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Abstract— The focus of this paper is to present a very relevant
robotics application domain and its challenges, and to highlight
how machine learning might be used to help resolve them.
The domain in question is the shared control of partial au-
tomation assistive machines (e.g. powered wheelchairs, electric
prostheses); where control is shared with the motor-impaired
human user of the machine. A variety of challenges particular
to this domain are outlined, for example appropriate control
interfaces and user acceptance. A founding principle of the
recently established Laboratory of Adaptive and Autonomous
Rehabilitation Robotics is that machine learning can be used
to address at least some of these challenges. This short paper
elaborates on these ideas, identifying promising avenues for
machine learning with the domain of shared control with
assistive robots, and introduces a handful of projects within
the lab beginning to address them.
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I. INTRODUCTION

Within the clinical context of assistive devices, machine
learning plays a limited, nearly absent, role.1 Assistive
machines—like powered wheelchairs, assistive robotic arms,
upper or lower limb prostheses, and exoskeletons (Fig. 1)—
are crucial in facilitating the independence of those with
severe motor impairments. However, there are those for
whom the control of these devices remains an insurmount-
able hurdle. A hurdle that partial automation holds some
promise to overcome, and it is our premise that machine
learning can help.

The introduction of partial automation makes an assistive
machine into a sort of robot, that shares control with the
human user. An important observation is that users of assis-
tive devices overwhelmingly prefer to cede only a minimum
amount of control authority to the machine [12], [32]. Thus,
while at one end of the control spectrum lies full manual
control (i.e. direct teleoperation), and at the other lies fully
automated control (i.e. an autonomous robot), in between
lies a continuum of shared control paradigms, that blend—
whether by fusion or arbitration—the inputs from manual
control and automated controllers. Typically, the goal of
shared human-robot control paradigms is to find a sweet spot
along this continuum [28], [33], [43]; ideally, where sharing
control makes the system more capable than it is at either of
the continuum extremes.
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1With the exception of classifiers that decode EMG signals for the
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However, when the human-robot system consists of an
assistive device (robot) and its user (human), the goal is
somewhat different. In this case the goal of the automation is
to fill a gap left by the sensory/motor impairment of the user,
and user’s acceptance of the system—rather than quantifiable
performance metrics—is the final word on how the balance
in shared control is achieved. This is a key distinction, with
a host of repercussions discussed further in Section II-B.
Moreover, while the system as a whole may not itself be fully
autonomous—though for reasons of user preference, rather
than a lacking robustness—the very need for the assistive
device means there are capabilities which only the machine
can fulfill. The human-robot team thus is heterogeneous, in
the fullest sense. There is an opportunity here for machine
learning to facilitate a superior human-robot team, and in this
case we argue that a very relevant form of machine learning
by an autonomous system is in fact taking place.

There are many challenges particular to the shared control
of assistive devices (Sec. II-B) and, in aiming to address
them, there accordingly are a variety of target outcomes
and goals a machine learning formulation might take on
(Sec. II-C). This paper will share some ideas about learning
goals applicable to this topic, and their incorporation into
a handful of projects (Sec. III) just starting at the recently
founded Laboratory of Adaptive and Autonomous Rehabil-
itation Robotics (A2R2 Lab) at the Rehabilitation Institute
of Chicago (RIC).2 The founding principle of the A2R2 Lab
is to facilitate the advancement of human-assistive devices,
that make the human more able through the introduction of
robotics-inspired automation, but still ultimately in control,
through shared control paradigms that are customizable and
adaptable by the user. The intent is to leverage machine
learning to achieve this goal.

II. SHARED CONTROL WITH ASSISTIVE DEVICES

Here we begin with an overview of related literature on
shared control within the domain of assistive machines. Chal-
lenges in this domain are then highlighted, and opportunities
for machine learning to provide solutions to some of these
challenges are identified.

A. Background

The majority of the shared control work with assistive
devices lies within the realm of wheelchair automation—
”smart” wheelchairs—whose potential to aid the mobility
of those with motor, or cognitive, impairments has been
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Fig. 1. Examples of commercially available assistive machines. Clockwise
from top left: The JACO wheelchair-mounted robotic arm from Kinova
Robotics [1], operated via a foot-controlled 3-axis joystick (inset). The
Ekso Hope lower limb exoskeleton from Ekso Bionics [2]. The i-limb
ultra prosthetic hand from TouchBionics [3]. The Quantum 600 powered
wheelchair from Pride Mobility [4], that provides the base for our mobile
robot platform (Fig. 2).

recognized for decades [45]. Many shared-control smart
wheelchair platforms place the high-level control (e.g. goal
selection, route planning) with the user, and the low-level
control (e.g. motion control commands, obstacle avoidance)
with the machine [15], [38], [42], [52]. Other approaches
do automate the route planning as well [41], [51], which
can be especially appropriate for users with cognitive im-
pairments [37].

Recognizing that the user is often dissatisfied when
the machine takes over more control than is necessary—
effectively forcing the user to cede more control authority to
the machine than needed—many approaches offer a variety,
often a hierarchy, of autonomous and semi-autonomous con-
trol modes within their shared control schemes [14], [36],
[39]. Others explicitly target low-profile automation [29],
[53], create new customized levels of autonomy [22], or
blend the user’s control commands with the automation’s
control commands [32], [46], [47]. There are approaches that
take this consideration of user input even further and aim to
explicitly estimate user intent, in order to decide when the
automation should step in [17], [40], smoothly blend with the
automation controls [49], or filter noisy input signals [20].

Automation for wheelchair-mounted robotic arms typically
has the user at a minimum select the task or object of in-
terest [25], [31], [34], and possibly also intervene to provide

pose corrections [13], [35], [48] or assist the automation [50].
A driving factor in much of the partial automation for arms is
the difficulty in higher degree-of-freedom (DoF) control: the
human is brought into the loop to offload part of this burden.
A handful of examples allocate the manual and automated
control to handle different portions of a low-level control
space (e.g. Cartesian [24], position-force [44]), in an attempt
to scale a lower-DoF interface (e.g. 2-axis joystick) to control
a higher-DoF system (e.g. 6-DoF arm).

Shared control between the human and robot thus is
acknowledged to be an elemental topic within the domain of
assistive machines and rehabilitation. Little to no machine
learning has been introduced within this domain however.

B. Challenges and Special Considerations

Here we review a handful of high priority issues that are
particular to shared control within an assistive domain.

Interfaces for control. Human motor limitations often
translate into limitations—in bandwidth, in duration, in
strength—in the control signals that the person can pro-
duce. Many traditional interfaces, like a 2-axis joystick,
are inaccessible to those with severe motor impairments
like paralysis (e.g. high Spinal Cord Injury), bradykinesia
(slowness of motion, from e.g. MSA, Parkinson Disease,
Severe Traumatic Brain Injury), visual impairments (when
paired with other motor impairments) or degenerative con-
ditions (e.g. ALS, MS). According to a survey of 200
clinicians, more than 50% of powered wheelchair users
reported complaints with wheelchair control [26], while a
survey of 1,575 prosthesis users points to a want for better
control mechanisms (including less visual attention) [11].
Reports of prosthesis rejection rates are extremely variable
(6%-100%), with unsatisfactory control being cited as a
major reason [12].3 Factors like fatigue also can be huge for
those with physical impairments; who might, for example,
trade a reduction in control precision as an acceptable price
for an interface that is less fatiguing.

Interfaces for providing feedback. A large portion of
machine learning algorithms depend on some form of feed-
back signal (e.g. state reward, an error value). Especially for
learning goals that relate to user preference, it is reasonable
to expect that at least some feedback would (or should) be
provided by the user. In this case, not only will the feedback
be provided by a person who is not a robotics or control
expert—which is a challenge for robotics applications in
general—this person furthermore will have limitations in
their sensory, motor and/or cognitive capabilities, which need
to be accounted for.

User acceptance. While user acceptance is always a
factor in the adoption of new technologies, users of assistive
devices rely very intimately on this machine—it is physically
supporting, or attached to, their bodies—and accordingly can
be very particular in their tolerance for innovation. Many

3Arguably the most fundamental challenges to user acceptance of
myoelectric prostheses relate to hardware design; a user simply will not use
a device if it is too heavy or if the socket connection is uncomfortable [27].
The issue of intuitive control however is still significant.



imaginative academic research projects in assistive robotics
sadly never make it past the laboratory; in fact, to our knowl-
edge, very few of the technologies developed for the systems
listed in the prior section have made the jump to widespread
access and adoption (e.g. through commercialization).4

Flow of control authority. For reasons of user acceptance
in particular, it is a priority that the user does not feel as
though they are giving up an undue amount of control [12],
[32]. This needs to be balanced with the goal of execution
success (and machine learning, discussed further in Sec. II-
B). From the standpoint of the user, transfers of control
authority should be seamless and anticipated.

Performance measures. User acceptance and satisfaction
is the number one factor of import in measuring the perfor-
mance of the shared control scheme. The ultimate goal is
for users to benefit from the technology, which is impossible
to achieve if they are disinclined to adopt it. However, user
satisfaction may or may not account for (or coincide with)
measures of control/execution success. Further complicating
matters is the inertia often associated with a user’s familiarity
with their current compensatory mechanism; needing to
relearn this is understandably daunting and unappealing.
(Even if the current mechanism is to use no device, this
inertia still can prove a challenge.)

C. Opportunities for Machine Learning

We proposed that machine learning is well poised to
contribute to solutions for many of these challenges. A few
approaches of interest are identified here.

Facilitate a superior human-robot interaction. The are
many ways by which to define what superior might mean
within the context of interactions between humans and
assistive robots. For example, a superior interaction might
optimize the control flow between the user and the machine,
or the performance of the human-robot team. One qualitative
measure used in some of our preliminary work is an intuitive
blending of manual and automated control commands (more
in Section III-A).

Customize the automation to the user. The formulation
of the automated behaviors themselves might be customized,
or even the control paradigm as a whole—that is, where the
split between human and machine control happens. Machine
learning is a natural candidate to accomplish such customiza-
tion, that is responsive to the user’s physical needs and
preferences. We hypothesize that an optimal split in human-
robot control will be unique to (i) a user’s sensory-motor
capabilities, (ii) their personal preferences, and (iii) possibly
also the task at hand. The worth in flexible control splits is
echoed in the sliding scale autonomy formulation of Desai
& Yanco [22], that arbitrates between manual and automated
wheel speed inputs to smoothly transition between preset
modes with fixed manual/automation splits. Our current work
in collaboration with Siddartha Srinivasa at Carnegie Mellon

4We are aware of the following commercial smart wheelchair en-
deavors: the Smart Wheelchair [5], the TAO-7 Intelligent Wheelchair
Base (marketed for research, not for users) [6], the Wheelchair Pathfinder
(discontinued) [7], and the RoboChariot (discontinued) [8].

University (CMU) aims to learn and customize the arbitration
functions handling the allocation of manual and automated
control (more in Section III-C).

The topic of shared control with assistive devices is
peculiar within the larger domain of human-robot teams—
in comparison to, for example, search-and-rescue teams or
manufacturing teams—when one considers how willing the
human is to adapt to limitations of the machine: usually
a necessity in any human-robot interaction. With assistive
machines, this willingness is potentially very low. (As seen,
for example, with electric prosthesis rejection [11], [12].)
Through customization, machine learning is a prime candi-
date to facilitate device operation that is more intuitive, in
the hopes of garnering greater user acceptance.

Elicit a rehabilitation response. In the end, the gold
standard in rehabilitation is not to devise clever and use-
ful assistive machines, but rather for the motor-impaired
person to recover lost motor function, whenever possible.
We hypothesize that machine learning can be used to en-
courage motor learning by the human, and thus to elicit a
rehabilitation response. In particular, in a collaboration with
Ferdinando Mussa-Ivaldi at RIC, we propose to modulate
the control split between the human and robot with the goal
of encouraging human motor learning (more in Section III-
B). This is an exciting area—using robot machine learning
to elicit a human motor learning response—which to our
knowledge is previously unexplored within the rehabilitation
and machine learning fields.

Before concluding, a comment on a topic important to the
application of learning to assistive human-robot systems: the
learning rate. Ideally, this rate should be fast enough to be
responsive to opportunities for improvement and adaptation;
but not so fast that it disrupts the flow of control authority—
that is, the user should still be able to predict the automated
behaviors’ functioning and anticipate transfers of control
authority. This point takes on a particular relevance with
users of assistive devices, where frustrations with unintuitive
control have a history of leading to device rejection.

III. WORKS IN PROGRESS

This section provides a brief overview of works and
collaborations recently underway in the A2R2 Lab at RIC.
These works aim specifically to expand upon machine learn-
ing opportunities, within the domain of assistive machines,
identified in the previous section.

A. Inferring Appropriate Blending from Demonstration

One approach to blending low-level controls that we
are pursuing—with the goal of a natural flow of control
authority—capitalizes on the inherent flexibility seen during
multiple instances of a task’s execution. In particular, the
approach extracts task variance from a set of demonstrations,
based on the key insight that variance in the demonstration
data equates to allowable flexibility in the task execution,
as observed in [10]. Here the allowable flexibility inherently
encodes spatial constraints of the task. Demonstrations are
encoded within a Gaussian Mixture Model (GMM), and



Fig. 2. Left: Our wheelchair-based differential drive mobile robot, with a
ring of IR and ultrasonic sensors, and two top-mounted Kinects. Right: The
simulated robot in a ROS-Gazebo environment, with examples of learned
variance. Blue arrows represent the user-commanded controls (angular
speed), and the magnitude of the variance is represented by the width of the
blue triangle around an arrow; narrower triangles mean the user’s control
is more restricted. Occupancy grid obstacles (doorways and walls) in dark
gray. Full details in [30].

task variance is extracted via Gaussian Mixture Regression
(GMR) [16]. The human and automation inputs are then
blended as a smooth function of (i) the learned variance
and (ii) the distance between user-generated and automation-
generated control commands. Of note is that the approach
uses demonstration only in order to decide how much control
authority to cede to the user—that is, only to learn task
variances for blending control—and not to learn generalized
motion trajectories or understand user intent.

A first validation [30] within a simulated environment
considers doorway navigation: a task frequently cited as
challenging for powered wheelchair drivers, due to tight
spatial constraints. The automation controller is a local
planner distributed with ROS [9], which is provided with a
navigation goal from our doorway detection algorithm [21]
that autonomously estimates doorway position and orien-
tation from depth data. The blended control command is
angular speed. Example results shown in Figure 2.

B. Inducing Motor Learning with Sliding Shared Autonomy

Work under development in collaboration with Ferdinando
Mussa-Ivaldi at RIC will merge the Body-Machine Interface
(BMI) work of his Robotics Laboratory with automation
technologies developed within the A2R2 Lab. The BMI
approach [18], [19] maps residual upper body motions to
2-D control points, offering a novel interface for wheelchair
operation by those with severe paralysis. In our collaborative
work, partnered with the BMI interface will be a variety of
automated driving and path planning modalities, customized
to the user via machine learning techniques. Moreover, by
shifting where the split between manual and automated
control occurs, the automation will aim to induce a motor
learning learning response from subjects with high Spinal
Cord Injury.

C. Formalizing Shared Human-Machine Control

Work under development in collaboration with Siddhartha
Srinivasa and Anca Dragan of the Personal Robotics Labo-
ratory at CMU targets a formalization for the split between
human and robot control. In their prior work with assistive
teleoperation [23] an arbitration function allocates control

between an automated controller and human input, with the
key insight to modulate arbitration based on the system’s
confidence in the inferred user’s goal. Our collaboration will
apply this framework to the domain of a wheelchair-mounted
robotic arm, and will look at learning these arbitration
functions, as well as customizing them to the needs and
preferences of severely paralyzed users.

IV. CONCLUSION

In lieu of a particular algorithm formulation or appli-
cation, in this paper a robotics application domain—the
shared control of partial automation assistive machines—
with a very relevant and compelling societal impact has
been identified as ripe for intersection with machine learning.
Pertinent challenges were overviewed, a handful of potential
learning applications identified, and first project formulations
introduced. The A2R2 Lab will leverage machine learning
heavily in its pursuit to advance human-assistive devices, that
make a user more able through the introduction of robotics-
inspired automation that shares control with the human user.
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