
Contents lists available at ScienceDirect

Tectonophysics

journal homepage: www.elsevier.com/locate/tecto

Insights from North America's failed Midcontinent Rift into the evolution of
continental rifts and passive continental margins☆

Seth Steina,⁎, Carol A. Steinb, Reece Ellinga, Jonas Kleyc, G. Randy Kellerd, Michael Wysessione,
Tyrone Rooneyf, Andrew Frederikseng, Robert Mouchah

aNorthwestern University, United States of America
bUniversity of Illinois at Chicago, United States of America
cGeorg-August-Universität Göttingen, Germany
dUniversity of Oklahoma, United States of America
eWashington University, United States of America
fMichigan State University, United States of America
gUniversity of Manitoba, Canada
h Syracuse University, United States of America

A R T I C L E I N F O

Keywords:
Continental rifting
Volcanic passive margins
Midcontinent Rift

A B S T R A C T

Continental rifts evolve along two possible paths. In one, a rift successfully evolves into seafloor spreading,
leaving the rift structures buried beneath thick sedimentary and volcanic rocks at a passive continental margin.
Alternatively, the rift fails and remains as a fossil feature within a continent. We consider insights into these
processes from studies of North America's Midcontinent Rift (MCR). The MCR combines the linear geometry of a
rift formed at a plate boundary and the huge igneous rock volume of a Large Igneous Province. The rift is a fault
bounded basin filled with volcanics and sediments, which record a history of extension, volcanism, sedi-
mentation, subsidence, and inversion. The MCR came close to evolving into an oceanic spreading center, but it
instead failed and thus records a late stage of rifting. It thus preserves a snapshot of a stage of the process by
which actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, evolve either
into failed and often inverted rifts without upwelling mantle and positive gravity anomalies or into passive
continental margins. Many rifts can be viewed as following a generally similar evolutionary sequence, within
which a complex combination of factors control the variability of structures within and among rifts. Study of the
MCR also gives insight into passive continental margins. The MCR gives a snapshot of deposition of a thick,
dense, and highly magnetized volcanic section during rifting. Surface exposures, seismic, and gravity data de-
lineate a rift basin filled by inward dipping flood basalt layers, underlain by thinned and underplated crust. The
fact that the MCR shows many features of a rifted volcanic margin suggests that it came close to continental
breakup before it failed, and illustrates how many passive margin features form prior to breakup.

1. Introduction

Plate tectonics shapes the evolution of the continents and oceans via
the Wilson cycle, in which continents rift apart to form new oceans that
may grow to the size of the Atlantic and Pacific before closing and
vanishing (Fig. 1). In such cases, the fate of continental rifts is to end up
as passive continental margins. However, many continental rifts, such
as North America's Reelfoot Rift and Southern Oklahoma Aulacogen,
fail to develop into seafloor spreading centers. Such failed rifts become
an important part of the fabric of the continents. As a result, failed rifts

preserve “fossil” features of the rifting process that can be difficult to
observe elsewhere.

In this paper, we suggest that useful insights into rift evolution can
be obtained from study of one of the world's most impressive failed rifts,
North America's Midcontinent Rift (MCR). The MCR is a 3000-km-long
U-shaped band of buried igneous and sedimentary rocks that outcrops
near Lake Superior (Figs. 2, 3). To the south, it is buried by younger
sediments, but easily traced because the igneous rocks are dense and
highly magnetized (King and Zietz, 1971; Hinze et al., 1997; Merino
et al., 2013). The western arm extends across Minnesota and Iowa at
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least to Oklahoma, and perhaps Texas and New Mexico, as evidenced by
similar-age diffuse volcanism (Adams and Keller, 1994, 1996; Bright
et al., 2014). The eastern arm extends southward through Michigan,
Indiana, Ohio, Kentucky and Tennessee to Alabama (Keller et al., 1982;

Dickas et al., 1992; Stein et al., 2014, 2018). MCR-related igneous ac-
tivity may also occur near but off the arms (Drenth et al., 2015).

The MCR records a major rifting event at ~1.1 Ga during the
Grenville orogeny, the sequence of events from ~1.3–0.98 Ga

Fig. 1. Schematic illustration of the Wilson cycle, showing modern areas at each stage (Stein and Wysession, 2003).

Fig. 2. Gravity map showing the MCR, including the Fort Wayne Rift (FWR) and East Continent Gravity High (ECGH) segments of the east arm, computed by upward
continuing complete Bouguer anomaly (CBA) data to 40 km and subtracting result from CBA. Dashed line shows Grenville Front in Texas (Stein et al., 2015).
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culminating in the assembly of a number of continental blocks into the
supercontinent of Rodinia (Fig. 4) (Dalziel, 1991; Hoffman, 1991;
Rivers et al., 2012; Tohver et al., 2006; Swanson-Hysell et al., 2014;
Merdith et al., 2017). This rifting failed to split Laurentia, the Pre-
cambrian core of the North American continent, leaving a failed rift
that did not evolve into full seafloor spreading. This rift was later in-
verted by regional compression, uplifting the volcanic rocks within the
rift, so that some are exposed at the surface today.

How the MCR formed during the Grenville orogeny, a collisional
and hence compressive series of events, is a long-standing question.
Much of the question involves the MCR's relation to the Grenville Front,
the continentward (western) extent of deformation of the fold and
thrust belt from the Grenville orogeny (Rivers et al., 2012). As shown in
Fig. 2, the Front is observed in SE Canada from surface geology and
reflection seismic data, and has traditionally been assumed to extend
southward into the central U.S. along the East Coast Gravity High
(ECGH), a lineation of gravity and magnetic anomalies (e.g., Zietz et al.,
1966; Hoffman, 1988; Whitmeyer and Karlstrom, 2007; Baranoski
et al., 2009; Bartholomew and Hatcher, 2010). However, recent ana-
lysis (Stein et al., 2018) shows that these anomalies previously assumed
to define the Front in the central U.S. appear to be the southward
continuation of the MCR's east arm (Fig. 5). This view arises because the
gravity highs along the ECGH are similar to those elsewhere along the
MCR, in showing a distinct central high, presumably largely due to the
dense igneous rocks filling the rift. In contrast, no similar high occurs

across the Grenville Front in Canada. Moreover, many of the wells in
areas of the gravity high in Ohio and Kentucky bottom in mafic rocks
(Drahovzal et al., 1992; Buening, 2013) similar to MCR rocks exposed
near Lake Superior and in the buried west arm (Walker and Misra,
1992; Lidiak, 1996). Hence in our view the rift basins in Ohio, Ken-
tucky, and Indiana (Moecher et al., 2018) are part of the MCR's east
arm.

Although the fact that the MCR formed during the Grenville orogeny
seems surprising, the orogeny occurred in discrete compressional
phases (Fig. 6). As discussed later, the MCR probably formed as part of
the rifting of Amazonia from Laurentia. This occurred between com-
pressional phases of the Grenville orogeny, prior to the Ottawan phase,
a major compressional phase during which the Grenville Front (GF)
formed in SE Canada.

These results offer new insights into the formation of the MCR and
the Grenville Front and their association with the assembly of Rodinia
(Table 1). The traditionally assumed Front's location near southeast
Michigan implies that the MCR's east arm ended there, presumably
because propagation of the rift extension and volcanism were stopped
by the preexisting Front (Cannon et al., 1989). However, it now appears
that the MCR formed before the Grenville Front. Hence the absence of
an observed Front in the central U.S. may reflect its being obscured by
the MCR's east arm or younger tectonic events. Alternatively, a distinct
Front never formed there.

In this paper, we summarize key results about the MCR, many of

Fig. 3. Magnetic anomaly map of the region. Outlines of the Midcontinent Rift (MCR), including the Fort Wayne Rift (FWR) and East Continent Gravity High (ECGH)
segments of the east arm, are from gravity data (Fig. 2). Dashed line shows Grenville Front in Texas.
Data source https://pubs.usgs.gov/of/2002/ofr-02-414/ (Stein et al., 2018)
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them from recent studies. We then use these results to provide insights
into the evolution of rifts and passive margins.

2. Midcontinent Rift attributes relevant for rift evolution

The MCR has been the subject of extensive recent studies as part of
the U.S. National Science Foundation's EarthScope program “to integrate
geological and geophysical data to understand the growth and modification
of North America over billion-year time scales.” These studies built on and
extended earlier work. Some by ourselves and coworkers involved

seismological studies using USArray transportable stations and the
SPREE flexible array deployment along part of the west arm (Stein
et al., 2011; Wolin et al., 2015; Ola et al., 2015; Al-Eqabi et al., 2015;
Zhang et al., 2016; Frederiksen et al., 2017) and integrated analysis of
gravity, seismic reflection, paleomagnetic, and geological data (Merino
et al., 2013; Stein et al., 2014, 2015; Malone et al., 2016) to develop
models of the MCR's structure and evolution (Stein et al., 2016, 2018).
Other researchers have also obtained new results (e.g., Craddock et al.,
2013; Levandowski et al., 2015; Shen et al., 2013; Shen and Ritzwoller,
2016; Swanson-Hysell et al., 2014; Wunderman et al., 2018).

Fig. 4. Reconstruction showing major blocks
and Grenville-age orogenic belts associated with
the accretion of the Amazonia and Rio de la
Plata (RdP) blocks to Laurentia, the core of
Precambrian North America. The Grenville
Front is the continentward extent of deforma-
tion of the orogenic fold and thrust belt in
Laurentia (Stein et al., 2018, after Li et al.,
2008). Most features shown are common to
different reconstructions, but some differ owing
to limitations in the paleomagnetic data avail-
able.

Fig. 5. (Left) Traditionally assumed geometry in which the Grenville Front truncates the east arm of the MCR and extends southward along subsurface features
indicated by gravity and magnetic anomalies. (Right) Revised geometry proposed by Stein et al. (2018), in which the previously assumed Front in the central U.S. is
the southward continuation of the MCR.
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This paper summarizes key results about the MCR, most from recent
studies, that provide insights into rift evolution. Although using data
from a billion-year-old rift may seem strange for this purpose, it makes
sense because the MCR was massively inverted and uplifted by regional

compression long after it failed, so its structure is better known than
failed rifts that incurred lesser degrees of inversion. It can be viewed as
an end member of one of the two possible paths for the evolution of
actively extending rifts. In one, a rift successfully evolves into seafloor
spreading, leaving the rift structures buried beneath thick sediments at
a passive continental margin. Alternatively, the rift fails, is often in-
verted, and is left as a fossil feature within a continent. Conceptually,
our approach can be viewed as starting from the failed MCR and going
backwards in time, to consider what insights we can gain about rifts at
different stages in their evolution (Fig. 7).

This paper is not a comprehensive review of the MCR or of rifts and
passive margins worldwide. It builds on studies of the MCR, reviewed

Fig. 6. Timeline for evolution of the Midcontinent Rift (MCR) and major
compressional phases of the Grenville orogeny. JBE are Jacobsville, Bayfield,
and other equivalent sandstones deposited above MCR post-rift sediments,
which provide age control on MCR evolution. The maximum possible JBE age is
derived from detrital zircon ages (Malone et al., 2016).

Table 1
Alternative models of the relation between the MCR and Grenville Front in the
central U.S.

Traditional model Revised model.

Tectonic setting MCR formed during
convergence

MCR formed during Amazonia -
Laurentia divergence

Temporal
relationship

GF formed before
MCR

MCR formed before GF

Spatial relationship MCR rifting
truncated against GF

If GF extended far enough south,
GF propagation truncated against
MCR or to the east

Fig. 7. Schematic sequence of rift evolution illustrated by various rifts. Panels are from A) after Thybo and Artemieva (2013), B) Schnabel et al. (2008), C) Braile
et al. (1986), and D) Stein et al. (2015) modified from Green et al. (1989). COB denotes continent-ocean boundary, SDR denotes seaward dipping reflectors, and
HVLC denotes high-velocity lower crustal bodies.
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by Van Schmus and Hinze (1985), Ojakangas et al. (2001), and Stein
et al. (2016) and of continental rifting, reviewed by Sengör and Burke
(1978), Ziegler and Cloetingh (2004), Merle (2011), Allen and
Armitage (2012), Roberts and Bally (2012), Thybo and Artemieva
(2013), and Frizon de Lamotte et al. (2015). As these reviews discuss,
individual rifts vary significantly. For example, the presently extending
Baikal rift has much less igneous fill than the MCR, and the Kenya rift
(western branch of the East African Rift system) has much less crustal
thinning than the MCR. Even so, consideration of the MCR can provide
insights into general aspects of the rifting processes. To do this, we first
summarize several key relevant features of the MCR.

2.1. A rift with extensive volcanism

Recent analysis shows that the MCR has an unusual combination of
the geometry of a rift and the huge igneous rock volume of a Large
Igneous Province (LIP) (Green, 1983), two types of features that differ
in geometry and origin (Foulger, 2011). Rifts are segmented linear
depressions, filled with sedimentary and igneous rocks, that form by
extension and often evolve into plate boundaries (Roberts and Bally,
2012). Flood basalts, a class of Large Igneous Provinces, are broad re-
gions of extensive volcanism that form due to sublithospheric processes
such as a mantle plume or other mantle anomaly (Morgan, 1971, 1983;
Ernst, 2014). Typical rifts are not filled with thick flood basalts, and
typical continental flood basalts are not erupted in association with
significant crustal extension and faulting. Modeling of MCR seismic and

Fig. 8. Comparison of volume, surface area, and average thickness (diagonal lines) for continental flood basalts. The MCR volcanics are comparable in volume to
other flood basalts, but thicker because they were deposited in a narrow subsiding rift.
After Stein et al. (2015) with new values from Ethiopia (Rooney, 2017).

Fig. 9. MCR cross-section based on line drawing of GLIMPCE seismic line C, modified from Green et al. (1989) and complemented with land data, showing geometry
of volcanic rocks and postrift sediments in the rift basin. Lower panel shows locations of lines A and C. DF is Douglas Fault, OF is Ojibwa Fault, IRF is Isle Royale, KF is
Keweenaw Fault, and MF is Marenisco Fault (Stein et al., 2015).
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gravity profiles indicates a magma volume of ~2×106 km3 (Merino
et al., 2013), well above the LIP threshold of 105 km3 (Ernst, 2014).
Comparing the volume and surface area of this LIP, sometimes termed
the Keewenaw LIP, to other flood basalts (Fig. 8) shows that it is on
average significantly thicker, because its large volume was deposited in
a narrow rift rather than across a broad surface. Hence the MCR has the
geometry of a rift but the igneous rock volume of a LIP.

As discussed shortly, structural reconstruction of basalts and sedi-
ments within the rift support this view. This combination resolves the
paradox that the MCR's geometry and tectonic setting are consistent
with “passive” rifting at a plate boundary whereas the volume and
composition of the volcanic rocks are interpreted as showing that the
MCR formed by “active” rifting over a mantle plume (Nicholson et al.,
1997; White, 1997).

2.2. A fault-bounded rift basin filled with volcanics and sediments

A model for MCR evolution has been developed (Stein et al., 2015)
by combining the rift/LIP concept from the gravity data with structural
modeling of GLIMPCE seismic reflection lines across western Lake Su-
perior (Green et al., 1989) that were also used in previous models (e.g.,
Shay and Tréhu, 1993). The profiles, such as line C (Fig. 9), show
~20 km maximum thickness of volcanics, overlain by ~5–8 km of
mostly conformable sedimentary strata. From their seismic appearance
and correlation with outcrops on land, the volcanics were subdivided
into the younger Portage Lake series, underlain by the older pre-Portage

Lake series (Hutchinson et al., 1990). Most of the basin fill is confined
between two steeply inward dipping faults that flatten and converge at
depth, forming a bowl-shaped depression. The upper regions of the
faults show reverse offsets of stratigraphic markers, due to basin in-
version (Chandler et al., 1989) long after rifting, volcanism, and sub-
sidence ended.

The reflection data indicate a history of extension, volcanism, se-
dimentation, subsidence, and reverse faulting. The lower volcanic
layers – primarily the pre-Portage Lake series - truncate toward the
north side of the rift basin, indicating deposition during normal fault
motion. However, the upper volcanic layers – primarily the Portage
Lake series - and overlying Oronto postrift sediments dip from both
sides and thicken toward the basin center, indicating deposition in a
cooling and subsiding bowl-shaped, largely unfaulted basin. Hence the
first (synrift) units were deposited during a rifting phase, whereas the
second (postrift) units were deposited during thermal subsidence with
no significant associated faulting after extension ended.

2.3. A history of extension, volcanism, sedimentation, subsidence, and
inversion

This history was modeled (Fig. 10) via numerical stepwise structural
restoration, working backwards from the present geometry, using
Midland Valley's 2DMove software. The cross-sectional area and shape
of the synrift deposits are consistent with ~20–25 km of extension on
the Douglas/Ojibwa Fault. Taking the duration of synrift volcanism as

Fig. 10. Combined rift/LIP schematic model of MCR evolution based on the structural restorations. As in Fig. 9, crust (basement rocks) are shown in pink, sediment in
yellow, volcanics in green, and mantle in gray. The original crust was thinned in the rifting stage, rethickened during the postrift phase, and thickened further by the
later basin inversion (Stein et al., 2015).
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~10Myr (half the volcanic succession) gives an extension rate of
~2–2.5mm/yr, a typical value for rifts. Some extension occurred before
the volcanism, but its magnitude cannot be determined because sub-
volcanic structures are not well imaged.

Line C shows that the Douglas/Obijwa Fault on the north side of the
basin was the master fault active during rifting, whereas the Keweenaw
Fault on the south side is subparallel to the base of the volcanic infill,
indicating it was not a major rift-bounding normal fault during the
extensional phase. In contrast, line A to the east shows that the
Keweenaw fault was the master fault with 28 km of extension. This
polarity reversal along a series of adjacent half-graben segments (Dickas
and Mudrey, 1997) is analogous to that in the East African rift.

In this model the MCR began as a half-graben with initial largely
non-volcanic extension, that was later filled by synrift and post-rift
flood basalts. Some of the oldest volcanic rocks are pillow basalts em-
placed in soft sand in a water-filled basin (Ojakangas and Morey, 1982),
suggesting a period of rift extension and subsidence before massive
flood basalt eruption.

After extension ceased, further subsidence accommodated another
thick succession of flood basalts during the postrift phase. After vol-
canism ended, thermal subsidence continued, accompanied by postrift
sedimentation. The crust was depressed and strongly flexed, deepening
the Moho under the load of the dense flood basalt infill and sediment.
This geometry is remarkably different from that observed beneath other
continental flood basalts, where stacked and largely horizontal basalt
flows without significant overlying sediment produced only minor
flexure (Watts and Cox, 1989).

Extension ended about when deposition of the Portage Lake volca-
nics began, so about 40% of the volcanics were deposited after

extension ended. Extension, volcanism, and postrift sedimentation
ended long before regional compression inverted the basin by reverse
fault motion (for line C, ~3 km on the Douglas/Ojibwa and ~7 km on
the Keweenaw reverse faults). For line A, shortening was ~12 km on
the reverse faults and at most 2 km by folding. Thus most of the basin's
synclinal structure arose from postrift subsidence, not the later com-
pression.

2.4. Crustal thickening and underplating beneath the rift basin

The crust beneath the MCR is thicker than beneath surrounding
areas. In addition to tectonic thickening (Fig. 10), some thickening
seems to have occurred by formation of a “rift pillow” or an “under-
plate” layer. The “pillow” arises because as low-density melt rises, high-
density residue (“restite”) ponds at the base of crust (Vervoort et al.,
2007) (Fig. 11). This underplating first returned the thinned crust to its
original thickness, as observed in presently-active rifts and termed
“magma-compensated” rifting (Thybo and Nielsen, 2009; Thybo and
Artemieva, 2013), and then thickened it further. Although the specifics
of this process differ between rifts, it occurs in many cases. Additional
thickening occurred when the rift was inverted (Fig. 10).

Seismic data show crustal thickening and underplating along the
MCR's west arm similar to that under Lake Superior (French et al.,
2009; Moidaki et al., 2013; Shen et al., 2013; Zhang et al., 2016)
(Fig. 12), implying that this arm formed similarly to that in the model
based on the Lake Superior data. Hence it seems reasonable to use the
Lake Superior model as a general scenario, while recognizing that
crustal structure along the MCR should vary depending on the amounts
of extension, volcanism, compression, and underplating and the direc-
tions of rifting and compression at that portion of the MCR. For ex-
ample, the increase in crustal thickness across the MCR in central Iowa,
found from Florida-to-Edmonton (FLED) seismic array data, is about
10 km instead of the 20 km found with SPREE data beneath Wisconsin
and Minnesota (French et al., 2009; Moidaki et al., 2013).

2.5. Small seismic velocity perturbations

The MCR appears quite differently when viewed with different types
of data. The MCR's dense volcanic rocks appear clearly on gravity
(Fig. 2), seismic reflection (Fig. 9), and receiver function data (Fig. 12),
all of which are sensitive to density contrasts. However, surface wave
tomography (Fig. 13), which is sensitive to variations in seismic velo-
cities, finds only small contrasts between the MCR and its surroundings.
At a depth of 1–3 km, these data show low velocity sedimentary rocks in
the west arm but not on the east arm except in the Michigan Basin,
implying thin sediments along the east arm south of the basin. At
depths of 3–11 km, neither arm is evident though the Michigan Basin
persists. In the middle crust, neither of the arms nor the Michigan basin
stands out. In the lower crust, the west arm is slow, perhaps due to the
deeper Moho from crustal thickening, but the east arm does not stand
out.

Hence the surface wave data “see” the shallower low velocity se-
diments, gravity “sees” the underlying high-density volcanics, and re-
flection data “see” both. Because the volcanic rocks filling the lower
portions of the rift basin are not apparent in the surface wave tomo-
graphy, their shear-wave velocities do not differ significantly from
those of the lower crust outside the rift basin. Although the resolution of
surface wave tomography decreases with the depth, it seems unlikely
that the absence of a shear-wave velocity anomaly is an artifact of low
resolution. However, Shay and Tréhu's (1993) model of the GLIMPCE
reflection data has P-wave velocities of the rift volcanics higher than
those of the lower crust outside. These differences likely come from the
Vp, Vs and density properties of the various rift and crustal rocks. Basalt,
which likely accounts for most of the rift-filling volcanics, has an
unusual combination of high density and low shear velocity compared
to most crustal rocks, and thus an anomalously large Vp/Vs ratio

Fig. 11. Examples of underplating. A) Crustal structure model beneath Lake
Superior for GLIMPCE line A showing crustal thickening (Green et al., 1989). B)
Model for MCR magmatism (Vervoort et al., 2007). C) Model for magma-
compensated rifting (Thybo and Artemieva, 2013).
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(Christensen, 1996).
Another striking observation (Fig. 13e) is that the mantle below the

MCR differs at most only slightly from its surroundings. P-wave tele-
seismic tomography shows that at 100 km depth, mantle lithosphere
below the MCR is at most slightly slower than its surroundings along
part of its length and indistinguishable below Lake Superior where the
largest anomaly would be expected (Frederiksen et al., 2017). Similarly,
shear-wave splitting data show no significant anomaly beneath the
MCR, although they show a significant change across it, implying that
the Superior province to the north was so thick and strong that the MCR
did not break into it (Ola et al., 2015). These observations suggest that
as the MCR formed, melt extraction from the mantle produced magma
now filling the lower portions of the rift with shear velocity similar to
and density higher than the surrounding lower crust, and left little
velocity perturbation in the upper mantle (Fig. 14). Denser eclogite may
also be present in the rift's lowermost crust, but gravity inversions find
that mantle lithospheric density beneath the MCR is not anomalous
(Levandowski et al., 2015).

Why the lithospheric mantle below the MCR shows little perturba-
tion is unclear. By analogy to other LIPs, the melts that generated the
Keewenaw LIP likely resulted from a combination of melting of the
preexisting continental lithospheric mantle and plume-influenced
asthenosphere (Lightfoot et al., 1993; Beccaluva et al., 2009; Trestrail

et al., 2017). For these purposes, a plume can be regarded as a ther-
mochemical anomaly without considering its geometry (Rooney, 2017).
Extraction of partial melt from the mantle should have decreased the
iron content of the residual mantle and resulted in the removal of
garnet or spinel (depending on depth), and clinopyroxene (Ellam et al.,
1992). This would be expected to occur over a range of depths from
~150 km to near the Moho, as the dominant melt source region is
thought to have progressed from deeper to shallower as volcanism
progressed (Nicholson et al., 1997). Some studies, based on xenolith
compositions and velocities, suggest that melt depletion significantly
increases mantle velocity (Jordan, 1988; Lee, 2003), whereas recent
results from petrological modeling (Schutt and Lesher, 2006; Afonso
and Schutt, 2012) indicate that “melt depletion has almost no effect” on P
and S wave velocities. The absence of a major velocity anomaly below
the voluminous MCR basalts argues either that the melting and mod-
ification of the preexisting lithospheric mantle had net little effect, or
that the mantle beneath the MCR has been replaced since the MCR
formed and moved away from where it formed.

2.6. Formation at a plate boundary

Although the MCR was traditionally assumed to have formed by
isolated rifting in a plate interior (Cannon et al., 1989), it now appears

Fig. 12. Crustal thickening beneath the MCR's west arm is shown by surface wave tomography (Shen et al., 2013) (A) and receiver functions (B; Moidaki et al., 2013
and C; after Zhang et al., 2016). Profile locations are indicated in A): M denotes that in panel B) and SS and SN denote those in panel C).
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to have formed as part of a plate boundary reorganization. Evidence for
this view comes from the change in Laurentia's absolute plate motion
recorded by the MCR's volcanic rocks (Fig. 15). Such cusps in APW
paths have been observed elsewhere when continents rifted apart
(Gordon et al., 1984). This may have been the rifting of the Amazonia
craton from Laurentia between compressional phases of the Grenville
orogeny (Stein et al., 2014, 2016), although Amazonia's motion is not
well constrained because of the limited paleomagnetic data available.
In this view, the MCR's formation and shutdown was part of the evo-
lution of the plate boundary between Laurentia and neighboring plates,
such that the rift failed when full seafloor spreading between the major
plates was established.

It seems plausible that the MCR's east and west arms acted as
boundaries of a microplate within an evolving plate boundary system.
In an initial model (Chase and Gilmer, 1973), both arms were

boundaries between Laurentia and the microplate, such that the west
arm was a spreading center and the east arm was a leaky transform. A
possible consequence of this geometry is that the west arm had sig-
nificantly more magma, consistent with the fact that the gravity high
across along the west arm is larger than that along the east arm (Merino
et al., 2013).

Another possible geometry would be analogous to today's East
African Rift system, a set of microplates within the boundary zone
where the major Nubian and Somalian plates diverge (Fig. 16). Present-
day continental extension in the East African Rift (EAR) and seafloor
spreading in the Red Sea and Gulf of Aden form a classic three-arm rift
geometry as Africa splits into Nubia, Somalia, and Arabia. GPS and
earthquake data show that the opening involves several microplates
between the large Nubian and Somalian plates (Saria et al., 2013). If the
EAR does not evolve to seafloor spreading and dies, in a billion years it

Fig. 13. S-wave velocity maps for different depths. The MCR appears as a low velocity region at 1–3 km, and has little or no clear signature at greater depths
(Schmandt et al., 2015).
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would appear as an isolated intracontinental failed rift similar to the
MCR.

Another analogy is the West Central African Rift (WCAR) system
formed as part of the Mesozoic opening of the South Atlantic.
Reconstructing the fit between Africa and South America without
overlaps and gaps and matching magnetic anomalies requires micro-
plate motion with extension within continents (Moulin et al., 2010;
Seton et al., 2012). These rifts failed when seafloor spreading initiated
along the whole boundary between South America and Africa, illus-
trating that intracontinental extension can start as part of continental
breakup and end when full seafloor spreading is established.

Modeling microplate evolution is straightforward for presently ac-
tive systems, where relative motions along the boundaries can be found
using GPS, marine magnetic, bathymetric, or earthquake slip vector
data (e.g., Engeln and Stein, 1984; Engeln et al., 1988; Saria et al.,

2013) and inverted to find Euler vectors. Typically the Euler poles for
the microplate relative to each of the major plates are nearby, because
relative velocities vary rapidly in direction and rate along the micro-
plate's boundaries and small changes in Euler vectors correspond to the
system's relatively rapid evolution. The difference between the two
microplate Euler vectors equals the Euler vector for the two major
plates, because the motion across the microplate sums to that between
the major plates.

Fig. 17 shows one possible model for the MCR, assuming an “Illi-
nois” microplate between the major Amazonia and Laurentia plates.
Some constraints for Euler vectors can be taken from the geometry of
the MCR arms. The west arm has offsets that can be treated as trans-
forms (Chase and Gilmer, 1973), and spreading can be assumed to be
approximately orthogonal to the east arm. Under these assumptions,
spreading in the Lake Superior area would have been oblique. The es-
timated extension rate between Illinois and Laurentia is from the
structural reconstructions (Fig. 10), and that along the east arm is as-
sumed to be 50% less. Chase and Gilmer (1973) inferred spreading rates
from the width of the gravity anomaly, which may be biased because
the anomaly also reflects the geometry of the later compression.

The model shown, though not well constrained, seems generally
plausible. It illustrates average motions over 10million years during
which the MCR was extending and had extensive volcanism as
Amazonia was starting to break slowly away from Laurentia. We lack
information about the major plate geometry - i.e. where to draw
boundaries - and information about the southern microplate boundary
is lacking due to subsequent collisions and the latest Precambrian/
Cambrian rifting event (Thomas et al., 2012). For simplicity, we assume
that Amazonia did not extend far south of the microplate.

3. Comparing the MCR to other rifts

We suggest that the sequence of rifting, volcanism, sedimentation,
subsidence and later compression (Fig. 10) that gave rise to the MCR
today gives insight into other rifts. In particular, the MCR came close to
seafloor spreading before it failed, and thus records a late stage of
rifting in which a large volume of magma accumulated both during
extension and after extension stopped.

Fig. 14. Compared to the surrounding basement rock, the MCR's igneous rift fill
is denser, has higher P-wave velocity, but similar or slightly lower S-wave ve-
locity. Mantle below the MCR has P- and S-wave velocities and density similar
to those of the surrounding mantle. For simplicity, underplated layer above
Moho is not shown.

Fig. 15. (Left) Apparent polar wander path for Laurentia, showing change in motion approximately at onset of MCR volcanism (1.109 Ga). MCR volcanism interval is
shown in red. (Right) Reconstruction of plate positions before Laurentia-Amazonia separation, schematic spreading center geometry, and relevant features (Stein
et al., 2014).
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Fig. 16. Left: Geometry of microplates along the East African Rift system within the boundary zone where the major Nubian and Somalian plates diverge (after Saria
et al., 2013). Right: A possible MCR geometry with an “Illinois” microplate between the diverging Amazonia and Laurentia major plates.

Fig. 17. Kinematic model of an “Illinois” (IL) microplate for which the MCR arms are plate boundaries. Euler poles are shown by stars, with first plate listed rotating
clockwise with respect to the second. Double-headed arrows show relative motion across MCR arms, single-headed arrow shows Amazonia (AM) motion relative to
Laurentia (LR). Rate scale shown by 2mm/yr arrow.
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No two rift systems are the same, and there are important differ-
ences in structure and evolution even among different segments of a
given rift system. Still, we think it useful to view many rifts as following
a generally similar sequence of evolution, shown schematically in
Fig. 7. Hence we can compare how we think the MCR looked at dif-
ferent stages of its evolution to other rifts that are presently at similar
stages. Although none are exactly comparable to the MCR, the com-
parison provides useful insights.

In this sprit, we use the structural model in Fig. 10, derived for the
Lake Superior region, to infer the gravity anomaly that would have
been expected at different stages in the MCR's evolution (Fig. 18). In the
early rifting stages, the dense volcanics near the surface would have
caused a large positive gravity anomaly. Subsequent deposition of low-
density sediments and associated subsidence that depressed the volca-
nics would have caused a gravity low. Eventually, inversion of the rift
and erosion that brought the volcanics closer to the surface would have
caused the gravity high observed today. This sequence shows why the
MCR is characterized by a prominent positive Bouguer anomaly (Fig. 2)
due to the thick high-density volcanics filling it that have been uplifted
by the rift basin inversion. Fig. 18 (right) shows why the Lake Superior
region has a relative gravity low above the thick central rift sediments
and a relative high above the reverse faults. This central low does not
appear for the arms because the remaining rift sediments are much
thinner.

In contrast, presently extending continental rifts, such as the Rio
Grande rift, have much less volcanic fill than the MCR (Fig. 19). As a
result, they have negative gravity anomalies because they are largely

filled with low-density sediment, whose effects overwhelm that of the
higher density mantle at shallow depth due to the crustal thinning as-
sociated with the extension.

Fig. 20 shows two other examples. The presently-active East African
rift looks much like what we envision for the MCR during its rifting
phase: two arms, both actively extending, with gravity lows over the
arms and crustal thinning beneath them. Presumably if extension
ceased then after ~100Myr cooling the low density in the mantle
would no longer be visible. The Southern Oklahoma Aulacogen, a failed
rift that opened in the Early Cambrian as part of Rodinia's breakup and
was inverted in the late Paleozoic, shows a gravity high due to the ig-
neous rocks filling the rift, and thickened crust. This looks like a mini-
MCR, with similar general features although the igneous fill is smaller
and shallower than the MCR's.

Failed continental rifts differ in their level of modern seismic ac-
tivity. Some failed continental rifts present weak places within the
continent likely to take up strains in response to new stress regimes. For
example, though the Reelfoot Rift and Wabash Valley Faults initially
formed as rifts, they are now locations of moderate amounts of com-
pressional intraplate seismicity due to the overall compressional
stresses currently within the mid-continent. This is not the case with the
MCR, however, which has anomalously low levels of intraplate seis-
micity. Analysis of two years of SPREE data found only 12 intraplate
earthquakes within Wisconsin, Minnesota, Upper Michigan, and
Ontario, with none of these larger than magnitude 3, and only one
occurring within the MCR itself (beneath western Lake Superior) (Bartz
et al., 2014). Unless this low seismicity simply reflects the short time

Fig. 18. Models of the gravity anomaly expected at various stages of the MCR's evolution.

Fig. 19. Left) Bouguer gravity data and model across the MCR, showing positive anomalies due to high-density volcanics. Red line is observed gravity; black dots are
calculated (Thomas and Teskey, 1994). Right) Bouguer gravity data and integrated geophysical model across the Rio Grande rift, showing negative anomalies due to
low-density sediments (Grauch et al., 1999, 2015).
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sampled (Liu and Stein, 2016), the MCR here seems to be too thick and
strong to allow present-day reactivation of the faults within it. How-
ever, southern extensions of the MCR across Kansas and Oklahoma have
experienced seismicity and Phanerozoic deformation (Luza and
Lawson, 1981; Burberry et al., 2015).

4. Comparing the MCR to passive continental margins

The MCR has interesting implications for volcanic passive con-
tinental margins. Volcanic margins, the most common passive margins,
arise where continental breakup is associated with the eruption of flood
basalts during prerift and/or synrift stages of continental separation, in
which large-scale melting gives rise to thick igneous crust (Menzies
et al., 2002; Geoffroy, 2005; Geoffroy et al., 2015). These margins are
characterized by seaward dipping reflectors, volcanic rocks yielding
magnetic anomalies landward of the oldest spreading anomalies,
thinned continental crust, and a high-velocity lower crustal (HVLC)

body (Fig. 21).
The MCR gives insight into how rifting and volcanism interacted in

the early phase of volcanic margin formation, a record that is lost if a
rift evolves into seafloor spreading. The MCR came close to seafloor
spreading before it failed, and thus records a late stage of rifting in
which a large volume of magma accumulated both during extension
and after extension stopped. The analogy with volcanic margins is not
perfect, in that the upper portion of the MCR volcanics were deposited
after extension ended. However, because the MCR has many of the
features of passive margins, it is useful to view the MCR as a preserved
piece of what might have evolved to a volcanic margin had the MCR not
failed, but instead split and started seafloor spreading (Fig. 22). Many
of the key features seen at passive margins would have formed this way,
though they would be modified as seafloor spreading developed. High-
quality seismic reflection data show that packages of SDRs form over
long periods of time during extension (Blaich et al., 2011). Additional
SDRs are deposited as seafloor spreading starts (Koopmann et al., 2014)

Fig. 20. Cross-sections of the presently-active East African rift (top) (Simiyu and Keller, 1997), a good analogy to the MCR's early stages, and (bottom) the failed and
massively inverted Southern Oklahoma Aulacogen (Hanson et al., 2013), which is similar to the MCR today.
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and the SDRs acquire concave-down curvature due to flexure (Buck,
2017).

Continued successful half-graben rifting would have yielded asym-
metric passive margins with the key features observed at present-day
margins. These are often observed on opposite sides of conjugate
margins, where one side is wider than the other (Fig. 23).

Key dimensions, including magma volumes, are comparable be-
tween the MCR and present-day passive margins. Specifically, the cross-
sectional volume of the MCR volcanics beneath Lake Superior is similar
to that of the combined conjugate sides of the volcanic margin shown in
Fig. 23. Hence one can view the MCR as a passive margin you can walk

around on (Fig. 24). The fact that the MCR shows many features of a
rifted volcanic margin suggests that it came close to continental
breakup before it failed, and illustrates how many passive margin fea-
tures form prior to breakup.

5. Discussion

The MCR's history illustrates that many rifts can be viewed as fol-
lowing a generally similar evolutionary sequence, within which a
complex combination of factors control the variability of structures
within and between rifts.

Fig. 21. Schematic cross section through a rifted volcanic passive margin, showing characteristic tectonic elements (Schnabel et al., 2008; Koopmann et al., 2014).
COB denotes continent-ocean boundary, SDR denotes seaward dipping reflectors, and HVLC denotes high-velocity lower crustal bodies.

Fig. 22. Comparison of present MCR structure (top) to conceptual model for the MCR at the onset of seafloor spreading if it had not failed (bottom).
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For example, the gravity high across the MCR's west arm is larger
and is bounded by pronounced lows, whereas that across the east arm is
smaller and lacks the sharp bounding lows (Fig. 25). A variety of ex-
planations can be offered, because the present structure reflects the
combined effects of a sequence of rifting, volcanism, sedimentation,
subsidence, compression (Fig. 10), and any later effects. Differences in
any of these would cause differences in the final structure and the re-
sulting gravity anomaly (Fig. 18). One possible cause of the different
heights is more magma in the west arm (Merino et al., 2013). Another is
that the east arm was subjected to less inversion than the west arm,
yielding a smaller gravity high but without the bounding lows. In-
tuitively this seems implausible, because any Grenville compression
should have been stronger on the east arm. A third alternative is that
the east arm was more strongly inverted than the west arm, such that
some of the igneous rock was eroded.

Differences also appear between the MCR and two younger failed
rifts in North America, the massively-inverted Southern Oklahoma
Aulacogen and slightly-inverted Reelfoot Rift. The rifts appear differ-
ently in gravity (Fig. 2), magnetic (Fig. 3), and seismic (Fig. 13) data. In
our view, they likely followed grossly similar evolutionary paths, but
with differences in the extent of each stage.

An analogy might be the way differences between the terrestrial
planets - Earth, Mars, Venus and the moon (a planet for these purposes)
- arise. Kaula (1975) proposed that these follow a generally similar

sequence of phases including their formation, early convection and core
formation, plate tectonics, terminal volcanism, and quiescence. The
extent to which these operated controls each planet's state. Earth is in
its middle age, characterized by active plate tectonics, whereas the
smaller and thus colder moon is quiescent. Although this idea does not
explain all of the differences between planets, notably that Earth is the

Fig. 23. Left: Conjugate passive margins in the South Atlantic. The zone of SDRs and volcanics (green) is wider on the African side (after Blaich et al., 2011). Right:
Geometric model of how the MCR could have yielded an asymmetric passive margin after continued rifting. Grid of lines on right-hand side represents model strain
markers, not crustal structure.

Fig. 24. South-dipping basalt flows in Isle Royale National Park, Michigan, on
the north side of the MCR rift basin (Fig. 9), are analogous to seaward dipping
reflectors at a passive continental margin.
Photo by Seth Stein

Fig. 25. Gravity profiles across the east and west arms of the Midcontinent Rift
(Stein et al., 2018).
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only one with plate tectonics at present, it is a useful starting point.
Our view that the MCR illustrates aspects of the process by which

continental rifting gives rise to volcanic passive margins leads to the
long-standing and unresolved question of the role of mantle plumes in
continental breakup. The question can be posed as: what controls which
rifts acquire such large volumes of magmatic rocks? It has long been
proposed that excess temperatures associated with hotspots/plumes are
required to rift continents apart, given the volumes of igneous rocks at
most passive margins (Burke and Whiteman, 1973; Morgan, 1981,
1983; White and McKenzie, 1989; Richards et al., 1989). High tem-
peratures are also inferred for the MCR from petrologic and geochem-
ical data (Nicholson et al., 1997; White, 1997). However, invoking
plumes for all LIPs and rifted margins has been questioned and alter-
natives have been proposed (King and Anderson, 1995; King, 2007;
Foulger, 2011). van Wijk et al.'s (2001, 2004) analyses favor generation
of volcanic margins by decompression melting alone without the aid of
mantle plumes. Franke (2012) finds that the rifting and spreading his-
tory of the South Atlantic, a classic volcanic margin (Fig. 21), cannot be
reconciled with a mantle plume model. How to generate long linear
rifts from a plume remains unclear and under investigation (Koptev
et al., 2017; Beniest et al., 2017). As our results give no direct insight
into these issues, we leave this topic for future studies.
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