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Abstract— Eye gaze tracking is increasingly popular due
to improved technology and availability. However, in assistive
device control, eye gaze tracking is often limited to discrete
control inputs. In this paper, we present a method for collecting
both reactionary and control eye gaze signals to build an indi-
vidualized characterization for eye gaze interface use. Results
from a study conducted with motor-impaired participants are
presented, offering insights into maximizing the potential of eye
gaze for assistive device control. These findings can inform the
development of continuous control paradigms using eye gaze.

I. INTRODUCTION
Humans interact with assistive technology systems through
accessible control interfaces. For individuals with motor
impairments, these assistive technologies can help to mitigate
limitations on their independence and ability to participate
in society—such as using a computer for communication or
a powered wheelchair for independent mobility.

An individual’s level of motor impairment determines the
types of control interfaces that they can effectively use.
In general, the interfaces accessible to users with greater
severity of motor impairment become increasingly limited in
the richness of control commands that can be issued through
these interfaces—including the number of simultaneous de-
grees of freedom that can be controlled and the resolution
of the signal in terms of direction and magnitude.

For example, individuals with higher levels of spinal cord
injury may be unable to use a joystick, which is the most
common interface for controlling powered wheelchairs. For
these users, one standard alternative interface is the sip-
and-puff device, which however introduces the following
challenges in comparison to joystick control: It only allows
for the operation of one (of the two) wheelchair control
dimensions at a time, and its signals are interpreted in a
discrete manner. As a result, the physical motion of the
powered wheelchair can be choppy and imprecise, and the
control can be difficult to learn and be mentally (and often
physically) taxing [1].

Eye gaze is one alternative input mechanism for assistive
device interfacing currently gaining traction within the field.
Eye gaze trackers are especially useful for individuals with
neurodegenerative diseases such as amyotrophic lateral scler-
osis (ALS), as voluntary eye movement is retained until the
disease has progressed to terminal stages [2]. Using eye gaze
trackers for communication has been shown to restore agency
to ALS patients even as the motor impairment progresses—
leading to improvements in quality of life [3]. A natural
extension in the use of eye gaze trackers is to help restore
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independent mobility. However, due to reasons of safety
and ease of use, current commercial eye gaze systems for
controlling powered wheelchairs only give users access to
discrete switch control [4], [5]. This limits controllability for
users, which may lead to a perceived loss of user agency, in
turn resulting in frustration, disuse, or even injury [6].

In the field of eye-based human-computer and human-
robot interaction, there has been extensive work done in
the areas of eye movement event detection, human intent
inference from eye motion, and usability studies of user
interfaces. However, in the domain of eye-based control, the
field has largely converged on eye gaze as a complementary
input mode to other modalities (e.g., used together with a
joystick or buttons, rather than the sole input mode [7], [8]),
and there is limited work investigating the (sole) use of eye
gaze inputs for explicit and continuous assistive device or
robot control. In order to design an eye-based user interface
for continuous robot control, a better understanding of the
characteristics of eye gaze signals when operating an eye-
based input system, as well as limitations in the eye gaze
signal, is necessary.

This work presents the following contributions:
1) A suite of open-source assessment and data gathering

tasks for use with an eye gaze tracking interface.1

2) An open-source system for interfacing an eye gaze
tracker for real-time control,1 integrated within the
Robot Operating System (ROS) [9] software suite.

3) An end-user study that employs these tools to collect
data for an individualized characterization of eye gaze
for control, to provide further insights into the design
of interfaces for systems that use eye gaze as input.

In Section II, we provide background on the related literature.
In Section III, we present the contributed virtual tasks. In
Section IV, we detail the data gathering pipeline, as well as
the experimental setup and protocol. In Section V, we present
and discuss the results from the end user study, followed by
conclusions and avenues for future work in Section VI.

II. BACKGROUND
In this section, we provide background on related literature
on eye gaze for control and interface customization.
A. Eye Gaze for Control
Alternative control interfaces such as eye gaze trackers are
gaining popularity with their increasing commercial availab-
ility and technological improvements. In addition to its use
as a clinical control interface, eye gaze tracking has been
increasingly adopted in the fields of human-computer inter-
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action (HCI) and human-robot interaction (HRI) to evaluate
the usability of interfaces [10], as well as for control input in
robot teleoperation and shared control contexts [11]. Work in
this latter area includes improving the interpretation of these
control signals, as well as to improve the control of assistive
devices in conjunction with robot autonomy [12].

In the field of robotics, systems use eye gaze as an explicit
control input—where users use voluntary eye movements to
issue control commands and interact with the input space,
usually a screen—to teleoperate robotic manipulators [13],
mobile robots [14], and powered wheelchairs [15]. Eye gaze
can also be used as an implicit control input to robotic
systems, where user intention or goals are inferred from eye
gaze data and used to provide control assistance [16]. Thus,
eye gaze is a multi-interpretable interface, with both explicit
and implicit ways to interpret the control input.

Using eye gaze for input presents challenges due to the
dual role of vision in both perceiving the scene and issuing
explicit control commands. This can lead to the ‘Midas
touch’ problem, wherein there is a lack of differentiation
between viewing of the scene for perception versus inten-
tional control. Proposed solutions include combining eye
gaze with another input modality, which may not be viable
for individuals with limited motor function or implementing
a dwell time requirement for control selection [7]. How-
ever, the latter approach may result in a perceived decrease
in system responsiveness [8]. Hence, the improvement of
paradigms using pure eye gaze input are of interest.

When used for powered wheelchair driving, many inter-
faces implement zones on the screen, where looking at a
certain area of the screen activates a virtual button that issues
a discrete control command for the wheelchair [5], [17].
Like all discrete control interfaces, this presents challenges in
controllability for the user, which can be further confounded
by the ’Midas touch’ problem if simultaneously scanning
the environment while issuing control commands results in
unintended or jerky motion. In this work, we identify and
analyse eye gaze characteristics during eye-based control
towards the aim of uncovering alternative ways of using the
gaze signal, such as for simultaneous explicit and implicit
control, as well as continuous control.

B. The Importance of Customization

Input signals measured by interfaces are subject to interpret-
ation, and discrepancies between a user’s intended control
commands and those received by the machine can exist.
User-specific calibration (software or physical) can help
to address these discrepancies. Variability in physiology,
behavior, and skill over time may result in a need for
regular recalibration [18]. In the domain of eye gaze control,
accuracy and usability of the system is highly dependent
on good calibration of the system to the user [8]. However,
calibration of gaze tracking systems is often described as
tedious and difficult [19]. In this work, we look at eye gaze
characteristics on an individual basis in order to better inform
alternative avenues for customization in eye-based control
systems, in addition to standard calibration procedures.

III. EYE GAZE CHARACTERIZATION PIPELINE
Previous work that evaluates eye-gaze based input systems
for assistive devices has been application-oriented, with
evaluations based on success in completing tasks performed
by the assistive device (such as an application-specific GUI,
or powered wheelchair) which is controlled via eye gaze [15],
[20]. For the purpose of characterizing eye-based control
input, tasks that are independent of the application domain
(specifically, of the assistive device being controlled) are
needed. In an attempt to isolate the features of interest
being measured with each task, we design a suite of
characterization tasks to collect eye gaze data for specific
types of gaze movement patterns and metrics during eye-
based control. Gaze patterns and metrics of interest include
saccades, fixations, and smooth pursuits, as these types of eye
movement events are commonly used in gaze-based control
interfaces [7], [21], and also expected to occur in the domain
that we are interested in—assistive device control—as it
involves observation of a dynamic environment [20].

The eye gaze data collection pipeline is implemented
within the Robot Operating System (ROS) [9], an open-
source software suite used by millions across the world. The
pipeline consists of a series of ROS2 software nodes.

• A streamer node publishes data from the eye gaze
tracker to ROS2.

• A receiver node operates on the gaze data streams to
handle real-time gaze position transforms and moving-
window average smoothing of the signal.

• Task controller nodes handle calculations relating to task
progress and broadcast relevant data streams for task
control to Unity®.

The eye gaze characterization tasks are screen-based tasks
implemented in the Unity® Engine (Unity Editor Version
2021.3.10f1) [22], described as follows.
A. Painting Task
Features of interest: Distribution of eye gaze, distribution of
fixations, areas of visual neglect.
Task description: Participants’ eye gaze position controls a
virtual paintbrush. They are asked to ‘paint’ the entire screen
with their eyes within 5 minutes.
B. Focus Task
Features of interest: Saccades, fixations, dwell time.
Task description: Participants viewed and fixated on 60
randomly appearing circular targets of varying sizes on the
screen and were asked to maintain their gaze for 2 seconds.
If 2 seconds of continuous fixation was not maintained by
the end of 10 seconds, the target timed out.
Visual feedback: Participants are given feedback on how
much longer they need to fixate on the target via variations
in opacity. A target becomes more transparent the longer
participants dwell on it, up to 2 seconds when the target
fades completely and the next target appears. Two variants
of the task exist: (1) Participants are not given any visual
feedback of where their measured gaze is. (2) Participants
are provided with this feedback in the form of a moving dot
on the screen.



Fig. 1: The screen-based tasks implemented in Unity2D. Red dashed circles
represent where the target dot was previously, and filled circles represent
where the current target dot is. A: The Painting Task. Participants controlled
a blue cursor while a red circle indicated a 5-minute countdown. B: The
Focus Task without visual feedback for gaze position. Targets fade away
as participants fixate on the target continuously for 2 seconds, and the next
target appears. C: The Focus Task with visual feedback for gaze position.
Participants have a blue dot representing the gaze position measured by
the eye gaze tracking system for visual feedback. D: The Tracking Task.
Participants track moving targets on the screen.

C. Tracking Task
Features of interest: Smooth pursuit.

Task description: Twenty-four moving targets (circles) appear
on the screen one after another. Participants are tasked with
following the targets with their gaze. Targets move at a speed
of approximately 15 degrees of visual angle per second.

Visual feedback: Participants are given feedback on the
proximity of their measured gaze to the moving target by a
variation in the opacity of the target. (More opacity indicating
being closer to the target.)

An illustration of each of the screen-based tasks described
is shown in Fig. 1. The code for the data collection pipeline
is made publicly available on github.

IV. METHODOLOGY

A characterization study was carried out to collect eye gaze
user data from individuals with motor impairments.
A. Participants
In total, 11 participants were recruited: 1 individual with ALS
(62 y.o., female) and 10 individuals with spinal cord injury
(SCI) (41.7 ± 11.3 y.o., (9 male, 1 female)). All participants
were screened for ability to use an eye gaze tracker to
interact with the screen via a simple test described in the
experiment procedure. All participants gave their informed,
signed consent to participate in the experiment, which was
approved by Northwestern University’s Institutional Review
Board (STU00217297).
B. Hardware and Materials

Fig. 2: Tobii Pro Glasses 3
(TPG3) head-mounted eye
tracker [23].

The study used a head-mounted eye
gaze tracker (Tobii Pro Glasses 3,
100 Hz gaze data rate, 1920p by
1080p @ 25 fps scene camera) as
the eye gaze interface (Fig. 2). The Tobii Pro Glasses 3
(TPG3) uses corneal reflection dark pupil eye tracking, and
provides scene camera video, gaze position in the scene
camera frame, as well as 3D gaze position. Using the scene

Fig. 3: A participant doing the Painting Task. ArUco markers on the corners
of the screen are used for transforming the gaze position in the scene to
gaze position on the screen.

camera video, gaze position was transformed in real-time
to position on the screen and the transformed signal was
used as control input for study tasks. While not analyzed
in this work, the tracker also provides pupil diameter and
IMU sensor information, which could be used as additional
sources of implicit input to a control system. The TPG3 has
been shown to yield more accurate eye tracking results than
the earlier model (Tobii Pro Glasses 2) model, which has
been used extensively in previous eye tracking research [24].

In this work, the streamer node (Section III) of the data
collection pipeline provided a Python websocket client to
communicate with the TPG3 in order to read signal streams
which were then published to ROS2 topics. Since study tasks
were controlled using the position of gaze on the screen,
other screen-based and head-mounted eye trackers could be
interfaced with the data collection pipeline as future work.

C. Experiment Procedure

Participants were seated at a 60 cm viewing distance from
a 55.9 cm (22-inch) 1600p by 900p screen and fitted with
the head-mounted TPG3 eye gaze tracker (setup shown in
Fig. 3). For those who wear glasses, corrective lenses match-
ing their glasses power were added to the TPG3. The eye
gaze tracker then was calibrated using the TPG3’s standard
built-in calibration procedure. After calibration, a simple
sanity check test was conducted to verify that participants
were able to use the eye gaze tracker to issue control inputs—
participants were asked to look at the four corners of the
screen and the recorded signal was verified to match the
expected values. After this, participants proceeded with the
study tasks.

Each task consisted of a training phase and a testing phase.
In the training phase, participants were introduced to and
familiarized with the task via a shortened version of the full-
length task. The testing phase then consisted of executing
the given task for the prescribed duration or number of
repetitions (as described in Section III). The presentation of
tasks was fixed across participants: (1) Painting Task, (2)
Focus Task without gaze position feedback, (3) Focus Task
with gaze position feedback, and (4) Tracking Task. After
each task, participants were asked to fill out a NASA Task
Load Index (TLX) [25] survey.

After completing all 4 tasks, participants were asked to
fill out a questionnaire including Likert-scale questions about



their experience using the eye gaze tracker, as well as open-
ended questions about eye gaze trackers and assistive devices
in their daily lives.
D. Analysis Methods

Eye movement event detection is an established field of
research with various algorithmic approaches proposed in the
literature [26]. The process of eye movement event detection
often involves a pre-processing step, that de-noises the gaze
signal by way of filtering, followed by the classification of
gaze signal segments as different types of eye movements
such as saccades, fixations, and (smooth) pursuits. This
classification, also known as event detection, can be done by
parametric or non-parametric methods, wherein parametric
methods make use of velocity, acceleration, and temporal
thresholds to identify types of eye movements, and non-
parametric methods often make use of machine learning
techniques to extract inherent patterns in the gaze signal.
For this work, we used the open-source REMoDNaV eye
movement classifier implemented in Python [27] to do offline
classification of gaze movements.

V. RESULTS AND DISCUSSION

This section presents the eye movement characteristics and
metrics gathered while operating our eye-gaze character-
ization tasks. We direct our discussion to the context of
possible use cases for powered wheelchair driving control.
A pain point in current eye-based input methods for driving
powered wheelchairs is the lack of commercial availability
of continuous control [15], and so we focus in particular on
continuous inputs. Reported statistical significance between
groups is determined by a non-parametric ANOVA (Kruskal-
Wallis H-test). Where specified, eye movement distance is
reported in degrees of visual angle (DVA), computed using
screen size, viewing distance, and screen resolution (with our
experimental setup, 1 pixel ≡ 0.0269 DVA).
A. Spatial Layout of User Interface

During the Painting Task, participants were encouraged to
explore the space of the screen as much as possible. Fig. 4
shows the spatial distribution of recorded eye gaze signals
and fixations. We observe a large inter-participant variability
for both the spatial distributions as well as fixations.

To ensure users are able to issue intended commands,
the user interface should be designed in a way that allows
users to operate in the area of the screen that they are most
comfortable and skilled in. For instance, S002 would likely
benefit from a user interface that expects eye gaze input in
the upper-left region of the screen, while S010 would likely
benefit from an interface that expects eye gaze input in the
lower region of the screen.
B. Virtual Button Sizes

In Fig. 5 the number of successful targets (out of 10 targets
total) is shown for the Focus Task, grouped by target size
and both without visual feedback and with visual feedback.
From the results, we can see that most participants were able
to successfully fixate for 2 seconds consecutively on targets
that had a diameter larger than 5 degrees of visual angle.

This would suggest that, in general, virtual on-screen icons
that require dwell to activate should not be smaller than 5
degrees of visual angle in size. Customization of icon size
can also be done according to users’ success at such a task.

When visual feedback was provided, participants were
able to successfully achieve targets with an even smaller
diameter (4.0 degrees of visual angle), suggesting that on-
screen icons may be even smaller if users have visual
feedback.
C. Continuous Pursuit Motion
Continuous inputs can likely be achieved by pursuit motions,
which are slower and more controlled than saccadic motions.
Figs. 6 and 7 show the distributions of the time duration and
magnitude (in degrees of visual angle) of smooth pursuits. In
general, smooth pursuit segments during the Tracking Task
tend (statistically significant in 9 of 11 participants) to be
longer in mean duration and of a greater magnitude than
those during the Painting Task. This is likely due to the
Tracking Task providing a moving target for the eyes to focus
on, while the Painting Task requires intentional motion of the
eye to move the cursor on the screen.

One interpretation of this result for interface design could
be to use the median of an individual’s magnitude of smooth
pursuit to inform the control resolution of a virtual joystick
on a screen—individuals able to more frequently provide
larger distances of smooth pursuit when controlling a cursor
with their eyes might be able to control a virtual joystick
over a larger visual area, offering higher control resolution.

Another interpretation of this result is that for some
individuals, it may be possible to differentiate whether the
eyes are being used for control input versus being used
to scan the environment, based on the duration of smooth
pursuits over a short time history. This may be used to more
intelligently overcome the ‘Midas touch’ problem.
D. Visual Feedback for Gaze Location
Fig. 8 shows the overall target completion success rate and
mean target completion time for the Focus Task, under both
visual feedback conditions. In terms of task success, we
see that participants performed better overall with visual
feedback than without visual feedback. However, participants
tended to take longer to successfully complete targets with
visual feedback. Due to the limited sample size, statistical
significance was not observed in these results; however, they
suggest the presence of a potential difference.

Interestingly, for participants that performed better without
feedback, anecdotal evidence suggests that visual feedback
(in this case the blue dot displaying measured gaze position
on the screen) was distracting and resulted in ‘cursor chasing’
due to perceived inconsistencies between the perceived gaze
location and the displayed measured gaze location [28].
E. Task Workload
Fig. 9 shows the NASA TLX scores for all participants
after completing each of the tasks. A high TLX score
insinuates more cognitive workload. From the results, there
is a lot of variability in the perceived mental workload
across participants, with scores ranging from zero workload



Fig. 4: Distirbutions of A: gaze locations and B: fixations, across the screen during the Painting Task. Each grid represents a 100px by 100px area. The
intensities of the heatmap are normalized on a scale from 0 to 1 for each participant, and normalization is done relative to the counts in the most frequently
occurring 100px by 100px area in the heatmap.

Fig. 5: Number of successful targets, grouped by target size, for all
participants during the Focus Task under both feedback conditions.

Fig. 6: Duration of smooth pursuit segments for all participants during the
Painting Task and Tracking Task.

to near maximal. For a given participant, we further observe
instances of consistency across tasks (e.g., consistently high
cognitive load for all tasks) as well as marked variability
(e.g., some tasks rated low and others high).

Most participants reported lower TLX scores for the
Tracking Task (4th task). Since the Tracking Task requires
participants to follow a moving target (reactionary) as op-
posed to controlling a cursor (as in the Painting Task), it
makes sense that participants would find it less mentally
taxing.

Anecdotally, participants reported that one of the largest
difficulties they faced with using the eye gaze tracker was
a perceived steep learning curve. The TLX scores across

Fig. 7: Length (magnitude) of smooth pursuit segments in degrees of visual
angle for all participants during the Painting Task and Tracking Task.

Fig. 8: Number of successful targets (left) and mean time taken to com-
plete successful targets (right) for all participants during the Focus Task,
comparing without and with visual feedback for measured gaze position.

the tasks may have captured learning effects in some par-
ticipants. In particular, S002 and S007 generally reported
decreased levels of workload from the first to the last task
while S006 self-reported zero workload for the 3rd and 4th
tasks, citing that they had now learned and understood the
system.

F. Limitations

This study is subject to several limitations. A small sample
size of participants makes it challenging to establish statist-
ical significance, and the fixed task order for all participants
may have influenced the results through learning or fatigue
effects, which may bias TLX scores. Additionally, the gaze



Fig. 9: NASA TLX Scores for all participants across the different tasks

characterization tasks developed for this study lack validation
in accurately measuring the intended gaze characteristics,
and the study was conducted under specific experimental
conditions and may not be representative of eye tracking in
the real world applications. Future work could address these
limitations by expanding the participant pool, conducting
validation studies to demonstrate reliability and accuracy
of these tasks, and varying the study environment to better
mimic real world scenarios.

VI. CONCLUSIONS

In this paper, we present an open-source data collection
pipeline to characterize eye gaze for device control. This
pipeline consists of a suite of screen-based assessment and
data gathering tasks to characterize eye gaze movements
during eye-based control, and a system to use an eye gaze
tracker for real-time control input with ROS. We probed
individuals’ abilities to interact with a screen using eye gaze
and a variety of eye movements: namely saccadic motions,
fixations, and smooth pursuits. Probing these characteristics
is the first step towards allowing us to identify paramet-
ers towards designing a customizable and adaptive control
interface design. Towards this end, we conducted an end-
user study with our eye-gaze characterization system and
present insights from the data with regards to the design of
an explicit continuous eye gaze tracking user interface. Our
future work will present users with different eye input user
interface designs based on these insights and assess usability.
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