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When individuals are paralyzed from injury or damage to the brain, upper body movement and function can
be compromised. While the use of body motions to interface with machines has shown to be an effective
noninvasive strategy to provide movement assistance and to promote physical rehabilitation, learning to use
such interfaces to control complex machines is not well understood. In a five session study, we demonstrate
that a subset of an uninjured population is able to learn and improve their ability to use a high-dimensional
Body-Machine Interface (BoMI), to control a robotic arm. We use a sensor net of four inertial measurement
units, placed bilaterally on the upper body, and a BoMI with the capacity to directly control a robot in six
dimensions. We consider whether the way in which the robot control space is mapped from human inputs has
any impact on learning. Our results suggest that the space of robot control does play a role in the evolution of
human learning: specifically, though robot control in joint space appears to be more intuitive initially, control
in task space is found to have a greater capacity for longer-term improvement and learning. Our results further
suggest that there is an inverse relationship between control dimension couplings and task performance.
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1 INTRODUCTION
The use of body motions to control machines has seen a growing interest in the neuroengineering,
rehabilitation science, and robotics communities, due to their noninvasiveness, ability to adjust
to an individual’s available body movements, and support for lost motor function [1, 8, 18, 37,
41, 45]. In comparison to alternative, noninvasive human-machine interfaces such as surface
electroencephalogram (EEG), body motions promote physical activity, with associated potential for
therapeutic benefits [7, 36–38]. Body-machine interfaces (BoMIs) incentivize patients with paralysis
and movement disorders to use their remaining residual mobility [6], and, with practice, they have
been shown to increase patients’ upper body muscle strength and upper body mobility [38]. BoMIs
use motion sensor technologies to measure features of movement from the surface of the body [8].
Unlike many interfaces that are typically used to control assistive machines, BoMIs have the
capacity to generate control signal inputs in high dimensions from residual body movements—even
when users suffer from severe levels of paralysis [38, 39].

Despite the recent excitement in using BoMIs to control machines, demonstrations on assistive
robotic systems have been predominately limited to control of low degrees-of-freedom (DoFs)
systems [18, 54]. High-DoF control, however, is often needed to perform high-resolution dexterous
movements in our physical world—and to efficiently achieve Activities of Daily Living (ADLs)
and other complex manipulation tasks, with intention, in a timely manner [5]. While using high-
dimensional interfaces (e.g., BoMI) to control high-DoF robots (e.g., robotic arms) holds the potential
for positive assistive and rehabilitation outcomes [38, 41], it is unclear to what extent people are able
to learn to recoordinate their body movements to issue high-dimensional control signals—necessary
to simultaneously control all of the DoFs of a complex robot. For example, a result from a past
study suggests that simply expanding control from two to three control dimensions introduces
significant learning challenges to participants [42]. In addition, given that the variation of body
motion data has shown to be low [40], the expectation is that the learning challenges will also
dramatically increase as the need for higher-DoF control becomes greater. Taken together, these
raise the questions of whether body movements can be executed with consistency and sufficient
dexterity to reliably complete functional tasks, and whether BoMI control might become unintuitive
or more challenging to learn as control complexity in the robot increases.

In this work, we perform a multi-session study of high-DoF robotic arm teleoperation via a BoMI
as a first step to address these questions. We investigate in particular the control space mapping—
that is, the selection of which robot control space (joint or task) to map the interface commands—to
assess the mapping’s impact on human learning and whether one space might be more intuitive
to operate. While there are many indications that humans primarily plan their own hand and
arm movements within the task space, it is also the case that a common characteristic found in
patients with cerebellar damage is a decomposition of complex movements to individual joint
movements [3]. It is possible that the novelty of the BoMI could introduce a similar simplification of
the robot manipulation problem into decomposed robot movements, where controlling individual
joint movements—instead of movements within the task space—is more intuitive for users.

We highlight the following contributions, first presented in our conference paper [21]:

• A multi-session study of high-DoF robotic arm teleoperation via a BoMI.
• A demonstration that body-machine interfacing is scalable to higher-DoF robots.
• An analysis of the impact of control space mappings on task performance, workload, and
human learning.

In this article, we furthermore present the following new contributions:

• An analysis of the relationship between control dimension couplings and task performance.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.



Learning to Control Complex Robots Using High-Dimensional Body-Machine Interfaces 111:3

• An evolved analysis of the impact of control space mappings on perceived workload and user
subjectivity.

A review of background and related literature is provided in Section 2. Section 3 describes our
experimental methods, with results shared in Section 4. A discussion of key insights and conclusions
then are provided respectively in Sections 5 and 6.

2 BACKGROUND AND RELATEDWORK
In this section we review related literature on assistive machines and interfaces, with a focus on
BoMIs. We also provide a brief review of movement learning and functional rehabilitation.

2.1 Assistive Interfaces and Machines

Fig. 1. Dimensionality of interface inputs and machine outputs. Interfaces might capture signals that are
lower or higher dimensional than the assistive machines they intend to operate. In the latter case, input
signals typically are mapped through a decoder to the control space of the machine.

Both assistive machines and interfaces have design limitations and vary in complexity or number
of controllable DoFs. Assistive machines can range in control complexity from simple machines,
such as power wheelchairs, to more complex machines, such as robotic arms. In general, the level of
complexity varies with the number of DoFs the machine can operate. High-DoF assistive machines,
such as robotic arms, can be difficult to control with commercially-available assistive interfaces
(e.g., sip-and-puff, head array, and 2D joystick), which overwhelmingly are designed to control the
much lower-dimensional (2D) power wheelchair. This is due to a mismatch in the number of input
dimensions the operator has access to on the interface, compared to the number of output control
dimensions required to operate the high-DoF machine (Figure 1) [43].
A common approach to this mismatch is modal control [17, 25, 26, 48], in which only a subset

of the control dimensions of the robot are operated at a given time. While modal control does
facilitate access to the full control space, it does not allow users to access all control dimensions
simultaneously. An alternative strategy to tackling dimensionality mismatch is to focus on control
dimensions that are only task relevant, by embedding them within a lower-dimensional space and
defining latent actions to operate within that space [23]. While this is a clever approach shown to
be effective with 2D joystick teleoperation, the approach requires prior knowledge of the tasks and
goals and, by design, it limits the full control authority on the human operator. The simultaneous
and continuous control of all translation and orientation dimensions in complex robots remains an
open and challenging research area.

Intracortical Brain-Machine Interfaces (BMIs) use implants to record brain activity from themotor
cortex and offer the possibility of directly issuing high-dimensional control signals to overcome the
problem of dimensionality mismatch [9, 12, 33]. Intracortical BMIs have enormous potential to help
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people with neurological disorders and injuries; however, they can be extremely invasive—requiring
surgery to the brain and the permanent implantation of an electrode array [10]. Although BMIs
can be noninvasive using surface EEG, there is less evidence that suggests the signal-to-noise ratio
is sufficient for the continuous and simultaneous control of robots in high dimensions [20, 28].

2.2 Functional Mobility and Rehabilitation
People who suffer from upper and/or lower body paralysis, such as from spinal cord injury (SCI),
experience loss of functional independence. Cascading effects can further lead to a disruption in
quality of life (e.g., respiratory, cardiovascular; depression, substance abuse, emotional distress),
leading to increased dependence on caregivers [e.g., 34]. The severity of paralysis plays a critical role
in howmuch functionality is compromised. Even in tetraplegia, residual movements can still remain
intact [e.g., 29]. Movement training and therapy designed to encourage residual movements and
increase mobility has been shown to promote neuroplastic changes and improve functionality [32,
50]. Similar outcomes of enhanced muscle strength and mobility in the upper body have also been
shown in studies using a BoMI for low-DoF control [37].

2.3 Body-Machine Interfacing
BoMIs are able to capture the residual movement available to patients with paralysis. They are
responsive to human-to-human variability (e.g., between or within levels of SCI) [8], enhance
muscle strength and mobility [38], and achieve functional rehabilitation aims [2, 38, 41]. By casting
a net of sensors on the body, the BoMI captures body movements, and it can be customized to
individuals through their unique availability of body movements—for example, by tuning the BoMI
map’s parameters (e.g., gains, offsets) session-by-session [38].
In general, the choice of sensor technology to use for body-machine interfacing is vast as long

as it is capable of characterizing body kinematics. Historically, research groups have used infrared
cameras [7], inertial measurement units (IMUs) [14], EMG sensors [47], or an ensemble of sensor
technologies [45] to collect measurements. Similarly, body movement can be interfaced with a
variety of machines such as powered wheelchairs [54], robotic arms [11, 18], and drones [24, 30].

What allows all of these hardware components to be turned into an interface between human
and robot is the choice of which sensor measurements to record and how to map them to control
commands for the machine can interpret. Given a set of body movements and a given machine we
want to control, we need an algorithm that decodes a continuous body movement signal x to use as
robot control signals q. A classic approach to design the decoder is to describe a linear relationship
A between x and q.

More formally, given a set of sensor measurements x = x1, . . . , x𝑛 , we can define the feedforward
linear mapping between measurements x and robot control commands q to be

q = Ax + b, (1)

where q = [𝑞1, . . . , 𝑞𝑘 ]𝑇 is a 𝑘 × 1 vector, A is a 𝑘 × 𝑛 matrix that maps x → q, x is a 𝑛 × 1 vector,
and b is a 𝑘 × 1 vector that is an affine offset. The shape of vector q is determined by the product
of the number of sensors and the dimensionality of a single sensor output. For example, if we are
interested in sensor measurements of orientation, represented by quaternions, and we wish to use
four sensors, then 𝑛 = 4×4 = 16. The output q depends on the space in which robot control happens,
where 𝑘 = 6 for both 6-DoF task-space (or Cartesian-space) control (q𝑇𝑆 = [𝑞𝑥 , 𝑞𝑦, 𝑞𝑧, 𝑞𝜃 , 𝑞𝜙 , 𝑞𝜓 ]𝑇 )
and 6-DoF joint-space control (q𝐽 𝑆 = [𝑞 𝑗1, 𝑞 𝑗2, 𝑞 𝑗3, 𝑞 𝑗4, 𝑞 𝑗5, 𝑞 𝑗6]𝑇 ). We should note that in prior BoMI
studies, q has predominantly been used with position- and velocity-based controllers.
Several past works use Principal Component Analysis (PCA) [35] as the approach to solve for

A (and b) [18, 37, 54]. More recent examples use iterative linear methods [13] and deep learning
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Fig. 2. An overview of the interface-robot pipeline and the study tasks. (a) Participant wearing the BoMI
interacting with the JACO robotic arm and reaching targets. (b) A sensor net on the upper body controls the
robotic arm to perform reaching and functional tasks. The relative quaternion orientation of the IMUs (4
IMUs × 4 quaternions = 16D combined) is mapped to a 6-dimensional linear subspace for continuous and
simultaneous control of the robot, whether in task-space (3D translation + 3D orientation) or joint-space (6D
joint angles). The progression of a study session tasks consists of: (1) free exploration (FE); (2) all-but-one
DoF freezing (DF); (3) FE; (4) center-out reaching; (5) sequential reaching; (6) sequential reaching in a 3D-star
shape; and (7) ADL-inspired tasks.

methods such as adaptive nonlinear autoencoders that relax the constraint of a linear relationship
between x and q [44]. Due to our particular interest in human learning of a complex (high-DoF)
system over multiple study sessions, we choose the more familiar approach of PCA, that has a rich
history of success in both BoMI studies and engineering more broadly.

3 METHODS
In this section we present the experimental details of our multi-session study of robotic arm
operation using a high-dimensional BoMI.

3.1 Participants
Ten uninjured adults (28 ±8 median age years; 6 males, 4 females) participated in this study. Each
participant completed five sessions of approximately two hours each. Participant assignment to
one of two groups was random and balanced. The joint-space (JS) group directly controlled the
velocity of the robot’s joints, and the task-space (TS) group controlled the velocity of the robot
end-effector in translation and orientation. Participants in each group received the same ordering
of tasks, number of trials, and number of sessions. All study sessions were conducted with the
approval of the Institutional Review Board at Northwestern University. All participants provided
their written informed consent.

3.2 Materials
Interface. A sensor net of four IMU sensors (Yost Labs, Ohio, USA) are placed bilaterally on the
shoulders and upper arms and anchored to a custom shirt designed to minimize movement artifacts.
Sensor placement is predetermined based on past BoMI studies. To maintain consistency between
participants, we add a reference chest sensor (marked in Figure 2b, top) from which its orientation
data is used to compute relative orientations through a predetermined kinematic chain (chest
→ shoulders → upper arms). The chest sensor data is not directly used in the decoder design,
therefore, it is excluded in the online projection of the real-time data onto the control signal subspace.
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A Kalman filter is applied to the IMU data and computed onboard the IMU sensors, producing
real-time, orientation estimates through a fusion of accelerometer and gyroscope measurements.
The pipeline is visually represented in Figure 2b (top). The relative quaternion orientations of

the four IMUs in the net (16D) are mapped to a six-dimensional (6D) subspace using PCA. To build
the PCA map, we adopt a semi-supervised approach, in which we instruct an experienced user
to perform a predefined, repeated set of upper-body movements (shoulders forward/backward
and up/down; elbows in/out) for approximately 60 seconds each. These collected datasets, each
composed of single-joint movements, are then compressed, transformed, and mapped, all via PCA,
into six principal components (PCs) to produce a 6D map. To simplify the map and more evenly
distribute the explained variance across the PCs, varimax rotation is applied post hoc [19]. The
resulting BoMI map allows for a linear mapping between sensor measurements (x) and a lower-
dimensional robot control signal (q) as: q = Ax + b. Together, using this approach allows for a
continuous output, in terms of velocity commands, to the robot—as well as a better representation
of the individual movements available, with the goal of providing more intuitive and independent
control of the robot’s movements.

Robot Control. The lower-dimensional subspace is used online to control a 7-DoF JACO robotic
arm (Kinova Robotics, Quebec, Canada). We exclude the control of the fifth joint—which is the
redundant joint in the kinematic chain of the 7-DoF JACO robotic arm—from the study. We hold
this joint fixed so that both the TS and JS groups are operating the same number (6) of DoFs and
under the same control constraints.

The PCs of the lower-dimensional PCA subspace are mapped to the robot control space as follows.
For the TS mapping, we prioritize translation control over orientation control by mapping the first
three PCs to 𝑥,𝑦, 𝑧 (which by definition capture more of the body movement variance) and the next
three PCs to 𝜃 (roll), 𝜙 (pitch),𝜓 (yaw). For the JS mapping, we map the PCs in the order of joints
in the kinematic chain of the robotic arm. This prioritization is primarily based on prior BoMI and
BMI studies, as well as study task design.
To avoid involuntary robot commands and to compensate for sensor noise during study trials,

we define a control threshold linearly proportional to the applied gains, shifted by a constant offset.
Though the thresholding equation remains fixed for all participants, control gains and offsets are
customized daily to the individual using observation-based tuning, such that the variances across
control dimensions are approximately equivalent and each control dimension is centered along
its respective mean. This is to customize and maximize the utility of the map for each individual.
Control signals to the robot are published at an approximate rate of 10 Hz.

In order to reduce complexity of adding grasp to the control problem, we disable control of the
gripper and focus on reaching tasks.

Visual Feedback. A graphical-user interface (GUI) is displayed on a tablet to provide a real-time
visualization of the robot velocity commands to the participant. Control commands are represented
either in Cartesian velocities or joint velocities, depending on the group assignment.
In addition, a scoring system is displayed on the GUI to increase participant engagement and

to provide trial-by-trial feedback on performance to the participant. Trial scores are calculated
based on robot endpoint distance-to-target (in terms of both translation and orientation), where
the orientation score is credited only when the end-effector’s distance is within 50% of the reach
distance. Though participants are informed that their scores would be displayed on the tablet, the
aforementioned implementation details are excluded from the study instructions.

For reaching tasks, ten target blocks (marked in Figure 2a) are used as goals, and placements are
determined to maximize robot workspace coverage and diversify reaching movements. The goal

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.



Learning to Control Complex Robots Using High-Dimensional Body-Machine Interfaces 111:7

locations remain fixed throughout the study for all participants. Targets are affixed to a custom-built
cage constructed with PVC pipes and 3D-printed joints, as shown in Figure 2a.

3.3 Study Protocol
There are three phases to the study protocol: (a) familiarization, (b) training, and (c) evaluation
(shown in Figure 2b).

Familiarization. In the first phase, participants are encouraged to explore and become familiar with
the system, with minimal constraints enforced in the free exploration (FE) task. In the all-but-one
DoF freezing (DF) task, participants are iteratively introduced to each control dimension one at a
time, where all other dimensions are kept frozen.

Training. In the second phase, two categories of reaching tasks are employed: (1) reaches from
a fixed center position out to a target and (2) sequential reaches between targets. The order of
targets is randomized and balanced across days to avoid ordering effects, and this order is preserved
across participants. Each trial consists of a single reach either from the center-to-target (center-
out reach) or from target-to-target (sequential reach). In sequential reach trials specifically, we
maintain consistency between trials and participants by positioning, at the start of each reach, the
robot at predefined waypoints, in the proximity of the previous target. These two categories of
reaching tasks are modeled after a standard experimental paradigm in motor learning [51] as well
as movements that are more typical in real world use.

Evaluation. In the third phase, tasks are split into evaluations of reaching and ADLs. In the reaching
evaluation task, participants reach to five targets that comprise a three-dimensional star in fixed
succession (shown pictorially in Figure 2b, bottom). The ADL evaluation tasks are designed to
emulate four ADL tasks: (a) take a cup (upside-down) from a dish rack and place it (upright) on
the table, (b) pour cereal into a bowl, (c) scoop cereal from a bowl, and (d) throw away a surgical
mask in the trash bin. To facilitate learning, our training protocol adopts ideas from the literature
in repetition learning [49] and learning via contextual interference [4, 52]. In addition, to maintain
engagement and motivation [22], we display a trial-by-trial scoring system based on performance.
A trial ends upon successful completion or timeout. For reaching any target, success is defined

within strict positional (1.00 cm) and rotational (0.02 rad, or 1.14°) thresholds, and the timeout is 90
seconds. For the ADL tasks, experimenters follow codified guidelines to determine when tasks are
completed with a task timeout of 180 seconds. Participants are informed of the timeouts and asked
to perform tasks to the best of their ability. If there is any risk of harm to the participant or the
robot, study personnel are instructed to intervene and teleoperate the robot to a safe position, as
close to the original position the robot left the experiment workspace, before proceeding.
Sensors are calibrated daily and tared between trials to account for the possibility of intrinsic

sensor noise and drift.
Over the course of the study, data from a total of 400 center-out, 400 sequential, and 250 3D-star

reaching trials are gathered, as well as from 80 ADL task trials.

3.4 Metrics
In order to obtain a comprehensive understanding of human learning in the context of controlling
a novel interface-robot system, we analyze subjective responses from questionnaires, use objective
performance metrics appropriate for the specific task, and quantify control dimension couplings to
capture a participant’s ability to isolate robot movements.

Questionnaires. Questionnaires are provided to participants at the end of each study session. Two
types of questionnaires are used. The first is the NASA task load index (NASA-TLX), which is an
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assessment tool for subjective workload in human-machine interfacing contexts [16]. The second
is a study-specific questionnaire consisting of questions relating to (a) task difficulty, (b) human-
robot interaction, and (c) learning effects. The study-specific questions are further divided into
Likert-scale questions and free form questions.

Performance Metrics. We use performance metrics specifically tailored to the study’s reaching tasks
and ADL tasks, defined as follows:

• Success rate

𝜇𝑆 =
1
𝑁

𝑁∑︁
𝑖=1

1{𝑆 }𝑖 (2)

where

1{𝑆 } =

{
1, task success
0, otherwise.

𝑁 is the total number of trials, and 1{𝑆 } is an indicator function for task success.
• Successful completion time

𝑡𝑐 = 1{𝑆 } (𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡 ) (3)

where 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 are the respective start and end times of a given trial.
• Average number of collisions

𝜇𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =
1
𝑁

𝑁∑︁
𝑖=1

1{𝐶 }𝑖 (4)

where 1{𝐶 } is an indicator function for a collision during a trial. A collision is marked when
any part of the robot comes in contact with the physical environment.

• Normalized path length

ℓ𝑝𝑎𝑡ℎ

ℓ𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡
=

∑𝑀−1
𝑖=0 ∥x𝑖 − x𝑖+1∥

∥x𝑡𝑎𝑟𝑔𝑒𝑡 − x𝑠𝑡𝑎𝑟𝑡 ∥
(5)

where ∥ · ∥ is the L2 norm, and ℓ𝑝𝑎𝑡ℎ and ℓ𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 are the trial’s end-effector path length and
straight-line path length, respectively, to a target.𝑀 is the total number of samples (sampled
at 10 Hz), x𝑖 is the end-effector pose at the 𝑖th sample, and x𝑠𝑡𝑎𝑟𝑡 = x𝑖=0 and is the starting
pose.

• Average proportion of time spent within 𝑘 percent of reach distance

𝜇𝜏𝑑𝑖𝑠𝑡≤𝑘 =
1
𝑁

𝑁∑︁
𝑖=1

𝜏𝑑𝑖𝑠𝑡≤𝑘,𝑖 , (6)

𝜏𝑑𝑖𝑠𝑡≤𝑘 =
𝑡𝑑𝑖𝑠𝑡≤𝑘

𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡
,

where 𝑡𝑑𝑖𝑠𝑡≤𝑘 is the time spent within 𝑘 percent of the reach distance on a given trial and
0 ≤ 𝑘 ≤ 100%. We furthermore also compute 𝜏𝑑𝑖𝑠𝑡>100% as the average proportion of time
spent beyond 100% of the reach distance, as a metric for negative progress towards the target.

Control Dimension Couplings. We use correlation analysis to compute the degree of linear coupling
between pairs of control dimensions, defined as follows:
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• Matrix of correlation coefficients

𝝆 (q, q) = cov(q, q)√︁
var(q), var(q)

(7)

where cov(·) and var(·) are covariance and variance, respectively. Each element of the
correlation coefficient matrix ranges between [−1, +1], where 𝜌𝑖, 𝑗 = [−1, 0) implies a negative
(or inverse) linear correlation between control dimensions 𝑖 and 𝑗 , 𝜌𝑖, 𝑗 = (0, +1] implies a
positive correlation, and 𝜌𝑖, 𝑗 = 0 implies no correlation.

• Percentage of significant correlations

𝜌∗ =

(
2

𝑛(𝑛 − 1)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

1{𝜌 }𝑖,𝑗

)
· 100, (8)

where

1{𝜌 }𝑖,𝑗 =

{
1, if 𝑝 < 0.05 for 𝜌𝑖, 𝑗 and 𝑖 < 𝑗

0, otherwise.
Here, 1{𝜌 }𝑖,𝑗 is an indicator function for a coupling with statistical significance (𝑝 < 0.05) [53],
and 𝑛(𝑛 − 1)/2 is the total number of unique combinations of 𝑛 control dimensions.

4 RESULTS
We share results from two categories of evaluation tasks: sequential reaching (3D-star task) and
ADLs. Our results find both task performance and perceived workload to vary between control
space mappings (TS control versus JS control); we also find an inverse relationship between the
control dimension couplings and ADL task performance.

Fig. 3. Success rate (left) and trial time (right) for ADL tasks on first and last days. The dotted line represents
a timeout of 180 seconds; the grayscale dots represent each participant’s mean values (TS: dark; JS: light).
The standard interquartile ranges are shown. ∗𝑝 < 0.05. (∗between groups, ∗within group).

4.1 Performance Evolutions Differ with Control Space Mappings
Intuitivity versus Learnability. Figure 3 shows the results from the ADL tasks. Both groups improve
their performance in success rate between first day and last day, but only the TS group improves
in trial times. We observe that the initial performance of the JS group is superior to that of the
task space group. Despite the JS group starting on the first day with a higher median success rate
(TS: 0.00, JS: 0.25; 𝑝 < 0.05, Wilcoxon signed-rank test) and lower median trial time (TS: 169 s,
JS: 158 s), by the final day, the success rates between groups converge (TS: 0.35, JS: 0.35) and the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.



111:10 Lee, et al.

Fig. 4. Average number of collisions during the 3D-star task over five days. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01.

TS group outperforms the JS group with a lower trial time (TS: 135 s, JS: 164 s). We should note
that only TS demonstrates statistically significant improvements, between days 1 and 5, in success
rate (𝑝 < 0.01) and trial time (𝑝 < 0.01). Thus, TS control appears to have a greater capacity for
improvement, as measured by task success and trial time, while JS control demonstrates greater
success with naïve use.

A similar trend is noticed when comparing the average measured collisions on the 3D-star task
between groups across days (Figure 4). The TS group decreases collisions over days (by more than
half between the first day and final day), whereas the JS group starts with superior performance
but then shows little improvement (days 1-4, 𝑝 < 0.05, Kruskal-Wallis H-test).

For the 3D-star task, out of the ten participants, there are no successful reaching trials (five target
reaches per day; 25 reaches per person). Recall however that reaching success is defined within
strict positional (1.00 cm) and rotational (0.02 rad, or 1.14°) thresholds, which are tighter position
and orientation constraints than any of the ADL tasks.

Fig. 5. Proportion of time the robot end-effector spends within 10% of reach distance (green) and outside of
100% of reach distance (red) in the 3D-star task. The proportion of time for a given reaching trial is considered
out of 90 seconds (or 1.5 minutes). The standard interquartile ranges are shown. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01
(∗between categories, ∗∗within categories).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2022.



Learning to Control Complex Robots Using High-Dimensional Body-Machine Interfaces 111:11

Fig. 6. Control dimension couplings between dimensions of the 6D robot control signal q on the 3D-star
task. (a) The correlation coefficient for the task space (TS) group and joint space (JS) group. (b) Percentage of
significant correlations (out of 15 possible combinations) across days. ∗𝑝 < 0.05.

Capacity for Improvement. In the absence of successful reaches in the 3D-star task, we show in
Figure 5 the proportion of time spent within 10% of the reach distance (𝜏𝑑𝑖𝑠𝑡≤10%) and beyond 100%
of the reach distance (𝜏𝑑𝑖𝑠𝑡>100%).1 Note that while for an ideal reach 𝜏𝑑𝑖𝑠𝑡>100% would be zero and
𝜏𝑑𝑖𝑠𝑡≤10% minimized, during learning an increase in 𝜏𝑑𝑖𝑠𝑡≤10% is a marker of improvement when
targets are not yet achievable.

Important to observe are the trends of proportion of time spent near the targets and beyond the
starting distance. Specifically, on the first day, the median proportion of time both groups spend
near the targets is quite low (TS: 0.0034 or 0.31 s; JS: 0.014 or 1.2 s), while the time spent beyond the
starting distance is considerable for TS in particular (TS: 0.20 or 18 s; JS: 0.020 or 1.8 s). By the third
day, we notice a measurable increase in 𝜏𝑑𝑖𝑠𝑡≤10% in both groups and a decrease in 𝜏𝑑𝑖𝑠𝑡>100% in the
TS group. Both TS and JS groups significantly improve the amount of time spent near the targets
(𝜏𝑑𝑖𝑠𝑡≤10%) between days 1 and 5 (𝑝 < 0.05, Kruskal-Wallis H-test). The TS group also significantly
reduces how much time is spent beyond the starting distance (𝜏𝑑𝑖𝑠𝑡>100%), between days 1 and 5
(𝑝 < 0.05), whereas this stays static in JS, largely due to having less room to improve.

4.2 Impact of Control Dimension Couplings on Learning
Inherent Decoder Characteristics. In Figure 6, we evaluate the degree of control dimension coupling
the two groups experience during the evaluation tasks, by computing the correlation coefficient
between the decoded six-dimensional robot control signal data.
In general, it appears that the TS group experiences more control dimension couplings than

the JS group, as shown both when the matrix of correlation coefficients is computed globally
(all days combined) and day-by-day. Figure 6a shows four unique dimension couplings (C𝑇𝑆 =

{𝜌 (𝑥, 𝜙), 𝜌 (𝑧, 𝜃 ), 𝜌 (𝜃, 𝜙), 𝜌 (𝜙,𝜓 )}, 𝑝 < 0.05) in the TS group compared to two unique dimension
couplings (C𝐽 𝑆 = {𝜌 ( 𝑗3, 𝑗4), 𝜌 ( 𝑗4, 𝑗6)}, 𝑝 < 0.05) in the JS group.
Notably, all statistically significant (𝑝 < 0.05) couplings show linearly inverse relationships

between control dimensions—meaning that positive motion in one dimension is coupled with
negative motion in the other dimension (and vice versa). Furthermore, despite the differences in
control space mappings (TS versus JS), two coupled dimensions (i.e., corresponding to the same PCs)
appear to be shared between the two groups: C𝑇𝑆 = {𝜌 (𝑧, 𝜃 ), 𝜌 (𝜃,𝜓 )} ↔ {𝜌 ( 𝑗3, 𝑗4), 𝜌 ( 𝑗4, 𝑗6)} =
1A simple binary result of success is not informative, as no participants achieved the target location within our positional
(1.00 cm) and rotational (0.02 rad or 1.14°) constraints on success. We also find the proportion of time metrics to be more
informative than path length, for which no discernible trends emerge.
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C𝐽 𝑆 . This suggests that either the body movements themselves are coupled or the decoder might
contain intrinsic synergies (or biases) that make it prone to coactivity of multiple robot control
signals at a time. As such, this result could be caused by unintended issuing of commands rather
than intentional, coordinated robot motions required for task completion.
Comparing (Figure 6b) the two groups’ evolution of couplings that are statistically significant

(𝜌∗) suggests that the user experience of couplings are more present and persistent for the TS group
(1 or 2 couplings out of 15 possible combinations on each of the five days) than the JS group (1
coupling on day 4).

Fig. 7. Linear regression analysis of aver-
age ADL task success rate versus average
control dimension coupling, for both study
groups. Shaded regions represent the 95%
confidence interval.

Control Dimension Couplings and Task Performance. To
examine the importance of control dimension coupling,
we evaluate its relationship to performance on the ADL
tasks. We first compute the average correlation coeffi-
cient for each participant and compare the two groups in
Figure 7. For the TS group in particular, we see signs of an
inverse relationship between control dimension coupling
and success rate—that is, the smaller (or less present) the
average degree of control dimension coupling, the higher
the success rate on the ADL tasks (and vice versa, TS:
𝑅2 = 0.643, 𝑝 = 0.103, JS: 𝑅2 = 0.066, 𝑝 = 0.676). We have
shown in Figures 6 and 7 that the influence of control
dimension couplings is higher in the TS group for the
3D-star task in both the total number of statistically sig-
nificant couplings and how they were distributed across
all five days. These could be explanations for why the
effect sizes of average correlation coefficient to perfor-
mance was more noticeable in the TS group than in the JS group.
We also note that a similar analysis of trial time did not show any strong correlations with

dimension coupling.

4.3 Effects of Perceived Workload on Learning

Fig. 8. Comparison of subjective workload, measured via NASA-TLX, between study groups. Summary NASA-
TLX scores, averaged across study sessions (left), and evolution of NASA-TLX scores over study sessions (right).
The standard interquartile ranges are shown. ∗𝑝 < 0.05, ∗∗∗𝑝 < 0.001.
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Fig. 9. Comparison of response counts from the Likert-scale questionnaire between study groups. Topics
include task difficulty, human-robot interaction, and learning effects. The scale ranges from 1 (strongly
disagree, brown) to 7 (strongly agree, teal), and the counts of responses are reported.Questionnaire responses
are gathered at the end of each study session.

A Different Variety of Learning. The NASA-TLX assessment scores for subjective workload and
their evolution across days are shown in Figure 8.
Figure 8 (left) shows that the median score (over all days and participants) of the TS group is

significantly higher than that of the JS group (𝑝 < 0.001), indicating higher perceived workloads in
the TS group than the JS group.

In Figure 8 (right), we observe a marked reduction over sessions in perceived workload (median
NASA-TLX score) for the JS group. By contrast, we observe only a slight decrease in perceived
workload for the TS group. Furthermore, the perceived workload of the JS group is consistently
lower than that of the TS group across days—including on the first day, when the JS group’s
performance was higher.
To evaluate statistical significance between the two groups, we initially use the Kruskal-Wallis

H-test to find a main effect, and Conover’s post hoc pairwise test, with Bonferroni adjustments,
to make appropriate corrections. Only on days one and four do we find statistically significant
differences between the two groups (𝑝 < 0.05).
We recall that the JS group does not improve much according to either of the ADL task perfor-

mance metrics of success or trial time. While the JS group does not improve significantly in task
performance, the group does improve in perceived workload—which perhaps is indicative of learn-
ing, albeit of a different variety than task performance learning (or at the very least familiarization).
We also perform a linear regression analysis between NASA-TLX scores and ADL task perfor-

mance (success rate and trial time) and find that there are no strong correlations.
Figure 9 reports a group comparison of the results from the Likert-scale study questionnaire. In

general, we see that participants share relatively similar views on questions regarding difficulty,
human-robot interaction, and learning effects. More specifically, participants from both groups seem
to find the study tasks to be more mentally fatiguing than physically fatiguing, where significant
mental energy is spent on planning. Additionally, it appears that the participants find it very difficult
to issue intended commands (relevant to task difficulty) and thinking about how to accomplish the
task using the robot (relevant to mental fatigue).

Interestingly, most participants were not confident that they would be able to perform everyday
tasks with this interface-robot system at home.

Examining the trends of these questions over the study week (Figure 10 in the Appendix), shows
that the mental fatigue reduces over time, physical fatigue increases, and tasks seem to get easier.
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These trends also suggest that the difficulty may have decreased partly because issuing intended
commands got easier and both robot embodiment and confidence increased.

Learning Takes Work. The TS group does not improve measurably with respect to perceived work-
load (Figure 8, right). This group, however, does improve according to both performance metrics,
of success and trial time (Figure 3). Thus, a possible explanation is that the gains in performance
are expensive to acquire—simply put, learning takes work. An alternate (or parallel) explanation
is that the learning efforts of the JS group prioritize managing cognitive workload in lieu of task
performance (perhaps because a performance ceiling has been met).

5 DISCUSSION
Body-machine interfacing provides a unique opportunity to control high-DoF robots and can
play a role to help restore functionality and agency to individuals with severe paralysis. We have
demonstrated that its utility is not limited to low-DoF robots alone and can scale to 6-DoF control
of assistive robotic arms.

5.1 Challenges in Learning High-DoF Control
When an interface is novel, a person may not initially have the implicit knowledge of which
interface commands (or how to execute them) lead to which robot consequences. As the person
learns the mappings between the interface signal and robot behavior, they may have only visual
feedback to assist with error correction. In addition to the novelty of the interface, the introduction
of non-anthropomorphic high-DoF robot platforms contributes to the learning challenges.
There are characteristics inherent to the decoder that might contribute to the learning burden.

In Figures 6 and 7, we identified a subset of control dimension couplings that are shared between
study groups. If one learning strategy for an operator was to isolate robot control dimensions,
they would need to devote additional time and cognitive resources to try to decouple dimensions,
which in practice may not be achievable. Furthermore, the variance in the data, as explained by
PCA, can be disproportionally contained within a small subset of components [40]. We also suspect
that needing to learn distinct movements for each direction of a control dimension introduces an
additional layer of cognitive burden to the human operator. With PCA, the reflexivity of control
axes is not guaranteed to be preserved between body motion space and control space, leading to
the need for operators to learn potentially twice the number of mappings (12 instead of 6). This
might have contributed to the reported mental challenges in planning, trying to issue intended
commands, and thinking about how to use the robot to accomplish physical tasks, which resulted
in high levels of mental fatigue (Figures 8, 9, and 10).

We also have shown that the choice of control space mapping leads to different learning profiles.
The mechanical simplicity of single joint movements—as opposed to movements along a single
Cartesian-space dimension, which often requires a coordination of multiple joints—is a viable
explanation for why people tend to intuit JS control, prior to any practice, more than TS control.
This is marked by the early performance lead in the JS group observed in Figures 3, 4, and 5. Our
results on robotic arm control corroborates with what is commonly observed in cerebellar ataxia,
where the lesioned cerebellum causes patients to think out individual joint movements in their own
arm rather than being able to coordinate multi-jointed movements, which are more complex. The
biological underpinnings that lead to decomposed movements in ataxia are still debated [3, 27, 31].
We should also note that, in addition, TS control forces users to learn the forward kinematics of the
robotic arm (whereas the JS control does not).

Not only do the learning profiles differ with respect to task proficiency, they also differ in regards
to what was learned. Learning is generally assessed with respect to task performance. Equally
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important within the field of assistive and rehabilitation robotics, however, is the burden on the
human operator. Learning to interface with the robot with a lower workload also is learning, and
it achieves one of the driving motivators for the development of assistive robots. Broadly, this is
critical when such robots have had a history of acceptance issues [5]. The presented study observed
mental planning and mental fatigue to be some of the leading challenges participants faced when
learning to control a robot in high DoFs using the BoMI. These challenges seem to be presented as
larger effects early on rather than later in the study (Figure 10).

5.2 Potential for Robot Autonomy
Controlling high-DoF robots is a challenging task, even with an interface that covers the full
control space of the robot. Therefore, there is potential for introducing robot autonomy to facilitate
both human learning and robot control. In order to design explicit training regimes that allow for
smooth interactions between humans and robots, facilitate human learning, and cater training to
the individual, it is important to acquire a baseline understanding of how well people can adapt to
novel human-machine systems.

This study takes a first step towards the design of intelligent robot systems that aim to facilitate
human training by (a) assessing the evolution of native human interaction and learning in both
control space mapping paradigms (Figures 3, 4, 5, and 10), as well as (b) investigating the influence
of control dimension coupling on task performance (Figures 6 and 7). Designing robotics autonomy
to provide assistance that substitutes for and mitigates the challenges we have identified in this
paper could potentially lead to higher-dimensional interfaces and assistive robots becoming more
accessible to those with severe levels of paralysis or injury.

5.3 Future Work
A significant limitation to this work is that our study considers only an uninjured population. Recall
that the key motivation for this work was to obtain a baseline understanding of high-DoF robot
teleoperation using a BoMI.

While the BoMI previously had been shown to be effective at adjusting to the available residual
movements in patients with severe paralysis (for two-dimensional control [38]), questions related
to the ability of human users to learn to teleoperate a robotic arm in higher DoFs using a BoMI—
and whether control space mappings have any effect towards facilitating learning—were largely
unanswered. Having now determined a baseline for human learning, our next steps will be to build
on this work and apply the gained knowledge to a diverse population of patients with paralysis [34].
While our investigation over five sessions did demonstrate evolving learning effects, we have

yet to uncover where exactly the inflection points lie on the human learning curve. We should note
that a one-session study would have shown evidence that JS control was superior to TS control for
operating high-DoF robots with a BoMI, and that TS control was unlearnable (Figures 3, 4, and 5).
Instead, over five sessions, we have observed that TS control was in fact more learnable than JS
control, which remained largely static over time. It is possible that task performance, especially
for the TS group, would have continued to improve in a longer study and that we have not yet
observed the full capability of human learning on this system. We expect that further gains might
be possible with a more regimented learning curriculum that further customizes the presentation
of tasks and control access to each individual.
Lastly, while there has been a rich history of studies that used PCA to capture residual body

movement for lower-dimensional control [14, 37, 41], the use of an alternative mapping paradigm
could help alleviate some learning burden and improve functionality, intuitivity, and learnability.
Modern machine learning approaches [15, 44] and hybrid interface systems [46] that use additional
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types of sensors (e.g., EMG) hold much promise as we make improvements on our decoder design,
introduce robot autonomy, and scale our investigation aimed at more diverse populations.

6 CONCLUSIONS
People with limited mobility can benefit from assistive and rehabilitation technologies that help
return functionality and agency. The integration of body-machine interfacing with high-DoF
assistive robots is one such example. We have presented in this paper a multi-session study of
robotic arm teleoperationwith a BoMI, to address the question of to what extent the control of a high-
DoF robot is feasible with a high-dimensional interface. While feasibility has been demonstrated, a
number of challenges were also identified—paving the way for potential assistance from robotics
autonomy, more advanced decoding approaches, and longer investigations with a more diverse
population. The results of our study suggest that the choice of control space impacts both the initial
performance and its evolution during learning. While JS control was found to bemore intuitive prior
to training, TS control was subject to greater improvement over time and thus presented as more
learnable with respect to task proficiency. Our results further found an inverse relationship between
control dimension couplings and performance. Gains in task performance were coupled with higher
cognitive load, while static task performance paired with decreasing cognitive load. These results
suggest a trade-off between intuitiveness and learnability, when comparing the two control space
mappings, as well as between improving task performance and reducing cognitive load. Both of
these learning curves merit further investigation—with patients with motor impairments and with
longer studies—that more deeply probe their potential points of inflection and plateaus.
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Fig. 10. Evolution of Likert-scale daily questionnaire responses over days. Themes included (top) task difficulty,
(middle) human-robot interaction, (bottom) learning effects. Questionnaires were provided to participants
using an electronic tablet after each study session concluded.
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