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Model: Parallel Queueing S

Proof Scheme

e Single dispatcher: tasks arriving as a Poisson process of rate A(/V)
)\(N) — N — 6]\7—1/24-87

)

where 5 > 0 and € € (0,1/2);

e Incoming tasks must immediately be sent to one of the queues under the Joint-the-
Shortest Queue (JSQ) policy;

e N servers working at unit rate, service requirements are exponential.

State Description and Nota

o SW(¢): the total number of tasks at time ¢ in the N-th system;

. QZ(-N) (): the number of servers with at least ¢ € Ny tasks at time ¢ in the N-th system;
o /N() =N — ng(-): the idle process of the N-th system;

e A(-) and D(-) are independent Poisson processes with unite rate;

o IV (-): the standard Brownian motion;

e Define a centered and scaled process

SWNI(N%t) — N

(N) —
X (t) T N1/2+e
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Tab. 1: Analysis of JSQ in various regimes (o =1/2 — ¢)

Main Results

Process-level convergence
With appropriate assumptions on S™N)(0), QZ(-N)(O), VN,i € Ny, for any finite T' > 0,
XWMN() weakly converges to X (+) uniformly on [0, T], where X (-) is the solution of the

SDE:
1

dX (1) = ( <0 5) dt + V2dW (t). (1)

Remark: The SDE in (1) is a Langevin diffusion so it is ergodic and has a unique stationary
distribution m ~ Gamma(2, ), having p-th moment I'(p + 2)/4P.

Stationary distribution of the /NV-system
There exist constants Cy, Cy and B such that for large enough N,

) < {Cl exp{ — 02Z1/5}, 1B < x < QN%_e,

P(XN(c0) > )
( (00) 2 @ C exp{ — C’Qazl/44}, x> 2N2"°,

(2)

Moreover, supys; E {N_%_gQgN)(oo)} < oo, E {N_%%[(N)(oo)} = B for large enough
N, and > ", QZ(-N)(OO) 20 as N — o0.

Interchange of limits

Let XW)(00) be the stationary distribution of the scaled process XV)(-) in the N-th
system. The sequence of random wvariables {X<N>(oo)}N>1 converges weakly to the
Gammal(2, 8) distribution as N — oo. -

Remark: The interchange of limits holds:
lim lim XV (¢) = lim lim X" (¢) ~ Gamma(2, B). (3)

t—o00 N—o0 N—=00 t—00

Remark: The centered and scaled total number of tasks in steady state is distributed as
thesum of two independent exponential random variables for the JSQ) policy, as opposed
to a single exponential random variable in the M/M/N case.
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Martingale representation

X(N)(t> _ X(N)(O) _ N3¢ A(N1+25)\Nt) _ D(/Nzgt(N _ [(N)(S))dS)

v v 1 N28t
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where MH(t> _ [‘](]\71+26t)—Nl+25t7 - A) D

N%—I—s
Analysis of the process /")
For the proof of (4) = 0, the main idea is to approximate each excursion of 7WY) by M/M/1
queues. Consider an excursion during [0y, 0] C [0, 7] (i.e., I™V)(¢) > 0, t € (01, 02), and
IM(5;) =0, i =1,2). We have
sup |S™M() — SW(gy)| = o( N2 %) and  sup I™M(t) = o( NY/279)

t€loy,09] t€loy,09]

Hence, each excursion of I'")can be bounded by two M/M/1 queues [_Z<N) and I.") such
that with natural coupling, ]_Z(N) < W) < ]_@(LN), and

1 o _
lim / TN (5) — TN (4)|ds = 0.

1
N—oo N2t [,

Renewal representation of stationary measure
Let the initial state of the N-th system be

{1V(0) = 0,Q5"(0) = [2BN=], Q5 (0) = 0},

where B > 0 is appropriately selected. Let ©YY) be the next renewal time point, i.e. at

time ©OW) the system backs to the initial state. Define

)

E 1 (f@ 1(XWM(0) € A)du)
(N) 7 (0,[2BN27F],0) 0

T( X (0) € A) = )(@(N)) .

IEf’(o, 2BNZ*| 0

OW) can be analyzed by two parts: down-crossing and up-crossing.
From (4) and (5), we have a drift term of X@V);

| N2t .
1 IV (s)ds — pt. 6
N2+5/o (5) (6)
Down-crossing. When QgN) . 9BN2te — BN%+€, W) < I_gv) where ]—g\f) is an M/M/1

1 N jgv)(g)ds — 6t < 0 w.h.p. so the drift

- 1
queue with increase rate N — BNz and T Jo
5 €

(6) would be negative w.h.p..

Fig. 1: Down-crossing

Up-crossing. The key observation is that if the system starts with the state in Fig 2, then
the probability that QgN) hits 2BN2t within N% is a constant independent on /NV. This

leads to a geometric number of such excursions required for QéN) to hit the level 2BNz*.

B

Fig. 2: Up-crossing (¢(N) < 25]\71/2_8)
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