Many-SERVER ASYMPTOTICS FOR JSQ in Super-Halfin-Whitt Regime Zhisheng Zhao ${ }^{\text {® }}$
 Georgia Institute of Technology

Model: Parallel Queueing System

- Single dispatcher: tasks arriving as a Poisson process of rate $\lambda(N)$,

$$
\lambda(N)=N-\beta N^{-1 / 2+\varepsilon},
$$

where $\beta>0$ and $\varepsilon \in(0,1 / 2)$;

- Incoming tasks must immediately be sent to one of the queues under the Joint-the-

Shortest Queue (JSQ) policy;

- \mathbf{N} servers working at unit rate, service requirements are exponential.

State Description and Notation

- $S^{(N)}(t)$: the total number of tasks at time t in the N-th system;
- $Q_{i}^{(N)}(t)$: the number of servers with at least $i \in \mathbb{N}_{0}$ tasks at time t in the N-th system;
- $I^{(N)}(\cdot)=N-Q_{1}^{(N)}(\cdot)$: the idle process of the N-th system;
- $A(\cdot)$ and $D(\cdot)$ are independent Poisson processes with unite rate;
- $W(\cdot)$: the standard Brownian motion;
- Define a centered and scaled process

$$
X^{(N)}(t):=\frac{S^{(N)}\left(N^{2 \varepsilon} t\right)-N}{N^{1 / 2+\varepsilon}} .
$$

Literature Review

Main Results

Process-level convergence

With appropriate assumptions on $S^{(N)}(0), Q_{i}^{(N)}(0), \forall N, i \in \mathbb{N}_{0}$, for any finite $T>0$, $X^{(N)}(\cdot)$ weakly converges to $X(\cdot)$ uniformly on $[0, T]$, where $X(\cdot)$ is the solution of the SDE:

$$
\begin{equation*}
d X(t)=\left(\frac{1}{X(t)}-\beta\right) d t+\sqrt{2} d W(t) \tag{1}
\end{equation*}
$$

Remark: The SDE in (1) is a Langevin diffusion so it is ergodic and has a unique stationary distribution $\pi \sim \operatorname{Gamma}(2, \beta)$, having p-th moment $\Gamma(p+2) / \beta^{p}$.

Stationary distribution of the N -system

There exist constants C_{1}, C_{2} and B such that for large enough N,

$$
\mathbb{P}\left(X^{(N)}(\infty) \geq x\right) \leq \begin{cases}C_{1} \exp \left\{-C_{2} x^{1 / 5}\right\}, & 4 B \leq x \leq 2 N^{\frac{1}{2}-\varepsilon}, \tag{2}\\ C_{1} \exp \left\{-C_{2} x^{1 / 44}\right\}, & x \geq 2 N^{\frac{1}{2}-\varepsilon}\end{cases}
$$

Moreover, $\sup _{N \geq 1} \mathbb{E}\left[N^{-\frac{1}{2}-\varepsilon} Q_{2}^{(N)}(\infty)\right]<\infty, \mathbb{E}\left[N^{-\frac{1}{2}+\varepsilon} I^{(N)}(\infty)\right]=\beta$ for large enough N, and $\sum_{i=3}^{\infty} Q_{i}^{(N)}(\infty) \xrightarrow{P} 0$ as $N \rightarrow \infty$.

Interchange of limits

Let $X^{(N)}(\infty)$ be the stationary distribution of the scaled process $X^{(N)}(\cdot)$ in the N-th system. The sequence of random variables $\left\{X^{(N)}(\infty)\right\}_{N \geq 1}$ converges weakly to the Gamma $(2, \beta)$ distribution as $N \rightarrow \infty$.

Remark: The interchange of limits holds:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \lim _{N \rightarrow \infty} X^{N}(t)=\lim _{N \rightarrow \infty} \lim _{t \rightarrow \infty} X^{N}(t) \sim \operatorname{Gamma}(2, \beta) . \tag{3}
\end{equation*}
$$

Remark: The centered and scaled total number of tasks in steady state is distributed as thesum of two independent exponential random variables for the JSQ policy, as opposed to a single exponential random variable in the $\mathrm{M} / \mathrm{M} / N$ case.

Proof Scheme

Martingale representation

$$
\begin{align*}
& X^{(N)}(t)-X^{(N)}(0)=N^{-\frac{1}{2}-\varepsilon}\left[A\left(N^{1+2 \varepsilon} \lambda_{N} t\right)-D\left(\int_{0}^{N^{2} t}\left(N-I^{(N)}(s)\right) d s\right)\right] \\
& =\mathcal{M}_{A}^{(N)}\left(\lambda_{N} t\right)-\mathcal{M}_{D}^{(N)}\left(t-\frac{1}{N^{1+2 \varepsilon}} \int_{0}^{N^{2} t} I^{(N)}(s) d s\right) \\
& +\frac{1}{N^{\frac{1}{2}+\varepsilon}} \int_{0}^{N^{2 \varepsilon} t} I^{(N)}(s) d s-\int_{0}^{t} \frac{1}{X^{(N)}(s)} d s \tag{4}\\
& -\beta t+\int_{0}^{t} \frac{1}{X^{(N)}(s)} d s \tag{5}\\
& \text { where } \mathcal{M}_{H}(t)=\frac{H\left(N^{1+2 \varepsilon} t\right)-N^{1+2 \varepsilon} t}{N^{\frac{1}{2}+\varepsilon}}, H=A, D \text {. }
\end{align*}
$$

Analysis of the process $I^{(N)}$

For the proof of $(4) \Rightarrow 0$, the main idea is to approximate each excursion of $I^{(N)}$ by M/M/1 queues. Consider an excursion during $\left[\sigma_{1}, \sigma_{2}\right] \subseteq[0, T]$ (i.e., $I^{(N)}(t)>0, t \in\left(\sigma_{1}, \sigma_{2}\right)$, and $\left.I^{(N)}\left(\sigma_{i}\right)=0, i=1,2\right)$. We have

$$
\sup _{t \in\left[\sigma_{1}, \sigma_{2}\right]}\left|S^{(N)}(t)-S^{(N)}\left(\sigma_{1}\right)\right|=o\left(N^{1 / 2-\varepsilon}\right) \text { and } \sup _{t \in\left[\sigma_{1}, \sigma_{2}\right]} I^{(N)}(t)=o\left(N^{1 / 2-\varepsilon}\right)
$$

Hence, each excursion of $I^{(N)}$ can be bounded by two M/M/1 queues $\bar{I}_{l}^{(N)}$ and $\bar{I}_{u}^{(N)}$ such that with natural coupling, $\bar{I}_{l}^{(N)} \leq I^{(N)} \leq \bar{I}_{u}^{(N)}$, and

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{\frac{1}{2}+\varepsilon}} \int_{\sigma_{1}}^{\sigma_{2}}\left|\bar{I}_{u}^{(N)}(s)-\bar{I}_{l}^{(N)}(s)\right| d s=0 .
$$

Renewal representation of stationary measure

Let the initial state of the N-th system be

$$
\left\{I^{(N)}(0)=0, Q_{2}^{(N)}(0)=\left\lfloor 2 B N^{\frac{1}{2}+\varepsilon}\right\rfloor, Q_{3}^{(N)}(0)=0\right\},
$$

where $B>0$ is appropriately selected. Let $\Theta^{(N)}$ be the next renewal time point, i.e. at time $\Theta^{(N)}$, the system backs to the initial state. Define

$$
\pi\left(X^{(N)}(\infty) \in A\right)=\frac{\mathbb{E}_{\left(0,\left\lfloor 2 B N^{\frac{1}{2}+\varepsilon}\right], 0\right)}\left(\int_{0}^{\Theta^{(N)}} \mathbb{1}\left(X^{(N)}(\infty) \in A\right) d u\right)}{\mathbb{E}_{\left(0,\left\lfloor 2 B N^{\frac{1}{2}+\varepsilon}\right\rfloor, 0\right)}\left(\Theta^{(N)}\right)}
$$

$\Theta^{(N)}$ can be analyzed by two parts: down-crossing and up-crossing.
From (4) and (5), we have a drift term of $X^{(N)}$:

$$
\begin{equation*}
\frac{1}{N^{\frac{1}{2}+\varepsilon}} \int_{0}^{N^{2 \varepsilon} t} I^{(N)}(s) d s-\beta t . \tag{6}
\end{equation*}
$$

Down-crossing. When $Q_{2}^{(N)}: 2 B N^{\frac{1}{2}+\varepsilon} \rightarrow B N^{\frac{1}{2}+\varepsilon}, I^{(N)} \leq \bar{I}_{B}^{(N)}$ where $\bar{I}_{B}^{(N)}$ is an M/M/1 queue with increase rate $N-B N^{\frac{1}{2}+\varepsilon}$ and $\frac{1}{N^{\frac{1}{2}+\varepsilon}} \int_{0}^{N^{2} \varepsilon t} \bar{I}_{B}^{(N)}(s) d s-\beta t<0$ w.h.p. so the drift (6) would be negative w.h.p..

	Increase rate of $I^{(N)}$	$Q_{2}^{(N)}>B N^{\frac{1}{2}+\varepsilon}$
$I^{(N)}$	$Q_{1}^{(N)}$	

Fig. 1: Down-crossing
Up-crossing. The key observation is that if the system starts with the state in Fig 2, then the probability that $Q_{2}^{(N)}$ hits $2 B N^{\frac{1}{2}+\varepsilon}$ within $N^{2 \varepsilon}$ is a constant independent on N. This leads to a geometric number of such excursions required for $Q_{2}^{(N)}$ to hit the level $2 B N^{\frac{1}{2}+\varepsilon}$.

Fig. 2: Up-crossing $\left(c(N)<2 \beta N^{1 / 2-\varepsilon}\right)$

References

[1] Patrick Eschenfeldt and David Gamarnik. "Join the shortest queue with many servers. The heavy trafficasymptotics". In: Math. Oper. Res. 43.3 (2018), pp. 867-886.
[2] Varun Gupta and Neil Walton. "Load balancing in the nondegenerate slowdown regime". In: Oper. Res 67.1 (2019), pp. 281-294.
[3] Daniela Hurtado-Lange and Siva Theja Maguluri. "Load balancing system under Join the Shortest Queue: Many-server-heavy-traffic asymptotics". In: arXiv:2004.04826 (2020).
[4] Xin Liu and Lei Ying. "A simple steady-state analysis of load balancing algorithms in the sub-Halfin-Whitt regime". In: ACM SIGMETRICS Perform. Eval. Rev. 46.2 (2019), pp. 15-17.
[5] Xin Liu and Lei Ying. "Universal scaling of distributed queues under load balancing in the super-HalfinWhitt regime". In: IEEE/ACM Trans. Netw. 30.1 (2022), pp. 190-201.
6] Debankur Mukherjee et al. "Universality of power-of-d load balancing in many-server systems". In: Stoch Syst. 8.4 (2018), pp. 265-292.

