Tele-Driving

Tele-driving refers to a novel concept where drivers can remotely operate vehicles (without being physically in the vehicle).

Examples of companies built around tele-driving technology

- Vay
- Starship
- Einride

Advantages of Tele-Driving

- Remote drivers can be treated as a common resource (the system could operate with fewer drivers than vehicles)
- Tele-driving could reduce inefficiencies associated with drivers acting strategically and increase driver utilization
- Tele-driving could eliminate discriminatory behavior by the drivers and increase the safety of both drivers and riders

Ride-Hailing with Tele-Drovers

- A ride-hailing platform operates with \(m \) vehicles and \(n \) remote drivers with \(m \geq n \) (\(m = n \) is equivalent to a traditional ride-hailing system)
- To serve a customer, the platform assigns an idle remote driver to the vehicle that is nearest to the origin of the customer request
- The driver takes over the control of the vehicle and drives it remotely to pick up the customer and then transport the customer to her destination

Tele-driving could operate with both drivers and riders

A Spatial Queueing Model

- Demand process: Poisson process with rate \(\lambda \) where origin-destination pairs associated with each requested trip are uniformly distributed over the service region.
- Service times: state-dependent exponential distribution with rate \(\mu(q) \) which satisfies

\[
\frac{1}{\mu(q)} = \frac{s}{\sqrt{m - q} + 1} + s,
\]

where \(q \) is the number of customers being served and \(s \) is the expected travel time between two uniformly drawn locations. Note that \(q \leq n \), where \(n \) is the number of drivers (servers).

Results

Depending on the number of vehicles relative to the workload, the system can be in one of three regimes: a supply-limited regime, an intermediate regime, and a supply-rich regime.

Impatient customers

- Supply-limited regime: reducing the number of drivers can lead to a higher service level (the improvement can be significant)
- Intermediate regime: reducing the number of drivers can similarly lead to a higher service level (the improvement can be insignificant)
- Supply-rich regime: although reducing the number of drivers always leads to a lower service level, the decrease in service level can be small even when the decrease in the number of drivers is significant (asymptotically, this decrease is at least a half)

Patient customers

- Supply-limited regime: the system, regardless of the number of drivers is unstable (customer delay is not finite)
- Intermediate regime: reducing the number of drivers can make a system that is otherwise unstable stable
- Supply-rich regime: it is possible to significantly decrease the number of drivers while only marginally increasing customer delay (asymptotically, this decrease is at least a half)

An intuitive explanation:

1. Having fewer drivers reduces "service time": pick-up time decreases with the number of idle vehicles and having fewer drivers than vehicles reduces pick-up times
2. Having fewer drivers reduces the number of "servers":

The relative strength of these two counteracting forces crucially depends on the number of vehicles relative to workload.

- When the system is short on vehicles, the effect of shorter pick-up times is strong
- When the number of vehicles is large, the effect of shorter pick-up times is weak

Numerical Results with New York City Data

- We use TLC data, which includes the GPS coordinates of pick-up and drop-off times and locations, to approximate the customer arrival process.
- A rider is matched with the nearest vehicle (in terms of travel time).
- The pickup time is approximated by the travel time along the shortest path, and the service time is approximated by the trip time from the TLC data.

Numerical results using NYC taxi data

- In the supply-limited regime (panel (a)), a system with remote drivers can improve service level by 20.7%.
- In the supply-rich regime (panel (b)), a system with remote drivers can reduce the number of drivers by 42% while maintaining a similar service level.