keep this benchmark up-to-date
across three modalities: audio, images, and video.

1.2 The Need for Benchmarks that Contain Real-World and Adversarial Examples

A few years back, concerns around Generative AI primarily centered on impersonation facilitated by deepfake videos.
At the time, the threat was relatively constrained by the technical expertise and computing power required to produce
such content. While real-world incidents occasionally made headlines, they remained rare. Today, generative models
are accessible through user-friendly interfaces and simple natural language prompts, dramatically lowering the barrier
to entry. AI-generated media are now widely disseminated on social networks, often in highly compressed, resized, or
cropped form. Malicious actors increasingly employ techniques to obscure the synthetic origin of media — such as by
inserting AI-generated frames into real footage, deliberately reducing resolution to mask artifacts, or injecting noise
into audio. Moreover, skilled adversaries can deploy adversarial attacks to deceive detection systems and conceal the
synthetic nature of images, audio, or video.

To ensure the effectiveness of AI detection tools in real-world scenarios, evaluation datasets must include both authentic
and adversarial examples that reflect the conditions under which generative media are likely to be used.

In all, the initial version of the MNW benchmark includes over 50,000 artifacts comprising 40,000 deepfake audios,
and over 11,000 deepfake images and videos.
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2 The benchmark

With the Microsoft-Northwestern-WITNESS benchmark, we fill the gaps previously mentioned, bringing our 3 founding
organizations’ specific expertise.

Microsoft’s AI for Good Lab is dedicated to developing and applying artificial intelligence to address real-world
challenges that advance global well-being. Its initiatives span a wide range of impactful areas, including AI-powered,
solar-enabled systems for monitoring biodiversity in remote regions, efforts to protect the Amazon rainforest, strategies
to combat malnutrition, innovations in ear health, and tools for identifying at-risk communities. The lab also conducts
research in the field of AI-forensics to counter the misuse of generative AI and improve the reliability of AI detection
tools.

Northwestern University’s Security and AI Lab is a leader at the intersection of AI and global security issues. Since
July 8 2024, it has provided the Global Online Deepfake Detection System (GODDS) as a global public good for use by
journalists[48]. GODDS has been used by journalists from numerous outlets around the world including Agence France
Press, BBC, CNN, New York Times, Politifact, Thomson Reuters, Wall Street Journal, and many others. Likewise, it
has provided the Northwestern Terror Early Warning System (NTEWS) as a global public good for governments and
companies, forecasting terror attacks by 6 major groups. Users of NTEWS reports include governmental entities such
as the UN, DHS, TSA, FEMA, Ministries of Defence of India and The Netherlands, Interpol, as well as corporations
such as Ford, United Airlines, Microsoft, and others. Several other projects focus on securing the world by protecting
children, detecting malware, detecting social bots and mis/disinformation, detecting phishing, scam detection, and
more.

WITNESS’ Deepfakes Rapid Response Force (DRRF) was the first global mechanism for forensic analysis of suspected
deepfakes, providing real-time support to frontline journalists and fact-checkers while delivering cutting-edge detection
training. Data from the DRRF have been used to develop the TRIED: Truly Innovative and Effective AI Detection
Benchmark [2], and now contribute to this wider MNW Benchmark.

2.1 Real-world examples

As part of the MNW benchmark, WITNESS contributed to the “AI Media In-the-Wild” dataset [64], based on
submissions from partners to the Deepfakes Rapid Response Force (DRRF). The DRRF connects frontline fact-
checkers, journalists, and civil society actors with leading media forensics and deepfake detection experts to provide
rapid evidence-based analysis of potentially AI-manipulated or generated content threatening democracy and human
rights.

The dataset consists of videos, audio recordings, and images submitted to and analyzed by DRRF experts, reflecting the
diversity of real-world cases encountered in high-stakes contexts. It is structured using three practical labels:

• likely-manipulated: Expert analysis found evidence of AI manipulation indicating the content was likely
AI-generated or altered.

• likely-authentic: Expert analysis did not find evidence of AI manipulation, indicating the content was
likely authentic.

• inconsistent: Expert analysis could not deliver a conclusive result due to factors such as low quality, high
compression, or language/context gaps.

Examples include:

• Likely authentic: A022 [69], A052 [75], A064 [72]
• Likely manipulated: M0391 [67], M056 [65], M066 [68], M067 [70], M0842 [73]
• Inconsistent: I043 [74], I082 [66], I085 [71]
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Figure 2: In-the-wild examples gathered through the work of DRRF

This dataset complements the WITNESS TRIED Benchmark [2], which provides a socio-technical lens for evaluating AI
detection tools by prioritizing real-world applicability, contextual relevance, accessibility, and fairness. By incorporating
“in-the-wild” examples, the MNW benchmark ensures that detection models are evaluated under the practical conditions
faced by journalists, fact-checkers, and human rights defenders, where compressed, low-quality, and contextually
complex media are the norm.

Through this contribution, WITNESS aims to support the development of reliable, explainable, and effective detection
tools that strengthen global information integrity and public trust in an era of rapidly evolving generative AI threats.

2.2 AI-Generated Audio

As part of the MNW Benchmark, the Northwestern University Security and AI Lab (NSAIL) developed a total of
40,000 synthetic audio clips. As deceased individuals are not subject to Institutional Review Board protections, we
selected a set DI of 206 deceased individuals di, spanning a mix of male and female subjects. We also selected 40
well-known audio generation methods from 2017-2025. These methods included many recent generative methods (e.g.,
9 from 2025, 7 from 2024). We randomly sampled 250 transcripts per method from the VCTK corpus [79], a dataset
widely used in voice synthesis benchmarks [77, 60]. For each method, we generated synthetic audio clips using these
transcripts and a reference voice. When possible, we used speaker identities officially released by the authors of the
corresponding toolkit — otherwise, we selected a voice from our DI set.

The resulting audio clips vary in duration, with a mean of 3.625 seconds, a median of 2.613 seconds, and a standard
deviation of 6.859 seconds. A mean UMAP projection of Whisper embeddings [50], visualizing the distribution of audio
generators, is shown in Figure 5. Table 6 in the Appendix shows the specific generators used, along with appropriate
citations.

This led to a total of 40× 250 = 10, 000 audio deepfake samples. We then applied three types of perturbations to each
audio sample: (1) additive Gaussian noise, (2) background noise randomly sampled from one of the 2,000 environmental
recordings in the ESC-50 dataset [47], and (3) time-stretching of the audio signal [76]. This results in the creation of
another 30,000 audio deepfake samples, leading to a total of 40,000 audio deepfakes in all in the current version of the
MNW dataset.

The audio component of the MNW dataset introduces several key innovations compared to prior benchmarks (e.g.,
ASVspoof2019 [60], WaveFake [16], In The Wild [40], CodecFake [34]; see Table 5 in the Appendix for a more
comprehensive list). First, it offers unparalleled breadth, encompassing synthetic audio generated using 40 distinct
voice generation methods including very recent generative models. Second, it captures a wide range of speaker
variability by leveraging reference voices from our set of 206 deceased individuals (DI), as well as publicly released
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reference voices from the toolkits used. Third, the dataset uniquely accounts for adversarial perturbations that could be
introduced by malicious actors to evade detection, such as added background noise, Gaussian noise, and time-stretching
transformations.

2.3 AI-generated Images and video

Rather than including outdated models for which samples are readily available online, the MNW Dataset focuses
on recent diffusion-based generators for AI-images, AI-video, and SOTA deepfake video architectures (GAN or
diffusion-based). Although we make a distinction between AI-video and deepfakes, these two categories have started
to merge with the progress achieved by AI-avatar systems such as Heygen, Vasa1, and others. In the MNW dataset,
deepfakes are a specific type of AI-video specifically designed to impersonate someone. It involves a narrator and lip
synchronization to an audio file. Most deepfake systems relies on GAN generators to reproduce lips, jaws, etc. although
diffusion-based generators have also been also introduced (e.g. diff2lip).

At the time of the launch of this dataset (July 2025), we are making available samples from:

• 43 diffusion-based generators (250 images per generator) - see Table1
• 13 diffusion-based video generators (10 videos per generator) - see Table2
• 14 deepfake generators, diffusion and GAN-based, without audio track (10 per generator)- see Table3

We chose to limit the number of examples per generator for several reasons:

• Overall we provide 10,750 images (when adding adversarial examples) and 270 videos (i.e., more than 30,000
frames) which we consider enough to get a good idea of the performance a detectors.

• We want to avoid the use of the MNW dataset as a training set and wish to limit the dataset size to reduce this
risk.

• We want to keep this dataset up-to-date. Limiting the number of examples makes it realistic to gather media
from generators only accessible behind a user interface (no API or model weights accessible).

To illustrate the wide variety of the AI-image generators we provide samples from, we mapped the mean Vision
Transformers CLS embedding for each generator (see Figure4 in Appendix).

2.3.1 The specific case of image inpainting

We chose to list Flux inpainting and Stable Diffusion XL inpainting as specific generators, although they are not really
so. The outcome leaves distinct artifacts, as only the pixels from the inpainting mask is AI generated. Their signature on
an image will then be different compared to images that are entirely AI-generated. Some inpainting processes can also
include post-processing. These make inpainting a specific category that are generally harder to detect. These specific
types of AI generated images can be used for malicious purposes such as inserting persons, objects, etc. into real scenes.

Figure 3: Inpainting generation pipeline

2.3.2 Adversarial examples of AI generated images

Detection algorithms can be fooled using adversarial techniques. Although these techniques often target a specific
detector by approximating its decision boundary, our research shows that such attacks are partially transferable. By
including these examples in the MNW evaluation set, our goal is to encourage model developers to red-team their
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AI image generators - as of July 2025

Adobe Firefly v2 HyperSD bytedance Flux OpenAI GPTo4 image
Adobe Firefly v3 HyperSD bytedance SD3 Pixart alpha XL
Adobe Firefly v4 Ideogram Playground-v2.5Ae
Amazon Titan v2 Kandinsky PlaygroundAI
Aura flow Krea 1 Recraft v3
Baidu Kuaishou Kolors Reve AI
ByteDance Seedream v3 Luma Photon Stable diffusion XL img reference
Civitai v6 Lumina Stable diffusion XL inpainting
Flux Dev Meta Imagine Stable diffusion v2.1
Flux Kontext Pro Midjourney v5 Stable diffusion v3
Flux inpainting Midjourney v6 Stable diffusion v35 Large
Flux pro1.1 Midjourney v7 Stable diffusion v35 large turbo
Google Imagen3 Nvidia Sana Ultrapixel
Google Imagen4 OpenAI Dalle2 Wuerstchen
HunyuanDiT OpenAI Dalle3

Table 1: AI Image Generators (diffusion-based) used to produced image samples available in the MNW dataset

detection systems. So far, we have added 250 examples of diverse, state-of-the-art white-box attacks that have
demonstrated transferability. We also plan to expand this section of the dataset over time and welcome contributions in
this area.

2.3.3 AI videos and Deepfake videos

In this dataset, we distinguish between AI videos and Deepfake videos. We define an AI video as a video that only
contains frames that are entirely AI-generated. These videos do not necessarily aim to mislead viewers. Examples of
such generators are OpenAI Sora, Google Veo, Kling, etc. - see in Table 2 the list of AI video generators we provide
samples from. We chose to provide only 10 videos per generator (which translates into approximately 1,200 frames per
generator) which is enough to get a sense of the performance of a detection system, but not enough to train one only
using those, while allowing to produce examples from as many generators as possible.

AI video generators - as of July 2025

Adobe Firefly video Midjourney Video
CogVideoX-2B OpenAI Sora
Google VEO3 Pika 1.5
Kling 1.6 Pika 2.1
Kling 2.0 Master Pika 2.2
Kling 2.1 Runway Gen4
Kling 2.1 Master

Table 2: AI Video Generators (diffusion-based) used to produced video samples available in the MNW dataset

Deepfake videos, on the other hand, are designed to impersonate a narrator. They typically use voice cloning for
the audio track and AI models to synchronize lips, jaw, or facial movements. GANs and diffusion models are often
employed to generate facial pixels, which are then substituted into the original real video - see in Table 3 the list of
Deepfake systems this dataset covers. The artifacts left by such manipulations differ significantly from those resulting
from the generation of an entire frame or image.

With recent advances in AI-avatars, the boundary between AI videos and Deepfakes is becoming increasingly blurred.
The addition of sound and voice capabilities in the latest release of Google’s Veo further contributes to this convergence.

We plan to expand this section of the dataset to include AI-avatar videos and welcome contributions in this area.

NB. As AI-generated audio is covered in another section of the dataset, we have removed the audio tracks from both the
AI and Deepfake video samples.
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Deepfake video generators - as of July 2025

Diff2lip SadTalker video v2
Echo mimic Vasa 1
Heygen v1 (lip sync services) Video retalking
MuseTalk Wav2lip
RaskAI (lip sync services) Wav2lip GFPGAN
SadTalker video Wav2lipHQ ESRGAN

Table 3: Deepfake video Generators (GAN and diffusion-based) used to produced deepfake video samples available in
the MNW dataset

3 Conclusion

Our initiative has brought together a diverse dataset spanning audio, video, and image modalities, including adversarial
and real-world examples to contribute to the MNW Benchmark.

By incorporating the WITNESS “AI Media In-the-Wild” dataset, the benchmark ensures that evaluations reflect
the practical conditions faced by journalists, fact-checkers, and human rights defenders, aligning with the TRIED
Benchmark’s call for a socio-technical lens in detection evaluation.

By incorporating the Northwestern Audio Deepfake Dataset consisting of 40K audios, the benchmark ensures the
availability of deepfake audios generated by a wide variety of recent audio deepfake generators, as well as some
common methods used by adversaries to evade detection.

Likewise, the Microsoft visual dataset ensures the availability of AI and deepfake videos and images generated by a
wide variety of recent generators.

Please note that the MNW dataset is intended for evaluation purposes and cannot be used for training or for commercial
purposes.
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4 Appendix

Table 4: Benchmark dataset for Deepfake videos

Datasets Release Date Real Videos Fake Videos Fake Video Generation Technique

UADFV [29] Nov. 2018 48 48 FakeApp Application
DeepfakeTIMIT [24] Dec. 2018 0 620 faceswap-GAN
FaceForensics++ [53] Jan. 2019 1000 3000 face2Face,FaceSwap,CG-manip.
Deepfake Detection Challenge [13] Oct. 2019 1131 4119 faceswap: DFAE, MM/NN,NTH,..
Celeb-DF [30] Nov. 2019 408 795 deepfake
DFD [15] 2019 360 3000 deepfakes
DeeperForensics-1 [20] June 2020 10000 50000 DF-VAE
WildDeepFake [83] Oct. 2020 3805 3509 Unknown, collected from the web
Celeb-DF (v2) [31] 2020 590 5639 deepfake
DeepFake Game Competition - DFGC [46] 2021 - - deepfake - CelebDF-v1-v2
OpenForensics [27] 2021 45,473 70,325 GAN based
KoDF [25] 2021 62,166 175,776 DF-VAE
FakeAVCeleb [21] 2021 500 19,500 faceswap: FSGAN,sv2tts,wav2lip
HiFiFace [61] 2021 - 1000 HifiFace

Figure 4: Cluster analysis: mean UMAP ViT CLS embeddings by Image generator
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Table 5: Benchmark datasets for Deepfake audios

Datasets Release Date Real Audios Fake Audios Deepfake Type

ASVspoof2015 [78] Sep. 2015 16,651 246,500 TTS, VC
FoR [51] Oct. 2019 108,256 87,285 TTS
ASVspoof2019-LA [60] Nov. 2019 10,256 90,192 TTS, VC
ASVspoof2021-LA [33] Sep. 2021 14,816 133,360 TTS, VC
ASVspoof2021-DF [33] Sep. 2021 14,869 519,059 TTS, VC
FMFCC-A [82] Oct. 2021 10,000 40,000 TTS, VC
WaveFake [16] Nov. 2021 0 117, 985 TTS
InTheWild [40] Sep. 2022 19,963 11,816 Unknown
TIMIT-TTS [54] Apr. 2023 0 5,160 TTS
MLAAD [41] Jan. 2024 0 76,000 TTS
CodecFake [34] Jun. 2024 44,242 44,242 codec
CFAD [36] Oct. 2024 38,600 77,200 TTS, VC
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Figure 5: Cluster analysis: Mean UMAP Whisper Embeddings by Audio Generator
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