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Introduction
For the majority of real-world cyber-physical systems, in-
cluding the domain of humans interacting with robots, intu-
itive procedures for designing controllers are needed. While
one such approach is to teach a robot via demonstration, the
control behaviors produced by this data-driven technique are
unable to be verified for feasibility or stability. In contrast,
sophisticated stability analysis is possible for control behav-
iors derived via optimal control, but such formulations are
rarely intuitive and often require substantial expertise to use.

We propose an approach that creates a synergy between
intuitive design interfaces for a physical system and the for-
mal verification that control provides. In particular, our ap-
proach derives control behaviors using optimal control while
simultaneously engaging a human operator to provide phys-
ical guidance for adaptation via corrective demonstration. A
fundamental technical challenge lies in the fact that the oper-
ator may well destabilize a system that operates in the phys-
ical world, subject to dynamics and sources of uncertainty;
moreover, the risk to the system changes from one opera-
tor to another. Controllers developed under our approach are
verified for stability and robustness, and a formal measure of
trust in the teacher is used to decide whether to cede control
to the teacher during physical correction.

For many systems, physically demonstrating motion need
not be a particularly challenging task. When a system is suit-
ably quasi-static, simply utilizing some form of impedance
control may well allow for physical demonstration—and
because there is no risk of destabilization, only the most
rudimentary knowledge of the system kinematics is needed.
Within Learning from Demonstration (Argall et al. 2009),
typically an intuitive understanding by the teacher of the
kinematics and dynamics of the learner holds—either be-
cause s/he has a good understanding of the system plat-
form, or a good idea of how to perform the task with their
own body. In contrast, our work specifically allows for dif-
ferences in dynamics and controls between the learner and
teacher. We additionally aim to quantify limits on what the
teacher is required to know about the learner for demon-
strated corrections to be effective.

We consider the fact that for cyber-physical and human-
robot systems, an understanding of each by the other is of
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crucial importance. That is, not only does the human op-
erator need to understand the automated system in order
to provide good shaping guidance and sound control input,
but likewise the automated system needs to understand the
quality limitations on the guidance and controls provided by
the operator. Moreover, this circular dependence has been
shown to be quite problematic in that the more complex the
software system is, the harder it is for the human operator to
interact with it in a meaningful and predictable manner. The
proposed automated system therefore will reason explicitly
about its trust in the operator’s instruction.

We present a mathematical formalism for a computable
measure of trust in human instruction. We frame this for-
malism within the more general scope of cyber-physical sys-
tems, for which a human teacher instructing a robot learner
is a specific instance. For physical systems like a robot, rea-
soning about the stability and utility of instruction is essen-
tial not only for good performance but also for safety.

A Framework for Mutually Controlled Motion
Key to our vision for how mutually controlled motion can be
achieved while respecting stability is a computable measure
of control-based trust in the teacher: its establishment and
update, its incorporation into controller updates, and its role
in shared control during physical interaction.

Our approach first derives an initial control behavior via
optimal control, then engages a human teacher to provide
physical guidance for corrective demonstration, and finally
verifies that the controller produced as a result of the inferred
corrections is in fact stable. This verification furthermore is
used to estimate a measure of trust in the teacher—relevant
for real-world systems learning from multiple teachers with
perhaps varying levels of proficiency in providing instruc-
tion. Whether to incorporate the teacher’s instruction is de-
cided by this trust measure, as well as whether to cede con-
trol to the teacher during correction. Given state x, input u,
state perturbation z and input perturbation v, we assume that
a system has dynamics ẋ = f(x, u) where f is piecewise
smooth and that ż = ∂f

∂x (t)z +
∂f
∂u (t)v is at least sometimes

a locally controllable and observable system.

Operator Demonstration Interpretation Given some
initial trajectory qi(t) (where x = (q, q̇)) and control input
ui(t) of a system, the operator is allowed to perturb the tra-
jectory by ηi(t) to obtain a new trajectory qi(t)+ ηi(t). One



natural option for how to interpret ηi(t) is to infer from it the
objective of the operator; this is called inverse optimal con-
trol (IOC) or imputed control (Keshavarz, Wang, and Boyd
2011). Viewing ηi(t) as an incremental, local improvement
to the original trajectory thus makes the computation feasi-
ble and leads to an implementable embedded system. An-
other option is to treat the operator’s perturbation ηi(t) as an
exaggeration. Exaggeration plays a fundamental role in hu-
man motion learning. Machine learning techniques like nov-
elty detection and statistical variance can be used to identify
exaggeration, and techniques like dimensionality reduction
can be used to infer its salient characteristics (i.e. a relevant
subset or projection of the state dimensions).

Human Operator Evaluation In the case of physical in-
teraction, trust between the system and operator becomes
substantially more important because injury is a possibility.
We propose that, in addition to metrics such as improved
performance, a measure of trust could include the (i) sta-
bility of a perturbed trajectory and (ii) second-order opti-
mality of perturbations. The idea is that a human instructor
should never propose new trajectories outside the domain of
attraction of a stabilizing controller. Moreover, for a subset
of canonical motions the locally “best” perturbation can be
derived analytically by solving an infinite-dimensional local
quadratic model (Hauser and Saccon 2006). The machine
thus has a metric, intimately tied to its dynamics, by which
it can decide whether or not an operator can be trusted.

Computing Control-Based Trust Consider Figure 1,
which illustrates an iteration of an optimal control algorithm.
A perturbation ηi(t) applied by the operator might need to be
scaled down by step size γ if the local feedback law obtained
for qi(t) is to be able to stabilize the perturbation (Armijo
1966). Local stability implies that there exists a γk that guar-
antees the resulting trajectory will be stable, and how large
γ is depends on ηi(t) (for a Newton step, γ = 1 will work).

Hence, we can use γ as a computable measure of qual-
ity for ηi and accordingly also of trust (τa). Moreover, in
some scenarios with a known reference trajectory, the opti-
mal perturbation can be computed explicitly and compared
to the operator’s perturbation, as another factor in the mea-
sure of trust (τb). Lastly, note that the new, perturbed trajec-
tory is initially stabilized using the previous controller, but
then a new set of controllers about the new trajectory are
computed. If this new controller is badly conditioned (e.g.
near singular) then this can also be incorporated into the es-
timate of trust (τc).

A single metric for trust τ will be established for each hu-
man operator, which is learned over time and updates with
each trust interaction (i.e. {τ0a , τ0b , τ0c , τ1a , ...}). Straightfor-
ward formulations for τ might consider only the most recent
trust interaction (i.e. τ t = τ tc ) or simply compute a running
average (i.e. τ t = τ t−1 + 1

t
((τ ta + τ tb + τ tc) − τ t−1)). Other

formulations might weigh trust interactions temporally—for
example to give higher weight (α � 1

2
) to past interactions,

for a slowly adapting metric (e.g. τ t = α(τ ta + τ tb + τ tc) +
(1 − α)τ t−1), α ∈ [0, 1]). Still others might weight by trust
type—for example to give higher weight to τb than τc, in-
dicating that it is worse to demonstrate outside of the basin

Figure 1: Starting with a feasible trajectory qi(t) at iteration
i, and desired trajectory qd(t), a descent direction ηi(t) can
be computed (or demonstrated). From the projection P a
feasible trajectory can be computed via P(qi(t) + γηi(t))
(where γ is a step size), which may be outside the basin of
attraction for the projection if γ is too large (red line). How-
ever, it is guaranteed that there exists a γk small enough so
that the resulting curve qi(t) + γkηi(t) is within the basin.
The largest such γk is a good measure of the quality of ηi(t).

of attraction than to demonstrate a badly conditioned con-
troller (e.g. τ t = α(w0τ

t
a +w1τ

t
b +w2τ

t
c) + (1−α)τ t−1), α ∈

[0, 1],
∑

i wi = 1). A worse-case choice also could be made,
using τ t = min

{
τ ta, τ

t
b , τ

t
c

}
.

Control Authority Transfer Once a measure of trust has
been established, nontrivial instruction is allowed to com-
mence. The system only issues a warning if the other states
are destabilizing, and the threshold on issuing this warning
goes up with trust. After the motion is complete, the per-
turbed trajectory ξ is stored and P(ξ + γη) can be com-
puted (Fig. 1), looking for the largest γ that is still stable.
Note that, with regards to exaggeration, this means the op-
erator can exaggerate instruction and the choice of γ will
scale the result back down, but the system will only allow
exaggeration after significant trust has been established.

This paper has proposed a computable notion of trust that
allows an embedded system to assess the safety of instruc-
tion, as a step towards addressing the question: How much
should a person be allowed to interact with a robot?
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