A New Approach to Robust Stability of Multiclass Queueing Networks
Feiyang Zhao1, Dr. John Hasenbein3, Dr. Itai Gurvich2

The University of Texas at Austin1, Northwestern University2

Robust Stability
- Robust stability / Policy robustness
- Multiclass queueing networks
- Central design & decentralized control
 - Manage network parameters to ensure nothing bad happens
 - Each station is free to choose some policy parameters
- Focus on family of “fixed queue-ratio” policies
 - Aim: distribute a station’s workload among queues according to
 fixed ratios (collected in matrix Δ)
 - Special case: static-priority policy; longest-queue policy

Question:
What are the sufficient conditions for robust stability?

A Hierarchical Approach to Stability

Stability: ([1] Dai 1995)

The queueing network is stable if the fluid model is attracted to the origin in finite time.

Observation: (formalized in [2] Delgado 2010)

This question of attraction to the origin can be decomposed into:
- The time the fluid model reaches state space collapse (SSC)
- The time until the Skorohod problem (SP) reaches the origin

- Full fluid model
 - 6-dimensional process (track workload of each class)
 - reach the proportions

- SSC
 - 3-dimensional process (track workload of each station)

- SP stability?

Network Primitives

Reflection matrix R: $R^{-1} = CMQ\Delta$

\begin{itemize}
 \item $M = \text{diag}(m_1, m_2, \ldots)$
 \item $m_k = \text{mean service time of class } k$
\end{itemize}

\begin{itemize}
 \item P_{ki}: probability that class k job becomes a class i job upon completion of service
 \item Δ_{kl}: queue-ratio matrix
 \item δ_k: if class k is served in station j: $\Delta_{kj} = 0$, otherwise
\end{itemize}

By the nominal workload, ratios satisfy $\sum_{k \in E(i)} m_k \delta_k = 1$

Stability via the Skorohod Problem [3] Theorem 2.5 (Chen 1996)

Assume that R is completely-S, and let $\theta = R(p - \psi)$. Then the Skorohod problem is attracted to the origin if there exists a positive vector $\bar{h} \in R^j$ such that given any partition (a, b) of J, $h_{-a}^{\top} \theta_b + R_{a,b} \Delta \bar{h} < 0$

for all $u \in \{v \in R^{|J|}; \theta_b + R_{a,v} \bar{v} = 0\}$. Call this property as Chen-S

Robust Skorohod Problem Stability

Main Result: “Convexity” in Policy

Theorem 1 Suppose:

(i) For all static priority Δ, $R_{a}^{-1} = CMQ\Delta$ is invertible with same-sign determinant;

(ii) For all static priority Δ, $(R_{a}^{*})_{ab}$ is Chen-S.

Then, $\Delta_{a,b}^{*}$ is invertible and $(R_{a}^{*})_{ab}$ is Chen-S for any matrix Δ.

DHV network: 8 static priority policies

References

Robust Skorohod Problem Stability

- Formulate an optimization problem to determine if Chen-S holds for fixed Δ. Chen-S holds if optimal value > 0.
- Require significant analysis of the structure of R.

$P(\lambda) = \max_{\lambda > 0} \frac{\lambda}{\lambda - 1}$

Uncertainty set: family of values that Δ can obtain

Theorem 2 “Line Convexity”

For any Δ_1 and Δ_2 that differ only in one station, if $(R_{a1}^{*}, \theta_{a1})$ and $(R_{a2}^{*}, \theta_{a2})$ are both Chen-S, then, for $\Delta = \lambda \Delta_1 + (1 - \lambda) \Delta_2$ with $\lambda \in (0,1)$, $(R_{a}^{*})_{ab}$ is also Chen-S.

Example: An Unbalanced DHV Network

$a = 0.8111$ (exogenous arrival rate)

$m_1 = 0.1, m_4 = 0.65$

$m_2 = 0.8, m_5 = 0.1$

$m_3 = 0.1, m_6 = 0.4$

* If Δ_1 and Δ_2 differ only in one station, then the segment between them is parallel to the axis.

* The region of Δ is a cuboid.

Example: Balanced DHV Networks

$m_1 + m_4 = 1, m_2 + m_5 = 1, m_3 + m_6 = 1$

Robust State-Space Collapse (SSC)

Condition X

\begin{itemize}
 \item All internal points (any fixed queue-ratio policies) have SSC
 \item Corner points (static priority policies) have SSC
\end{itemize}

For balanced DHV network, we can get SSC for any Δ if $m_1 + m_4 + m_6 < 2$