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Abstract
Many settings involve dynamic learning and its consequences, including farmers

learning about fertilizer in developing countries, students learning about the returns to
college majors, and firms learning about the demand for their products. To reflect this
dynamic learning, we extend a popular dynamic optimization model to allow agents
to change their information sets over time and to update their beliefs. In particular,
we allow for dynamic optimization, unobserved differences between agent types, and
allow these types to have biased Bayesian beliefs. We apply this model to the setting of
individual land acquisition in the late 19th century, when the U.S. government granted
over 11% of the land area in the country through homesteading. Individuals who
homesteaded were required to farm the land. Thus, these individuals learned about
the value of farming. They used this updated belief about the value of farming to decide
whether to (i) acquire the title of the farm by farming for five years, (ii) abandon the
farm, or (iii) sell the farm. We digitize and match novel plot-level histories of land
acquisition, land resale, and agricultural production to estimate the farmers’ learning
process. We use our model to construct counterfactuals which show the impact of
individuals’ beliefs on their decisions. Specifically, 62% of the farmers who abandoned
their farms in the first five years would not have done so if they had begun with the
beliefs they would have held after ten years of farming. In a second counterfactual, we
demonstrate that if the U.S. government had not offered homesteading, only 31% of
the homesteaders would have purchased the land instead and 69% would have opted
not to farm. These results indicate that without the Homestead Act, the speed of
western expansion would have been reduced by 38%.
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1 Introduction

How do individuals’ changing beliefs about their own ability impact their decisions over time?

We address this question in the setting of land acquisition and farming in the nineteenth

century under the Homestead Act. The Homestead Act, beginning in 1863, granted more

than 270 million acres of land in the western part of the U.S., opening up this area to

low-cost, low-risk settlement to individual farmers (National Park Service). This amount

represents more than 11% of the land in the U.S.. Widely regarded to be one of the most

influential land laws in American history, the Homestead Act provided for nearly all the land

west of Ohio to be available to individual farmers at a low cost, fundamentally reshaping the

demographic and agricultural makeup of the western half of America. At the same time, this

land was also available for direct purchase by those same individuals because the Homestead

Act was superimposed on top of a pre-existing land law system.

Farmers learning new information over time is a key feature of our setting. We consider

two counties in eastern Kansas, in which 24% homesteaders abandoned their farms. Further,

the majority of this abandonment happened quickly, within the first two years of the home-

steader starting the farm. An additional 31% of homesteaders sold their farm within about

the first 6 years. These proportions are show in Figure 1. This high rate of abandonment

and selling for homesteaders - and how quickly it occurred after the homesteader started

farming - indicate that farmers had a high amount of uncertainty about the value of farming

in Kansas. When farmers learned new information through the process of actually farming,

they updated their beliefs about the value of farming, and used those updated beliefs to make

new decisions, causing many farmers to abandon or sell their homesteads. Therefore, learn-

ing new information over time is highly relevant to the decision-making process of farmers

in our setting. Because of the importance of learning to farmers, we quantify how mistaken

beliefs about farming affected land acquisition, and how those mistaken beliefs mattered for

western expansion.

In order to capture how learning new information over time impacted farmers decisions,

and therefore western expansion, we build a dynamic discrete choice model in which farmers

can make a decision every 6 months between (i) continuing to farm, (ii) selling their farm, or

(iii) abandoning their farm. However, because learning over time is such a crucial component

in farmers’ decision making, we incorporate this learning into the model. Therefore, our

methodological innovation in this paper is to expand the typical full-information dynamic
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Figure 1: Number of homesteaded and purchased aliquots which were abandoned, resold,
and farmed over 12 years, calculated from the regression sample

discrete choice model to capture the type of learning that farmers in our setting experience in

three specific ways: (i) updating of Bayesian beliefs, (ii) allowing for farmers to be optimistic

or pessimistic, and (iii) unobserved heterogeneity among farmers.

First, we allow farmers’ decisions to depend on their changing beliefs about the value of

farming in Kansas, which we capture with updating of Bayesian beliefs. Second, we allow

the farmers’ beliefs to be biased, meaning the farmers may be optimistic or pessimistic about

the value of farming. Third, we allow for unobserved heterogeneity among farmers. In our

context, this unobserved heterogeneity means that we allow some farmers to have a higher

ability to farm than others. Neither the farmers nor the researcher know which farmers have

a higher farming ability ex ante, but we allow their decisions and beliefs to depend on this

heterogeneous unobserved ability. Individuals with different unobserved abilities are allowed

to abandon their farm at different rates, leading to dynamic selection.

These three methodological expansions to the typical full-information dynamic discrete

choice model - (i) updating of Bayesian beliefs, (ii) allowing for farmers to be optimistic

or pessimistic, and (iii) unobserved heterogeneity among farmers - complicate solving the

model. This complication arrises because a full-information dynamic discrete choice model

relies on the assumption of stationarity - i.e., a constant autocorrelation structure over time

- to show that the value function is a contraction mapping. Including Bayesian beliefs, as we

do, means that this type of stationarity no longer holds. Therefore, we make a methodological

contribution to the dynamic discrete choice literature by combining results from game theory
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to solve our model. The intuition for solving the model is that we show that the model is

stationary in expectation, and that the agents use this expectation when making decisions.

Specifically, we relax the stationarity requirement of a typical dynamic discrete choice model

to only require stationarity in expectation.

Further, we show that, when the prior mean of the beliefs in two periods are close to each

other, the fixed points in these periods may be close to each other as well. We call these

fixed points, which arise when similar priors imply fixed points that are numerically close to

each other, sequential fixed points, and we use them to solve for the unique fixed points of

the value function. We propose a numerical optimization routine that exploits this feature.

We show that the optimization routine converges at a geometric rate in computer time and

that it works well in our application.

We find that farmers were initially highly pessimistic about the value of farming in

Kansas. In particular, farmers initially undervalued farming by about $2,500 in 1870 dollars,

which amounts to about about $50,000 today. However, learning more information over time

allowed farmers to refine their beliefs about farming, and by the end of the first year, they

were about half as pessimistic about the value of farming. Specifically, after one year, farmers

undervalued farming by about $1,300 in 1870 dollars. Further, while we allow for individuals

to value farming differently, we find that in our setting, all farmers had approximately the

same valuation. We attribute this to the idea that so much learning was occurring for all

types of farmers that previous farming experience in places like Vermont was not particularly

relevant.

The model we construct allows us to create several counterfactuals which are of both

historical and policy relevance, in order to better understand how mistaken beliefs about

farming impacted western expansion. Firstly, we construct a counterfactual of what would

have happened to land acquisition if the U.S. government had not allowed homesteading

and had only sold the land. Because the Homestead Act was such a far-reaching land policy

and because of the invasive nature of western expansion, this counterfactual answers an

important question in and of itself. Calculating this type of counterfactual requires some

type of discrete choice model, like the one we create. This counterfactual is also important

for contract diversity where the volume of a good is increased by having several contracts.

We find that the speed of western expansion would have been reduced by 37.5% without the

Homestead Act because 69% of the homesteaders would have chosen not to acquire land if
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purchasing it had been the only option. This result yields a back-of-the-envelope calculation

which indicates agricultural output in Kansas would have decreased by $270,000,000 per year
in 1870 dollars without the Homestead Act. We further compare our estimates to a standard

full information model of the demand for land to demonstrate the value of incorporating the

agents’ beliefs into counterfactual analysis.

Then we construct a second set of counterfactuals to show what fraction of the home-

steaders would still have abandoned their farm if they had begun with the information they

would have learned after (i) five years and (ii) ten years. These counterfactuals show the ef-

fect of changes in the information set on decision-making and have particular policy relevance

in understanding how much mistaken beliefs lead to sub-optimal decisions. In our context,

abandonment represents a policy failure, and a government policy such as publicizing the

annual rainfall in a homesteaded location for the previous ten years may have given the

homesteaders more information about the value of farming, leading to lower abandonment.

We find that if homesteaders had begun with the information they learned after ten years,

62% of the homesteaders who abandoned their farms would not have done so. Because a

quarter of homesteaders abandoned their farms, this counterfactual represents an economi-

cally significant change in the number of completed homesteads, and therefore in the value of

agricultural output. These counterfactuals would not be possible to estimate in a standard

full information model like Rust (1987). However, these counterfactuals are relevant in our

setting because of the amount of learning by farmers, so we construct our model to allow for

them. They quantify the impact of the farmers’ mistaken beliefs on policy failure.

We collect and digitize individual level data in Kansas for this paper. In particular, we

use five main individual-level data sources: (i) individual purchase and homestead decisions;

(ii) sale deeds of individual resale decisions; (iii) the Kansas agricultural censuses of 1870

and 1880; (iv) the identified U.S. Population Censuses of 1860, 1870, and 1880 for Kansas;

and (v) plot-level historical land characteristics. Matching together data on land acquisition

and land resale at the plot level shows how long the farmer held the land. The 1870 and 1880

Kansas agricultural censuses record production at the farm level. We match these production

data to the plot-level land acquisition data to compare the output between purchasers and

homesteaders. We further match the land acquisition and resale data to the identified U.S.

Population Censuses of 1860, 1870, and 1880 for Kansas, and to historical land characteristics

at the plot level. We use this matching to show that demographic and land characteristics
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are stable across land decisions at the individual level.

Addressing the question of how individuals’ changing beliefs impact their decisions over

time is relevant in a wide range of empirical settings, such as farmers in developing countries

learning about different farming methods including fertilizer, students learning about the

returns to different majors in college, and firms learning about consumer demand for their

products. The model we create can be applied in such settings.

1.1 Related Literature

This paper makes a contribution to several literatures. First, land acquisition, allocation,

and property rights is a major focus of development literature. Field, Field, and Torero

(2006) and Field (2007) explore the impacts of issuing property titles in Peru. Montero

(2022) analyzes the effect of land reform in El Salvador on productivity. Further, there is

a large literature on learning in agricultural methods. For example, Duflo, Kremer, and

Robinson (2008) analyze why farmers in Kenya do not participate in fertilizer uptake at

what appears to be the optimal amount. Our paper complements this work by analyzing a

land allocation policy which specifically incentivized learning. The Homestead Act required

farmers to actually farm. Our results indicate that, because people can have highly mistaken

beliefs and because learning is a gradual process, government policy which involves people

learning is more effective when it incentivizes people to continue the process long enough to

learn enough to change their beliefs.

Work in economic history on homesteading and land use on the American frontier is

related to this development literature. In general, previous economic research on home-

steading has been focused on the causal impacts of homesteading on long-term outcomes

(Hansen and Libecap (2004), Smith (2020), Allen and Leonard (2021), and Mattheis and

Raz (2021)). However, these papers do not estimate how settlers made their initial land

acquisition decisions. Our paper is the first step in that direction by modeling how settlers

made acquisition decisions in the presence of uncertainty. Because we use a discrete choice

model, we are able to make a significant contribution to the the literature on land acquisi-

tion historically in America by estimating how western expansion would have been different

without the Homestead Act.

Further, this paper builds on industrial organization models of demand which include

beliefs, including Ackerberg (2003), Crawford and Shum (2005), Covert (2015), Darden
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(2017), Steck (2018), and Hodgson (2019). However, none of these papers allow for a bias in

beliefs, as ours does. Additionally, these papers assume the priors are population densities

and are known to the researcher, i.e., the assumption is made that all agents initially think

they are average. We do not assume the priors are population densities or known to the

researcher and instead estimate them directly. This allows us to let the beliefs be biased.

Allowing for biased beliefs is important in many empirical settings.

The rest of the paper is organized as follows. Section 2 lays out the historical background

which motivates the model. Section 3 states the model. Section 4 discusses identification

and estimation. Section 5 describes the data. Section 6 gives the estimation results and the

counterfactuals. Section 7 concludes.

2 Historical Background

Four main facts about the setting motivate our modeling choices. First, Kansas in the late

nineteenth century was an area with high uncertainty for farmers. Second, contemporaneous

experts disagreed about whether farmers were optimistic or pessimistic about the value of

farming. Third, many farmers changed their decision about how to acquire land. Fourth,

unusual administrative features of the Homestead Act provided sequential decisions and

required farmers to learn about farming. These four facts all indicate that learning new

information was relevant to farmers’ decision-making process, and we structure our model

to be able to capture this learning. We first provide some general historical background, and

then we discuss these facts and their impact on our model further below.

Individuals had two main ways to acquire land from the federal government in the late

nineteenth century: (i) direct purchase and (ii) homesteading. Farmers could not ensure

they acquired better quality land by using one method over the other. The same land was

simultaneously available for both methods of land acquisition - by the same individuals - but

purchasing land was significantly more expensive than homesteading the same land. Pur-

chasing land cost $1.25 per acre1, and individuals received the title to the land immediately.

Homesteading land, on the other hand, was significantly less expensive, but it meant that

the individual did not recieve the title immediately. Instead, homesteaders paid an initial

$10 dollar application fee, and then had three options. Firstly, homesteaders could continue

1The standard farm size was 160 acres, so purchasing typically cost $200.
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to farm for five years and then recieve the title for a $4 fee. Secondly, after six months,

homesteaders could pay to purchase the title more quickly (called commutation). Commu-

tation cost the homestead application fee plus the direct purchase cost of $1.25 per acre.

Thirdly, homesteaders could abandon their farm at any point and not get the title.

We examine two counties in eastern Kansas from 1863 to 1890. Kansas was a heavily

agricultural state which was highly impacted by the Homestead Act. The two counties we

study were selected because they lie in the eastern part of Kansas, east of the hundredth

meridian, which is the dividing line between land suitable for small farms and arid land

suitable for ranching and large farms. While individuals were allowed to purchase very

large tracts of land, the counties in this paper were selected because this practice was not

common in them. Purchased aliquots are not statistically larger than homesteaded tracts in

our sample. In our sample, the average farm size is 158 acres.

While there were other methods of acquiring land from the federal government at this

time, purchasing and homesteading land were the two which were both most widely used

in Kansas and available to nearly everyone, so we limit our analysis to these methods. In

fact, between 1863 and 1890, the years in our analysis, more than 80% of the land acquired

from the federal government by individuals was acquired through what the Bureau of Land

Management classifies as either cash sales or homesteading.

The first fact about the historical setting which influences our model building is that

Kansas was an area with high information uncertainty for farmers. Kansas was on the western

frontier in the late nineteenth century. When the Homestead Act passed in 1862, Kansas

had just recently become a state in 1861. In the decades after the Homestead Act, Kansas

received the third most in-migration of any state. Many farmers were highly uncertain about

their own farming abilities or preferences because one purpose of the Homestead Act was

to act as a safety valve for dissatisfied urban workers (Gates (1968)). Farmers did not have

a good understanding of land quality and thus were initially uncertain about the value of

farming (Shannon (1966)). Likewise, the types of soils and methods of farming which settlers

encountered west of the Mississippi River deviated so greatly from the soil composition they

might have been previously familiar with (in the eastern half of the U.S. or in Europe) that

historians believe previous farming experience may not have been particularly beneficial

(Shannon (1966)).

These facts make Kansas an ideal setting to study the impact of uncertainty on learning
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Figure 2: Number of aliquots resold and abandoned by period, calculated from the regression
sample

about agricultural ability because the farmers in our sample had recently moved to eastern

Kansas and were unfamiliar with farming practices suitable to the area. Therefore, farmers

were uncertain about the value of farming, and when they made decisions about whether or

not to continue farming in Kansas, it was based on their belief about the value of farming,

which may have been highly incorrect. We allow for these mistaken beliefs about the value

of farming in our model.

The second fact which influences our model building is that contemporaneous experts

disagreed about the direction of the information uncertainty for farmers. Some historical

sources indicate that farmers were too optimistic about their farming prospects, while others

indicate that farmers were too pessimistic. For example, some experts cautioned against

starting a farm without at least $1,000 and stated that the vast majority of farmers were

starting with much less capital than $1,000, meaning that these farmers may have been too

optimistic (Peck (1967)). On the other hand, contemporaneous newspapers wrote that “The

record-making general drought of 1860 left an unfortunate aftermath by creating a haunting

doubt in the minds of many people ... that subsequent drought periods might lengthen

interminably into another [drought]” (Malin (1946)). This evidence indicates that farmers

may have been too pessimistic about their farming prospects. We allow for both optimism

and pessimism of farmers in our model in order to test these statements empirically.
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The third fact which influences our model building is that farmers valued the option to

change their decision highly. The high uncertainty about farming practices is exemplified by

the fraction of farmers who chose to abandon or sell their farms, shown in Figures 1 and 2.

Notably, one-quarter of homesteaders chose to abandon their farms, and another one-third

of homesteaders chose to sell their farms.2 Together, almost 60% of homesteaders changed

their decision about how to acquire land.

Figure 2 shows the number of periods (6 month time intervals) which farmers had held

their land before abandoning or selling it.3 Periods are calculated from when the farmer

begins farming, so period 1 includes everyone who had acquired land in the last six months,

regardless of the calendar date. Specifically, Figure 2 illustrates the high percentage of

farmers who abandoned their farm within the first two years. Abandonment took place

after the farmer had already either paid the initial application fee for the homestead or

the purchase price. Further, the cost of starting a farm in the Midwest in this period is

generally estimated at approximately $1,000 in 1870 dollars (approximately $21,000 today)

(Peck (1967)). Therefore, even if farmers who abandoned their farms had invested less

money than average into their farms, these farmers had already invested a significant amount

of money and time when they abandoned. Thus, the fact that 24% of homesteaders in

our data abandoned their farm indicates that these farmers learned new information which

significantly changed their belief about farming, and they valued the option to change their

decision highly.

If abandoning were due to simply random negative shocks like droughts, the probability

of abandoning would be more evenly distributed across the amount of time farmers had been

on their land. The probability would be evenly distributed in such a case because farmers

in our data started in different years, so a potential drought would hit them in different

years. Instead, we see that the probability of abandonment is highly concentrated in the

first two years after starting the farm, regardless of the calendar year. The pattern we

observe is relative to how long the farmer had been farming, not the calendar year. This

concentration in the probability of changing their decision when new information was of the

2Homesteaders generally commuted their farm just before reselling it, so we group these choices together
in our data.

3Land that was originally purchased from the federal government may have been abandoned, similar
to how homesteads were abandoned. However, this information was never recorded. Therefore, we define
abandoned land that was originally purchased to be purchased land that was resold for less than 1 dollar
per acre. This cutoff ensures that the farmer was selling the land at a loss because the initial price per acre
they paid to purchase land from the federal government was 1.25 dollars per acre.
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most value indicates learning. Further, Table 8 in the online appendix shows that the rate

of abandonment is similar for all quarters of the year, indicating abandonment is not driven

by cyclical weather shocks.

Figures 1 and 2 also show the percentage of farmers who sold their farms. In the case

of homesteaders who sold before period 10, in order to sell, they commuted their farms by

paying $1.25 per acre after already paying the initial homestead application fee of $10. The
decision to commute a homestead was strictly more expensive than purchasing the same

land. However, we observe about one-third of homesteaders commuted their farms in our

data. This high percentage of homesteaders who commuted their farm is consistent with the

idea that these farmers learned new information which caused them to change their decision.

Because we observe so many farmers change their decisions after starting to farm, our model

allows for learning new information to change farmers’ beliefs and therefore their decisions.

The fourth element of the historical setting which influences our model building is that

the Homestead Act was structured sequentially to require individuals to learn more about

farming. This requirement of the Homestead Act makes it an ideal setting to study how

learning new information impacts decisions because the administrative features of the Act

included both learning and sequential decisions. Compared to purchasing the same land,

the Homestead Act provided a low-cost way to learn more about farming before committing

to the title because homesteaders were required to actually farm the land. Therefore, they

learned about their ability to farm. Further, they used this updated information to decide

whether to (i) acquire the title of the farm by farming for five years, (ii) abandon the farm,

or (iii) sell the farm.

It is notable that the three options available to homesteaders - continuing to farm, com-

muting and/or selling the farm, or abandoning the farm - were only available after already

paying the initial homestead application fee and starting the farm. For example, home-

steaders could not get the title in any manner for at least six months. This element of the

Homestead Act meant that homesteaders were able - and, in fact, required - to learn more

information on which to base their new decision. We include the sequential nature of the

homesteaders’ decision-making process in our model.
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3 Model

3.1 Bayesian Model with Heterogeneous Types

A major component of our setting is that we observe farmers changing their decisions when

they learn new information. In order to capture this learning over time and its impact

on decision-making, we use a dynamic discrete choice model. However, a standard dynamic

discrete choice model assumes that agents have full information, which would not adequately

capture farmers’ information uncertainty in our setting. Therefore, we expand a typical full

information dynamic discrete choice model, such as Rust (1987), in three ways to explicitly

model the learning process we see reflected in our data.

Firstly, we expand the typical dynamic discrete choice model to allow for farmers to have

a belief about the value of farming in Kansas and to base their decisions on this belief,

rather than on the true value. We allow this belief to change over time as farmers learn new

information. Specifically, we model this changing belief using Bayesian updating. This belief

is important to include in our model because of the high information uncertainty experienced

by farmers in our setting. This modeling decision captures the fact that farmers learn over

time and base their decisions on that new information.

Secondly, we expand the typical full information dynamic discrete choice model to allow

the farmers’ beliefs to be biased, meaning that farmers can be optimistic or pessimistic about

how valuable farming will be. This optimism or pessimism is important to allow for in our

model because some contemporaneous experts believed that farmers were too optimistic,

while some reported that farmers were too pessimistic, and we allow for either option.

Finally, we expand the typical full information dynamic discrete choice model by allowing

for unobserved heterogeneity among farmers. In our setting, this means that we allow some

farmers to have a higher ability to farm than others, and that this higher ability is unobserved

by both the researcher and the farmers themselves. We call this unobserved heterogeneity

the farmer’s type. This unobserved heterogeneity among farmers is important to allow for

in our model because there may have been selection on unobservables into different land

acquisition decisions. This modeling decision reflects the fact that different farmers may

have different backgrounds which position them to be more successful at farming, and that

some of this background is unobservable.

Expanding a dynamic discrete choice model in the above three ways complicates solving
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Figure 3: Resale price by period shows that stationarity holds, calculated from the regression
sample

the model. Specifically, this complication arrises because a typical full information dynamic

discrete choice model relies on the assumption of stationarity - i.e., a constant autocorrelation

structure over time - to show that the value function is a contraction mapping. Adding

Bayesian beliefs which are updated over time to such a model, as we do, means that this

type of stationarity no longer holds. Intuitively, farmers do not know what they may learn

in the future, but they need to make a decision now, and this decision must incorporate the

possible information from the future. Therefore, in order to show that the value function is

a contraction mapping, we combine techniques from the game theory literature to calculate

the distribution of random variables and outcomes to solve the optimization problem.

Specifically, in order to solve our model, we empirically implement the single-agent version

of the Perfect Bayesian Equilibrium by Fudenberg and Tirole (1991). Watson (2017) states

conditions on updating beliefs and these are satisfied in our model. Kamenica and Gentzkow

(2011) introduce the concept of Bayesian Persuasion and make the assumption of Bayesian

plausibility in the context of their game theory model. They state that a posterior is Bayes

plausible if the expected posterior probability equals the prior. A feature of our model is that

this Bayesian plausibility is satisfied, meaning that we can use the results from Kamenica

and Gentzkow (2011) about which priors agents use. These results mean that stationarity

holds in expectation, and that it is this expectation which farmers use in making decisions.4

In order for stationarity in expectation to hold in our context, the price of developed

4See the appendix and the online appendix.
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farmland cannot change in a predictable manner. In our application, this assumption holds

because the price of developed farmland in Kansas in the late 1800’s is stable. For stationar-

ity in expectation to be violated, the price of farmland would have to change in a predictable

manner, which it does not. We find that the correlation coefficient between resale price and

periods held is low (0.0894). Further, Figure 3 shows that the resale price of developed farm-

land does not change significantly no matter how many periods it is held. While we typically

think of land values as increasing over time, in our setting, they do not because Kansas was

on the frontier, and there was a large amount of inexpensive land available. Land prices re-

maining stable over time is stronger than the necessary stationarity in expectation condition.

Because stationarity holds in expectation in or model, the value function is a contraction

mapping. This result is proved in the appendix. Therefore, our methodology allows for

non-stationarity by using a conditional expectation version of a fixed point theorem, which

means we can show the value function is a contraction mapping. Such non-stationarity can

also be relevant outside a Bayesian framework and allows for future priors to be known in

expectation.

A few previous papers have combined a dynamic discrete choice model with Bayesian

beliefs, including Ackerberg (2003), Crawford and Shum (2005), Covert (2015), Darden

(2017), Steck (2018), and Hodgson (2019). However, our paper makes a methodological

contribution to this literature in two ways. First, none of the previous models have allowed

for the beliefs to be biased, which we do. In our context, it is necessary to allow the beliefs

to be biased because contemporaneous experts disagreed about whether farmers were highly

optimistic or highly pessimistic. Without a bias in beliefs, we could not capture this optimism

or pessimism which impacted farmers’ decisions.

Second, previous literature assumes that the prior beliefs are known the researcher.

Specifically, the researcher makes the assumption that the agents’ prior belief is the popula-

tion density, i.e., everyone starts by believing they are average. We do not assume the priors

are known to the researcher, but instead estimate them directly in the model. We could not

allow for the beliefs to be biased without estimating them directly.

Further, we estimate the informational content of farming experience which farmers use

to update their beliefs, meaning we estimate both the beliefs and the information used to up-

date those beliefs. The beliefs are the unobserved state variables, and we call the information

farmers use to update their beliefs information realizations. These information realizations
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differ from the structural disturbances by Pakes, Porter, Ho, and Ishii (2015), which were de-

veloped outside a model with Bayesian updating. Estimating these information realizations

helps us to understand historical farming in the Midwest by clarifying the conditions under

which farmers made decisions. Such estimation is also useful in other dynamic programming

models with nested fixed points, as well as models of stationary games, to clarify decision

conditions in those settings.

3.1.1 Model Specification

Farmers’ decisions are based on their beliefs in our model, not on the true values, which

reflects the real decision-making process. Individuals learn about their own ability to farm,

and we use their choices in each period to back out their learning process. First, we outline the

general form of the model, and then we detail how we incorporate (i) information realizations

which the farmers use to update their beliefs, (ii) biased Bayesian beliefs, and (iii) which

prior beliefs to use. Finally, we explain the model implementation in our setting.

In every period, farmer i has the option to either (i) continue to farm; (ii) sell the farm;

or (iii) abandon the farm, based on the new information they gain in every period. If they

choose to sell or abandon, they do not continue to the next period; they only continue to

period t + 1 if they choose to continue to farm in period t. Let this decision and these

choices be denoted by dit ∈ {C, S,A}, where C indicates continuing, S indicates selling, and

A indicates abandoning. We assume that farmers choose optimally, based on their beliefs,

in order to maximize the discounted expected utility at time t. Each farmer belongs to an

unobserved type, and we assume that all farmers of the same type are identical. Let farmer

i be of type m ∈ {A,B}.
The farmer does not observe their true ability, µm, to farm in Kansas. This ability can

also be thought of as a farmer’s true value of farming in Kansas. Instead of observing their

true ability, the farmer has a prior over their ability to farm. Call the mean of this prior after

observing t periods of data π̄it, where farmer i is of type m. Let titleit be a binary variable

indicating whether or not the farmer has the title in period t, and let periodsit indicates how

many periods are left before acquiring the title if titleit = 0. Let zit = {periodsit, π̄it, Xt},
where Xt are the information realizations the farmers learn each period. Then {titleit, zit}

15



represent the state variables for all i and t. The utility of individual i in period t is given by

u(titleit, zit, dit) =


π̄it + εC,it if dit = C and individual i is type m

Sellit + εS,it if dit = S

εA,it if dit = A,

where Sellit is the utility of individual i from selling the farm in period t. The variable Sellit

and the error terms εC,it, εS,it and εA,it are all unobserved to the empirical researcher and

independently distributed from each other for all i and t.

In a full information model like Rust (1987), the agent knows the parameter values. In

our case, individuals have beliefs about the values according to their type and subsequently

update these beliefs. This type is unobserved to the empirical researcher. The farmers update

their own prior beliefs but do not know how many types exist, meaning they cannot convey

type-specific information to each other. The prior mean π̄it is based on the information set

that the farmer has at time t. All farmers that are of type m use the same prior πmt(µ). In

our case, a sufficient statistic for the beliefs is the prior mean of µm. If farmer i is type m

then their prior mean of µm is

π̄mt =

∫
µmπmt(µm)dµm. (1)

Allowing the farmers to base their decisions on their priors implies that the value func-

tions and Bellman equation will depend on these priors as well. This motivates the central

innovation of our paper. To allow for the value functions and Bellman equation to depend on

priors, we write u(titleit, zit, dit) as the addition of two parts: the part of the utility function

that is observable to the farmer, and the part of the utility function that depends on the

prior. The reason for writing the utility in these two parts is that the decisions of the farmer

depend on the (updated) prior rather than the farm output. This gives

u(titleit, zit, dit) = ufarm obs(titleit, zit, dit) + E{ufarm unobs(titleit, zit, dit)},
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where the expectation is taken with respect to the prior, and

ufarm obs(titleit, zit, dit) =


εC,it if dit = C

Sellit + εS,it if dit = S

εA,it if dit = A,

and

ufarm unobs(titleit, zit, dit) =


µm if dit = C and individual i is type m

0 if dit = S

0 if dit = A.

.

These utility functions imply the following value function,

V (titleit, zit) = sup
Λit

{ufarm obs(titleit, zit, dit) + E{ufarm unobs(titleit, zit, dit)}+

+E[
∞∑

s=t+1

δs−tu(titleis, zis, dis)]},

where δ is the discount factor and Λit denotes the set of decision rules for each individual i at

time t. These decision rules are functions of previous decisions, beliefs, and state variables.

For those farmers that have the title, we can write the last equation in a recursive form

V (titleit = 1, zit) = E

[
sup

dit∈{C,S,A}
{ufarm obs(titleit = 1, zit, dit) + ufarm unobs(titleit = 1, zit, dit)

+ δE[V (titlei,t+1 = 1, zi,t+1)]}

]
, (2)

where the state variables, zi,t+1 and titlei,t+1, are functions of the state variables in the

previous period, zit and titleit, and the decision dit.

All farmers face a non-stationary environment in the sense that they update their priors

every period. As we argued above, the farmers do not yet know their future priors or

posteriors. As we will show in Lemma 1, Bayesian updating implies that individuals will

predict the future value function using their current priors. This allows for non-stationarity

at the individual level for all farmers. This result allows us to solve the model. The Bayesian
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updating yields that the predicted prior mean in future periods is the current prior mean,

i.e., E(π̄i,t+s) = π̄it for all s ≥ 0. Further, we assume that the expected utility from selling

the farm remains constant, i.e., E(Selli,t+s) = Sellit for all s ≥ 0. In our application, this

assumption holds because the price of developed farmland in Kansas in the late 1800’s is

stable (see Figure 3).

This property of Bayesian updating and the assumption on the expected utility of selling

the land yields that E{V (titlei,t+1 = 1, zi,t+1)} = V (titleit = 1, zit), meaning the expected

value in the next period equals the value in this period, for farmers with the title. This

equality allows us to write the value as a function of the state variables and itself,

V (titleit = 1, zit) = E

[
sup

dit∈{C,S,A}
{ufarm obs(titleit = 1, zit, dit) + ufarm unobs(titleit = 1, zit, dit)

+ δV (titleit = 1, zit)}

]
. (3)

For homesteaders who do not have the title yet, we do not have the equalityE{V (titlei,t+1 =

1, zi,t+1)} = V (titleit = 1, zit). Instead, we use the priors to predict the future value functions

and then use backward induction from the period that they acquire the title.

Now we turn to the specifics of our model, including the information realizations, biased

Bayesian beliefs, and which priors to use.

3.1.2 Information Realizations

A farmer receives a signal each period of the success of their farm and their own ability

and uses this information to make a continuation decision. All farmers learn the same

information: Xt is not farmer specific. For example, in period 1, farmers learn about how

easy it is to buy farm equipment on credit. This allows us to better understand how farmers

made decisions under uncertainty. The farmers observe the information realizations Xt,

t = 1, 2, ..., and use these to update their beliefs. The empirical researchers do not observe

Xt, t = 1, 2, ..., but can measure the prior belief in every period. This implies that the

changes in the prior from period to period can identify the information realizations Xt for

every period. Estimating Xt allows the empirical researcher to understand the magnitude of

the factors influencing decision-makers. We estimate Xt, t = 1, 2, ..., directly as parameters

in the model, up to the normalizations of zero mean and variance σ2
data = 1.
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3.1.3 Allowing for Biased Beliefs

Some individuals are better suited to farming than others and therefore receive more benefits

from farming. Let µm,m ∈ {A,B} be the type-specific farming ability. Individuals learn

about µm each period by Bayesian updating. If they learn their farming ability is low, they

may decide to abandon their farm. Different types may abandon at different rates, leading to

dynamic selection. Updating their beliefs about their own farming ability allows individuals

to make more informed decisions over time.

We assume beliefs are normally distributed. Individuals may exhibit optimism or pes-

simism, meaning their normally distributed posterior means are allowed to be lower or higher

than their true abilities. This bias shifts the distribution of farmers’ beliefs away from the

distribution of true farming ability.

Before starting to farm, let the belief of type m be normally distributed, centered around

µ̄m + ηm (where ηm is a type-specific bias term), and have variation σ2
prior. Farmers observe

information Xt every period. Therefore, after observing t periods of data, the mean of the

prior is

π̄it = µ̄m +
ηm +

σ2
prior

σ2
data

·
∑t

s=1 Xs

1 + t · σ2
prior

σ2
data

,

and the variance of the prior after t periods is

σ2
π,t =

1
1

σ2
prior

+ t
σ2
data

.

Note that the effect of the bias ηm decreases over time. The belief in each period combines

the prior with the new information in a Bayesian framework such that as t increases, the

farmer puts more weight on the information and less weight on the prior.

3.1.4 Which Priors to Use

A central issue in a model with beliefs is which beliefs agents use when making decisions.

Agents optimize with respect to their beliefs, so which beliefs to use is important. We prove

that farmers use their current beliefs in making decisions. Kamenica and Genzktow (2011)
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call this result Bayesian plausibility. We show that Bayesian plausibility holds in our model,

so we can use their results to solve our model.

The farmers have beliefs about their ability to farm, and they know they will learn more

about that ability in the future. When solving their dynamic optimization problem at time

t, the farmers use the prior belief that they have at time t. The intuitive reason for this is

that the farmers do not have future information to update their priors.

Consider farmers at t = 0. In later periods, the farmers will observe the information

realizations Xt for t = 1, 2, .... The farmers know that these realizations, given their ability

µ, are normally distributed around zero with variance σ2
data. The key to determining which

prior belief to use is the prior predictive distribution. The prior predictive distribution is

the distribution of Xt for t = 1, 2, ... without conditioning on µ. That is, we average the

conditional distribution of Xt|µ using the prior on µ as a weight. Thus, this average is given

by p(xt) =
∫
p(xt|µ)πt=0(µ)dµ, where p(xt|µ) is the conditional distribution and πt=0(µ) is

the prior at t = 0.

When a farmer observes X1, then this farmer can update their prior. Let this posterior be

denoted by π(µ|X1). Farmers do this updating in our model. Alternatively, the farmers could

update their prior on all possible values of X1 and then use the prior predictive distribution

as a weight, i.e., πt=1(µ) =
∫
π(µ|x1)p(x1)dx1, where πt=1(µ) is the prior at t = 1, without

conditioning on the outcome X1. The following lemma states that this would not give the

farmers additional information: πt=1(µ) is the same as the original prior, and, further, this

holds for all future periods. Therefore, farmers use the current prior when optimizing, even

though they know they will learn more in the future.

Lemma 1: Priors

Let πt=0(µ) denote the prior on µ at t = 0 and let πt=0(µ) be the density of a normally

distributed random variable with mean µ̄+ η and variance σ2
prior. The random variable Xt is

observed at time t and let Xt|µ be i.i.d. over time and be normally distributed with mean

µ and variance σ2
data. Let πt=s(µ), s = 0, 1, 2, ..., denote the expected prior at time s. Then

πt=s(µ) = πt=0(µ) for all s.

Proof: See appendix

After observing X1, the farmers update their prior and can use this prior π(µ|X1) to

predict future outcomes and expected priors. Lemma 1 also applies to such a conditional
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prior, and these expected priors are the same as π(µ|X1). Further, the same holds for the

priors that condition on X1, ..., XQ for any Q ≥ 1.

Kamenica and Gentzkow (2011) introduce the concept of Bayesian persuasion and make

the assumption of Bayesian plausibility. They state that a distribution of posteriors is Bayes

plausible if the expected posterior probability equals the prior. The last lemma states that

Bayesian plausibility holds in our model.

3.1.5 Model Implementation

Now we turn to the implementation of our model. Individuals in our model move through

the following periods, which are each 6 months long. In period t = 0, individual i decides

to either homestead or buy land. For most of the paper, we take the decision to acquire

land as fixed, making our model robust to misspecifying this decision. We use 20 periods to

estimate the model, but it can be estimated with infinite periods. In this setting, we assume

that we have high and low ability farmers, but this model can be implemented with more

than two types. For the high ability farmer, type A, we have µA, and for the low ability

farmer, type B, we have µB.

We first consider the decision process of the homesteaders. The homesteaders acquire the

title after five years and then have the same value functions and fixed points as the purchasers.

In particular, let Vhome,mt denote the value function of the homesteader of type m in period

t. From period 10 onward we have Vhome,mt = Vmt. First, we outline the backward induction

process for periods 1 through 9, and then we discuss these fixed points further below.

Let Sellnotitle be the utility a homesteader receives from selling their farm before they

would normally acquire the title. For a homesteader to receive the title before period 10,

they have to pay $200. Therefore, we can consider Sellnotitle to be the utility from selling

their farm after they have had to pay an additional $200 for the title. Let κ denote the

parameter that converts dollars into utility. The estimation of Sellnotitle and κ are discussed

in Section 4. As above, dit ∈ {C, S,A} for t ≥ 1 and, in addition, let di,0 ∈ {purchase, home}
for t = 0. We further define

Sellit =

Sellnotitle + κ · 200 if di,t≥10 = S and di,0 = home

Sellnotitle if di,t<10 = S and di,0 = home.
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Homesteads Use Backward Induction in Periods 1 through 9. Before acquiring

the title, the homesteaders use backward induction from their estimates of the fixed points.

Thus, for these earlier periods we have

Vhome,mt = E

[
sup

dit∈{C,S,A}
[1(dit = C) · (εC,it + π̄mt + δVhome,m,t+1)+

+ 1(dit = S) · (εS,it + Sellit) + 1(dit = A) · εA,it]

]
, where t = 1, ..., 9.

In our application, we assume that the random shocks εC,it, εS,it, and εA,it given π̄mt and Xt

are realizations from a type I extreme value distribution5 and are independent of each other,

given π̄mt and Xt. This yields a specific form for the value functions that we state in the

online appendix. Further, this assumption on the random shocks and the value functions

implies the following probabilities of continuing for each type for homesteaders,

Prm,home(continue at t) =
exp(π̄mt + δVhome,m,t+1)

1 + exp(π̄mt + δVhome,m,t+1) + exp(Sellnotitle + 1(t ≥ 10)κ · 200)

for t = 1, 2, ....

The homesteader has the title from period 10 onward, so the homesteader no longer has

to pay the $200 fee to the government for selling the land. The indicator 1(t ≥ 10), the

utility of money κ, and the amount $200 account for this in the last expression. The related

probabilities for selling and abandoning are in the online appendix.

Homesteaders Use Fixed Points in Periods 10 through 20. Consider farmer i at

time t, who homesteaded their farm, and let this farmer be of type m. If this farmer contin-

ues to farm, then the farmer expects to receive the relevant part of ufarm obs(titleit, zit, dit),

i.e., εC,it; the prior mean of µm, i.e., π̄mt; and the discounted expected value function, i.e.,

δE{V (titlei,t+1, zi,t+1)}. Thus, the reward for continuing to farm is εC,it+ π̄mt+ δE{V (titlei,t+1,

zi,t+1)}. It is important to note that the farmer’s decision does not depend on the true value

of µm but on the their beliefs, i.e., the prior mean of µm. This modeling decision makes the

model more realistic and, further, computationally faster, because the prior mean has only

to be calculated once for every fixed point calculation. If the farmer sells or abandons the

5The cumulative distribution function of this extreme value distribution is F (ε) = exp(− exp(−ε)).
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farm, they receive Sellit + εS,it, or εA,it, respectively.

Once the homesteader has the title, their value function is a sequence of fixed points.

Specifically, earlier, we showed that E{V (titlei,t+1 = 1, zi,t+1)} = V (titleit = 1, zit), meaning

the expected value in the next period equals the value in this period, for farmers with the

title. Further, let Vmt(V ) denote the value function of a farmer that has the title to the

farm and is of type m. Note that the prior mean and information realizations are the same

for all i of the same type. The error terms εC,it, εS,it, and εA,it are farmer specific, but we

can calculate the value function Vmt(V ) by taking the expectation of these individual error

terms. Using equation (3), we can write Vmt(V ) as a function of these state variables and

the value V ,

V = E

[
sup

dit∈{C,S,A}
[1(dit = C) · (εC,it + π̄mt + δV ) + 1(dit = S) · (εS,it + Sellit)+

+1(dit = A) · εA,it]

]
. (4)

This is a contraction mapping, as shown in the appendix, because we show that stationarity

holds in expectation in our model. Let Vmt,fixed denote a fixed point for type m in period t.

The lemma below gives the conditions for the uniqueness of this fixed point. The prior mean

changes in every period, so the fixed point Vmt,fixed needs to be calculated for every period.

Note that when the prior means are very similar in adjacent periods, the fixed points Vmt,fixed

and Vm,t+1,fixed may be close to each other as well. We call such a set of fixed points that are

pairwise close to each other sequential fixed points, and we now propose an algorithm that

works well in such a case and is consistent in a much larger class.

Suppose the empirical researcher estimates the fixed point for type m in period t, i.e.,

Vmt,fixed. The prior means of period t and period t−1 may be close together, so that Vmt,fixed

may be a good starting value for calculating Vm,t−1,fixed. In particular, consider the sequence

Vm,t−1,R=1 = Vm,t−1(Vmt,fixed),

Vm,t−1,R=2 = Vm,t−1(Vm,t−1,R=1),

...

Vm,t−1,R=r = Vm,t−1(Vm,t−1,R=r−1) for r > 1.
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After the researcher finds Vm,t−1,fixed, they then use the same method to find Vm,t−2,fixed,

etc.. The following lemma gives the conditions under which this algorithm converges at a

geometric rate in r.

Lemma 2: Contraction Mapping and Sequential Fixed Point Algorithm

Let

Vmt(V ) = E

[
sup

dit∈{C,S,A}
[1(dit = C) · (εC,it + π̄mt + δV ) + 1(dit = S) · (εS,it + Sellit)+

+1(dit = A) · εA,it]

]
. (5)

Let (i) the conditional expectations in the last expression exist for all m and t; (ii) 0 ≤ δ < 1;

and (iii) V ∈ [0, Vhigh] where 0 < Vhigh < ∞. Then Vmt(V ) is a contraction mapping with

a unique fixed point Vmt,fixed for all m and t. Further, the sequential fixed point algorithm

converges at a geometric rate in r for all m and t, i.e.,

|Vmt,R=r − Vmt,fixed| ≤ δr|Vmt,R=1 − Vmt,fixed| where r > 1.

Proof: See appendix

By using the fixed point of an adjacent period as a starting value, the sequential fixed

point algorithm is fast in computer time in our application. The geometric rate of conver-

gence in Lemma 2 is the same as for the case of full information. However, the Bayesian

updating implies a fixed point for every period and type, meaning that the fast convergence

is relatively important.

An important assumption of Banach’s (1922) fixed point theorem is the boundedness of

V , i.e., Vhigh < ∞. This assumption is satisfied in our application because farms sold, on

average, for $1,480 when homesteaders sold, and $1,475 when purchasers sold. Further, since

the government was giving undeveloped land away through homesteading, the boundedness

of the value of farming seems reasonable. Thus, the main conditions of the Banach (1922)

fixed point are satisfied, and we discuss in the appendix that the other ones are satisfied as

well. Therefore, we have a unique solution for Vmt,fixed for every period.

24



3.1.6 Dynamic Selection

Farmers have prior beliefs about their ability to farm and update these priors over time.

These (updated) beliefs may affect their decision to sell or abandon the farm. In our ap-

plication, we find that the productivity of farmers is not homogeneous and that the high

productivity farmer is more likely to continue to farm. In our model, we allow for different

rates of abandoning, selling, and continuing by ability, i.e., type-specific survival functions.

In industrial organization, such selection is called competitive selection (see for example

Bowden (1992)), and in labor economics, it is called dynamic selection (see for example Van

den Berg (2001) and Ridder and Woutersen (2003)). Let Hm,home,t denote the type-specific

survival function for homesteaders, i.e., the probability of continuing through at least time

t for homesteaders of the type. That is,

Hm,home,t =
t∏

s=1

Pr(dms = C), m ∈ {A,B}.

We allow for dynamic selection by first calculating the fraction of the homesteaders who are

high ability at t = 0. Let fA,home,t=0 denote this fraction,

fA,home,t=0 =
Pr(A|HS at t = 0)

Pr(A|HS at t = 0) + Pr(B|HS at t = 0)
.

Next, we can use the survival functions that condition on type to calculate this fraction for

any t,

fA,home,t =
Pr(A|HS at t = 0)×HA,home,t

Pr(A|HS at t = 0)×HA,home,t + Pr(B|HS at t = 0)×HB,home,t

, t = 1, 2, ....

The fraction fA,home,t shows the dynamic selection process over time because fA,home,t is

the fraction of homesteaders that are still farming at time t and are type A. We would

expect high ability farmers (type A) to be more likely to continue relative to the low ability

farmers (type B), so fA,home,t should increase towards 1 as t increases when Pr(A|HS at

t = 0) > 0, Pr(B|HS at t = 0) > 0. We use fA,home,t to calculate the probability of

continuing in each period t, which demonstrates how farmers make different decisions under

different information sets. Such dynamic selection based on unobservables also occurs in

duration models.
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Perhaps the easiest way to deal with the dynamic selection is to calculate the survival

function that conditions on homesteading but not on type. Let Hhome,t denote this survival

function. This survival function is a weighted average of the survival functions HA,home,t and

HB,home,t that do condition on type,

Hhome,t = HA,home,t × Pr(A|HS at t = 0) +HB,home,t × Pr(B|HS at t = 0).

Note that we can use the data to estimate this survival function because we observe which

farmers continue to farm and for how long. Further, we can estimate the probabilities

of selling or abandoning at time t, conditional on farming up to that point. Therefore, the

probability of selling the farm in period t, conditional on being typem, equals the probability

of continuing to farm in every previous period (including t−1) multiplied by the probability

of selling the farm in period t, conditional on being type m. That is,

Pr(dmt = S, dmk = C for k = 1, ..., t− 1) = Pr(dmt = S)
t−1∏
s=1

Pr(dms = C).

We can calculate this sequence for every type and then take the weighted average to get the

unconditional probability. This unconditional probability gives us the survival function for

homesteaders. We also calculate the survival function and probabilities for the purchasers,

as we condition on observables wherever possible.

We have now described the Bayesian model for homesteaders. Recall that in period 0,

individuals may choose to homestead or purchase land. Conditional on type, the model for

purchasers is the same as for homesteaders with one exception: purchasers gain the title in

period 0, meaning that Sellit = Sellnotitle + κ · 200 if dit = S and di,0 = purchase.

3.2 Full Information Model

In our Bayesian model, individuals do not have perfect information. Instead, they learn

information about their farming ability through the process of farming. We compare the

estimation results of the Bayesian model to the results of a full information model given

in equation (1). In the full information model, the farmers know their ability, µ, and this

parameter has the same value for all farmers. Thus, for the full information model we get

the value functions and choice probabilities by replacing π̄mt by µ for all m and t.
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4 Identification and Estimation

In this section, we describe the variation in our data that allows us to identify the structural

parameters of the Bayesian model. We estimate the following parameters: κ (converts

dollars into utility), µm (the type-specific ability), ηm (the type-specific bias), HA,home,t=0 (the

proportion of homesteaders who are type A), HA,purchase,t=0 (the proportion of purchasers

who are type A), σprior (the standard deviation of the prior), δ (the discount rate), γ (the

disutility from being a farmer), ρ (the flexibility of being a purchaser versus homesteader),

and Xt (the information realizations in each period). The parameters γ and ρ are used in

the counterfactuals, which we discuss in Section 6.3.1. Sellnotitle denotes the utility from

selling the farm before acquiring the title through homesteading and equals the net proceeds

of selling times the parameter κ. The value functions are functions of the above parameters.

The parameter κ, and thereby Sellnotitle, is identified by the ratio of the probability of

selling over abandoning. Intuitively, this is because if a farmer wants to exit, they can either

sell or abandon, and the ratio between those two choices identifies the value of money. In

particular, the probability that a farmer of type m sells in period t is

Prm,home,t(S) =
exp{Sellnotitle + 1(t ≥ 10)κ · 200}

1 + exp{π̄mt + δVmt}+ exp{Sellnotitle + 1(t ≥ 10)κ · 200}
.

Averaging over types using the probability that a farmer in period t is typem, Prhome,t(type =

m), as the weight yields

Prhome,t(S) =
∑

m∈{A,B}

Prm,home,t(S)× Prhome,t(type = m)

=
∑

m∈{A,B}

exp{Sellnotitle + 1(t ≥ 10)κ · 200} × Prhome,t(type = m)

1 + exp{π̄mt + δVmt}+ exp{Sellnotitle + 1(t ≥ 10)κ · 200}
.

Note that Sellnotitle and κ do not depend on the type. Similarly, the probability of abandoning

the farm is

Prhome,t(A) =
∑

m∈{A,B}

Prhome,t(type = m)

1 + exp{π̄mt + δVmt}+ exp{Sellnotitle + 1(t ≥ 10)κ · 200}
.

Taking the ratio of Prhome,t(S) and Prhome,t(A) for any t identifies κ, and thereby identifies
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Sellnotitle. Further, this identification argument only relies on the probabilities that are con-

ditional on the farmer being a homesteader. Being a homesteader is observed, and the same

argument applies when conditioning on being a purchaser. Thus, κ is identified using just

the homesteaders or just the purchasers. After identifying κ, γ and ρ are identified by the

same arguments as in McFadden (1978).

We use results from the duration literature to allow us to identify the unobserved mixture

of heterogeneity among farmers. The model is a discrete hazard model with constant hazard,

in the duration terminology by Hausman and Woutersen (2014), who show nonparametric

identification of the mixing distribution. Assuming that the effect of the prior converges to

zero over time means that the model becomes stationary. In particular, the probabilities of

continuing, selling, and abandoning no longer depend on time after conditioning on type.

Thus, the model is a discrete hazard model with constant hazard. Therefore, the assumption

that the effect of the prior converges to zero means that the unobserved mixture of abilities,

µm, m ∈ {A,B}, and their probabilities are identified. Alternatively, the Kansas 1880 census

has detailed information on the individual farmers’ revenue and cost. The revenue minus

cost of homesteaders and purchasers, and thereby the average values of µm, are identified by

the Kansas 1880 census. We use the method with the Kansas census as a robustness check.

Continuation decisions in the later periods are primarily based on the true ability, while

continuation decisions in the early periods are primarily based on the initial prior belief

about ability. As µm, m ∈ {A,B}, and the probability of type m are identified, the fractions

of farmers who continue, abandon, or sell in the early periods identify the bias parameter

ηm,m ∈ {A,B}. How quickly the farmers update their beliefs, revealed by the difference in

the probabilities of choosing to continue, abandon, or sell over time, identifies the standard

deviation of the prior, σprior. The changes over time in the prior means identify the infor-

mation, Xt, that caused these changes for all periods. In particular, when farmers receive a

negative realization, the fraction selling and abandoning will jump up from the trend, and

when farmers receive a positive realization, the fraction selling and abandoning will jump

down from the trend.

We are able to separately identify the discount factor δ because the value function in-

creases in the years before the homesteader gets the title. Separately identifying δ and µm is

possible because of the institutional features of our setting and our rich dataset: the home-

steaders have to either wait to get the title or pay for it earlier, so we can identify the discount
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factor from this tradeoff. The homesteaders discount from t = 10 (when they acquire the

title). The value functions in t = 10 and in all other periods are unique by Banach’s (1922)

fixed point theorem, as discussed before. Finally, HA,home,t and HA,purchase,t are functions of

these fixed points and the other identified parameters. The estimation is further discussed

in the online appendix.

5 Data Description

This paper uses five individual-level data sources: (i) individual purchase and homestead

decisions; (ii) sale deeds of individual resale decisions; (iii) the Kansas agricultural censuses

of 1870 and 1880; (iv) the identified U.S. Population Censuses of 1860, 1870, and 1880 for

Kansas; and (v) plot-level historical land characteristics. Using individual farm level data,

as opposed to the county level data generally used in previous homesteading literature, is

necessary to estimate the decision-making process based on learning new information because

information is learned at the individual level. Matching together individual data on land

acquisition and land resale at the plot level shows how long the farmer held the land. The

1870 and 1880 Kansas agricultural censuses record production at the farm level. We match

these production data to the plot-level land acquisition data to provide a robustness check

in which we use individual production data to account for the difference in farming ability,

instead of estimating the difference as part of the model. We also use individual-level data

from the U.S. Population censuses of 1860, 1870, and 1880 and the National Commodity Crop

Productivity Index from the Soil Survey Geographic (SSURGO) database to demonstrate

the farmers and land quality do not differ along observable characteristics. Matching between

the data sources is described in the online appendix.

5.1 Initial Land Acquisition from the Federal Government

The Bureau of Land Management (BLM) tract books record all original acquisitions of land

from the federal government, including the homesteads and purchased land used in this

analysis. The level of observation is the farm. The tract books record both successful and

unsuccessful homestead claims and purchases, including the original date filed, the date the

patent was applied for, the date the patent was acquired, the name of the owner, the size of

the acreage, the price per acre, the Act it was filed under, and the state, county, township-
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range, section, and aliquot (PLSS). The typical farm size is 160 square acres. The land in

the tract books contain only new, unbroken land, not land already used for farming that

changed hands.

We digitize 9,279 unique homestead and cash purchase observations from two counties

in Kansas: Bourbon County and Woodson County. These two counties have comparable

latitudes, but Woodson County is slightly farther west than Bourbon County. This difference

means that it was acquired by individuals from the federal government later than land in

Bourbon County, reducing the likelihood that our results are driven by time-varying factors

such as periods of drought or business cycles. The choice of counties allows us to keep the

aridity, temperature, and weather conditions similar.

While high ability farmers may be more likely to choose high quality land, the fact that

our setting is geographically small mitigates this issue. Land within a small area is of similar

quality and has similar market access (see Section 5.4). Additionally, historians concur

that farmers in the nineteenth century did not have a good understanding of land quality.

Shannon (1966) concludes that the majority of a settler’s information about whether the soil

was of good quality for growing crops was based on the soil’s color. Both because the land

quality in these counties does not vary greatly and because farmers did not have good initial

information about soil quality, better farmers selecting better land poses little threat to our

identification.

5.2 Land Resale

About one third of the counties in Kansas have available all resale deeds of land from the

Registers of Deeds. These deeds begin with the original resale from the first recognized

owner who acquired it from the federal government and stretch into the twentieth century.

Each deed is a handwritten legal document which lists the name(s) of the seller, the name(s)

of the buyer, the number of acres sold, the exact aliquot (PLSS), the price per acre, and the

exact date (day/month/year) of the sale. To our best knowledge, these deeds have never

been used for any type of quantitative research.

We digitize the sale deeds for Bourbon and Woodson counties from 1852 to 1896, which

total 18,473 observations. Many of these deeds represent sales after the initial resale of land,

and this paper uses only those deeds which are initial resales by the owner who acquired

it from the federal government via either purchasing or homesteading (i.e., the first resale).
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The time period we use covers the vast majority of the early land investment activity in these

two counties. Since we are only concerned with the initial resale period, the period from 1852

to 1896 captures the majority of the initial resale. By definition, tract book aliquots acquired

later in the period are less likely to match with resale deeds than tract book aliquots acquired

early in the period, since the resale deeds extend only until 1896. However, 84% of the tract

book aliquots in these counties were acquired before 1874, meaning that the the deed data

extends 22 years after their acquisition from the federal government. For this reason, we use

only the matched dataset with tract books acquired before 1874. The match rate in 1873

is 68% and the match rate in 1861 is 75%, so we do not obtain a statistically lower match

rate (at the 5% level) from the resale deeds to the tract book observations acquired late in

the period than from the resale deeds to the tract book observations acquired early in the

period.

We observe the exact date (day/month/year) that the owner acquired the land from

the federal government, the exact date that they obtained the title, and the exact date

that the farm was resold. This allows us to calculate the number of days the land was

held by the original owner before they resold it in order to determine how quickly farmers

update their information. Figure 2 illustrates this. Purchased land is much more likely to

be resold within the first six months than at any other time in our data. Homesteaded land

is frequently abandoned for the first several years, with the abandonment rate dropping off

after the homesteaders obtain the title in period 10. Homesteads are regularly sold before

period 10, meaning that homesteaders often paid $200 additional to obtain the title more

quickly. There is an uptick in the number of homesteads sold at period 10 when they receive

the title naturally; however, few homesteads are resold after about seven years (period 14).

Matching between the tract books and the deeds yields a dataset of 7,011 observations.

Using these 7,011 observations, we construct a matrix of each observation in each period,

i.e., a 7,011 by 24 matrix.6 Each cell of the matrix indicates whether the farmer continued,

sold, or abandoned in that period, or whether they have exited the game (if they sold or

abandoned previously).

6We use periods 21 through 24 for the final fixed points.
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5.3 Individual Agricultural Censuses

In order to provide supporting evidence for our model, we use data from the Kansas agricul-

tural censuses of 1870 and 1880. We use the production data to conducat a robustness check

for the difference in farming ability directly, without imposing the structure of the model.

These censuses are individual-level censuses, separate from the published federal agricultural

censuses, which were conducted at the county level. The federal censuses only publish farm

output at the county level, but it is important for dynamic optimization to use data at the

individual level because that is the level at which optimization decisions occur. Each ob-

servation in the Kansas agricultural census includes the name of the farmer, whether they

are the farm owner or a tenant, the acreage of the farm, the farm value in dollars, the types

and amounts of the crops and livestock grown on the farm (e.g., 100 bushels of wheat and

8 milk cows), the value of the livestock in dollars, the date of the census, and the township

in which the farm is located. We use the location, census date, and name of the farmer to

match the Kansas agricultural census data to the BLM tract books.

5.4 Individual Demographic and Soil Quality Data

To show that both the demographic characteristics of purchasers and homesteaders are

similar and that the land they farm is similar, we use individual demographic data from the

U.S. Full Count population censuses of 1860, 1870, and 1880 and farm-level soil quality data

from the National Commodity Crop Productivity Index from the Soil Survey Geographic

(SSURGO) database. We match the BLM tract book observations to both of these datasets

at the individual level using the location (PLSS) for the soil quality data and the location,

name, and year for the U.S. population censuses.

The demographic data from the U.S. population censuses allows us to demonstrate that

there are no observable differences in the distribution of demographic characteristics based on

land acquisition decisions at the individual level.7 We use the age, gender, personal property,

occupation class, and number of children variables from the U.S. population censuses.

The soil quality data classify eight soil categories based on their effectiveness for farm-

ing. This measure is called the non-irrigated land capability class, where higher numbers

indicate “greater limitations and narrower choices for practical use” (United States Depart-

7This result is shown in Figures 14 through 19 in the online appendix.
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ment of Agriculture (2013)). This is a more accurate measure than farmers had at the time.

Nearly 80% of the land in our sample is classified as above average soil quality for the U.S..

Therefore, the idea that better farmers can select better land does not pose a significant

threat to identification in our model because the vast majority of land in our sample was

high quality. Further, soil quality does not differ in a meaningful way on land acquired by

homesteaders and by purchasers: on average, homesteaded land has a soil classification of

3.46 and purchased land has a soil classification of 3.55 in our sample, both of which are

above average quality. Further, as we find below that purchasers have higher farming ability

than homesteaders, we observe that better farmers actually selected slightly worse quality

land on average (3.55 vs. 3.46), meaning that we do not have a threat to identification from

better farmers selecting land for its higher soil quality.

6 Results and Counterfactuals

In this section, we describe the results from the Bayesian and full information models, and

the counterfactual estimates we construct from both of them. The full information model

is comparable to a typical Rust (1987) specification in which the farmers know their true

ability to farm. The results of our Bayesian model demonstrate its advantages over a full

information model: it allows us to estimate the biases in the beliefs about farming ability

for each unobserved type, the standard deviation of the prior belief, and the information

realizations. These parameters are not a part of a full information model, but they are

important because they empirically demonstrate the value of learning in our context.

Using our Bayesian model, we estimate two counterfactuals. Firstly, we estimate what

fraction of homesteaders would have bought land if they could only purchase it. This coun-

terfactual is a policy counterfactual which quanitifies the importance of the Homestead Act

in western expansion. Secondly, we estimate what fraction of homesteaders would have aban-

doned their farms in the first five years if they had begun with different information sets.

This counterfactual demonstrates the importance of beliefs on decision-making in our set-

ting. The first counterfactual is possible to calculate under a full information specification,

which we do. The second counterfactual can only be calculated using our Bayesian model.

These counterfactuals further demonstrate the advantage of our Bayesian model over a full

information model because they incorporate the value of learning, which is critical in our
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setting.

6.1 Empirical Results from the Full Information Model

The farmers, homesteaders and purchasers, build a farmhouse and develop the land. If they

subsequently sell the property, then the average proceeds are $1480 for the homesteader and

$1475 for the land buyer for an 160 acre farm. The parameter that converts dollars into

utility is κ, and the estimate for κ is 5.7·10−4 (s.e. 4.9·10−5).

The estimated ability to farm is substantially different for homesteaders and buyers.

When estimating a full information model, i.e., no prior beliefs, the estimates for their

farming ability µ are 0.363 (s.e. 1.6·10−2 ) for the homesteaders and 0.925 (s.e. 6.5·10−2)

for purchasers. A positive µ is interpretable as farmers receiving positive benefits from

farming in the current period in the full information model. In particular, µ is the difference

between the expected utility from farming and the expected utility from the outside option

(abandoning). This utility is substantially larger for purchasers.

To facilitate a more detailed understanding of these results, we convert the parameter

estimates into 1870 dollars using κ̂, the parameter which converts dollars into utility. The

farming ability for the homesteaders is equivalent to $636.84, and $1,622.81 for buyers, per

period over the outside option. However, the full information model does not capture the

differences in farming ability among farmers, nor the bias in beliefs. A negative bias in beliefs

may lead to discontinuing farming despite a positive µ.

We estimate Sellnotitle, the utility a homesteader receives from selling their farm before

they would normally acquire the title, at 0.732 (s.e. 6.3 · 10−2), which is comparable to

$1,284.95 in 1870 dollars. Recall that the utility a farmer gets from selling the farm if they

have the title is Sellnotitle+κ · 200, so the dollar value (in 1870 dollars) from selling the farm

if they already have the title is estimated at $1,485. Since the average resale value of a farm

in our data is $1,478, our results are consistent.

The full information model fits the data with a pseudo-R2 of 0.596. In both the model and

in the data, the vast majority of farmers continue to farm each period.8 In the full information

model, by definition, the probabilities of continuing, selling, and abandoning do not change

in any period for purchasers and do not change after period 10 for homesteaders. However,

in the data, the probabilities of each choice are not the same every period; specifically, the

8See Figures 8 and 9 in the online appendix.
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probability of selling the farm if the farmer purchased the land originally is much higher in

period 1 than in any other period, and for homesteaders, the probability of selling the farm

is the highest in periods 11, 12, and 13. The full information model is unable to capture

these differences in the probabilities of each choice by period. Further, the full information

model cannot capture the significant decrease in the probabilities of abandoning after period

10 or selling after period 13 for homesteaders because the probabilities of each choice do not

change after the homesteader receives the title. These changes in the choice probabilities are

better captured by our Bayesian model.

The above abilities to farm were estimated without assuming a common κ. Below, our

model with unobserved types strictly generalizes the full information model with homestead-

ers and purchasers.

6.2 Empirical Results from the Bayesian Model

Above, we detailed the results from the full information model. However, the full information

model does not take into account the fact that individuals acquiring land may have limited

knowledge about farming and learn more information over time. Because this learning was a

crucial feature of our setting, we turn to the results from our Bayesian model. Table 2 in the

appendix reports the parameter estimates from the Bayesian model and the full information

model.

The Bayesian model fits the data significantly better than the full information model

(pseudo-R2 of 0.821 vs. pseduo-R2 of 0.596). This difference is largely driven by the fact

that the Bayesian model matches the data better than the full information model for the

selling and abandonment decisions for the early periods. The Bayesian model is able to

capture the fact that the choice probabilities change in every period, even after the farmer

has the title, because their beliefs about their own farming ability change in every period

based on the new information they receive.9

Using the Bayesian model, we estimate the farming ability for the high ability farmers,

µ̄A, at 1.249 (s.e. 8.9·10−2). This can also be understood as the value of farming in the

current period, so the low ability type values farming in the current period slightly less, at

1.237 (s.e. 8.1·10−2). Using κ̂, we convert these parameters into 1870 dollars: the farming

ability for high ability farmers is equivalent to $2,191.23 and $2,170.18 for the low ability

9See Figures 10 and 11 in the online appendix for the fit of the Bayesian model to the data.
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farmers per period over the outside option. This result is consistent with external data

sources: the 1870 and 1880 Kansas Agricultural censuses values average farm production

plus farm value for homesteaders at $1,201.09 and for purchasers at $2,263.46, conditional
on the farm having existed for between 8 and 12 years.10

The different values of farming in the current period for each type culminate in different

fixed points for the value of farming. We estimate VA,final to be 7.622 (s.e. 0.367) and VB,final

to be lower, at 7.542 (s.e. 0.342). These final fixed points are equivalent to $13,371.93 for

the high ability farmers and $13,231.58 for the low ability farmers in 1870 dollars. These

numbers are the expected discounted utilities of farming over the outside option expressed

in dollars. Additionally, we are able to estimate the discount factor, and find δ = 0.759 (s.e.

5.2 · 10−4). This discount rate is consistent with high-risk projects.

Farmers with different abilities may also exhibit differently biased beliefs. We estimate

the bias parameter for the high ability farmers as -1.442 (s.e. 0.147), and -1.502 (s.e. 0.114)

for the low ability farmers. Since both ηm,m ∈ {A,B}, are negative, farmers of both types

are pessimistic about their abilities. In 1870 dollars, these biases are equivalent to -$2,529.82
for the high ability farmers and -$2,635.09 for the low ability farmers, meaning that initially,

farmers anticipated their farms being about $2,500 less productive than was accurate. This

result that farmers in Kansas in the late 1800’s were pessimistic about their outcomes is

consistent with historical accounts: a newspaper in Junction City, Kansas in 1870 published

that farmers “prophesy a failure of crops whenever it is dry for a ‘straight’ week” (Martin

(1870)).

We find that high ability farmers are more likely to continue rather than sell or abandon

relative to the low type, which is partly due to a higher farming ability, and partly due to less

pessimism. Lower ability farmers have a lower ability and a slightly less accurate belief about

that ability. However, both types of farmers are able to refine their beliefs over time using

Bayesian updating. This causes their beliefs to be less biased: ηm, m ∈ {A,B}, represents
their initial bias, and the whole bias term is decreasing in t. For example, by period 10, the

bias is -0.602 and -0.623 for types A and B respectively (-$1,056.14 and -$1,092.98 in 1870

dollars, respectively), meaning that the bias has decreased by more than half after about

five years. Over time, farmers’ beliefs about their ability move closer to their true ability

as they learn more information. How the bias for type B changes over the twenty periods

10These census values have been adjusted to reflect values for six months, to match the six-month periods
in our model.
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is shown in Figure 7.11 In the first three periods, the biases decrease rapidly and then level

off to remain fairly stable for about ten more periods. The biases then decrease again from

periods 13 to 20.

The fact that the bias has not disappeared completely even by period 20 highlights the

importance of the information realizationsXt. When individuals receive negative information

realizations, their already pessimistic bias reduces more slowly than if they had received

positive realizations in that period. In the first two periods, individuals receive positive

realizations and the bias reduces by approximately 50% in these early periods: by period 2,

the bias is -0.709 for type A and -0.753 for type B (see Table 7). These biases are equivalent

to -$1,243.86 and -$1,321.05 in 1870 dollars, respectively, meaning that by period 2, farmers

underestimate their productivity by about $1,300, compared to underestimating it by about

$2,500 initially. Because of this large initial reduction in the bias, estimating the information

realizations is critical in many settings. The large magnitude of the bias ηm,m ∈ {A,B},
may lead to farmers abandoning at a higher rate than is optimal in the early periods.

Table 7 in the online appendix shows the estimates for the information realizations Xt.

These realizations are the information that farmers use to update their beliefs. For example,

farmers might learn in the first six months that they have difficulty purchasing farming equip-

ment because they have limited credit in Kansas, which would create a negative information

realization in the first period. We find that in the first two periods, farmers recieve highly

positive information realizations. In periods 3 through 13, they receive negative information

realizations, and then in the last periods, the information realizations are positive again.

We estimate the standard deviation of the prior, σprior, as 0.443 (s.e. 2.3·10−2). The

standard deviation of the prior is relative to learning while farming, and 0.443 is comparable

to five years of farming experience.12 The context of this result is that more than half the

U.S. population worked in agriculture at the time, meaning that most people had experience

farming (Gates (1968)).

In our Bayesian model, the parameter µm,m ∈ {A,B} captures what we call farming

ability, which may also reflect things like taste for farming or wealth. Therefore, to strengthen

our results, we demonstrate that the distribution of the six land acquisition probabilities is

consistent across the distribution of observable demographic characteristics from the U.S.

population census. Specifically, we show that the probabilities of continuing, selling, or

11The bias of type A is somewhat smaller and reported in Figure 13 in the online appendix.
12We calculate the years of farming experience to which σprior is equivalent by 1

σ2
prior

= 5.195.
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abandoning, conditional on having initially homesteaded or initially purchased, are constant

across age brackets of the owner, gender of the owner, year the farm was started, occupational

choice of the owner, number of children of the owner, and personal property of the owner.

For example, we show that the probabilities for each land acquisition choice are the same

for young, old, and middle-aged farmers: older farmers are not more likely to abandon their

farms than younger farmers. The probabilities of different land acquisition decisions are the

same at all levels of observable demographic characteristics, which indicates that our results

for µm are not driven by demographic characteristics.13

Figure 4 illustrates how farmers made different decisions (continue, sell, or abandon)

based on their different beliefs about their farming ability. These beliefs depend on the initial

bias and the information realizations. When farmers think their expected farm output is high

(i.e., their posterior belief is higher), the probability to continue is relatively large. When

farmers think their expected farm output is low (i.e., their posterior belief is lower), the

probability of selling or abandoning is relatively high. In other words, the model formalizes

that individuals develop beliefs that affect their decisions. Notably, all the individuals in

Figure 4 initially acquired land, so they all thought they were likely to be able to create

a successful farm. However, learning more information about their farming ability in later

periods allowed them to refine their decision, leading many farmers to abandon or sell their

land. Figure 4 demonstrates how learning about their own ability impacts individuals’

decisions under uncertainty. In particular, it shows that when their posterior mean is higher,

they are less likely to sell or abandon their farm.

By estimating this model with multiple types, we are able to distinguish how high and low

ability farmers self-select into purchasing land versus homesteading it. We find that 99.0%

(s.e. 29.0%) of the purchasers are high ability, versus 1.0% (s.e. 0.973%) of the homesteaders.

Of the high ability farmers, 98.8% (s.e. 15.7%) of them select into purchasing land and 1.2%

(s.e. 15.7%) select into homesteading, while of the low type farmers, 0.8% (s.e. 13.3%) of

them choose to purchase and 99.2% (s.e. 13.3%) of them homestead. This result, reported

in Table 3 in the appendix, has empirical implications in the homesteading literature: while

much of the previous literature has assumed that the decision to purchase versus homestead

land is exogenous after various county-level controls, this result indicates that the farmers

involved may be different and select into land acquisition decisions based on that unmea-

13This result is shown in Figures 14 through 19 of the online appendix.
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Figure 4: Farmers make different decisions based on their beliefs: when they believe their
ability is higher, more of them continue to farm, and when they believe their ability is lower,
more of them abandon and sell their farm

sured difference. For example, if the researcher is interested in how the purchase-homestead

decision affects future farm productivity, even with individual-level controls, the results may

be conflating the effect of farming ability with the effect of the purchase-homestead deci-

sion. We model the purchase-homestead decision with ability taken as given, and our model

suggests that high and low ability farmers separate into purchasing and homesteading land.

Determining the amount of self-selection into unobserved types is relevant for a large number

of empirical settings.

As the farmers move through time, this selection by types continues. The ratio of high

ability farmers to low ability farmers is increasing somewhat in t (0.45659 in period 1 to

0.45734 in period 20) because low ability farmers are more likely to exit through selling or

abandoning their farm. This same selection process is observable in the ratio of the survival

functions by type, i.e.,
HA,home,t

H
B,home,t

and
HA,purchase,t

H
B,purchase,t

. For example,
HA,home,t

H
B,home,t

increases from 1.013

in period 1 to 1.091 in period 20, meaning more high ability homesteaders are continuing

to farm than low ability homesteaders. Figure 5 illustrates how the information realizations

relate to the probability of continuing for each type. Because of dynamic selection, the ratio

of high ability farmers to low ability farmers increases over time. In part, selection by type

is due to the information realizations they receive each period, which are estimated by Xt.

We use the Xt to better understand how farmers make decisions in a Bayesian setting.
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Figure 5: Low ability farmers are more susceptible to negative information realizations than
high ability farmers

In particular, let ∆fA denote the change in the ratio of high ability farmers to low ability

farmers. Figure 5 shows the relationship between the information realizations Xt and ∆fA.

The ratio fA changes most in the first few periods, when learning new information is of the

most value to farmers deciding whether to sell, abandon, or continue. By the last periods,

there is little change in the ratio of high ability farmers to low ability farmers because

the information has already been learned. However, in periods 11 and 12, farmers receive

highly negative realizations (X11 = −1.646 (s.e. 0.208) and X12 = −1.775 (s.e. 0.300)).

In these periods, ∆fA increases: more high ability farmers are continuing and more low

ability farmers are selling or abandoning when they receive negative realizations. This result

indicates that low ability farmers are more susceptible to these negative realizations than are

high ability farmers. This finding is consistent with Schultz’s (1975) concept of responding

to disequilibria. In Schultz’s (1975) framework, low ability farmers are less insulated from

negative realizations than high ability farmers, and how efficiently farmers are able to respond

has value.

We use the data from the Kansas agricultural census of 1880 to provide supporting evi-

dence for the difference in farming ability. Table 1 shows a back-of-the-envelope calculation

for the average farm-level profit for purchasers and homesteaders at the individual level. We
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calculate revenue as the number of bushels of each type of crop produced times the price

per bushel of each crop plus the number of each type of livestock born times the price of

each type of livestock in the census year. We calculate their cost as the cost of fertilizer and

wages in the census year, plus the cost of two draft animals (to pull the plow), plus the value

of machinery and the cost of fences, both multiplied by 0.2 to account for depreciation and

capital cost, plus the cost of enough corn to feed the two draft animals, as given below,

Revenuei = NumberOfBushelsi,crop × Pricecrop +NumberLivestocki,type × Pricetype

Costi = FertilizerCosti +Wagesi + 2 ·DraftAnimal+

+0.2× (MachineryV aluei + FenceCosti) + FeedCost.

Table 1: Annual Farm Profit by Initial Land Acquisition Decision

Homesteaded Purchased
Revenue $693.72 $768.71

(540.84) (626.07)
Cost 145.30 149.55

(62.15) (69.70)
Profit 537.72 603.84

(518.62) (591.96)
N = 284 N = 208

The large standard deviations in Table 1 reflect the fact that many farmers abandoned

because they earned negative profits. The average profit for purchasers is $66.12 dollars

larger (in 1880 dollars) than the average profit for homesteaders. This result is consistent

with our results from the Bayesian model: purchasers are more likely to be high ability

farmers.

We use the data from the Kansas agricultural census to externally verify the results from

our Bayesian model: without relying on the modeling process to provide structure, we find

consistent results using individual agricultural output data. As a robustness check, we fix

the difference in the ability between the two types to be κ̂ · 66.12 to reflect the difference in

the value of farm output from the census between purchasers and homesteaders, and then

re-estimate the Bayesian model. Table 6 reports these results. The estimates are nearly
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identical. The estimate for the ability for the low type, µB, is slightly smaller when using

the agricultural census data (1.211 versus 1.237 under the Bayesian model without the agri-

cultural census data), and the standard deviation of the prior, σprior, is also slightly smaller

(0.378 versus 0.443 under the Bayesian model without the agricultural census data). Like-

wise, the probability of abandoning in the first five years and the counterfactual probability

of farming in a world without homesteading also have very similar results using the agricul-

tural census data and estimating the model without it. (These counterfactuals are discussed

in the next section.) Together, these results show that our model is externally consistent

with other data sources.

6.3 Counterfactuals from the Bayesian Model

We consider two separate counterfactual scenarios using our Bayesian model. First, what

fraction of homesteaders would have bought land in a counterfactual scenario in which home-

steading was not an option? Second, what fraction of homesteaders would still have aban-

doned their farm if they had begun with the information they learned through farming?

Specifically, in order to understand the importance of the information learned by farmers,

we estimate a counterfactual scenario in which they begin with the information they learned

after (i) five and (ii) ten years.

6.3.1 Farming without Homesteading

The concept of the Homestead Act had been hotly debated in Congress for several decades be-

fore its passage (Gates (1968)). It was by no means clear that such an Act would pass; there-

fore, we consider a counterfactual scenario of westward expansion without homesteading.

Without the Homestead Act, we assume buying the land was a requirement for farming, and

some fraction of homesteaders may not have done that. We estimate that fraction. Formally,

this counterfactual is the conditional probability of buying the land given that one home-

steaded in the data but homesteading is no longer available. We estimate this counterfactual

using our Bayesian structural model and we use a nested logit model to allow for correlation

between the propensity to buy the land and to homestead.

Homesteaders acquire the title to their land for a nominal fee after five years. Further,

they do have the option to acquire the title earlier by paying $200 to the Department of the

Interior. In particular, at t = 0 a homesteader could buy the land for $200. When deciding
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between buying and homesteading, the farmer will also take into account that life events

may force a sale of the farm, and in our data about 20% of homesteaders sell their land

in the first five years. In the case of such a sale, the farmer will still have to pay $200 to

acquire the title. Therefore, the farmer will take the discounted expected cost of acquiring

the farm into account at t = 0. This causes the difference in cost between purchasing and

homesteading to be somewhat less than $200. In particular, the discounted expected cost of

acquiring the title of the farm at t = 0 is

$200− $200 ·
9∑

t=1

δt Pr(homestead s = 1, ..., t− 1, and sell at t).

In our data, this discounted expected cost is $190.73 in 1870 dollars. We only need to sum

over periods 1 through 9 since the homesteaders acquire the title at t = 10. Using µA and µB,

we calculate this payment separately for type A and type B. Call these Bayesian discounted

expected costs ΨA and ΨB. In our data, the discounted expected cost of acquiring the title

to their farm is $185.67 for type A and $183.23 for type B (in 1870 dollars). As discussed

in the previous section, the low ability farmers are more likely to sell their farm than the

high ability farmers; therefore, type B has a somewhat lower discounted expected cost of

acquiring the title. This Bayesian expectation of the payment is lower for type B because of

the more negative bias.

To calculate the fraction of individuals who would have bought land in a counterfactual

situation in which homesteading was not available, we use the following nested logit model,

where (1− ρlearn) is the dependence between purchasing and homesteading and γlearn is the

disutility to move to and farm in the counties under consideration for people outside those

counties. Consider

Pr(buy|homestead or buy) =
1

1 + exp{κ ·ΨA/ρlearn}
Pr(A) +

1

1 + exp{κ ·ΨB/ρlearn}
Pr(B),

and 0 < ρlearn ≤ 1, κ > 0

where Pr(A) = Pr(A|HS) Pr(HS)+Pr(A|Purchase) Pr(Purchase) and Pr(B) = 1−Pr(A).

The probability Pr(buy|homestead or buy) can be estimated using our data; in particular,
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we use

̂Pr(buy|homestead or buy) =
#sales at time = 0

#sales at time = 0 + #homestead at time = 0
.

Note that κ, ΨA, and ΨB are identified, so the only remaining parameter, ρlearn, is identified

as well. Further, ΩA = 200−ΨA and ΩB = 200−ΨB.

Next, consider the probability of not farming in our Kansas counties,

Pr(no farming) =
Pr(A)

1 + [exp(γlearn/ρlearn) + exp{γlearn/ρlearn − κ ·ΨA/ρlearn}]ρlearn
.

+
Pr(B)

1 + [exp(γlearn/ρlearn) + exp{γlearn/ρlearn − κ ·ΨB/ρlearn}]ρlearn
,

and 0 < ρlearn ≤ 1, κ > 0.

The last equation identifies γlearn and we use the U.S. census to calculate Pr(no farming).

We then use γ̂learn and ρ̂learn to calculate the counterfactual probability of not farming given

that homesteading is no longer available. Using the above estimates, we can calculate the

counterfactual probability of farming in a situation with no homesteading by removing a

choice in the equation for Pr(no farming),

̂Pr(no farming|no homesteading) =
P̂r(A)

1 + [exp{γ̂learn − (κ̂ · Ψ̂A)}]
+

P̂r(B)

1 + [exp{γ̂learn − (κ̂ · Ψ̂B)}]
.

The probability of buying conditional on homesteading or buying is

Pr(buy|homestead or buy) =
1

1 + exp{κ ·ΨA/ρlearn}
Pr(A) +

1

1 + exp{κ ·ΨB/ρlearn}
Pr(B),

and 0 < ρlearn < 1, κ > 0,

where Pr(A) = Pr(A|HS)·Pr(HS)+Pr(A|Purchase)·Pr(Purchase) and Pr(B) = 1−Pr(A).

Details on the calculation of the counterfactual are in the online appendix. We use the nested

logit model to obtain the following probability,

̂Pr(no farming|no homesteading) =
P̂r(A)

1 + [exp{γ̂learn − (κ̂ · Ψ̂A)}]
+

P̂r(B)

1 + [exp{γ̂learn − (κ̂ · Ψ̂B)}]
.
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This counterfactual is the conditional probability of not farming given that one homesteaded

in the data but homesteading is no longer available.

We find the dependence between homesteading and purchasing to be fairly large ((1-

ρ̂learn) = 0.410 (s.e. 9.9 · 10−2)) in the Bayesian setting, meaning that homesteading and

purchasing land are reasonably close substitutes for each other.14 The disutility to farm in the

counties in Kansas under consideration for people outside that area is large (γ̂learn = −8.971

(s.e. 0.105). This disutility is equivalent to $15,738.60 in 1870 dollars, meaning that people

would have to have been compensated approximately $16,000 to move to these counties and

start farming, if they did not already live there. These estimates give the counterfactual

probability of not farming in a situation with no homesteading. This probability is 0.689

(s.e. 8.6·10−2), meaning that in a counterfactual world in which the U.S. government had

not offered homesteading, about 31% of homesteaders would have bought the land, while

69% would have chosen not to farm. Given that more than 270 million acres of land were

homesteaded in the U.S., this reduction is highly economically significant. Western expansion

had far-reaching impacts on the United States’ relationship with Native Americans, racial

divisions, the Dust Bowl, and the balance of partisan power in Congress. Our results indicate

that without the Homestead Act, the speed of this expansion would have been reduced

by about 37.5% because, while fewer homesteaders would have acquired land, those who

originally purchased land would still have done so. Results are given in Table 4 of the

appendix.

However, this counterfactual about the reduction of the number of farms without the

Homestead Act does not mean that agricultural production would have been reduced by the

same amount. We find that farmers who originally purchased land produced a higher value

of livestock and crops than did farmers who originally homesteaded land. Therefore, in a

counterfactual scenario where homesteading was not possible, agricultural output would have

decreased by less than the reduction in the number of farmers. We provide a back-of-the-

envelope calculation for bounds on agricultural production in Kansas if homesteaders had

only been able to purchase land.15 This calculation bounds the agricultural output from new

14Note that ρ = 0 means complete dependence in McFadden’s (1978) model.
15Since nearly all high ability farmers are purchasers and nearly all low ability farmers are homesteaders,

we calculate the lower bound of agricultural production in Kansas in a counterfactual world without home-
steading as the average farm production in 1870 for purchasers multiplied by the number of purchasers in
Kansas plus the average farm production in 1870 for homesteaders multiplied by the number of homesteaders
in Kansas multiplied by 0.31, the fraction of homesteaders who would have purchased in this counterfactual.
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farms in Kansas in a counterfactual situation in which homesteading did not exist between

$179,290,833 and $180,008,761 (1870 dollars). Since the total agricultural production in

Kansas in 1870 was $458,530,522, which includes resold farms, this estimate is reasonable.

We also calculated this counterfactual in a full information setting. This result is given in

the appendix.

6.3.2 Homesteading Under Different Beliefs

A useful feature of our model is that it allows constructing counterfactuals using different

beliefs. Since we include prior beliefs that are updated over time and allow these beliefs to

be biased, we can create counterfactual situations that change these beliefs and biases. For

example, in many settings, agents may be optimistic or pessimistic, and researchers or policy-

makers may be interested in learning how behavior would change if the agents hold unbiased

beliefs. Agents make choices based on their beliefs, and beliefs are not necessarily fixed over

time, so our model can be used to create a counterfactual of how agents’ decisions would

change if their information set evolved differently. Since we include unobserved heterogeneity

in types, counterfactuals calculated from our model can also vary by type.

We consider counterfactual situations in which homesteaders began with all the infor-

mation and beliefs they would have acquired later. These types of counterfactuals address

a more general policy question about incentivizing learning. Our parameter estimates show

that people may hold highly mistaken beliefs. The counterfactuals which we create demon-

strate how long it takes to learn enough information to change decisions based on mistaken

beliefs. Calculating this type of counterfactual is relevant to a number of policy settings

in which policy-makers allocate a resource about which individuals have information uncer-

tainty. If individuals have highly mistaken beliefs about the resource, they may not use the

resource long enough to overcome those mistake beliefs. Understanding how long it may

take individuals to overcome their mistaken beliefs can be of interest to policy-makers in

structuring administrative requirements about resource allocation.

Consider πt=0(µm), the prior on µm at t = 0, which has mean µ̄m + ηm and variation

Likewise, we calculate the upper bound in the same manner, except that we assume the most productive
homesteaders would have purchased land in this counterfactual scenario, so we multiply the number of
homesteaders by the average farm production in 1870 for purchasers.

46



σ2
prior. That is,

πt=0(µm) =
1√

2πσ2
prior

exp{− 1

2σ2
prior

(µm − µ̄m − ηm)
2}.

The expected value of homesteading at time t = 0 is

Vm,0 = ln{exp(π̄mt + δVm,1) + exp(Sellnotitle) + 1}+ 0.577.

We can calculate counterfactuals of the above expectation, i.e., the expected values of

homesteading at time t = 0 under different assumptions.

Suppose the homesteaders would have had the information that they have at t = 20 when

they first acquire land. What fraction of homesteaders of each type would abandon in the

first five years, if they had begun with all information they learned after (i) five years and

(ii) ten years? Abandoning a homestead represents a policy failure, so this counterfactual

measures the impact that additional information has on the rate of failure. The context

for this counterfactual is that historians estimate that 55% of homesteads in the U.S. were

abandoned (Gates (1968)). In our two counties, we observe a relatively lower abandonment

rate because eastern Kansas represents the ideal farming scenario for homesteaders due to its

high-quality soil and abundant water. Therefore, our estimates represent a lower bound on

the value of learning to farmers in this time period. In locations where the margin for error

was narrower for homesteaders, like Arizona, learning was like to be even more important.

In our setting, if individuals had begun with the information they had by period 20, sig-

nificantly fewer of them would abandon or sell their farms and more of them would continue

to farm. About 7% of individuals abandon their farm in the first five years in the Bayesian

model in which they learn information each period. However, in the counterfactual scenario

in which they have all information from period 20, only about 2.6% of individuals abandon

their farm in the first five years. This result, shown in Figure 6, indicates that learning

later-period information influences individuals to change their abandonment decisions a sig-

nificant amount in our setting. If they had begun with the beliefs they held at t = 20, 37.9%

fewer homesteaders who abandoned in the Bayesian scenario would have abandoned in the

first five years. This means that 62.1% of the farmers who abandoned their farms in the first

five years would not have done so if they knew the information they learned after 10 years.
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Figure 6: Fraction of homesteaders abandoning in the first 5 years under different beliefs

How much learning later-period information influences individuals to change their aban-

donment decisions is heterogeneous across farmers. Under the counterfactual scenario in

which they begin with the information from period 20, 0.00024% of high ability homestead-

ers abandon, compared to 2.6% for the weighted average of both types. Similarly, 6.4% of

high ability homesteaders abandon in the Bayesian model, compared to 7% for the weighted

average of both types.

Likewise, we can simulate continuation, selling, and abandonment decisions under a coun-

terfactual information set where homesteaders begin with the information they learn by pe-

riod 10. In this case, 6.2% of individuals abandon their farms in the first five years. The

abandonment rate for a counterfactual scenario based on t = 10 (6.2%) is closer to the aban-

donment rate for the Bayesian model (7%) than is the rate for the t = 20 counterfactual

(2.6%) because the t = 20 counterfactual has farmers start with more information than the

t = 10 counterfactual. This additional information leads to them changing their decisions

to a greater extent. This result is summarized in Figure 6. Figure 6 shows a much larger

difference in the fraction abandoning in the first five years between the t = 20 counterfactual

and the Bayesian model than there is between the t = 10 counterfactual and the Bayesian

model.

This difference in abandonment decisions between the two counterfactual scenarios is due

to the information realizations in each period, Xt, and the bias terms, ηm,m ∈ {A,B}, which
determine the beliefs in period 10 to a larger degree than they determine the beliefs in period

20. Individuals receive information realizations that are negative on average in the first ten

periods, while they receive realizations that are positive on average in the last ten periods
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(see Figure 12 in the online appendix). These positive information realizations eventually

overcome their pessimistic bias (ηm is negative for all m), leading them to continue to farm

if they have the information they learn by period 20. The effect of the initial bias reduces

over time; however, the negative realizations in periods 1 through 10 add to the pessimistic

bias, so relatively more homesteaders abandon their farms in a counterfactual scenario in

which they begin with the information they have in period 10 than if they begin with the

information they have in period 20. Simulated decisions for the counterfactual scenarios in

which individuals begin with the information they learn by period 10 and period 20 are given

in Table 5 of the appendix.

The percentage of farmers making a different abandonment decision given their beliefs at

t = 20 is relatively large in our setting. These counterfactuals demonstrate how our Bayesian

model allows for the estimation of the fraction of agents who make different decisions based

on counterfactual beliefs, and how these counterfactuals can be heterogeneous by type. In

a model without updating of Bayesian beliefs, this type of counterfactual would not be

possible. This counterfactual demonstrates how information impacts the failure rate of the

U.S. government’s homesteading policy.

7 Conclusion

To Americans of the time, deciding how to allocate public lands was of great importance.

Shortly before the Civil War, Senator Henry Clay said in a speech to Congress: “No subject

which has presented itself to the present, or perhaps any preceding congress, is of greater

magnitude than that of the public lands.” The Homestead Act granted more than 270 million

acres of land to individuals, or approximately 11% of the land in the United States (National

Park Service). This Act impacts the balance of partisan power in Congress, wealth inequality,

ecological events, and agricultural policy. It is regarded by historians to be the first major

farm subsidy in the United States and encouraged the Jeffersonian ideal of the U.S. as a

land of small farmers. Over 50% of the United States’ population worked in agriculture

at the beginning of our time period (Gates (1968)). Both because of the importance of

the agricultural sector in the nineteenth century American economy and the contention

surrounding the use of public lands, our model informs our understanding of decisions faced

by the majority of American workers at this time.
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Information sets and beliefs change over time and dynamic optimization is inextricable

from this time dimension. We extend the popular dynamic optimization model by Rust

(1987) to allow the agents to change their information sets over time and to update their

beliefs. We apply our model to farming in the American Midwest historically, where the

U.S. government gave land away through homesteading. Individuals who homesteaded were

required to farm the land. Thus, these individuals learned about their ability to farm the

land in Kansas. Further, they had to decide whether to (i) acquire the title of the farm by

farming for five years, (ii) abandon the farm, or (iii) sell the farm once they had the title.

In our model, we allow for this updating of beliefs and dynamic optimization.

We find that farmers here initially quite pessimistic about farming in Kansas, which is

corroborated by conteporaneous local news stories. Specifcally, we find that farmers under-

valued farming by about $1,500. We then use our model to construct counterfactuals. If the

U.S. government had not offered homesteading, then 31% of the homesteaders would have

bought the land and 69% would have opted not to farm. Further, we calculate the percentage

of the homesteaders that would have abandoned in the first five years in the case they had

started with the information that they obtained later. We find that if individuals had begun

with the information they acquired after ten years, significantly more of them would have

continued to farm and fewer of them would have abandoned their farm. In particular, fewer

high ability farmers would have abandoned. Our Bayesian model captures this process of

learning about their own farming ability. However, farmers were initially quite pessimistic

about farming in Kansas, which is corroborated by contemporaneous local new stories.

Extending a widely used dynamic discrete choice model to include Bayesian updating

and unobserved types has many empirical applications beyond our setting, including insur-

ance markets, consumer behavior, restaurants learning about their local demand for their

food, plant replacement, teachers learning about their teaching ability before getting tenure,

and investments that are made over a long time period, such as research and development

expenses. Specifically, it can be applied in settings such as career choices that depend on

beliefs that may be biased and workers who update their beliefs as they learn about their

skills over time (Roy (1951)), minority students learning about their higher education op-

portunities (Hoxby and Turner (2015)), students learning about returns to college majors

(Arcidiacono et al. (2010) and Wiswall and Zafar (2011)), and workers learning about job

mobility (Topel and Ward (1988)).
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A Appendix

Table 2: Parameter Estimates from the Bayesian and Full Information Models

Bayesian Model Full Information Model

κ 0.00057 0.00057
(0.000049) (0.000049)

Sellnotitle 0.73242 0.73242
(0.063152) (0.063152)

µhome (homesteader ability) 0.36343
(0.016349)

µpurchase (purchaser ability) 0.92475
(0.064923)

µA (high type ability) 1.24934
(0.088922)

µB (low type ability) 1.23749
(0.081451)

ηA (high type bias) -1.44204
(0.146520)

ηB (low type bias) -1.50232
(0.114041)

VA,final (high type final value) 7.62185
(0.366754)

VB,final (low type final value) 7.54212
(0.342184)

σprior 0.44308
(0.023400)

δ 0.75942
(0.000516)

Proportion of purchasers who are high ability 0.99000
(0.289456)

Proportion of homesteaders who are high ability 0.01000
(0.009725)

Observations 7,011 7,011

Standard errors in parentheses
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Table 3: Number of High and Low Ability Purchasers and Homesteaders

Purchasers Homesteaders Both

High Ability 3162 38 3200

Low Ability 32 3779 3811

Both 3194 3817 7,011

Table 4: Counterfactual Estimates of Farming without Homesteading

Bayesian Model Full Information Model

1-ρ (dependence between purchase and HS) 0.41037 0.41380
(0.098726) (0.098617)

γ (disutility of being outside the county) -8.97116 -8.96835
(0.105182) (0.066119)

Pr(no farming|no homesteading) 0.68931 0.68189
(0.086012) (0.085881)

Observations 7,011 7,011

Standard errors in parentheses

Table 5: Counterfactual Estimates of Farming Under Different Beliefs

Bayesian Model t = 10 Counterfact. t = 20 Counterfact.

Pr(abandon) in first 5 years 0.06974 0.06218 0.02645
(0.006587) (0.003096) (0.006497)

Observations 7,011 7,011 7,011

Standard errors in parentheses
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Table 6: Parameter Estimates from the Agricultural Census Data

Bayesian Model using Census Data

κ 0.00057
(0.000049)

Sellnotitle 0.73242
(0.063152)

µA (high type ability) 1.24934
(0.088922)

µB (low type ability) 1.21112
(0.008018)

ηA (high type bias) -1.17185
(0.210966)

ηB (low type bias) -1.12638
(0.207969)

VA,final (high type final value) 7.62185
(0.366754)

VB,final (low type final value) 7.48990
(0.388688)

σprior 0.37821
(0.063521)

δ 0.76035
(0.001094)

Proportion of purchasers who are high ability 1.00000
(0.572111)

Proportion of homesteaders who are high ability 0.01000
(0.009434)

Pr(no farming|no homesteading) 0.68245
(0.086300)

Pr(abandon) in first 5 years 0.06758
(0.003647)

Observations 7,011

Standard errors in parentheses
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Figure 7: The bias of type B decreases toward zero over the 20 periods; the bias of type A
is slightly smaller

A.1 Proof of Lemma 1: Bayesian Plausibility

Kamenica and Gentzkow (2011) introduce the concept of Bayesian Persuasion and make the

assumption of Bayesian plausibility. They state that a distribution of posteriors is Bayes

plausible if the expected posterior probability equals the prior. We now show that this

property holds in our model. As in the main text, the random variable Xt is observed at

time t by the farmer. The farmer observes such a shock every period and let these shocks

be i.i.d. over time. As in the text, Xt|µ is normally distributed with mean µ and variance

σ2
Data for all t. The parameter µ is unknown and let the farmer’s prior on µ be normally

distributed with mean µ̄ + η and variance σ2
Prior where µ̄ is the true value of µ and η is

the bias. After observing X1, the farmer update their prior. If X1 is not observed then

the farmer could derive the predictive distribution for X1. In particular, the predictive

distribution is the X1|µ integrated with respect to πt=0(µ), the prior on µ at t = 0. This

yields a normal distribution with mean µ̄ + η and variance σ2
Prior + σ2

Data. Integrating the

updated prior π(µ|X1) with respect to this predictive distribution yields πt=0(µ). See the
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online appendix for more details.

A.2 Proof of Lemma 2: Contraction Mapping and Geometric

Convergence

We first show that Vmt(V ) is a contraction mapping and that the conditions for Banach’s

(1922) fixed point are satisfied. Consider

Vmt(V ) = E[ sup
dit∈{C,S,A}

[1(dit = C) · {εC,it + π̄mt + δV }+

+ 1(dit = S) · (Sellit + εS,it) + 1(dit = A) · εA,it]].

Note that Vmt(V ) is non-decreasing in its argument and consider V̇ and V̈ . Without loss of

generality we assume that V̇ ≥ V̈ . This gives

Vmt(V̇ )− Vmt(V̈ ) ≤ δ(V̇ − V̈ )

so Vmt(V ) is a contraction mapping. Further, the set [0, V̄ ] is non-empty, since V̄ > 0, and is

bounded, since V̄ < ∞. Finally, the set [0, V̄ ] is convex by inspection. Thus, the assumptions

of Banach’s (1922) fixed point are satisfied, so the solution to the equation Vmt(V ) = V is

unique.

Next, we show that the rate of convergence is geometric in the number of iterations. As

in the text, 0 ≤ δ < 1 and Vmt,fixed denotes the fixed point for all m and t, i.e., Vmt(Vmt,fixed) =

Vmt,fixed for all m and t. Let V = Vmt,fixed + ζ, and first consider ζ > 0, so V is larger than

Vmt,fixed. This gives

Vmt(Vmt,fixed + ζ) = E[ sup
dit∈{C,S,A}

[1(dit = C) · {εC,it + π̄mt + δ(Vmt,fixed + ζ)}+

+1(dit = S) · (Sellit + εS,it) + 1(dit = A) · εA,it]]

≤ Vmt,fixed + δζ.
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Further, note that Vmt(Vmt,fixed + ζ) is non-decreasing in ζ. This gives

0 ≤ Vmt(Vmt,fixed + ζ)− Vmt,fixed ≤ δζ

where ζ > 0. Thus,

|Vmt(Vmt,fixed + ζ)− Vmt,fixed| ≤ δ|ζ|

where ζ > 0. Similarly, for the second case where ζ < 0, we have Vmt(Vmt,fixed+ ζ) ≤ Vmt,fixed

and Vmt(Vmt,fixed + ζ) ≥ Vmt,fixed + δζ. Thus,

Vmt,fixed + δζ ≤ Vmt(Vmt,fixed + ζ) ≤ Vmt,fixed.

Subtracting Vmt yields

δζ ≤ Vmt(Vmt,fixed + ζ)− Vmt,fixed ≤ 0.

This gives

|Vmt(Vmt,fixed + ζ)− Vmt,fixed| ≤ δ|ζ|

for any ζ so that Vmt(V ) is a contraction mapping. Another way to write the last equation

is

Vmt(Vmt,fixed + ζ) = Vmt,fixed + ζ∗ where ζ∗ ≤ δ|ζ|

Now consider the starting value VR=1 and let

VR=2 = Vmt(VR=1) and

VR=r = Vmt(VR=r−1) for r > 1.

Further define

ζr = VR=r − Vmt,fixed.

Note that

VR=2 = Vmt(VR=1) = Vmt,fixed + ζ2 where |ζ2| ≤ δ|VR=1 − Vmt,fixed| = δ|ζ1|,

VR=3 = Vmt(VR=2) = Vmt,fixed + ζ3 where |ζ3| ≤ δ|ζ2| ≤ δ2|ζ1|.
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Repeating these steps yields

VR=r = Vmt(VR=r−1) = Vmt,fixed + ζr where |ζr| ≤ δ|ζr−1| ≤ δr|ζ1| and r > 1, and

|Vmt,R=r − Vmt,fixed| ≤ δr|Vmt,R=1 − Vmt,fixed| where r > 1.

A.3 Counterfactuals from the Full Information Model

Because of the scale of the Homestead Act, an important policy question is what would

have happened to land acquisition if the U.S. government had not allowed homesteading

and had only sold the land? Specifically, what fraction of homesteaders would have chosen

to acquire land if their only method for doing so was purchasing it? We previously discussed

this counterfactual under the assumptions of our Bayesian model. Here, we also provide a

counterfactual under a full information case.

In the full information case without unobserved types, the nested logit model for calcu-

lating the counterfactual is given by

Pr(buy|homestead or buy) =
1

1 + exp{κ ·Ψ/ρ}
, and 0 < ρ < 1, κ > 0.

Pr(no farming) =
1

1 + [exp(γ/ρ) + exp{γ/ρ− κ ·Ψ/ρ}]ρ
, and 0 < ρ < 1, κ > 0.

More information on the calculation of this counterfactual in the full information and

Bayesian settings is found in the online appendix.

The disutility to farm in the counties in Kansas under consideration for people outside

that area is large, γ̂ = −8.968 (s.e. 6.6·10−2), and homesteading and buying are not perfect

substitutes, (1 − ρ̂) = 0.414 (s.e. 9.9·10−2) in a full information setting, similar to their

subsitutability in the Bayesian setting. The disutility is comparable to $15,733.33 (in 1870

dollars). These parameter estimates are shown in Table 4. The parameter estimates yield the

following counterfactual: If the U.S. government had not offered homesteading, then 32% of

the homesteaders would have bought the land and 68% would opt not to farm. The standard

error of this counterfactual is 8.6·10−2 and the 95% confidence interval16 for homesteaders

16Ham and Woutersen (2022) propose methods for confidence sets for nonlinear counterfactual functions
and we checked the validity conditions. We use 100,000 nonparametric bootstrap replications to calculate
the standard errors in this subsection.
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opting not to farm is [50.8%, 85.2%]. Results are given in Table 5 of the appendix.

The estimates from the Bayesian model and the full information model are quite similar

for γ, the disutility to farm in these counties in Kansas given that an individual is not

currently living in these counties. In both the Bayesian and full information models, about

two-thirds of the homesteaders choose not to farm in a situation without homesteading.

However, the heterogeneous types in the Bayesian model may better capture what a marginal

farmer, i.e., a low ability farmer, would do.
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B Online Appendix

B.1 Matching Method

Matching between the tract books and the resale deeds does not necessarily create a one-

to-one matching. Individual i may acquire several adjacent pieces of land (multiple tract

book observations) but combine them as one farm and sell them as a single unit (one deed

observation). Conversely, individual i may acquire one piece of land (one tract book ob-

servation) but split it into multiple pieces when selling it (multiple deed observations). A

matching like this one is inherently order-dependent, but the fact that these matches are

many-to-many decreases this problem significantly. We further outline how we decrease the

order-dependency below.

In order to provide a matching between the tract books (initial land acquisition) and the

deeds (land resale), we use a multi-step approach. First, we remove abandoned homesteads

from the dataset to be matched because abandoned homesteads by definition were not resold.

Second, we locate perfect matches between the initial land acquisition data and the resale

deeds and exclude these observations from the datasets to be matched using the process

below. Perfect matches are defined by observations with the exact same first, middle, and

last name and the exact same location (township-range, section, and aliquot) in the tract

book data and the deed data. In our dataset, about 10% of the tract books match perfectly

to deeds.

Second, we use the Stata modules matchit and soundex, which join two datasets based

on a string variable which does not necessarily need to be exactly the same: they are

fuzzy matching tools. The matchit module matches based on character similarities and

the soundex module matches based on characters with similar sounds. We create a string

variable in the tract book data which combines the name (first, middle, and last) and the

location (township-range, section, and aliquot). Similarly, we create a string variable in the

deeds which combines the name (first, middle, and last) and the location (township-range,

section, and aliquot). Stata’s matchit and soundex modules create a many-to-many match-

ing and assign each match a similarity score between 0 and 1 based on the similarity of

the two string variables. Similarity scores of 1 indicate a perfect match, and matchit and

soundex automatically drop any matches less than 0.5 and allow the user to create a cut-

off above that. Any cutoff still results in a many-to-many match for the reasons described
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earlier. We use an initial cutoff of 0.7, and then hand-match the data as described below.

To obtain the best matches, we search through each potential match several times man-

ually and delete incorrect matches, becoming stricter each time to reduce endogeneity in

the matching. Matches are evaluated based on the name, location, acres, and date of ac-

quisition and date of resale. Because the data were digitized from handwritten, historical

records, hand-matching allows us to utilize matches that would be difficult for a computer to

make. Hand-matching is still regarded to be the gold standard for historical datasets under

15,000 observations. Finally, each match in the full set of matches is manually evaluated

against the unmatched tract book observations, the unmatched deed observations, and the

other matched observations to determine if it is the best possible match. This matching

method provides a dataset containing 7,011 observations (all the tract book observations

before 1874).

We use a similar method to match the BLM tract books and the Kansas agricultural

censuses (and to the U.S. population censuses and soil quality data). Not every farm was

recorded in the Kansas agricultural census, so we match 1,471 census records to the 7,011

BLM observations. We use this smaller dataset only to estimate production results as a

robustness check, not our Bayesian model.

B.2 Value Functions in the Full Information Model

The value functions for both homesteaders and purchasers depend on the values in the next

period. We first consider homesteaders, and for a given Sellit we have

Vhome,t = E[ sup
dit∈{C,S,A}

[1(dit = C) · {εC,it + µ+ δVhome,t+1}+ (6)

+1(dit = S) · (Sellit + εS,it) + 1(dit = A) · εA,it]], where t = 1, 2, ...

In our application we assume that the random shocks εC,it, εS,it, and εA,it given π̄mt and Xt

are realizations from a type I extreme value distribution.17 This gives

Vhome,t = ln(eµ+δVhome,t+1 + eSellit + 1) + 0.577, where t = 1, 2, ... (7)

17The cumulative distribution function of this extreme value distribution is F (ε) = exp(− exp(−ε)).
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From period t = 10 onward the homesteaders have the title to the farm. For the full

information model only, we assume that the sale price for a farm that has the title is the

same across individuals and time periods. This gives

Vhome,t = ln(eµ+δVhome,t+1 + eSell + 1) + 0.577, where t = 10, ... (8)

Purchasers have the title to the land from the beginning so the last equation holds for them

for all periods (without the subscript home). Next define the function Vfull(V ) as

Vfull(V ) = ln(eµ+δV + eSell + 1) + 0.577.

Below we show that Vfull(V ) is a contraction mapping.

B.2.1 Contraction Mapping Full Information Model

For the full information model we have the function

Vfull(V ) = ln(eµ+δV + eSell + 1) + 0.577.

The function Vfull(V ) is a contraction mapping for 0 ≤ δ < 1. To see this, note that Vfull(V )

is non-decreasing in its argument and consider V̇ and V̈ . First, let V̇ ≥ V̈ ,

Vfull(V̇ )− Vfull(V̈ ) = ln(eµ+δV̇ + eSell + 1)− ln(eµ+δV̈ + eSell + 1)

= ln(
eµ+δV̇ + eSell + 1

eµ+δV̈ + eSell + 1
)

= ln(
eµ+δV̈+δ(V̇−V̈ ) + eSell + 1

eµ+δV̈ + eSell + 1
)

≤ ln{e
µ+δV̈+δ(V̇−V̈ ) + eSell+δ(V̇−V̈ ) + eδ(V̇−V̈ )

eµ+δV̈ + eSell + 1
}

since eδ(V̇−V̈ ) ≥ 1. This yields

Vfull(V̇ )− Vfull(V̈ ) ≤ ln{eδ(V̇−V̈ )(
eµ+δV̈+ + eSell + 1

eµ+δV̈ + eSell + 1
)}

= δ(V̇ − V̈ ).
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The argument on the left hand side and on the right hand side are both non-negative. Thus,

taking the absolute values on both sides is straightforward and yields

|Vfull(V̇ )− Vfull(V̈ )| ≤ δ|V̇ − V̈ | for V̇ ≥ V̈ . Next, consider V̇ < V̈ and note that V̇ and V̈

are arbitrary values so that, after relabeling, we have V̇ > V̈ so the argument above applies

and we have |Vfull(V̇ ) − Vfull(V̈ )| ≤ δ|V̇ − V̈ | for any V̇ and V̈ . Therefore, Vfull(V ) is a

contraction mapping since 0 ≤ δ < 1.

B.3 Value Functions in the Bayesian Model

The value functions for both homesteaders and purchasers depend on the values in the next

period. Note that if individual i is of type m then π̄it = π̄mt. We first consider homesteaders

and for a given Sellit we have

Vhome,mt = E[ sup
dit∈{C,S,A}

[1(dit = C) · {εC,it + π̄mt + δVhome,m,t+1}+ (9)

+1(dit = S) · (Sellit + εS,it) + 1(dit = A) · εA,it]],

where m ∈ {A,B}. When the error terms εC,it, εS,it, and εA,it given π̄mt and Xt are inde-

pendent realizations from a type I extreme value distribution, then we can write Vhome,mt

as

Vhome,mt = ln(eπ̄mt+δVhome,m,t+1 + eSellit + 1) + 0.577,

where m ∈ {A,B}. In the text, we discuss the stationarity assumption, E(Selli,t+s) = Sellit

for all s ≥ 0, and this assumption yields

Vhome,mt = ln(eπ̄mt+δVhome,m,t+1 + eSellit + 1) + 0.577,

where m ∈ {A,B}. The last equation also holds for purchasers when we change the home

subscript. Next, consider the function Vmt(V ),

Vmt(V ) = E[ sup
dit∈{C,S,A}

[1(dit = C) · {εC,it + π̄mt + δV }+

+1(dit = S) · (Sellit + εS,it) + 1(dit = A) · εA,it]], (10)
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where m ∈ {A,B}.When the error terms εC,it, εS,it, and εA,it given π̄mt and Xt are indepen-

dent realizations from a type I extreme value distribution, we can write Vmt(V ) as

Vmt(V ) = ln(eπ̄mt+δV + eSellit + 1) + 0.577,

where m ∈ {A,B}. Below we show that Vmt(V ) is a contraction mapping. This function is

relevant for purchasers for all periods and for homesteaders for t = 10, 11, ...

A feature of our model that we did not use in our identification analysis is that Bayesian

beliefs converge over time. In particular, π̄mt converges to µm. This feature motivates

grouping later periods together as the priors will be very similar. Specifically, we use the

following fixed point

Vm,final = ln{exp(µ̄m + δVm,final) + exp(Sellit) + 1}+ 0.577.

We use this fixed point in our analysis. In particular, we use the moments

gm,fixed point = 4 · [ln{exp(µ̄m + δVm,final) + exp(Sellnotitle + κ · 200) + 1}+ 0.577− Vm,final],

where m ∈ {A,B}. Further, dynamic selection causes that the type with higher ability, type

A, is more likely to continue relative to the low ability type, type B. This feature yields

that we only observe the high ability type at the end or that both types are about as able.

Note that two types can be about as able while having different priors at t = 0. The reason

that we do not use this feature in our identification analysis is that we follow the farmers

for a very long time while in other applications the individuals or firms may be followed for

a shorter period. We use this feature of our model in our empirical analysis.

B.4 Probabilities for Selling and Abandoning

Here we detail the value functions and probabilities for continuing, selling, and abandoning

for homesteaders of type m. The value function is

Vhome,mt = ln[exp{π̄mt + δVhome,mt}+ exp{Sellnotitle + 1(t ≥ 10)κ · 200}+ 1] + 0.577.
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This value function gives us the following probabilities for continuing in periods t = {1, ..., 20},

Prm,home(dit = C) = 1− 1 + exp{Sellnotitle + 1(t ≥ 10)κ · 200}
1 + exp{π̄mt + δVmt}+ exp{Sellnotitle + 1(t ≥ 10)κ · 200}

.

The probability of selling in periods t = {1, ..., 20} is

Prm,home(dit = S) =
exp{Sellnotitle + 1(t ≥ 10)κ · 200}

1 + exp{π̄mt + δVmt}+ exp{Sellnotitle + 1(t ≥ 10)κ · 200}
.

Similarly, the probability of abandoning the farm at time t = {1, ..., 20} for each type is

calculated from the value functions as

Prm,home(dit = A) =
1

1 + exp{π̄mt + δVmt}+ exp{Sellnotitle + 1(t ≥ 10)κ · 200}
.

B.5 Proof of Lemma 1: Bayesian Plausibility

Kamenica and Gentzkow (2011) introduce the concept of Bayesian persuasion and make the

assumption of Bayesian plausibility. They state that a distribution of posteriors is Bayes

plausible if the expected posterior probability equals the prior. We now show that this

property holds in our model. Let πt=0(µ) denote the prior on µ at t = 0 and let πt=0(µ)

be the density of a normally distributed random variable with mean µ̄ + η and variance

σ2
prior. The random variable Xt is observed at time t by the farmer and let Xt be normally

distributed with mean µ and variance σ2
data. The farmer observes such a shock every period

and let these shocks be i.i.d. over time. Let µ̄+ η be denoted by φ. This gives the following
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prior predictive distribution for any t,

p(xt) =

∫
p(xt|µ)πt=0(µ)dµ

=

∫
1√

2πσ2
data

exp{− 1

2σ2
data

(xt − µ)2} · 1√
2πσ2

prior

exp{− 1

2σ2
prior

(µ− φ)2}dµ

=

∫
1√

2πσ2
data

1√
2πσ2

prior

exp[− 1

2σ2
dataσ

2
prior

{(σ2
data + σ2

prior)µ
2 − 2µ(σ2

priorxt + σ2
dataφ)

+ σ2
priorx

2
t + σ2

dataφ
2}]dµ

=

∫
1

2π
√

σ2
dataσ

2
prior

exp[−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

{µ2 − 2µ
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

+
σ2
priorx

2
t + σ2

dataφ
2

σ2
data + σ2

prior

}]dµ

=

∫
1

2π
√

σ2
dataσ

2
prior

exp[−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

{µ2 − 2µ
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

+ (
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

)2}]dµ·

· exp[−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

{−(
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

)2 +
σ2
priorx

2
t + σ2

dataφ
2

σ2
data + σ2

prior

}]

=
1

√
2π
√

σ2
data + σ2

prior

∫ √
σ2
data + σ2

prior

√
2π
√

σ2
dataσ

2
prior

exp[−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

{µ2 − 2µ
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

+ (
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

)2}]dµ · exp[−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

{−(
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

)2 +
σ2
priorx

2
t + σ2

dataφ
2

σ2
data + σ2

prior

}].

Note that√
σ2
data + σ2

prior

√
2π
√

σ2
dataσ

2
prior

exp[−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

{µ2 − 2µ
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

+ (
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

)2}]

7



is the density of a normal distribution so that it integrates to one. This gives

p(xt) ∝ exp[−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

{−(
σ2
priorxt + σ2

dataφ

σ2
data + σ2

prior

)2 +
σ2
priorx

2
t + σ2

dataφ
2

σ2
data + σ2

prior

}]

∝ exp[− 1

2σ2
dataσ

2
prior

{−
(σ2

priorxt + σ2
dataφ)

2

σ2
data + σ2

prior

+ σ2
priorx

2
t + σ2

dataφ
2}]

∝ exp[− 1

2σ2
dataσ

2
prior

1

σ2
data + σ2

prior

{−(σ4
priorx

2
t + 2xtσ

2
dataσ

2
priorφ+ σ4

dataφ
2)

+ (σ2
dataσ

2
prior + σ4

prior)x
2
t + (σ4

data + σ2
dataσ

2
prior)φ

2}]

∝ exp[− 1

2σ2
dataσ

2
prior

1

σ2
data + σ2

prior

{(σ2
dataσ

2
prior)x

2
t − 2xtσ

2
dataσ

2
priorφ}]

∝ exp[−1

2

1

σ2
data + σ2

prior

{x2
t − 2xtφ}2],

Thus, the posterior predictive distribution is normal with mean φ = µ̄ + η and variation

σ2
data + σ2

prior. The posterior after observing X1 is the same as the prior conditional on X1

and let this be denoted π(µ|X1). Thus, we have

π(µ|X1) ∝ p(X1 = x1|µ)πt=0(µ)

∝ 1√
2πσ2

data

exp{− 1

2σ2
data

(X1 − µ)2} · 1√
2πσ2

prior

exp{− 1

2σ2
prior

(µ− φ)2}

∝ exp[− 1

2σ2
dataσ

2
prior

{(σ2
data + σ2

prior)µ
2 − 2µ(σ2

priorX1 + σ2
dataφ) + σ2

priorX
2
1 + σ2

dataφ
2}]

∝ exp[−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

{µ2 − 2µ
σ2
priorX1 + σ2

dataφ

σ2
data + σ2

prior

+
σ2
priorX

2
1 + σ2

dataφ
2

σ2
data + σ2

prior

}].

The last equation states that the posterior, or prior conditional on X1, is the density of the

normal distribution with mean
σ2
priorX1+σ2

dataφ

σ2
data+σ2

prior
and variance

σ2
dataσ

2
prior

σ2
data+σ2

prior
= 1

1

σ2
data

+ 1

σ2
prior

. Next,

we integrate out X1 so that we obtain the unconditional prior. Note that p(x1) = p(xt)
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because of the i.i.d. property. The prior πt=1(µ) is the same as in the text. Note that

πt=1(µ) =

∫
π(µ|x1)p(x1)dx1

=

∫
1√
2π

√
σ2
data + σ2

prior

σ2
dataσ

2
prior

exp{−
σ2
data + σ2

prior

2σ2
dataσ

2
prior

(µ−
σ2
priorx1 + σ2

dataφ

σ2
data + σ2

prior

)2}

· 1√
2π(σ2

data + σ2
prior)

exp{−1

2

1

σ2
data + σ2

prior

(x1 − φ)2}dx1

=

∫
1√
2π

√
σ2
data + σ2

prior

σ2
dataσ

2
prior

exp[−1

2
{
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2 − 2µ
x1

σ2
data

− 2µ
φ

σ2
prior

+
1

σ2
dataσ

2
prior

(σ2
priorx1 + σ2

dataφ)
2

σ2
data + σ2

prior

}]

· 1√
2π(σ2

data + σ2
prior)

exp{−1

2

1

σ2
data + σ2

prior

(x1 − φ)2}dx1

This gives

πt=1(µ) ∝
∫

1√
2π

exp[−1

2
{
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2 − 2
x1

σ2
data

(1−
σ2
prior

σ2
data(σ

2
data + σ2

prior)
2x1φ

σ2
data

σ2
prior

)

− 2µ
φ

σ2
prior

+
x2
1

σ2
data

+
σ2
prior

σ2
data(σ

2
data + σ2

prior)

σ4
data

σ4
prior

φ2}]

· exp{−1

2

1

σ2
data + σ2

prior

(−2x1φ+ φ2)}dx1

∝
∫

1√
2π

exp[−1

2
{ 1

σ2
data

(x2
1 − 2x1µ+ 2x1

σ2
data

σ2
data + σ2

prior

φ) +
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2 − 2µ
φ

σ2
prior

+
σ2
prior

σ2
data(σ

2
data + σ2

prior)

σ4
data

σ4
prior

φ2}] · exp(−1

2

1

σ2
data + σ2

prior

φ2)dx1

∝
∫

1√
2πσ2

data

exp[−1

2

1

σ2
data

(x1 − µ+
σ2
data

σ2
data + σ2

prior

φ)2]dx1

· exp[−1

2
{− 1

σ2
data

(µ− σ2
data

σ2
data + σ2

prior

φ)2

+
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2 − 2µ
φ

σ2
prior

+
1

(σ2
data + σ2

prior)

σ2
data

σ2
prior

φ2}] · exp(−1

2

1

σ2
data + σ2

prior

φ2)

9



since 1√
2πσ2

data

exp[−1
2

1
σ2
data

(x1 − µ +
σ2
data

σ2
data+σ2

prior
φ)2] is a density and, therefore, integrates to

one. This gives

πt=1(µ) =

∫
1√
2π

√
σ2
data + σ2

prior

σ2
dataσ

2
prior

exp[−1

2
{
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2 − 2µ
x1

σ2
data

− 2µ
φ

σ2
prior

+
1

σ2
dataσ

2
prior

σ4
priorx

2
1 + 2x1φσ

2
dataσ

2
prior + σ4

dataφ
2

σ2
data + σ2

prior

}]

· 1√
2π(σ2

data + σ2
prior)

exp{−1

2

1

σ2
data + σ2

prior

(x1 − φ)2}dx1

=

∫
1√
2π

√
σ2
data + σ2

prior

σ2
dataσ

2
prior

exp[−1

2
{
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2 − 2µ
x1

σ2
data

− 2µ
φ

σ2
prior

+
σ2
prior

σ2
data(σ

2
data + σ2

prior)
(x2

1 + 2x1φ
σ2
data

σ2
prior

+
σ4
data

σ4
prior

φ2)}]

· 1√
2π(σ2

data + σ2
prior)

exp{−1

2

1

σ2
data + σ2

prior

(x2
1 − 2x1φ+ φ2)}dx1

∝
∫

1√
2π

exp[−1

2
{
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2 − 2µ
x1

σ2
data

− 2µ
φ

σ2
prior

+
x2
1

σ2
data

+
σ2
prior

σ2
data(σ

2
data + σ2

prior)
(2x1φ

σ2
data

σ2
prior

+
σ4
data

σ4
prior

φ2)}]

· exp{−1

2

1

σ2
data + σ2

prior

(−2x1φ+ φ2)}dx1

10



πt=1(µ) ∝ exp[−1

2
{− 1

σ2
data

(µ− σ2
data

σ2
data + σ2

prior

φ)2 +
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2

− 2µ
φ

σ2
prior

+
1

(σ2
data + σ2

prior)

σ2
data

σ2
prior

φ2 +
1

σ2
data + σ2

prior

φ2}]

∝ exp[−1

2
{− µ2

σ2
data

+ 2µ
1

σ2
data + σ2

prior

φ− σ2
data

(σ2
data + σ2

prior)
2
φ2 +

σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2

− 2µ
φ

σ2
prior

+
1

(σ2
data + σ2

prior)

σ2
data

σ2
prior

φ2 +
1

σ2
data + σ2

prior

φ2}]

∝ exp[−1

2
{− µ2

σ2
data

+
σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2 + 2µ
1

σ2
data + σ2

prior

φ− 2µ
φ

σ2
prior

− σ2
data

(σ2
data + σ2

prior)
2
φ2 +

1

(σ2
data + σ2

prior)

σ2
data

σ2
prior

φ2 +
1

σ2
data + σ2

prior

φ2}]

∝ exp[−1

2
{ µ2

σ2
prior

+ 2µφ(
1

σ2
data + σ2

prior

− 1

σ2
prior

)− φ2 σ2
data

(σ2
data + σ2

prior)
2

+ φ2(
1

(σ2
data + σ2

prior)

σ2
data

σ2
prior

+
1

σ2
data + σ2

prior

)}]

∝ exp[−1

2
{ µ2

σ2
prior

+ 2µφ(
1

σ2
data + σ2

prior

− 1

σ2
prior

)− φ2 σ2
data

(σ2
data + σ2

prior)
2
+

φ2

σ2
prior

}]

∝ exp[−1

2
{ µ2

σ2
data

− 2
1

σ2
data + σ2

prior

φ+
σ2
data

(σ2
data + σ2

prior)
2
φ2 +

σ2
data + σ2

prior

σ2
dataσ

2
prior

µ2

− 2µ
φ

σ2
prior

+
1

(σ2
data + σ2

prior)

σ2
data

σ2
prior

φ2 +
1

σ2
data + σ2

prior

φ2}]

∝ exp[−1

2
{ µ2

σ2
prior

− 2µ
φ

σ2
prior

+ φ2}]

∝ exp[− 1

2σ2
prior

(µ− φ)2].

Thus, πt=1(µ) = πt=0(µ) so that Bayesian plausibility is satisfied.

B.6 Estimation

We now describe the estimation procedure for Sellnotitle and κ. Both the full information

model and the Bayesian model use this same method of estimating these two parameters in

a first stage.

We estimate κ directly from the probabilities of each choice in the data using method of

moments. Consider the moments,

11



g̃home =

∑10
t=5

∑
i 1(i sells at t|homestead at t = 0)∑10

t=5

∑
i 1(i abandons at t|homestead at t = 0)

− exp(1280 · κ̂)

g̃purchase =

∑10
t=5

∑
i 1(i sells at t|purchase at t = 0)∑10

t=5

∑
i 1(i abandons at t|purchase at t = 0)

− exp(1475 · κ̂).

The average resale price if the farm was homesteaded at t = 0 is $1,480 (less $200 from

acquiring the title before t = 10) and $1,475 is the average resale price if the farm was

purchased at t = 0. We use the above two moments to estimate κ and use that to calculate

Ŝellnotitle as

Ŝellnotitle = M · κ̂.

Note that Ŝellnotitle measures utility. The parameter κ converts utility into dollars. Let

Ŝelltitle = (M + 200) · κ̂. We set M = 1, 280 so that M + 200 is the average resale price

for homesteaders. An additional implication of our model is that dynamic selection and a

discrete mixture implies that, after some time, only the most productive farmers continue

to farm. That is, the researcher could assume that after 10 years they observe only one

type or the types are equally able (with potentially different priors). This is not essential for

identification of our model but this feature can be used to estimate the features of the high

productivity type, type A in our case, using data after 10 years of farming.

Using the estimated κ̂ from the moment conditions above, we calculate VA,final and µA

from the data. Let

ω =
1

2
(

∑24
t=20 Pr(continue at t|purchase at t = 0)∑24

t=20 Pr(sell at t|purchase at t = 0)
)+

1

2
(

∑24
t=20 Pr(continue at t|homestead at t = 0)∑24

t=20 Pr(sell at t|homestead at t = 0)
).

Using ω, we identify VA,final as

VA,final = ln[ω · exp{(M + 200) · κ}+ exp{(M + 200) · κ}+ 1],

and likewise identify µA using

µA = ln(ω) + (M + 200) · κ− δVA,final.

VA,final and µA are functions of quantities that we can estimate, and let V̂A,final and µ̂A

12



denote the corresponding estimators. We then use V̂A,final, µ̂A, κ̂, and Ŝellnotitle as inputs to

estimate the Bayesian model.

In estimation, we use maximum likelihood and moments for the fixed points. The log-

likelihoods for homesteaders and for purchasers are calculated from the survival functions.

We use two additional moments, one for the final fixed points for each type.

We use the conditional choice probabilities and survival functions to match the proba-

bilities in the data for purchasers and homesteaders to the probabilities for purchasers and

homesteaders in the model. Consider the matrix Rm,home, which gives the probability im-

plied by the Bayesian model of each choice (continue, sell, or abandon) in period t for type

m, given that the farm has survived (chosen to continue) up to t.

Rm,home =

(
Hm,home(1) Hm,home(2) ... Hm,home(24)

Pr(dm,1=S|dm,0=home) Hm,home(1) Pr(dm,2=S|dm,0=home) ... Hm,home(23)Pr(dm,24=S|dm,0=home)

Pr(dm,1=A|dm,0=home) Hm,home(1) Pr(dm,2=A|dm,0=home) ... Hm,home(23)Pr(dm,24=A|dm,0=home)

)

Call Rdata,home the analogous matrix for the data. Note that the rows are continue, sell,

and abandon respectively. Therefore, the first row of Rm,home gives the survival probability

for each period (i.e., the probability of continuing to farm in that period multiplied by

the probabilities of continuing to farm in every previous period). Rows two and three are

the probability of selling and abandoning respectively multiplied by the probabilities of

continuing to farm in every previous period.

Recall that Hm,home,t denotes the probability of continuing through at least time t for

homesteaders of type m, and HA,home,t=0 denotes the proportion of homesteaders who are

type A. Then let

R̃home = ln{HA,home,t=0 ·RA,home + (1−HA,home,t=0) ·RB,home} ·Rdata,home.

The log-likelihood for homesteaders is

LLhome =
20∑
t=1

(
R̃home(2, t) + R̃home(3, t)

)
+R̃home(1, 20).

We use only the last period for the conditional probability of continuing (R̃home(1, 20)) in the

log-likelihood because the information in R̃home(1, t) for t < 20 is contained in the conditional

choice probabilities for selling and abandoning (R̃home(2, t) and R̃home(3, t)). Note that in

order to sell or abandon in period t, a farmer must have chosen to continue in every period

13



prior to t. We create LLpurchase, the analogous log-likelihood for purchasers.

The two fixed point moments (one for each type) are the same for homesteaders and

purchasers and are given by

gm,fixed point = 4 · [ln{exp(µm + δVm,final) + exp(Ŝellnotitle + κ̂ · 200) + 1}+ 0.577− Vm,final].

Using the log-likelihood and the fixed point moments, the objective function Q can be

written

Q = −g2A,fixed point − g2B,fixed point + LLhome + LLpurchase.

We bootstrap the data using 100,000 replications to provide standard errors (discussed

in the next section). Lastly, we restrict the value functions as follows:

1. Vm,home,t ≤ Vm,home,t+1 for t ∈ {1, ..., 9}.

2. |Vm,purchase,t − Vm,home,t| ≤ 0.1 for t ∈ {11, ..., 20}.

3. Vm,final − Vm,purchase,20 ≤ 1.

4. Vm,purchase,20 ≤ Vm,final.

5. VB,home,t ≤ VA,home,t for t ∈ {1, ..., 20}.

6. VB,purchase,t ≤ VA,purchase,t for t ∈ {1, ..., 20}.

These restrictions follow from the institutional details of our setting. Restriction (1)

means that the homesteads are increasing in value until they get the title. Restriction

(2) means that once the homesteaders have received the title, the value functions for the

homesteaders and the purchasers cannot become arbitrarily far apart, since both have the

title. Restriction (3) means that the final fixed points for type A and type B should be

moderately close to the second-to-last fixed points (in period 20) for each type. Restriction

(4) means that the final fixed points for each type should be larger than the second-to-last

fixed points. Restrictions (5) and (6) mean that the value for the high ability type should

be larger in each period than the value for the low type. Restriction (4) is not binding in

our estimation.

Additionally, we normalize the Xt in the estimation by constraining it to have mean

zero and setting the second moment equal to one, i.e.,
∑20

t=1Xt = 0 and
∑20

t=1 X
2
t

20
= 1. One
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could use the Xt as the unobserved state, but we use the prior means and variances as state

variables.

B.7 Bootstrap

We estimate both the Bayesian model and the full information model in Julia, which we also

use to create bootstrapped standard errors.

We observe the histories of 7,011 farmers. We then sample with replacement to create a

new bootstrap sample of 7,011. From that sample, we create the probabilities of abandoning,

selling, and continuing in each period. Because of this, our bootstrap resembles the origi-

nal data generating process. We bootstrap the data using 100,000 replications to provide

standard errors.

In estimating our counterfactual fraction of homesteaders who would have still acquired

land in a scenario without homesteading, we use a large sample to estimate the parameters γ

and ρ. In particular, the 1870 U.S. census gives the U.S. population as 38,558,371. In such a

case the nonparametric bootstrap is not practical. A feasible approach is to use the normal

approximation of the estimators and use the parametric bootstrap. That is,

BootstrapFractionhome = Pr(home|farmer) + Z1 · (s.e.(Pr(home|farmer)),

where and Z1 is a realization from the standard normal, Pr(home|farmer) =

Pr(home|home or purchase), and s.e.(Pr(home|farmer) is given by

s.e.(Pr(home|farmer) =

√
(Pr(home|farmer) · 1− Pr(home|farmer)

Population
.

We calculate the analogous fraction for buying, BootstrapFractionpurchase, as given by

BootstrapFractionpurchase = Pr(purchase|farmer) + Z2 · (s.e.(Pr(home|farmer)),

where Z2 is a realization from the standard normal and Z1 and Z2 are independent of each

other.

We generate 100,000 estimates of the probabilities to homestead and 100,000 estimates of

the probabilities to buy. We then calculate the counterfactual 100,000 times. This method
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is valid as the counterfactual is approximately a linear function of the parameters.

B.8 Counterfactual: No Homestead Act

To calculate the fraction of individuals who would have bought land in a counterfactual

situation in which homesteading was not available, we use the following nested logit model,

where (1−ρ) is the dependence between purchasing and homesteading and γ is the disutility

to move to and farm in the counties under consideration for people outside those counties.

The nested logit is McFadden’s extension of his conditional logit model, and we use this

nested logit model for both our full information and Bayesian models. Both the conditional

logit and the nested logit models let the choices depend on utilities rather than money,

meaning we can only estimate the nested logit model because we used the structural model

to estimate κ. We first consider the full information model.

Pr(buy|homestead or buy) =
1

1 + exp{κ ·Ψ/ρ}
and 0 < ρ ≤ 1, κ > 0.

Pr(no farming) =
1

1 + [exp(γ/ρ) + exp{γ/ρ− κ ·Ψ/ρ}]ρ
, and 0 < ρ ≤ 1, κ > 0.

We use

̂Pr(buy|homestead or buy) =
#sales at time = 0

#sales at time = 0 + #homestead at time = 0
.

Pr(buy|homestead or buy) can be rewritten as

ρ =
κ ·Ψ

ln{ 1
P (buy|homestead or buy)

− 1}
.

This suggests the estimator

ρ̂ =
κ̂ · Ψ̂

ln{ 1
̂P (buy|homestead or buy)

− 1}
,

16



where κ̂ comes from the estimation of the structural model. Likewise, Pr(no farming) can

be rewritten as

γ = ln[
1

Pr(no farming)
− 1]− ρ ln[1 + exp{−(κ ·Ψ)/ρ}],

where γ represents the disutility from farming. This suggests the estimator

γ̂ = ln[
1

̂Pr(no farming)
− 1]− ρ̂ ln[1 + exp{−(κ̂ · Ψ̂)/ρ̂}].

After calculating ρ̂ and γ̂ as above, we use the nested logit model to obtain the following

probability

̂Pr(no farming|no homesteading) =
1

1 + [exp{γ̂/ρ̂− (κ̂ · Ψ̂)/ρ̂}]ρ̂

=
1

1 + [exp{γ̂ − (κ̂ · Ψ̂)}]
.

This counterfactual is the conditional probability of not farming given that homesteading is

no longer available.

Figure 8: Fit of the Full Information model
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Figure 9: Fit of the Full Information model: abandoning and selling only

Figure 10: Fit of the Bayesian model

Figure 11: Fit of the Bayesian model: abandoning and selling only
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Table 7: Information Realizations and Bias Estimates
Information Realizations Bias for Type A Bias for Type B

Period 1 1.30682 -0.99094 -1.04133
(0.188809) (0.110855) (0.082695)

Period 2 1.00572 -0.70947 -0.75276
(0.243388) (0.106206) (0.082046)

Period 3 -0.17807 -0.64382 -0.68176
(0.119778) (0.095560) (0.074765)

Period 4 -0.65352 -0.64488 -0.67865
(0.086183) (0.094071) (0.075393)

Period 5 -0.66063 -0.64644 -0.67687
(0.090771) (0.092496) (0.075627)

Period 6 -0.56302 -0.63892 -0.66660
(0.122124) (0.089950) (0.074679)

Period 7 -0.18915 -0.60173 -0.62712
(0.211434) (0.095108) (0.081052)

Period 8 -0.59586 -0.60128 -0.62474
(0.113099) (0.095102) (0.082068)

Period 9 -0.59209 -0.60063 -0.62242
(0.159666) (0.097693) (0.085516)

Period 10 -0.62473 -0.60223 -0.62257
(0.122455) (0.099286) (0.087868)

Period 11 -1.64573 -0.66707 -0.68615
(0.207200) (0.084776) (0.074038)

Period 12 -1.77472 -0.73187 -0.74983
(0.299524) (0.064853) (0.054756)

Period 13 -0.57998 -0.72347 -0.74044
(0.174565) (0.063778) (0.054238)

Period 14 0.02653 -0.68419 -0.70027
(0.171250) (0.063864) (0.054897)

Period 15 0.45104 -0.62770 -0.64298
(0.189104) (0.064681) (0.056323)

Period 16 0.30818 -0.58333 -0.59789
(0.184590) (0.054957) (0.047244)

Period 17 0.42894 -0.53751 -0.55141
(0.280091) (0.040828) (0.033927)

Period 18 0.70137 -0.48387 -0.49716
(0.376991) (0.023735) (0.018457)

Period 19 1.44696 -0.40373 -0.41647
(0.282214) (0.012128) (0.010286)

Period 20 2.38195 -0.29272 -0.30495
(0.178552) (0.007096) (0.006369)

Observations 7,011 7,011 7,011

Standard errors in parentheses 19



Table 8: Farms Abandoned by Month

Percent of Total Farms Abandoned
January 16.7%
February 4.5
March 6.9
April 9.5
May 7.7
June 5.9
July 11.5
August 4.5
September 5.7
October 5.4
November 13.4
December 8.3
Total 100.0

N = 1, 111

Figure 12: The probability of continuing to farm varies by type
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Figure 13: The bias of type A decreases toward zero over the 20 periods; the bias of type B
is slightly larger

Figure 14: The distribution of land acquisition choice is consistent over all age brackets
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Figure 15: The distribution of land acquisition choice is consistent across farmer’s number
of children

Figure 16: The distribution of land acquisition choice is consistent over all occupations of
the owner
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Figure 17: The distribution of land acquisition choice is consistent over all wealth brackets
of the owner

Figure 18: The distribution of land acquisition choice is consistent over genders
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Figure 19: The distribution of land acquisition choice is consistent over all years which the
farm was initially acquired
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