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Model: Parallel Queueing System

• Single dispatcher: tasks arriving as a Poisson process of rate λ(N),

λ(N) = N − βN−1/2+ε,

where β > 0 and ε ∈ (0, 1/2);

• Incoming tasks must immediately be sent to one of the queues under the Joint-the-
Shortest Queue (JSQ) policy;

•N servers working at unit rate, service requirements are exponential.

State Description and Notation

•S(N)(t): the total number of tasks at time t in the N -th system;

•Q(N)
i (t): the number of servers with at least i ∈ N0 tasks at time t in the N -th system;

• I (N)(·) = N −Q(N)
1 (·): the idle process of the N -th system;

•A(·) and D(·) are independent Poisson processes with unite rate;

•W (·): the standard Brownian motion;

• Define a centered and scaled process

X (N)(t) :=
S(N)(N 2εt)−N

N 1/2+ε
.
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α
Regime Asymptotic behavior References

0 Meanfield Q
(N)
1 = NλN ± ΘP(

√
NλN), Q

(N)
i = oP(1) for i ≥ 2 [6]

(0, 12) Sub-Halfin-Whitt
∑b

i=1Q
(N)
i = NλN + OP(

√
N logN) [4]

1
2 Halfin-Whitt Q

(N)
1 = N − ΘP(

√
N), Q

(N)
2 = Θ(

√
N), Q

(N)
i = oP(1) for i ≥ 3 [1]

(12, 1) Super-Halfin-Whitt Q
(N)
1 = N − Θ(N 1−α), Q

(N)
2 = ΘP(N

α), Q
(N)
i = oP(1) for i ≥ 3 [5], current paper

1 NDS Qi = ΘP(N) for all i ≥ 1 [2]

(1,∞) Super Slowdown Unknown for α ∈ (1, 2]. For α > 2,
∑∞

i=1Q
(N)
i = ΘP

(
Nα
)

[3]

Tab. 1: Analysis of JSQ in various regimes (α = 1/2− ε)

Main Results

Process-level convergence
With appropriate assumptions on S(N)(0), Q

(N)
i (0), ∀N, i ∈ N0, for any finite T > 0,

X (N)(·) weakly converges to X(·) uniformly on [0, T ], where X(·) is the solution of the
SDE:

dX(t) =
( 1

X(t)
− β

)
dt +

√
2dW (t). (1)

Remark: The SDE in (1) is a Langevin diffusion so it is ergodic and has a unique stationary
distribution π ∼ Gamma(2, β), having p-th moment Γ(p + 2)/βp.

Stationary distribution of the N -system
There exist constants C1, C2 and B such that for large enough N ,

P
(
X (N)(∞) ≥ x

)
≤

{
C1 exp

{
− C2x

1/5
}
, 4B ≤ x ≤ 2N

1
2−ε,

C1 exp
{
− C2x

1/44
}
, x ≥ 2N

1
2−ε.

(2)

Moreover, supN≥1 E
[
N−

1
2−εQ

(N)
2 (∞)

]
< ∞, E

[
N−

1
2+εI (N)(∞)

]
= β for large enough

N , and
∑∞

i=3Q
(N)
i (∞)

P−→ 0 as N →∞.

Interchange of limits
Let X (N)(∞) be the stationary distribution of the scaled process X (N)(·) in the N-th
system. The sequence of random variables

{
X (N)(∞)

}
N≥1

converges weakly to the
Gamma(2, β) distribution as N →∞.

Remark: The interchange of limits holds:

lim
t→∞

lim
N→∞

XN(t) = lim
N→∞

lim
t→∞

XN(t) ∼ Gamma(2, β). (3)

Remark: The centered and scaled total number of tasks in steady state is distributed as
thesum of two independent exponential random variables for the JSQ policy, as opposed
to a single exponential random variable in the M/M/N case.

Proof Scheme

Martingale representation

X (N)(t)−X (N)(0) = N−
1
2−ε

[
A(N 1+2ελNt)−D

(∫ N 2εt

0

(N − I (N)(s))ds
)]

=M(N)
A (λNt)−M(N)

D

(
t− 1

N 1+2ε

∫ N 2εt

0

I (N)(s)ds
)

+
1

N
1
2+ε

∫ N 2εt

0

I (N)(s)ds−
∫ t

0

1

X (N)(s)
ds (4)

− βt +

∫ t

0

1

X (N)(s)
ds (5)

whereMH(t) = H(N 1+2εt)−N 1+2εt

N
1
2+ε

, H = A,D.

Analysis of the process I (N)

For the proof of (4)⇒ 0, the main idea is to approximate each excursion of I (N) by M/M/1
queues. Consider an excursion during [σ1, σ2] ⊆ [0, T ] (i.e., I (N)(t) > 0, t ∈ (σ1, σ2), and
I (N)(σi) = 0, i = 1, 2). We have

sup
t∈[σ1,σ2]

|S(N)(t)− S(N)(σ1)| = o(N 1/2−ε) and sup
t∈[σ1,σ2]

I (N)(t) = o(N 1/2−ε)

Hence, each excursion of I (N)can be bounded by two M/M/1 queues Ī
(N)
l and Ī

(N)
u such

that with natural coupling, Ī
(N)
l ≤ I (N) ≤ Ī

(N)
u , and

lim
N→∞

1

N
1
2+ε

∫ σ2

σ1

|Ī (N)
u (s)− Ī (N)

l (s)|ds = 0.

Renewal representation of stationary measure
Let the initial state of the N -th system be

{I (N)(0) = 0, Q
(N)
2 (0) = b2BN

1
2+εc, Q(N)

3 (0) = 0},
where B > 0 is appropriately selected. Let Θ(N) be the next renewal time point, i.e. at
time Θ(N), the system backs to the initial state. Define

π(X (N)(∞) ∈ A) =
E

(0, b2BN
1
2+εc, 0)

(
∫ Θ(N)

0 1(X (N)(∞) ∈ A)du)

E
(0, b2BN

1
2+εc, 0)

(Θ(N))
.

Θ(N) can be analyzed by two parts: down-crossing and up-crossing.
From (4) and (5), we have a drift term of X (N):

1

N
1
2+ε

∫ N 2εt

0

I (N)(s)ds− βt. (6)

Down-crossing. When Q
(N)
2 : 2BN

1
2+ε → BN

1
2+ε, I (N) ≤ Ī

(N)
B where Ī

(N)
B is an M/M/1

queue with increase rate N −BN 1
2+ε and 1

N
1
2+ε

∫ N 2εt

0 Ī
(N)
B (s)ds− βt < 0 w.h.p. so the drift

(6) would be negative w.h.p..

Fig. 1: Down-crossing

Up-crossing. The key observation is that if the system starts with the state in Fig 2, then
the probability that Q

(N)
2 hits 2BN

1
2+ε within N 2ε is a constant independent on N . This

leads to a geometric number of such excursions required for Q
(N)
2 to hit the level 2BN

1
2+ε.

Fig. 2: Up-crossing (c(N) < 2βN 1/2−ε)
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