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Abstract— In this work, we present a case study evaluation
that compares two methods of fitting the Body-Machine Inter-
face (BoMI) to an individual with cervical spinal cord injury
for the purpose of operating a robotic arm in 6-D. A BoMI is
a control interface created by recording body movements and
mapping them to the controls of a device or machine, and has
shown promise for individuals with motor impairments whose
access to standard interfaces is otherwise limited. Results from
this case study show a one-size-fits-all placement strategy is not
a sufficient fitting method for an individual with severe upper
extremity limitations. However, when a flexible fitting protocol
informed by a clinical evaluation is applied, we see improvement
in two key categories: (1) success in map fitting and (2) robot
task results. Informed by the case study analyses, we develop a
novel method to customize and fit the BoMI to users in a way
that is analogous to how commonly used assistive technologies
are fit clinically: the BoMI Customization Evaluation (BCE).
This new method of customization is determined from a
physical evaluation conducted by a clinician in conjunction with
participant feedback and BoMI engineers. Deployment of this
novel method within a full evaluation study is underway. The
current work focuses on the evolution to this protocol.

I. INTRODUCTION

Individuals living with cervical spinal cord injury (cSCI)
depend on a variety of assistive technologies to perform
activities of daily living (ADL). The commonly used
powered wheelchair employs low-dimensional control (2-D)
to achieve increased mobility [1]. The less commonly used
robotic arm requires high-dimensional control (e.g., 6-D) to
assist those with upper extremity limitations with feeding,
picking-and-placing objects, or opening doors [2].

For those with cSCI, their assistive technologies (ATs) are
not traditionally out-of-the-box ready. Users undergo fittings,
calibrations, and customization options with clinicians. For a
powered wheelchair, components of the chair such as seating
interfaces, suspension mechanisms, and driving interfaces are
written into a prescription [3]. For a sip/puff interface, the
user undergoes a calibration protocol to construct a mapping
from their respiration pressure signals to device controls.
However, to the knowledge of the authors, an analogous
prescriptive fitting protocol informed by clinical metrics does
not exist for the Body-Machine Interface (BoMI).

We address this gap by designing the BoMI Customization
Evaluation (BCE)—a prescriptive fitting protocol for the
BoMI. A BoMI is a control interface created by recording
body movements and mapping them to the controls of a
device or machine. It has shown promise for individuals
with motor impairments whose access to standard interfaces
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is otherwise limited [4]. We motivate the final BCE design
through a case study evaluation of two BoMI fitting proto-
cols, in which an individual with cSCI operates a robotic arm
in 6-D. The contributions of this work are the following:

• A case study evaluation of two evolutions of BoMI
fitting protocols to a person with cSCI for the purpose
of robotic arm operation.

• The identification of a collection of considerations and
guidelines when fitting wearable interfaces, such as the
BoMI, to individuals with cSCI.

• A prescriptive fitting protocol for a BoMI to persons
with upper-extremity mobility limitations: the BoMI
Customization Evaluation (BCE).

In Section II, we present related background and describe
the current gap in BoMI fitting protocol. We then present
the evolution of our three approaches to fitting the BoMI in
Section III. We setup our case study experimental protocol
and evaluation metrics in Section IV and discuss the results
in Section V. We summarize our takeaways and future work
in Sections VI and VII.

II. BACKGROUND & RELATED WORK

For people both with and without injury, the use of interfaces
to send a control signal to a device is a daily phenomenon;
even pressing a button for an elevator is an example of a
control interface. For those with cSCI and resultant upper
and lower extremity impairments, the dependence on control
interfaces is more significant. The interfaces accessible to
them vary in operation, type, and issued signal depending
on their injury level.

Common non-invasive interfaces used by cSCI individuals
include joysticks, head arrays, sip/puffs (SNPs), and micro
light switches (MLSs) [5]. The joystick, at most a 3-D
interface, becomes limited or completely inaccessible to
those with severe paralysis. Alternatives such as head arrays
(2-D), SNPs (1-D), and MLSs (1-D) issue even lower dimen-
sional signals. Moreover, when using traditional interfaces
for higher-dimensional control, such as a robotic arm (6-
D), there is a dimensionality mismatch between the issued
signals and the device’s control space.

One solution to this mismatch is the use of modal con-
trol—the partitioning of the control space into subsets, with
mode-switch actions that change the operational mode of
the interface in order to access the various subsets [6]. The
added hurdle of mode switching can increase the mental and
physical load on the user, and accordingly also the difficulty
of simple ADL tasks [7].



A challenge when designing and fitting ATs to people
with cSCI is how the same injury can manifest as very
different movement capabilities [8], lending customization
to be a desired feature. The aforementioned interfaces are
commercially available in part due to their limited custom-
ization options. For the joystick, handle interfaces can be
changed—for example to a T-bar for high cSCI individuals—
but this modification reduces the input space from 3-D to
2-D. Moreover, any 1-D or 2-D interface requires signi-
ficant mode switching when controlling high-dimensional
devices—furthering the cognitive load.

The BoMI provides an alternative solution to address
the dimensionality mismatch between ATs and their control
interfaces, while maintaining the capability of customization
to meet users where they are physically. The BoMI uses
sensors to capture and translate body motions to control
signals; common methods include capturing body kinematics
via Inertial Measurement Units (IMUs) or cameras, and
muscle signals via electromyography [4], [9], [10]. There is
preliminary evidence that BoMIs are able to issue sufficiently
high control signals to obviate the need for mode switching
during robotic arm operation [11].

III. BODY-MACHINE INTERFACE FITTING

We present in this section an evolution of three BoMI fitting
methods. In Method 1 (Sec. III-A), customization of the
BoMI focuses on sensor placement and selection from a
menu of vetted motion prompts. Motion prompts are body
motions that are collected during calibration to obtain the
parameters of the BoMI map, and which will be executed
to operate the robotic arm. Method 2 (Sec. III-B) is a
flexible approach, fitting the sensors and prompts based on
the movement capabilities of the participant.

A case study comparison of these two methods then
drives the development the third method. Method 3 (Sec. III-
C) is a prescriptive approach which combines input from
three parties—clinicians, BoMI engineers, and the user—in
a collaborative effort to customize the BoMI.

Our target population is individuals with cSCI with a
complete (ASIA A) lesion at C3-6 or an incomplete injury
(ASIA B, C, or D) lesion in the cervical cord. These are
individuals who have limitations in hand and manipulation
ability, but also the potential to execute six distinct upper-
body movements: that is, individuals who would benefit from
the use of an assistive robotic arm, and would potentially be
able to operate it without mode switching.

A. Method 1: Fixed Procedure
Method 1 fits a predetermined configuration of prompts and
sensor placements to a user. As a default, the shoulder
(up/down and forwards/backwards) and arm (elbow abduc-
tion/adduction) prompts are paired with empirically determ-
ined sensor placements limited to the shoulders (front/back)
and arms (upper/fore). These default prompts are chosen
as upper body joint motions that our target population are
expected to be able to perform [12].

With the user in their seated rest position, we record a data-
set as they execute the motion prompts. If the user is unable

to reproduce a prompt, we replace it with a head prompt—
defined as head up/down, left/right, up-right(UR)/down-
left(DL), up-left(UL)/down-right(DR), or tilt right/left. These
configurations are hypothesized to decrease the likelihood of
generating an invalid map—a map wherein the user does not
have access to all the required control dimensions.

B. Method 2: Flexible Procedure
Method 2 takes a flexible fitting approach to the BoMI that
does not use a default configuration; instead, the configura-
tion is defined via the range of motion (ROM) of the user.
The user undergoes a clinical evaluation which assesses areas
of the body to define the ROM. The results inform a fitting
with the user, clinicians, and experimenters.

The user is asked to perform common upper extremity
(UE) motions that they are expected to have access to based
on the results of the ROM exam. Experimenters select six
visually distinct movements—with visually appreciable mo-
tion and with limited similarity. Formally, these are motions
in which extremities follow a rotation around orthogonal
axes bisecting a common joint, which allow for conscious
isolation between the six motions during execution. IMUs
then are fit to the user’s UEs with placements able to record
the selected prompts.

C. Method 3: BoMI Customization Evaluation (BCE)
Method 3, the prescriptive approach, comprises two phases:
(1) physical examination and (2) collaborative fitting.

Physical Examination. The first phase is comprised of a
clinical evaluation protocol plus an evaluation framework
that categorizes cervical and UE movements based on poten-
tial sensor placements. This evaluation framework ultimately
facilitates the identification of viable sensor placements and
the assessment of the movement quality at each placement.
Clinical Protocol. The clinical evaluation incorporates meas-
urements of UE active range of motion (AROM) and utilizes
a modified version of the International Standards for Neuro-
logical Classification of Spinal Cord Injury (ISNCSCI) [12]
in an effort to provide insights into the users’ residual motor
abilities. The ISNCSCI provides an objective framework to
quantify injury levels, thereby facilitating consistent compar-
isons among users. To enhance user comfort and minimize
unnecessary procedures, modifications are made to the IS-
NCSCI, substituting the anal testing component with a self-
report questionnaire [13]. This study targets individuals with
injuries at or above the C8 level, so the sensory assessment
concludes at T2, while the motor assessment is unaltered.
Movement Categorization. The movement scoring frame-
work begins with a Manual Muscle Test (MMT) to the
cervical and bilateral UE regions, reflective of any movement
eligible for IMU placement. Unlike the MMT scale used in
the ISNCSCI, the 5-point MMT scale used is a variation that
is more sensitive to lower strength levels, which is relevant
data when selecting optimal sensor placement [14]. This
scale defines 0 as having no muscle contraction and 5 as
normal muscle contraction with full motion in a gravity plane
against maximum resistance. A score of 2 on the ISNCSCI



Fig. 1: Flowchart directing the sensor placement based on the movement score in each region.

MMT rubric requires full ROM in a gravity-eliminated plane,
while a score of 2 on the updated scale only requires some
motion. This provides a more nuanced scoring for someone
who does not have full ROM, typical of our target population.

The MMT motions are divided into categories based on
sensor placement, presented in Figure 1. For example, the
eligibility of a hand sensor placement is determined by
evaluating wrist flexion/extension, radial/ulnar deviation, and
forearm supination/pronation. If the MMT score is 2 or
greater for any movement in the sensor category, it qualifies
as a valid sensor placement.

Collaborative Fitting. In the second phase, the clinician
presents the list of valid sensor locations and the corres-
ponding movements with above-threshold MMT scores. The
BoMI developers choose six visually distinct movements:
with appreciable motion and limited similarity (as in Sec-
tion III-B). Experimenters ask the user to execute the prompts
and visually inspect if appreciable motion is achieved on
their body. The user then is asked if these prompts are
comfortable and non-strenuous. If the user responds ‘no’,
the prompt is either swapped out for an alternative high-
scoring motion prompt in the same region, or the user may
alter the execution of the motion to be within their comfort
level. Once the motions are finalized, developers pre-assign
each prompt to a specific robot control dimension.

IV. EXPERIMENTAL PROTOCOL

Here we overview the experimental protocol for case study
evaluations of BoMI fitting Methods 1 and 2, the results of
which motivate the creation of the BCE.

A. Participant Profile

We compare Methods 1 and 2 with respect to BoMI fitting
and operation by a 68 year-old male with a self-reported cSCI
injury level at C2. The onset of injury was approximately
4 years ago after suffering from a spinal stroke post heart
attack. Since his diagnosis, he uses a powered wheelchair
daily controlled by a T-bar joystick, and self-assesses being
‘comfortable’ controlling his device. Participant also self-
assesses experience controlling a wheelchair with a head

array, but ‘not experienced’ controlling a robotic arm. The
participant gave his informed, signed consent to participate
in the experiment which was approved by the Northwestern
University Institutional Review Board.
B. Hardware & Software
The experimental BoMI consists of 6 IMU sensors that
capture body motions predefined according to the fitting
procedure (Method 1 or 2). The 24-D quaternion signals
issued from the IMUs (q[1×24]) are mapped via supervised
learning to a 6-D robot end-effector control space (v[1×6] =
[ẋ, ẏ, ż, φ̇x, φ̇y, φ̇z]).

Specifically, a k-nearest neighbors classifier (k = 50) is
used to predict the probability of each of the pre-selected
prompts (Γ[1×6]) given the user’s movement as captured
by the IMUs (Algorithm 1). The robot control dimension
associated with the most likely prompt is selected for ex-
ecution. The magnitude of the robot motion is determined
from Principal Component Analysis (PCA) maps derived a
priori for each of the 6 prompts from the calibration data
(D , described in Section IV-D); the first principal axis of
the associated PCA map is used to determine the amplitude
of the control signal for the selected control dimension.

The IMUs are the x-io Technologies x-IMU3 (Bristol,
UK). The robotic arm is the 7-DoF UFactory xArm7 (Shen-
zhen, China) with associated ROS2 Humble packages. The
experimental pipeline runs on a Lenovo ThinkStation P3
Tower (64GB RAM, 13th Gen IntelTM Core i9-1300 x32
processor) running Ubuntu 22.04. Hardware is commanded
and data is logged using Open Robotics ROS2 Humble.
C. Data Collection
From fitting Method 1, we construct Configuration C1 (Fig-
ure 2). Sensor placements are front of the shoulders (1/2),
upper arms (3/4), and sides of the head (5/6). The prompts
and map to robot controls for C1 are: (1) Head R/L → x, (2)
R shoulder forwards/backwards → y, (3) R shoulder up/down
→ z, (4) L shoulder up/down → φx, (5) Head up/down → φy,
and (6) L shoulder forwards/backwards → φz.

From Method 2, we construct configuration C2 (Figure 2).
Sensor placements for this configuration are front of the



Fig. 2: Experimental setup showing the prompts and sensor placements for configuration 1 (C1) and configuration 2 (C2)

Algorithm 1 BoMI Mapping Using KNN and PCA

Input: 24-D quaternion input q[1×24] and D
Ouput: 6-D control signal v[1×6]

Step 1: Calibration (Offline)
for each motion prompt γi ∈ Γ[1×6] do

Derive PCA map PCAi from Di
end for
Step 2: Motion Prediction (Run-time)
Use k-nearest neighbors (KNN, k = 50) to predict the
probability vector

p = KNN(q) where p ∈ [0,1]1×6

Identify Highest Probability Index

i∗ = argmax
i

pi

Step 3: Compute Velocity Vector (Run-time)
Reduce the 24-D signal to 1-D using the first principal
axis of PCAi∗ :

a = q ·PCAi∗,1

Compute the final control signal:

v = [0, . . . ,a, . . . ,0]

↑
i∗th position

shoulders (1/2), upper arms (3/4), side of the head (5), and
top of the left hand (6). The prompts and map to robot
controls for C2 are: (1) Head R/L → x, (2) Head UR/DL
→ y, (3) head up/down → z, (4) L hand up/down → φx, (5)
L palm up/down → φy, and (6) L hand right/left → φz.

For this analysis, we focus on 4 study sessions: 3 sessions
under C1 (CS1

1 , CS2
1 , and CS3

1 ) and 1 session under C2

(CS1
2 ), which define the divide between the two different

fitting protocols. We focus on these sessions to highlight
the immediate effects of changing to a BoMI configuration
informed by a clinical evaluation. For the three C1 sessions,
each session occurred within 4 days of each other. The C2
session occurred 16 days later. This is due to the presence of
3 wash sessions (defined in Section IV-E) that occurred under
the C1 fitting method, in which the C1 map became unusable
as a result of physiological changes in the participant—
specifically, reduced ROM due to a gap in physical therapy.

D. Calibration

Each session begins with a calibration phase. The participant
executes directed motion prompts to generate the dataset D
for map computation. This is done in a cyclic fashion, where
each prompt is executed in sequence 6 times. A sequential
approach, in comparison to repeated iterations, is expected
to better reflect the control signals the user issues during
teleoperation, and also to mitigate the biased accumulation
of IMU drift across the recording (sampling at 50Hz).

E. 6-D GUI Validation

Next, a 6-D GUI task is used to validate the map—ensuring
that the participant has isolated control of each of the
required dimensions (Figure 3a). The GUI is a circular figure
divided into 6 equally spaced wedges with a different color
arc located in the center of the wedge [15]. Each arc begins
in a grey zone of the wedge which defines the deadzone of
the control space that maps to the bodily rest position of the
user. The colored arc moves in accordance to the magnitude
of the velocity control signal issued by the user and returns
to the deadzone when no signal is being issued.

To validate, the experimenter instructs the participant to
execute a body prompt. If the correct arc displaces in the
correct direction, the signal is considered valid. A valid
map is defined as the user being able to issue intended
and correct signals using the defined body motions in both
the positive and negative directions for the required control
dimensions, defined at a minimum to be 3-D translation. This
is conducted for all 6 prompts in each direction (+/-), for 12
distinct movements total.

Wash Sessions. If instead a direction is considered invalid—
incorrect or with no activation after repeated attempts—we
tare the BoMI: the participant returns to their self-defined
rest position, and we tare the IMU quaternions back to zero
to eliminate any drift accumulation that might have caused
poor GUI performance. We then revisit the invalid directions
and ask the participant to repeat the motion.

If the map is deemed invalid—incorrect or no activation
after repeated attempts in one or more of the required control
dimensions—the most recent valid map (from prior sessions)
is tested under the same protocol. If this map is valid, it is
used, otherwise the calibration protocol is executed again. If
the re-recorded map results in an invalid map, the session is
a wash and concludes without progressing further.



Fig. 3: Experimental setup where (a) shows the 6-D GUI validation task
and (b) shows the 3-D Dimensional Freezing task.

F. 3-D Dimensional Freezing (DF)

The 3-D Dimensional Freezing (DF) task is a training task
to teach users to command the robotic arm with the BoMI.
For each translation dimension, the user practices how to
independently move the robot end-effector in one dimension
at a time in a center-out-reaching fashion (Figure 3a). During
these reaches, the robot motion is restricted to only move in
the training dimension, effectively filtering out all spurious
BoMI commands and allowing only those that achieve mo-
tion in the intended robot dimension to pass through. We ask
the participant to complete 3 reaches in a row for each robot
control dimension.

G. Metrics

Expert Comparison. A common method used to evaluate
reaching tasks is to define an ‘expert’ or desired trajectory
and compare reaching trials [16]. To analyze the DF trials,
we define an expert trajectory for each center-out reaching
translation dimension. This expert trajectory is defined as
a time series of end-effector positions as a result of a
synthetic velocity control signal roll-out on the robot. For
all trajectories, a moving window average (N = 10) is used
to filter out mechanical noise from the profile of the end-
effector positions, sampled at 100 Hz.

We use Dynamic Time Warping (DTW) to quantify the
similarity between the participant trajectories and the expert
trajectory. DTW lends itself to being useful for comparing
time series profiles where events occur during a window of
time—this algorithm has been used to compare trajector-
ies [17]. We use the Fast Distance Dynamic Time Warping
method from the DTAIDistance Python package [18].

Trajectory Characteristics. We also examine a number of
trajectory characteristics. Three main characteristics we look
for in a reach are, relative to the end-effector start position,
(1) the presence of a departure path due to a positive velocity
signal, (2) a turnaround, and (3) a return path due to a
negative velocity signal. The presence of each indicate the
user, at a rudimentary level, is able to not only access all
areas of the control space for that dimension, but is also able
to purposefully elicit the correct sequence of commands that
would allow them to complete the task as asked.

We construct a scoring paradigm that looks for this se-
quence of events, or partial sequence at any point during
the reach. We assign a score of 1 if the characteristic: (1)
is present, (2) in the correct direction, and (3) occurs in the
proper sequence of events (departure→turnaround→return).

TABLE I: Summary of trajectory characteristics.

Characteristic CS1
1 −CS3

1 CS1
2

Departure 3.0 ± 0.0 3.0

Turn around 3.0 ± 0.0 3.0X Reaches

Return 3.0 ± 0.0 3.0

Departure 1.7 ± 1.2 3.0

Turn around 1.3 ± 1.2 2.0Y Reaches

Return 1.0 ± 0.8 2.0

Departure 2.3 ± 0.9 3.0

Turn around 2.0 ± 0.8 3.0Z Reaches

Return 1.0 ± 0.8 3.0

The characteristic otherwise is assigned a score of 0.

Cross-talk. We finally look to the raw signals issued by
the user during teleoperation. For every set of dimensional
reaches and each timestep of each reach, we count the
commands issued in every control dimension. This is to
analyze cross-talk—in which unintended control dimensions
are accessed due to prompt similarity.

With limited mobility, there are limited body sites to
choose from for the motion prompts. When a single mobility
site needs to be overloaded with multiple distinct motion
prompts, the possibility of cross-talk is present. This in-
troduces an optimization problem when fitting the BoMI,
wherein we choose sites to maximize movement activation
while minimizing crosstalk between prompts. An example of
cross-talk would be if a third motion prompt combines two
motion prompts off-axis (e.g., head up/down, left/right, and
up-right/down-left). Within the latent space of the map, the
user might have to pass through a region of one of the first
two prompts before reaching the more defined and separated
area of the third prompt, and within this region inadvertent
commands would be issued.

Map & Experimental Metadata. In addition to robot task
data, map and experimental metadata is considered to assess
how reliable the fit is between days. We measure this by
calculating (1) the percentage of wash sessions across all
sessions, (2) the average number of calibration recordings
per session, and (3) the number of modifications along with
the intensity of the modification.

V. RESULTS

We present the results of the metrics described in Section IV-
G; this includes results from the 3-D DF task and metadata
from the maps collected over the sessions.

A. Robot Task Results

Trajectory Characteristics. Table I summarizes the break-
down of the presence of each trajectory characteristic during
each session. The end-effector trajectories for the corres-
ponding reaches are shown in Figure 4.

Comparing the two fitting protocols, the y reaches improve
by greater than 50% under C2; notably, none of the charac-
teristics are present in CS3

1 . In z under C1 the participant has
difficulty obtaining a turn-around or return path; for these



Fig. 4: Comparison of robot end-effector positions for CS1
1 -CS3

1 and CS1
2 . Reaches under C1 are blue/green/purple, and under C2 are red, with the expert

trajectory in black. Motion prior to the first turnaround is presented as solid lines, and post turnaround as dashed lines. Start (yellow circle) and end (yellow
diamond) positions indicated for each trajectory. Reaches are offset for visibility: by 0.03m within a single session, and by 0.2m between sessions.

two characteristics, there is greater than 130% increase with
C2. By contrast, for the x reaches (unchanged dimension), the
presence of these characteristics is stable across all sessions
and configurations.

Expert Comparison. In Figure 5, we see the mean DTW
distance for each type of dimensional reach between C1
and C2. Comparing the two changed dimensions, y and z,
there is an immediate ∼45% reduction in the DTW distance
for each dimension (5.30 ± 1.02m to 2.84 ± 0.55m for y,
and 8.93 ± 1.44m to 5.04 ± 0.21m for z) following the
configuration change, CS3

1 and CS1
2 .

While not statistically significant (Wilcoxon non-
parametric statistical t-test), these reductions do indicate
that the changes in configuration positively impacted robot
operation performance. In the z dimension, performance
under C1 progressively erodes across sessions, while
performance in the y dimension is consistently inferior to
that under C2. All sessions under C1 furthermore display
higher variability than C2, in both dimensions y and z.

By contrast, for the unchanged x dimension, the DTW
averages were comparatively similar between C1 and C2

Fig. 5: Average DTW distance computed across reaches for CS1
1 -CS3

1 and
the CS1

2 . The blue-toned bars indicate sessions under C1 and the red-toned
bars indicate sessions under C2.

(0.31±0.01m and 0.38±0.06m, respectively), and are smal-
ler overall. These results underline the suitability of the BoMI
motion prompt affiliated with x dimension robot control, and
also confirm that the change from C1 to C2 did not impact
the operability of this motion prompt.

For C2 we also see the average distance traversed is com-
paratively closer to the expert reach, in each of dimensions
x (expert: 0.79m, C2 : 0.97± 0.08m, C1: 1.23± 0.32m), y
(expert: 0.74m, C2 : 0.45±0.24m, C1: 0.38±0.25m), and z
(expert: 1.15m, C2 : 1.15±0.08m C1: 0.54±0.34m).

Cross-talk. In Figure 6, we compare the commands issued
under configurations CS3

1 and CS1
2 . Specifically, for each

intended control dimension, we tally the number of (pos-
itive/negative) commands issued all control dimensions.

We see for C2, there is more cross-talk. This is not
surprising with C2 because the body prompt for y activation
(head UR/DL) is a combination of the body prompts for x
(head R/L) and z (head UP/DW). The user therefore likely
needed to pass through a latent space region corresponding
to x or z to reach y area. The body, specifically the upper
body, is highly coupled which means that cross-talk (between
prompts and, accordingly, control signals) is a natural feature
of the BoMI that users need to learn how to manage.

We also, however, see more correct y and z signals issued
under C2. These signals additionally are more balanced in the
ratio of positive to negative signals, indicating reliable access
to dimensions in both the positive and negative directions.

B. Map & Experimental Metadata

Our analysis so far has focused on 4 study sessions, to
dive deep into the impact of the configuration change from
C1 → C2. We now zoom out for a moment, and examine
metadata from all sessions with this participant, including
wash sessions and continued sessions with C2. The total
number of sessions is 17: 8 under C1 and 9 under C2.

Wash Sessions. Looking at all of the maps recorded over all



Fig. 6: Comparison of user signals commanded under C1 and C2. More
cross-talk between dimensions is evident in CS1

2 than CS3
1 , however the

signals in y and z also are more correct and more balanced. (No crosstalk
would have only a red bar in x, only a blue in y, and only a green in z.)

17 attempted sessions, for each configuration two metrics are
calculated: (1) percentage of wash sessions of the attempted
sessions and (2) average number of maps recorded per
session. With C1 we see 37.5% of the attempted sessions end
in a wash protocol; for C2 that number is 0.0%. The number
of recorded maps per session is reduced from an average of
1.9 recordings per session to 1.1 recordings per session. Both
of these metrics signal an informed approach to fitting the
BoMI results in a more reliable mapping mechanism that is
more robust to day-to-day variation. This not only eases the
burden on experimenters and clinicians, but also on the user.

Moreover, while the evaluation of the BCE protocol is
beyond the scope of this paper, we note that it has since
been deployed in a total of 67 sessions across 8 participants,
none of which has ended in a wash session.

Modifications. It is expected that unforeseen modifications
will need to be made to the BoMI between users, as modi-
fications made to ATs are not uncommon in the field [19].
Between C1 and C2, the physical and environmental modi-
fications made in order to get the BoMI to work on a given
day changed, including number and type.

Across all 17 sessions, we catalog 3 types of modi-
fications: (1) removing wheelchair armrests, (2) providing
limb support, and (3) restraining limbs. If the same type of
modification is applied to both sides of the body, we count
it as 2 modifications.

For C1, 4 modifications were applied: (1/2) removing
right/left armrest, and (3/4) restraining the right/left arm to
wheelchair armrest. There was also a lack of consistency in
whether a modification actually resulted in any appreciable
difference in the map validity. In comparison, the only
modification for C2 during the 9 attempted sessions was the

support of the left wrist to elevate the hand. This modification
not only was less invasive compared with modifications made
in C1, but also was applied to every session as it positively
impacted map validity.

VI. DISCUSSION

For this work, we consider both the quantitative robot task
data and the map metadata to provide insights into assessing
the fit of each configuration (Section VI-A). We also compile
our observations from this case study into guidelines for
those working with wearable interfaces similar to the BoMI
on individuals with cSCI (Section VI-B). Our on-going and
future work will continue to evaluate the BCE, in a multi-
session user study with the cSCI population.

A. Quantitative Results

This case study marks a milestone in the experimental
development for properly fitting the BoMI. When trying to
implement Method 1 on an AROM-restricted participant, the
interface was unreliable and, at times, completely unusable.
Once we took a flexible approach with Method 2, we not
only saw immediate improvement in the day-to-day fitting
and calibration process, but we also saw improvement in
robot task performance. The inconsistencies and low yield
of desired characteristics in the y and z dimensions in the
DF task improved immediately in the first session with C2.

It is suspected that motor learning of the interface was
not the cause of this improved performance: in Figure 5,
CS1

1 →CS3
1 in fact was moving farther away from the expert

trajectory, prior to the switch to C2. The lack of statistical
significance in these results is hypothesized to be due to a
small sample size (N = 3). Finally, the consistent trajectory
characteristics across the x reaches indicated the x dimension
was properly fitted from the beginning.

B. cSCI Wearable Considerations

The AT field expects modifications to fully meet the user.
The reliability of these modifications requires an open dialog
between clinicians, developers, and the user. The flexibil-
ity built into our mapping paradigm, taring protocol, and
choice of hardware are vital to meeting these needs. The
mapping paradigm has parameters, such as deadzone size, to
algorithmically tune the sensitivity per participant. The taring
protocol is the key to combating drift accumulation in the
IMUs, which becomes even more vital when working with
the relatively low-variance samples enacted by lower-ROM
movements. The use of appropriate hardware and filtering
methods enables the capture of these low-variance signals, in
turn allowing for accurate mapping. These three components
introduce robustness into a system that interfaces with a
population with high physiological variability.

The need for stability in the user/device relationship is
all the more pressing when any physical instability will
manifest in the interface; because the stability of a wearable
interface is tied to the stability of the user’s body. Creating
a system that is robust to instabilities results in a more
learnable system by minimizing stochastic components of
the user map. For example, our cSCI population requires



frequent pressure breaks and additional personal needs that
cause changes in the position of the IMU and overall postural
positioning. The user should be able to do these things, re-
tare the interface, and resume operation as normal. Artifacts
such as cross-talk, a present and unavoidable consequence of
working with a population with limited sites for appropriate
sensor placement, becomes more predictable and learnable
to the user when the system is reliable and robust.

VII. CONCLUSIONS

The value of designing ATs that are inherently customizable
lies in their ability to meet the diverse needs of individuals
with varied motor abilities. Traditional interfaces to control
ATs often fail to address the full spectrum of user needs
due to their fixed design, which limits adaptability and
accessibility. We have presented an evolution of protocols
that fit a Body-Machine Interface (BoMI) to a person with
cervical spinal cord injury (cSCI) for the purpose of 6-D
robotic arm control. A case study comparison of the first
two protocols has demonstrated the benefit of introducing
flexibility into the fitting protocol, with improvements in
the day-to-day fitting and calibration process as well as
in robot task performance. We also have introduced the
BoMI Customization Evaluation (BCE): a user-centric fitting
approach that includes a clinical evaluation and combines
input from three parties—clinicians, BoMI developers, and
the user—in a collaborative effort to customize the BoMI to
ensure that both the clinical and functional requirements of
the technology are met. The evaluation of the BCE within
a multi-session study with cSCI users is on-going, with
promising preliminary results.
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