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I. INTRODUCTION AND MOTIVATION

As robotics technology becomes more ubiquitous and in-
tegrated into daily life, we increasingly will see instances of
robot operation that shares control with human users and task
partners. Robots in manufacturing will perform collaborative
tasks with human partners, robotic exoskeletons will provide
motor assistance to human workers and humans with motor
impairments, robotic cars will take instruction from human
riders, and partial autonomy will improve the teleoperation of
complex robotic platforms and telepresence robots.

The target domain for this work considers a very particular
and salient human-robot team: that of a human teammate
with motor impairments working in collaboration with a robot
that physically assists them. Such teams are characterized by
heterogeneous teammates, extremely high cost of errors, a
prioritzation on human preference and limited communication
channels to receive control signals from the human.

The estimation of user intent is fundamental to robotic
systems operating in collaboration with, in close proximity to,
sharing control with or assisting humans. Machine learning
moreover can be leveraged to enact long-term—rather than
simply reactive—changes in autonomy and control sharing.

This extended abstract considers the questions of human
intent estimation, human-robot control sharing and adapta-
tion within assistive robot domains with communication con-
straints. In particular, our work considers only interfaces used
to teleoerate the robot, and where moreover the signals do not
match the full robot control space. Under such constraints,
models of characteristics of the human signals and the inter-
action between the human and robot are key. Opportunities
for natural language to play a role within these models will
be highlighted throughout the text.

II. DOMAIN AND FORMULATION

In addition to limited communication channels for human-
robot teams within assistive domain, the physical capabilities
of the human teammate are extremely non-static: hopefully
due to successful rehabilitation, but also possibly due to the
degenerative nature of a disease. A given user may even prefer
different autonomy allocations on different days or throughout
the day, depending on factors like level of pain or fatigue.

Within this domain, the ability to deal with communication
bandwidth limitations and shifting autonomy is critical. Many
human operators’ physical impairments leave them with access
only to very limited control interfaces—that perhaps even
preclude the ability to operate the very assistive devices meant
to aid them—and their needed or desired amount of assistance
is often in flux. An example interface accessible to those with
severe motor impairments controls wheelchair translational
and rotational motion separately and in discrete increments—
never simultaneously, never with continuous control signals.
Figure 1 shows two assistive robot platforms currently under
development in our lab.

Our technical formulation assumes the existence of a set
F of automated controllers f(-), and a set B of control
sharing strategies . Each controller dictates the motion of
an autonomous behavior for the assistive robot. Formally, a
vector of control signals is generated from state ' by

function f(-) ). Control vector u! is computed by
mapping controlf51gnals from the human to the space of robot

controlﬂ These two signals then are reasoned about within
control sharing strategy ((-) which generates the signal !
executed by the robot platform, u® « B(u%, uj,).

We furthermore model the frequency of control (commu-
nication) signals coming from the human with bandwidth
parameter ), a running estimate updated online. Changes in
the communication bandwidth in turn may trigger a change in
the amount of autonomy assumed by the robot.

'Under direct teleoperation, this mapping is the identity function. With a

natural language interface, the human signal would likely be higher-level (e.g.
“turn right”) and require a more complex mapping.

Fig. 1. Assistive robot platforms

under development in our lab [T].



III. ESTIMATION OF USER INTENT

To appropriately share control with a human, a robot re-
quires a notion of the human’s intentions or goals—which
must be estimated, if they are unknown. The question we aim
to address is how to estimate human intent from (1) only the
control signals used to teleoperate the robot, which moreover
(2) are constrained by limitations of the control interface?

The motivation for constraining the problem in this way is
two-fold. (1) For common machines like powered wheelchairs,
the interfaces used to generate control signals for teleoperation
are currently available, broadly employed and their operation is
familiar to users. (And feasible for users—which is important
for assistive domains.) (2) These interfaces do not divert user
attention from the task execution. We therefore aim to push
the limits of what can be inferred from this constrained set of
control signals first, and only if necessary afterwards consider
the introduction of additional/augmented interfaces through
which an explicit indication by the user is possible

Our aim thus is to develop algorithmic approaches to
estimate user intent that explicitly encode crucial aspects
of the task domain—Ilike control interface limitations—while
expecting no additional information from the user other than
the control signals used to teleoperate the robot. One such
approach is to explicitly model constraints on the source of
the control signal coming from the user. Specifically, within
a path planning environment we model constraints on the
formulation of states s € S and actions a € A, and allowable
state transitions TSS:a : s % s, as imposed by limitations
on the control interface. Additionally, we encode within the
planner’s cost function ¢ < C(s,a) difficulties encountered
when operating the interface. To reason about user intent,
such an approach then may consider the space of viable plans
generated by the constrained planner and to what extent they
agree with the forward projection of the user’s control signal.

IV. ADAPTATION

Our motivation in extracting learning cues from the hu-
man’s control signals is again in consideration of limited
bandwidth—and to extract as much information as is possible
from the human teammate signals. We aim to adapt both
the formulation of the autonomy behavior and the manner of
control sharing. The latter amounts to optimizing the model
for how the human and robot interact. The former implicitly
models the human and/or their preference, by adapting the
behavior to match the human’s control signals or in response
to feedback the human provides.

We formulate each behavior f € F so as to have an associ-
ated set of parameters 6y which are available for modulation.
For example, a path planner [3] used on our mobile robot
platform has parameters to modulate how much curvature is
in the generated trajectory, and how aggressively the robot
attempts to reach the goal position. Exactly what influence
the parameters 0 have on associated behavior f varies greatly

2A natural language interface would provide a very direct way for the
human to indicate high-level goals, alleviating the need to estimate intent.

across behaviors. However, the approaches used to modulate
the parameters can be common across behaviors. Any number
of machine learning algorithms may be used to perform this
modulation [2, 4]. The key factor to consider is the feedback
signal received by a machine learning algorithm. Candidate
signals include (1) a reward/cost (for use within a Reinforce-
ment Learning (RL) algorithm) or (2) an example/correction
(for use within a Supervised Learning algorithm).

For the signal source, one option has the human explicitly
provide feedback about their preference or the robot perfor-
mance. Such a signal might be provided through the control
interface, and take the form of a reward/cost or a correction

Another option is to infer the feedback signal from the
human’s control signals. We consider interpretations that rely
on an assessment of agreement between signals produced by
the human versus the autonomy, and which explicitly con-
siders latency in the communication channel by evaluating a
window of prior autonomy decisions. One then might make an
optimistic comparison, to the autonomy decision most similar
to the human signal, or take the most prevalent (dominant)
autonomy decision over that window, for example. A running
measure of agreement A € [0, 1] is computed, while A, and X
are respectively upper and lower thresholds on (dis)agreement.

Reinforcement. In the case of agreement between the human

signal and the autonomy, the learning response is to reinforce
the autonomy selection. We quantify agreement as A, < .
Reinforcement can be accomplished by generating a positive
reward within an RL formulation, for example.

Correction. In the case of disagreement between the human

signal and the autonomy, the human signal is interpreted as a
correction for the autonomy. This could be accomplished by
treating the execution trace as a demonstration within a Learn-
ing from Demonstration paradigm, for example. Disagreement
is similarly quantified, according to A < A¢. While in theory
it is possible to treat any individual datapoint discrepancy as
a single datapoint correction, it is expected that leveraging
instead the aggregate measure A will prove more stable and
robust—especially in the case of bandwidth latency.

Penalization. In addition to correction, we also consider pe-

nalization within a RL formulation, by generating a negative
reward in the case of disagreement.

V. CONCLUSION

The domain of robots that provide physical assistance to
humans has numerous compelling factors motivating the adap-
tation of formulations for control sharing and robot autonomy,
and to infer human intent. We have proposed mechanisms that
rely on models of constraints on the communication of control
signals from the human, and extracting as much information
as possible from what is communicated—in order to optimize
the robot’s autonomy and control-sharing paradigm to match
the human’s expectations. Ongoing and future work in our lab
explores these ideas.

3Natural language in this case could be quite a straightforward interface
for the human to provide both reward-based and corrective feedback.
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