Matching Queues with Abandonments in Quantum Switches: Throughput Analysis

Martin Zubeldia, Prakirt R. Jhunjhunwala, Siva Theja Maguluri

GEORGIA TECH

MOTIVATION: QUANTUM SWITCHES

- Operate in discrete time
- Maximally entangled qubits (Bell pairs) between the switch and each node are generated at a steady rate, and stored in a local quantum memory
- Stored qubits lose coherence after a random amount of time, and are lost
- Upon request, two nodes are connected by using a two-qubit Bell-state measurement between pairs of locally stored qubits

Connections are generated as matchings!

STYLIZED MODEL: THE ‘W’ TOPOLOGY

\[\begin{array}{c}
\lambda_1 & R_1(\cdot) & Q_1(\cdot) & \gamma & \mu_1 \\
\lambda_2 & R_2(\cdot) & Q_2(\cdot) & \gamma & \mu_2 \\
\end{array} \]

- Connection requests \(R(\cdot) \): Arrive as i.i.d. process \(A(\cdot) \) of rate \(\lambda_1 \)
- Entangled qubits \(Q(\cdot) \): Generated as i.i.d. processes \(S_j(\cdot) \) of rates \(\mu_j \)
- Decoherence: Stored qubits are lost after \(\sim \text{Geo}(\gamma) \) units of time
- Matchings: Pairs of stored qubits are matched with a request

Qubits of 2nd type have a choice of which matching to make!

MARKOV CHAIN MODEL

- Discrete-time Markov chain \((R(\cdot), Q(\cdot)) \in \mathbb{N}^2 \times \mathbb{N}^1 \)
- Recursive definition:
 \[\begin{align*}
 R(t+1) &= R(t) + A(t) - M(t) \\
 Q(t+1) &= Q(t) - D(t) + S(t) - M(t)
 \end{align*} \]
 where
 - \(D(t) \sim \text{Ber}(Q(t), \gamma) \) are the number of abandonments
 - \(M(t) \) are the number of matchings
- Matching policies: Use a randomized control signal \(X(t) \in \{0,1\} \)
 - If \(X(t) = 0 \) \(\Rightarrow \) Connections of 1st type have preference
 - If \(X(t) = 1 \) \(\Rightarrow \) Connections of 2nd type have preference
 - All possible matchings are created ("non-idling")

MATCHINGS:

- Discrete-time Markov chain \((R(t), Q(t)) \)
- Recursive definition:
 \[\begin{align*}
 R(t+1) &= R(t) + A(t) - M(t) \\
 Q(t+1) &= Q(t) - D(t) + S(t) - M(t)
 \end{align*} \]
 where
 - \(D(t) \sim \text{Ber}(Q(t), \gamma) \) are the number of abandonments
 - \(M(t) \) are the number of matchings
- Matching policies: Use a randomized control signal \(X(t) \in \{0,1\} \)
 - If \(X(t) = 0 \) \(\Rightarrow \) Connections of 1st type have preference
 - If \(X(t) = 1 \) \(\Rightarrow \) Connections of 2nd type have preference
 - All possible matchings are created ("non-idling")

MAX-WEIGHT POLICY

\[X(t) = \begin{cases}
0, & \text{if } R(t) > R_2(t) \\
\text{Ber}(1/2), & \text{if } R(t) = R_2(t) \\
1, & \text{if } R(t) < R_2(t)
\end{cases} \]

COMpletely backlogged (\(R(\cdot) = R_2(\cdot) = \infty \))

- \(Q_2(\cdot) \) and \(Q_3(\cdot) \) behave as 2-sided queue with abandonments
- Total throughput \(C_{1,2} \)
- Throughput of type \(i \) requests \(\in \lceil C_i, \infty \rceil \)

PARTIALLY backlogged (\(R_2(\cdot) = \infty \))

- \(\lambda_2 < C_2 \Rightarrow (R(\cdot), Q(\cdot)) \) is positive recurrent
- Throughput of type \(2 \) (backlogged) requests \(\in \lceil C_2, \infty \rceil \)

THEOREM: STABILITY REGION

\[\lambda_1 + \lambda_2 = C_{1,2} \]

THEOREM: FLUID LIMIT

Fix \(T > 0 \), and \(r^0 \in \mathbb{R}_+^2 \) with \(\|r^0\|_1 > 0 \). If \(\|Q(0)\|_1 = 0 \) and
\[\lim_{n \to \infty} \frac{1}{n} \left\| \sum_{t=0}^{n-1} R(t) - r^0 \right\|_1 = 0, \quad \text{a.s.,} \]
then
\[\lim_{n \to \infty} \sup_{t \in [0,T]} \left| \frac{1}{n} \left(R(nt) - r(t) \right) \right|_1 = 0, \quad \text{a.s.,} \]
where \(r(\cdot) \) is the unique fluid solution with initial condition \(r^0 \).

TRANSIENT OF STABLE FLUID LIMITS

CONCLUSIONS

- Completely backlogged systems not representative of throughput
- Abandonments generate counter-intuitive transient behaviors