Priming Scalar Alternatives under Negation and by Antonyms in Lexical Decision

Radim Lacina¹,², Stavroura Alexandropoulou³, Észter Ronai³, and Nicole Gotzner¹

¹Institute of Cognitive Science, University of Osnabrück
²Department of Linguistics, University of Potsdam
³Department of Linguistics, University College London

Department

Institute of Cognitive Science, University of Osnabrück

Introduction

Which alternatives appear during online scalar implicature derivation?

- Informational strength has been seen as key when it comes to scalar implicature ([SI] derivation, Horn, 1972)
- Most accounts of SIs assume that stronger alternatives are needed
- The processing literature on focus has shown that comprehension operates with alternatives online
- Lexical decision and probe recognition experiments show alternatives being activated and represented (Husband & Ferreira, 2016; Gotzner et al., 2016; see Gotzner & Spatek, 2019, for an overview)
- Recently, researchers have adapted these methods to the study of alternatives in online SI derivation
- De Carvalho et al. (2016) showed isolated scalar words prime the strong ones more than the reverse
- Ronai & Xiang (2023) tested the priming of strong scalars (hot) by weak ones (warm)
- When they presented isolated scalar words, there was no priming
- The strong terms were activated in a sentential context—suggesting involvement in SI derivation

Lexical decision experiments

- Web-based on PCibex
- Single factor: Related vs unrelated
- Either weak scalar or antonym
- Rapid Serial Visual Presentation
- 350ms per word, 650ms SOA
- Experiment 3: Only prime words (clean) and targets (filthy) presented
- 150ms per prime, 650ms SOA

Results: Individual experiments

- Experiment 1 (Negated weak scalars)
 - Relatedness: β = 0.0081, SE = 0.011, df = 32.25, t = 0.71, p = 0.483
 - Experiment 2 (Antonyms in sentences)
 - Relatedness: β = 0.0238, SE = 0.0089, df = 2846, t = 2.93, p = 0.0034*
 - Experiment 3 (Antonyms in isolation)
 - Relatedness: β = 0.0248, SE = 0.009, df = 2665, t = 2.75, p = 0.0061**
 - Experiment 4 (Negated antonyms)
 - Relatedness: β = -0.001, SE = 0.013, df = 29.37, t = -0.05, p = 0.958

Combined analysis

- Combined data from Exp 1, 2, & 4 and Exp 4 from Ronai & Xiang (2023), which tested non-negated weak scalars
- We created a 2 x 3 factorial design
- Negation: Negated (baseline) vs. non-negated
- Prime: Weak scalar vs. antonym vs. unrelated (baseline)
- Simple effect of Negation
 - β = 0.03, SE = 0.028, df = 200.5, t = 1.117, p = 0.2653
- Simple effect of Prime (unrelated baseline)
 - Weak scalar: β = -0.04, SE = 0.009, df = 8922, t = -4.390, p = 0.0001***
 - Antonym: β = -0.03, SE = 0.009, df = 8915, t = -2.625, p = 0.00587**
 - Interaction of Negation and Prime
 - Weak scalar: β = 0.028, SE = 0.013, df = 8917, t = 2.164, p = 0.03049*
 - Antonym: β = 0.026, SE = 0.013, df = 8917, t = 1.954, p = 0.05069

Discussion

- Negation cancels the activation of targets (formerly stronger scale-mates)
- Informational strength matters; consistent with De Carvalho et al. (2016)
- Negation influences priming differently when weak scalar vs antonym primes are used
- Antonymic primes activated the targets both in sentences and in isolation
- An epiphenomenon in online SI derivation?
- But see Dorn & Metzger (2019) for evidence that non-entailed alternatives facilitate SI derivation
- The results are most compatible with the Alternative Activation Account
- Comprehenders seem to activate a slew of associates [antonyms] and then select depending on the grammar and context (negation)

Acknowledgments

We would like to thank the SPA Lab research assistants Bant Reise, Maria Villa Stella Avila, and Charlotte Lihlemann for their help with piloting the experiments. The first and last author were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the Emmy-Noether project awarded to Nicole Gotzner (Grant Nr. GO 3378/1-1).

References