Correlated Stochastic Block Models: Exact Graph Matching with Applications to Recovering Communities

Miklós Z. Rácz
Princeton University, ORFE Department

Anirudh Sridhar
Princeton University, Electrical and Computer Engineering Department

Q: How can information from multiple correlated networks improve community recovery algorithms?

Example: Correlated Social Networks

Users have similar but not identical information across networks

Correlated Networks

Mathematical model: Correlated Stochastic Block Models

Graph Matching / Network Alignment

Step 1: Graph Matching / Network Alignment

Step 2: Network Synthesis

Step 3: Find communities in the synthesized network

Recovering communities from correlated networks

Objectives

Exact Community Recovery: When can we exactly recover the community labels \(s_i \) from \((G_1, G_2) \)?

Prior work: Phase transition in the log-degree regime \([1,2]\)

Exact recovery is possible

Exact recovery is information-theoretically impossible

Exact graph matching: When can we exactly recover the alignment \(\pi \) from \((G_1, G_2) \)?

Prior work: Phase transition in the log-degree regime \([3]\)

Exact recovery is possible

Exact recovery is information-theoretically impossible

Theoretical analysis:

If \(\pi = \pi^* \), synthesized network is \(SBM(n, p, q') \)

Then

\[p' = a \left(1 - \frac{a}{2} \right) \frac{np}{n} \]

\[q' = a \left(1 - \frac{a}{2} \right) \frac{np}{n} \]

Exact community recovery possible from \((G_1, G_2) \) but not from \(G_1 \) or \(G_2 \) if

\[\sqrt{\frac{2}{1 - \frac{a}{2}}} > 1 \]

\[\sqrt{\frac{2}{1 - \frac{a}{2}}} < 1 \]

Citations

This work was supported in part by NSF Grant DMS 1811724.