
Chapter 1

Algorithms for Models with

Intractable Normalizing Functions

Murali Haran, Bokgyeong Kang, Jaewoo Park

In this paper we discuss a well known computing problem – inference for models with

intractable normalizing functions. Models with intractable normalizing functions arise in

a wide variety of areas, for instance network models, models for spatial data on lattices,

spatial point processes, flexible models for count data and gene expression, and models for

permutations (Lu and Boutilier, 2014); for more examples see (Matsubara et al., 2022; Park

and Haran, 2018). Simulating from these models for fixed parameter values is well studied,

starting with work dating back seventy years to the origin of the Metropolis algorithm. On

the other hand some of the most practical and theoretically justified algorithms for inference,

particularly Bayesian inference, have only been developed within the past two decades. The

most computationally efficient algorithms often do not have well developed theory and few

if any approaches exist for assessing the quality of approximations based on them. For

many problems even the best algorithms can be computationally infeasible. Hence, this is

an exciting area of research with many open problems. We explain several key algorithms,

providing connections and touching upon practical advantages and disadvantages of each,
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2 CHAPTER 1. NORMALIZING FUNCTIONS

with some discussion of theoretical properties where they impact practice. We discuss an

approach for assessing the accuracy of approximations produced by these algorithms; this

diagnostic is particularly valuable for algorithm tuning.

While our focus is largely on models with intractable normalizing functions, we also

discuss algorithms that are more broadly applicable to models where the entire likelihood

function is intractable; these methods are of course also applicable to intractable normalizing

function problems. Intractable likelihood function problems are growing in importance as

statistical models become increasingly sophisticated and data sets become larger and more

complex. Inference for intractable likelihood models, also known as likelihood-free inference,

therefore represents one of the most important computational challenges of modern statistics.

The goals of this manuscript are to (i) provide an accessible introduction to the intractable

normalizing function (INF) and intractable likelihood (IL) problems, as well as key ideas

underpinning several algorithms used to solve them; (ii) describe an approach for assessing

the sample quality of asymptotically inexact algorithms for INF problems; (iii) provide

practical recommendations for solving INF problems based on a study of some challenging

examples; (iv) suggest avenues for future research. The remainder of this paper is organized

as follows. We provide some historical and technical background for INF and IL problems in

Section 1.1. In Section 1.2 we provide a taxonomy for algorithms, along with explanations

for several important algorithms, then explain an approach for assessing sample quality for

both asymptotically exact and inexact algorithms in Section 1.3. We conclude with the

application of several algorithms to challenging examples in Section 1.4, providing insights

about the algorithms whenever possible, and then provide a summary and discussion of

potential areas for future research in Section 1.5.

1.1 Background

The landmark Metropolis et al. (1953) paper that introduced the Metropolis algorithm and

hence the beginnings of Markov chain Monte Carlo (MCMC), describes an algorithm to

simulate a spin system in particle physics according to the Ising model (Ising, 1925; Lenz,
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1920), which has an intractable normalizing function. Because the problem considered in

the paper is simulating from the model for fixed parameters, the normalizing function (re-

ally a constant in this case) cancels out in the acceptance ratio of the Metropolis-Hastings

algorithm. Hence, from the earliest days of MCMC, simulating realizations from a model

with intractable normalizing functions is considered a solved problem. However, inference

is an entirely different matter as the normalizing function does not cancel out. We explain

below both the ease of simulation from the model and the challenge for inference.

Consider a random variable x ∈ X , assumed to be a realization from the probability

model f(x | θ) with parameter θ ∈ Θ. Bayesian inference for θ is based on the posterior π(θ |
x) ∝ f(x | θ)p(θ) where p(θ) is a prior density on θ. It is common to have f(x | θ) = h(x |
θ)/c(θ) where c(θ) is an intractable normalizing function of θ. For instance, Ising, Potts, and

exponential random graph models (ERGMs) can be expressed as exponential family models

of the form f(x | θ) = exp(θS(x))/c(θ), where θ is a p-dimensional vector of parameters

and S(x) is the vector of jointly sufficient statistics for θ. The normalizing function c(θ) =∑
x∈χ exp(θs(x)) is intractable for any realistic problem as it involves summing over all

possible x ∈ X . For example for the Ising model which involves 2 potential spins {−1, 1}
for each of n particles, the number of configurations is 2n, a large number even for relatively

small n; for n = 300 it is more than 2× 1090 configurations.

The posterior distribution for the kinds of models described above is π(θ | x) ∝ h(x |
θ)p(θ)/c(θ). This reveals the source of the challenge with constructing a Metropolis-Hastings

sampler for π(θ | x): if the current state of the Markov chain is θt then the proposed state

θ∗ ∼ q(θt, ·), for some proposal q(·, ·), is accepted with probability

min

(
1,

p(θ∗)h(θ∗ | x)/c(θ∗)
p(θt)h(θt | x)/c(θt)

q(θ∗, θt)

q(θt, θ∗)

)
,

where the intractable normalizing function does not cancel out.

In contrast, simulating from the probability model is itself quite straightforward in prin-

ciple. That is, for a given (fixed) θ, a Metropolis-Hastings update for sampling from the

model f(x | θ) is as follows: if the current state of the Markov chain is xt then the proposed
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state x∗ ∼ q(xt, ·) for some proposal q(·, ·) is accepted with probability

min

(
1,

h(x∗ | θ)/c(θ)
h(xt | θ)/c(θ)

q(x∗, xt)

q(xt, x∗)

)
= min

(
1,

h(x∗ | θ)
h(xt | θ)

q(x∗, xt)

q(xt, x∗)

)
,

which does not depend on the intractable normalizing function c(θ). This simple observation

allows for easy simulation from the probability model, as first shown in Metropolis et al.

(1953). As we will discuss below, simulation from f(y | θ) is key to most algorithms for

simulating from π(θ | x). It is important to note that while the normalizing function poses

no challenge to simulation, slow mixing is a common issue, inspiring many innovations,

notably the Swendsen-Wang algorithm (Swendsen and Wang, 1987) and variants.

The earliest approaches, mostly focused on approximating maximum likelihood estima-

tors, were based on pseudolikelihood approximations (Besag, 1975, Lindsay, 1988). These

likelihood approximations are obtained by taking the product of the full conditional dis-

tributions of all variables, are simple and computationally expedient. However, they are

limited to certain classes of spatial and network models. They do not apply, for instance,

to the Conway-Maxwell Poisson (Conway, 1961) model or Mallows model (Lu and Boutilier,

2014; Mallows, 1957). In cases where one can apply it, pseudolikelihood is often a poor

approximation. For example, it can work poorly when the dependence is moderately strong

for the Potts model or the autologistic model (cf. Hughes et al., 2011; Okabayashi et al.,

2011). In contrast, composite likelihoods, a general scheme for approximation derived by

multiplying a collection of component likelihoods (cf. Varin et al., 2011), are much more

flexible by allowing various kinds of marginal and conditional component likelihoods, and

can be computationally expedient for many situations (cf. Okabayashi et al., 2011, for an

applications to the Potts model). Markov chain Monte Carlo maximum likelihood is an ele-

gant, theoretically justified approach to approximating MLEs (Geyer and Thompson, 1992b)

using importance sampling to approximate the likelihood function as well as the curvature

of the log likelihood. The challenges with MCMCLE are largely related to finding a good

importance function that ensures that Monte Carlo errors do not balloon (see Hummel et al.,

2012, for some strategies for ERGMs).

Our focus in this chapter is on algorithms for Bayesian inference. We do not discuss max-
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imum likelihood estimation for intractable normalizing function models, nor do we discuss

the large number of algorithms focused entirely on approximating normalizing functions or

constants themselves; these are covered well in (REFS to other Handbook chapters).

1.2 Algorithms

Following the categories in Park and Haran (2018) we can broadly classify algorithms for

Bayesian inference with intractable normalizing function models into the following overlap-

ping categories: (i) auxiliary variable (AV) methods, and (ii) likelihood function approxima-

tion (LFA) methods. AV methods typically avoid the evaluation of normalizing functions by

introducing a well chosen auxiliary variable into the sampling algorithm. LFA methods con-

struct an approximation to the full likelihood function and use the approximation in place

of the true likelihood when evaluating the posterior distribution. These approximations can

vary widely, from composite likelihood or pseudo-likelihood approximations dating back to

the 1970s to the use of Gaussian processes or a variety of new machine learning approaches

to approximate the likelihood based on samples from f(y | θ) at various θ values. Likelihood

function approximations include many methods that approximate the normalizing function.

The categories clearly overlap heavily since most LFA algorithms require drawing samples

from the data model f(y | θ), and hence may also be considered AV algorithms. In spite of

the overlap, we find the above categorization to be helpful as a way to distinguish the fairly

distinct thought processes behind constructing different algorithms for intractable normal-

izing function problems. The above algorithms may also be categorized as asymptotically

exact or inexact: for asymptotically exact algorithms the asymptotic distribution of the

stochastic process produced by the algorithm – often but not always a Markov chain – is

exactly equal to π(θ | y); inexact algorithms do not have this property.

We provide an overview of algorithms for Bayesian inference for models with intractable

normalizing functions (henceforth INF). We sprinkle in discussions of algorithms for mod-

els where the entirety of the likelihood is intractable (henceforth IL) because, of course,

algorithms for IL also apply to INF problems. Note that there is a vast and fast growing
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literature on IL methods that spans multiple disciplines; see Cranmer et al. (2020) for an

authoritative review. As will become apparent, algorithms for sampling from f(y | θ) end

up being crucial to almost all algorithms developed for INF or IL problems.

1.2.1 Auxiliary Variable Algorithms

Here we describe algorithms where an additional simulation is used in various ways to cancel

out normalizing function evaluations in the Metropolis-Hastings acceptance ratio. Both the

exchange algorithm and double Metropolis-Hastings (DMH) apply to INF problems. We

also describe briefly the MCMC version of the Approximate Bayesian Computation (ABC)

approach. This algorithm is widely applicable to IL problems, entirely eliminating the need

for evaluating the likelihood function.

Exchange Algorithm

The exchange algorithm (Møller et al., 2006; Murray, 2007) relies on an exact sample from the

probability model f(· | θ) to produce a Markov chain with stationary distribution π(θ | x).
Let the tth state of the Markov chain with augmented state space be (θt, xt) ∈ Θ×X . In the

exchange algorithm, each time a parameter value θ∗ is proposed from q(θt, ·), an auxiliary

sample from the probability model at that parameter value θ∗ is drawn, x∗ ∼ f(· | θ∗). The
joint proposal (θ∗, x∗) is then accepted or rejected together to construct a Markov chain

on an augmented state space. The Metropolis-Hastings acceptance ratio for the proposal

(θ∗, x∗) is

α(θt, θ∗) = min

{
1,

p(θ′)h(x | θ′)/���c(θ′)

p(θt)h(x | θt)/HHHc(θt)

q(θ′, θt)h(x∗ | θt)/HHHc(θt)

q(θt, θ′)h(x∗ | θ′)/���c(θ′)

}
, (1.2.1)

which does not contain normalizing function evaluations. The distribution of the marginal

chain, that is, just the θ component of the resulting Markov chain, has stationary distribution

π(θ | x). This is a very elegant approach to constructing an asymptotically exact sampler for

the target posterior. An important requirement for this algorithm is that we have an exact

draw x∗ ∼ f(· | θ∗), that is, using a draw from a Markov chain with stationary distribution
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f(x | θ∗) does not suffice. For most models of interest, it is either impossible to construct

an exact sampler for f(x | θ∗) or, in cases where it is possible, for example using perfect

sampling techniques (Propp and Wilson, 1996), it is often computationally too expensive to

be of value. In fact, in all the examples we provide in Section 1.4 perfect sampling is not a

viable option.

Double Metropolis-Hastings and Variants

The Double Metropolis-Hastings algorithm (DMH) (Liang, 2010) simply takes the exchange

algorithm and replaces the exact draw from f(x | θ∗) with a draw from a Markov chain with

f(x | θ∗) as its stationary distribution. The algorithm gets its name from the fact that at

each iteration of the Markov chain (“outer chain”) the algorithm requires another Markov

chain (“inner chain”) to provide the auxiliary draw. This is obviously expensive, especially

if the inner chain is long, but removing the requirement of having an exact draw makes it far

more flexible and efficient than the exchange algorithm. There are no theoretical guarantees

regarding the quality of DHM samples since the theory for DMH requires both inner and

outer chain lengths get large simultaneously, which is impractical. Thus, its efficiency comes

at a considerable cost, namely that DMH is asymptotically inexact so standard approaches

for assessing convergence (Flegal et al., 2008) do not apply.

As we discuss in Section 1.4 DMH is both efficient and relatively easy to construct.

Important ingredients for the construction of DMH include coming up with a good proposal

for θ (q(θ, ·), and determining the length of the inner and outer chains. Improving proposals

and determining a suitable outer chain length are standard issues in constructing MCMC

algorithms but the inner chain length problem is specific to DMH. All three of these issues

require the ability to assess the quality of samples produced by DMH; given the fact that the

algorithm is asymptotically inexact usual MCMC diagnostics are not useful. This is an issue

we will address more broadly in Section 1.3 and we discuss the implementation of DMH in

challenging examples in Section 1.4.
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Approximate Bayesian Computation (ABC)

Approximate Bayesian Computation (ABC) is a very widely used class of algorithms for

Bayesian inference in the presence of intractable likelihood functions. Here we describe

ABC-MCMC (Marjoram et al., 2003), a subset of ABC algorithms. In ABC-MCMC, for

current state θt when θ∗ is proposed the Metropolis-Hastings acceptance ratio is evaluated

only if an auxiliary sample x∗ ∼ f(· | θ∗) is close to the data according to some user-

specified distance d(x, x∗) and threshold ϵ > 0; of course the distance could be defined on a

statistics S(x∗), which is a fruitful area to explore the use of dimension reduction methods.

If d(x, x∗) < ϵ, θ′ is accepted with probability

α(θt, θ∗) = min

{
1,

p(θ∗)

p(θt)

q(θ∗, θt)

q(θt, θ∗)

}
, (1.2.2)

For discrete data (X is a discrete space) when ϵ = 0, Marjoram et al. (2003) use a simple

detailed balance argument to prove that the resulting Markov chain converges to stationary

distribution π(θ | x). Of course, this is an impractical requirement so the Markov chain

with ϵ > 0 is in reality asymptotically inexact. Because of the growing number of problems

where the evaluation of f(x | θ) is impossible even while auxiliary simulation from f(x |
θ) is relatively straightforward, ABC-MCMC and other “likelihood-free” algorithms have

become very popular. ABC-MCMC is of course applicable to INF problems but its value in

comparison to more specialized INF algorithms like DMH is still an open question.

1.2.2 Likelihood Approximation Algorithms

Some of the earliest approaches for inference with intractable normalizing function likeli-

hoods involve replacing the entire likelihood function by an approximation that completely

avoids computing the normalizing function. This idea remains potentially very useful and

opens avenues for research, particularly the use of new machine learning methods for ap-

proximation. In the interest of brevity, and because likelihood approximations are major

topics in their own right, we provide only brief notes on some of the key ideas in this class

of algorithms.
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Composite Likelihood

In composite likelihood (Lindsay, 1988), the likelihood function L(θ | x) is replaced by

an approximation L̂C(θ | x) obtained by taking the product of a collection of component

likelihoods. A maximum composite likelihood estimate (MCLE) is obtained by maximizing

L̂C(θ | x) with respect to θ. MCLEs are a good approximation to the MLE in certain settings

(cf. Varin et al., 2011). Composite likelihood methods are also easy to implement and com-

putationally expedient. In fact, they are the only class of algorithms discussed in this paper

that do not require auxiliary simulations. Pseudolikelihood approaches, where the likelihood

is approximated by a product of full conditional distributions of the random variables in

the model, are somewhat limited in their flexibility but composite likelihood methods can

be adapted well to particular problems. A nice example is provided in Okabayashi et al.

(2011) for the Potts model for discrete spatial lattice data. Here, L̂C(θ | x) is the product

of the joint distributions of multiple pixels given the rest of the lattice. They find that the

resulting MCLE is less statistically efficient but much faster and easier to compute than the

MLE; the MLE can only be approximated using a combination of MCMC and importance

sampling (Geyer and Thompson, 1992a). For Bayesian inference with composite likelihood,

π(θ | x) is replaced with π̂(θ | x) ∝ L̂C(θ | x)p(θ), as long as π̂(θ | x) is proper. Composite

likelihood for Bayes is a somewhat under-explored approach, though there are some studies

for example for spatial extreme models (Ribatet et al., 2012) and for calibrating complex

computer models (Chang et al., 2015).

Intractable Normalizing Function Approximations

There is a large literature on approximating the normalizing function using importance

sampling, bridge sampling and path sampling methods Gelman and Meng (1998). These

algorithms can all be used to approximate the Metropolis-Hastings acceptance ratio. For

instance (Atchade et al., 2008) construct a stochastic process much like regular MCMC

except the normalizing function is adaptively approximated at each step of the algorithm by

a stochastic approximation using the entire sample path up to that point. In order to make

the normalizing function approximation approach efficient Atchade et al. (2008) propose



10 CHAPTER 1. NORMALIZING FUNCTIONS

using an umbrella sampling approach with multiple particles at each iteration (Torrie and

Valleau, 1977).

Pseudo-marginal Algorithms

In the Metropolis-Hastings acceptance ratio, pseudo-marginal MCMC (Andrieu and Roberts,

2009) replaces an intractable L(θ | x) with its positive and unbiased Monte Carlo approxi-

mation L̂(θ | x). The resulting algorithm is useful for IL problems, and has the advantage

of being asymptotically exact.

For INF problems, pseudo-marginal MCMC requires an unbiased approximation of 1/c(θ).

Although we can easily obtain an unbiased approximation for c(θ), ĉ(θ), using importance

sampling, obtaining an unbiased approximation of 1/c(θ) is non-trivial. Note that 1/ĉ(θ)

is a consistent but biased approximation. To address this, Lyne et al. (2015) developed

a geometric series correction method, called the Russian roulette algorithm. Under the

pseudo-marginal framework, the algorithm is asymptotically exact, and assumptions are

satisfied for general forms of h(x | θ). However, implementing the stochastic truncation of

the series requires multiple ĉ(θ)s; considering that obtaining each ĉ(θ) requires Monte Carlo

samples from h(x | θ), the algorithm is computationally expensive.

To speed up the algorithm, one might consider adapting surrogate likelihood approxi-

mations. For IL problems, Drovandi et al. (2018) developed an approach to accelerate the

pseudo-marginal algorithm by using a Gaussian process approximation of the log of an unbi-

ased likelihood approximation. Developing asymptotically exact pseudo-marginal algorithms

that are also computationally efficient is very challenging for INF problems.

Bayesian Synthetic Likelihood

Bayesian synthetic likelihood (Price et al., 2018) (BSL) is a likelihood-free algorithm that,

like ABC, uses simulations from the probability model to modify the Metropolis-Hastings

acceptance ratio. For each proposed θ∗, the algorithm generates m simulations x∗
1, . . . , x

∗
m
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from f(x | θ∗), computes a summary statistic based on each simulation, S(x∗
1), . . . , S(x

∗
m),

and then constructs a multivariate normal based on these statistics by simply using the

sample mean and sample covariance; this is treated as an approximation to the distribution

of the summary statistics. This multivariate normal, evaluated at the real data, is then used

as a replacement for the true likelihood function in the Metropolis-Hastings acceptance ratio.

The idea behind this algorithm is that if the summary statistics are approximately normal,

this is a reasonable approximation. The algorithm is asymptotically inexact, like ABC, but

it seems to outperform ABC in terms of computational efficiency in some examples (Price

et al., 2018), and so may be a useful addition to the toolkit for likelihood-free inference, and

hence also intractable normalizing function problems.

Variational Bayes

Variational Bayes (VB) (Bishop and Nasrabadi, 2006; Jordan et al., 1999) approximates the

posterior by minimizing the Kullback-Leibler divergence between π(θ | x) and a tractable

distribution class, or equivalently maximizing the evidence lower bound. Tran et al. (2017)

develop VB for intractable likelihood problems by replacing the likelihood with unbiased im-

portance sampling estimates. For INF problems, Tan and Friel (2020) developed two classes

of VB methods for ERGMs with Gaussian posterior approximation. The first approach re-

places the intractable likelihood with the adjusted pseudolikelihood (Bouranis et al., 2018)

in optimizing the evidence lower bound. These adjustments correct the mode, curvature,

and magnitude of the pseudolikelihood based on an affine transformation. The second one

is a stochastic gradient ascent approach to optimize the evidence lower bound. Here, the

gradient term is approximated through importance sampling estimates.

VB approaches are attractive because they are potentially extremely fast, but both VB

approaches in Tan and Friel (2020) need considerable tuning to be effective for a given

distribution. First, we need to tune the algorithms for both approaches carefully. The ad-

justed pseudolikelihood approach uses MLE and covariance estimates of sufficient statistics

for an affine transformation, which requires Monte Carlo simulation from the model. There-

fore, the quality of the preliminary iteration of MCMC-MLE (Geyer and Thompson, 1992a;
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Snijders et al., 2002) is crucial for the success of the algorithm. The stochastic gradient

approach also uses the fitted results from the adjusted pseudolikelihood method as inputs

for faster convergence; the performance of the algorithm can depend on them. Furthermore,

both VB approaches require simulations from the model, for adjusting pseudolikelihood and

estimating the gradient respectively. However, if carefully tuned, VB approaches can be

computationally faster than other approaches, including DMH, while providing reasonable

posterior approximations. For example VB requires fewer auxiliary model simulations than

DMH and the simulations can be parallelized. It is important to note that the VB methods

(Tan and Friel, 2020) have been developed for ERGMs; it is unclear how to extend them to

other models.

Surrogate Likelihoods

A particularly exciting avenue for both INF and IL methods is exploring new machine

learning methods that can be trained on samples to produce a surrogate model and likelihood

function. The sampling can be run ahead of time, in parallel, and once the training is done

an MCMC algorithm can use the surrogate likelihood. Hence, these algorithms can be very

fast, though there are interesting challenges in terms of design – how to select the set of

parameters for simulation – and architecture – how to construct the surrogate. For instance,

Sainsbury-Dale et al. (2023) develops a neural network approximation to a Bayes estimator

in the context of spatial data, and there are recent maximum likelihood approaches for

expensive or intractable likelihoods (Walchessen et al., 2023). There is a long history of

using Gaussian processes in the complex computer models framework, that is, for inference

where the model is a complex simulation model with no closed-form expressions (cf. Gramacy,

2020; Santner et al., 2003). Surrogates based on Gaussian processes have been developed

for INF problems (cf. Drovandi et al., 2018; Park and Haran, 2020). For instance, in the

LikeEm algorithm (Park and Haran, 2020), the normalizing function is approximated for a

set of parameter settings using importance sampling techniques, then a Gaussian process is

used to interpolate the approximated likelihood function over the entire parameter space.

Once this pre-computing step is completed, the Gaussian process emulator is used instead

of the likelihood function in the subsequent MCMC algorithm. This algorithm is fast but
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asymptotically approximate; it is studied as an example in Section 1.4. The review in

Cranmer et al. (2020) is targeted at IL problems rather than INF problems, and contains

helpful descriptions of several simulation-based surrogate likelihood methods.

1.3 Assessing Sample Quality

Assessing the quality of samples from MCMC algorithms has been an active area of re-

search for over three decades, with many theoretically justified and practical approaches

(cf. Roy (2020) and Chapters 4 and 5 of this book). However, there are relatively few if

any attempts at finding ways to assess the quality of samples produced by asymptotically

inexact algorithms. Such diagnostics are important for ensuring the reliability of our results

as well as for guidance for tuning our algorithm for any given problem. For example, the

double Metropolis-Hastings algorithm requires determining the length of the inner and outer

Markov chains; standard MCMC diagnostics are not useful for tuning this algorithm or as-

sessing the quality of samples. Heuristics for tuning are often based on simulated examples

and hence can be of limited applicability to a particular problem. Determining which algo-

rithm to prefer is also difficult without a good measure of sample quality, for example the

exchange algorithm is asymptotically exact but computationally expensive while the double

Metropolis-Hastings algorithm is faster but asymptotically inexact; which should we use for

a given problem?

There are two measures of sample quality provided by Kang et al. (2023), the approximate

curvature diagnostic (ACD) and the approximate inverse multiquadric kernel Stein discrep-

ancy (AIKS). In the interest of brevity and because we find ACD to be more computationally

expedient, we focus on ACD here. For more on AIKS and the kernel Stein discrepancy on

which it is based, see Kang et al. (2023) and Gorham and Mackey (2017) respectively.
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1.3.1 Curvature Diagnostic

The curvature diagnostic (Kang et al., 2023) is inspired by maximum likelihood theory. The

second Bartlett identity (Bartlett, 1953a,b) can be used to assess whether a model is correctly

specified, that is, whether the data we observe are compatible with a particular probability

model. The curvature diagnostic considers whether the samples drawn from an algorithm

are compatible with the target posterior distribution π(θ | x). Let ux(θ) = ∇θ log π(θ |
x), H(θ) = ∂

∂θ
ux(θ), J(θ) = ux(θ)ux(θ)

⊤, and d(θ) = vech[J(θ) + H(θ)], where vech(M)

denotes the half-vectorization of the matrix M . If the samples from the algorithm are truly

from the posterior, then Eπ{d(θ)} = 0 by Bartlett’s second identity. This leads to the

following strategy: for samples {θ(1), . . . , θ(n)} from the approximate algorithm, estimate the

expectation as dn = 1
n

∑n
i=1 d(θ

(i)). If the asymptotic distribution of the sample is the target

distribution π, then
√
ndn

d→ N(0, V ) by the central limit theorem (CLT) for independent

samples and MCMC CLT for samples from a Markov process. For independent samples,

the unbiased and consistent approximation of V is calculated as Vn = 1
n

∑n
i=1 d(θ

(i))d(θ(i))⊤.

For samples from a Markov chain, we can estimate V using batch means estimator which is

strongly consistent under some conditions (Damerdji, 1994; Jones et al., 2006; Vats et al.,

2019). The curvature diagnostic is defined as nd⊤nV
−1
n dn. This has an asymptotic χ2(r)

distribution, where r = p(p+1)/2 and p is the dimension of θ, if the asymptotic distribution

of the sample is equal to the target posterior. The 1 − α quantile of the χ2(r) can be used

as a threshold for this diagnostic. A sample path for which the diagnostic value is below the

threshold is considered to have an asymptotic distribution that is reasonably close to the

target distribution.

1.3.2 Approximate Curvature Diagnostic (ACD)

In the context of intractable normalizing function problems, H(θ) and J(θ) are intractable

and hence need to to be approximated, leading to the approximate curvature diagnostic

(ACD). Kang et al. (2023) describes how ACD is computed efficiently, providing theoretical

justification for using ACD in place of CD. The ACD is defined as nd̂⊤n,N V̂
−1
n,N d̂n.,N where d̂n,N

and V̂n,N are the consistent estimates of dn and Vn, respectively. The approximations are
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obtained using auxiliary samples y(1), . . . ,y(N) generated exactly from f(· | θ) or generated
by a Monte Carlo algorithm having f(· | θ) as its stationary distribution. The self-normalized

importance sampling (Tan and Friel, 2020) substantially speeds up the approximation step.

Further details on the approximation are found in Kang et al. (2023). In order to control

standard errors and computational costs, it is important to construct these approximations

carefully. The theoretical justifications may be summarized as follows: if the asymptotic

distribution of the sample is equal to the target distribution then d̂n,N
a.s.→ dn as N → ∞

and V̂n,N
a.s.→ V as n,N → ∞, so that the ACD converges to the curvature diagnostic. These

results hold under reasonable conditions on the prior and likelihood; for instance they are

satisfied for the challenging examples provided later in this chapter. ACD has been shown

to be effective in practice, as demonstrated on multiple challenging examples in Kang et al.

(2023). Further details on the application of ACD are in Section 1.4.

1.4 Applications

We showcase the application of three algorithms – DMH (Liang, 2010), LikeEm (Park and

Haran, 2020), and VB (Tan and Friel, 2020) – in the context of three challenging examples –

the Potts model, an exponential random graph model (ERGM), and an Ising network model.

The algorithms we have chosen are intentionally quite different from each other. DMH is an

auxiliary variable algorithm, while LikeEm is a function approximation approach that uses

sampling to produce a Gaussian process surrogate to the likelihood, and VB is a function

approximation approach that uses optimization. The algorithms share one common feature

– we find that they are of practical value in certain contexts, though not all the algorithms

apply to all the examples we provide. We find that our examples provide insights about

the algorithms and also demonstrate the value of the ACD measure of sample quality in

tuning the algorithms, assessing whether the approximations are reasonable, and comparing

the algorithms to each other.
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Figure 1.1: Multi-color image data simulated from the Potts model with K = 4 and θ =
log(1 +

√
4).

1.4.1 Potts Model

The Potts model (Potts, 1952), a generalization of the Ising model (Ising, 1925; Lenz, 1920),

provides an approach for modeling multi-colored images and hence discrete-valued spatial

data on a lattice. For an r×s lattice x with discrete values xi ∈ {1, . . . , K}, the Potts model

with θ > 0 has probability model

f(x | θ) = 1

c(θ)
exp

{
θ
∑
i∼j

I(xi = xj)

}
,

where i ∼ j indicates neighboring elements, and I(·) denotes the indicator function. A

larger value for θ produces higher expected number of neighboring pairs that have the same

color. Calculation of the normalizing function c(θ) requires summation over all Krs possible

outcomes for the model, which is computationally infeasible even for lattices of moderate

size. We simulated a 30 × 30 lattice with K = 4 and θ = log(1 +
√
4) via 100,000 cycles

of the Swendsen-Wang algorithm (Swendsen and Wang, 1987) using the R package potts

(Geyer and Johnson, 2022). The simulated data are presented in Figure 1.1.

For this example we consider the DMH and LikeEm algorithms that are described in

Section 1.2. Both algorithms are asymptotically inexact. We implement DMH with different

numbers m of Swendsen-Wang (inner sampler) updates. The LikeEm algorithm has two
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Figure 1.2: Results for the simulated data from the Potts model. (a) ACD applied to
samples generated from DMH with different numbers m of (inner) Gibbs updates. (b) ACD
applied to samples generated from LikeEm with different numbers d of particles and different
sample sizes N for importance sampling estimates. The dashed horizontal lines represent
the threshold value of ACD, and the red triangles and blue squares indicate poor sample
quality and good sample quality, respectively. For DMH, ACD recommends m of at least
90. For LikeEm, ACD recommends d of at least 100 and N = 500.

tuning components, the number d of particles and the sample size N for importance sampling

estimates. We implement LikeEm with different combination of d and L, where the particles

are chosen from a short run of DMH with 90 cycles of inner updates. All algorithms were

run for n = 300,000 iterations. We apply ACD to choose a suitable value of m for DMH

and an appropriate combination of d and N for LikeEm. For ACD N = 200,000 auxiliary

variables were generated via Swendsen-Wang sampling for approximating d(θ) at each unique

posterior sample point. The threshold value of ACD is the 0.99 quantile of χ2(1), which is

6.63.

Figure 1.2 (a) shows ACD for the DMH sample for a sequence of m values, and (b)

presents ACD for the LikeEm sample for different combinations of d and N . Based on ACD,

we choose m = 90 for DMH, and d = 100 and N = 500 for LikeEm. DMH with m = 90

takes approximately 2 hours but LikeEm with d = 100 and N = 500 only takes 50 seconds to

run, including pre-computing time for particle selection. In summary, LikeEm can provide

good-quality samples at a fraction of the computational cost compared to DMH.
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Figure 1.3: Florentine marriage network (Breiger and Pattison, 1986) consists of 16 vertices
and 20 undirected edges.

1.4.2 An Exponential Random Graph Model

Exponential random graph models (ERGM) (Hunter et al., 2008; Robins et al., 2007b) have

been widely used to study the relationships between network nodes. Consider we have

undirected network data x ∈ Rn×n with n nodes. For all i ̸= j, xi,j = 1 if the ith node and

jth node are connected (neighbors), and xi,j = 0 otherwise. Then, the probability model of

ERGM is

f(x | θ) = 1

c(θ)
exp {θ1S1(x) + θ2S2(x)} ,

S1(x) =
n∑

i=1

(
xi+

1

)
S2(x) = e0.2

n−2∑
k=1

{
1− (1− e−0.2)k

}
ESPk(x)

where S1(x) and S2(x) indicate edges and the geometrically weighted edge-wise shared part-

nership (GWESP) statistics (Hunter and Handcock, 2006a), respectively. The ESPk(x)

term in the GWESP statistic indicates the number of connected i, j pairs, where i and j

have k common neighbors. Therefore, GWESP can account for higher order transitivities

with geometric weights. Evaluation of the normalizing function c(θ) is intractable because

it requires summation over all 2n(n−1) possible configurations in the network. We study

the Florentine marriage dataset Breiger and Pattison (1986), which describes the marriage

alliance networks among 16 Florentine families and is shown in Figure 1.3.
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For this example we consider DMH and VB (Tan and Friel, 2020) algorithms that are

described in Section 1.2. Both algorithms are asymptotically inexact. We implement DMH

with different numbers m of Gibbs (inner) updates. For each choice of m, we run DMH for n

= 200,000 iterations and apply ACD to the sample. We tune the VB algorithm according to

Tan and Friel (2020) and obtain an approximate posterior distribution. We generate 100,000

samples independently from the approximate posterior and apply ACD to sample. For ACD

N = 200,000 auxiliary variables were generated via Gibbs sampling for approximating d(θ)

at each unique posterior sample point. The threshold value of ACD is the 0.99 quantile of

χ2(3), which is 11.34.

Figure 1.4 shows ACD for the DMH sample for a sequence of m values. ACD implies

that DMH with m = 3 performs well in this example. ACD for VB is 956.31 which is much

0
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Figure 1.4: Results for the Florentine marriage dataset in the ERGM. ACD applied to
samples generated from DMH with different numbers m of (inner) Gibbs updates. The
dashed horizontal lines represent the threshold value of ACD, and the red triangles and
blue squares indicate poor sample quality and good sample quality, respectively. ACD
recommends m of at least 3.

Table 1.1: Summary statistics of posterior samples and a gold standard for parameters θ1
and θ2 in the ERGM for the Florentine marriage dataset.

Algorithm
θ1 θ2

Median SD LTP RTP Median SD LTP RTP

VB -1.73 0.37 0.06 0.05 0.08 0.29 0.03 0.06

DMH with m = 3 -1.70 0.37 0.05 0.05 0.05 0.29 0.05 0.05

Gold standard -1.70 0.37 0.05 0.05 0.05 0.30 0.05 0.05

SD, standard deviation; LTP, left-tail probability; RTP, right-tail probability.
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greater than the threshold value of 11.34. This implies that VB may produce poor sample

quality even though we carefully tune the algorithm.

Table 1.1 presents summary statistics for the VB sample, DMH sample with m = 3, and

a gold standard. We treat as the gold standard a run from the DMH algorithm with m =

20. Cutoff values for the left- and right-tail probabilities are the lower 5% and the upper 5%

percentiles of the gold standard. We observe that the DMH sample with m = 3 provides

almost the same values of the summary statistics as the gold standard. On the other hand,

the VB sample does not match the gold standard well. For θ1, it provides a small median

and a slightly high left-tail probability compared to the gold standard. For θ2, it provides a

large median, a low left-tail probability, and a slightly high right-tail probability compared

to the gold standard. DMH with m = 3 takes approximately 1.6 minutes to run. This shows

that DMH not only permits fast computation but can generate high quality samples in this

example.

1.4.3 An Ising Network Model: Applications to Verbal Aggression Data

Ising network models (Van Borkulo et al., 2014) are undirected graphical models that can

describe interactions among binary responses. Consider binary item response data x ∈ Rn×p

with n responses to p items. For all i, j, xi,j = 1 if the ith respondent answers the jth item

correctly (or positively), and xi,j = 0 otherwise. The Ising network model with parameters

θ = (β, γ) has probability model

f(x | θ) = 1

c(θ)
exp

{
p∑

j=1

βj

n∑
i=1

xij +
∑
j<k

γjk

n∑
i=1

xijxik

}
, (1.4.1)

where βj is an item easiness parameter, and γjk is a pairwise interaction parameter between

item j and k. Calculation of the normalizing functions c(θ) require summation over all 2np

possible configurations, which is intractable. Furthermore, the model includes p+
(
p
2

)
param-

eters, which are high-dimensional. Here we analyze the item responses to a questionnaire on

verbal aggression (De Boeck, 2004). All items are about verbally aggressive reactions in a

frustrating situation, and we focus on studying 12 want behavior mode items as follows:
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(1) A bus fails to stop for me. I would want to curse.

(2) A bus fails to stop for me. I would want to scold.

(3) A bus fails to stop for me. I would want to shout.

(4) I miss a train because a clerk gave me faulty information. I would want to curse.

(5) I miss a train because a clerk gave me faulty information. I would want to scold.

(6) I miss a train because a clerk gave me faulty information. I would want to shout.

(7) The grocery store closes just as I am about to enter. I would want to curse.

(8) The grocery store closes just as I am about to enter. I would want to scold.

(9) The grocery store closes just as I am about to enter. I would want to shout.

(10) The operator disconnects me when I had used up my last 10 cents for a call. I would

want to curse.

(11) The operator disconnects me when I had used up my last 10 cents for a call. I would

want to scold.

(12) The operator disconnects me when I had used up my last 10 cents for a call. I would

want to shout.

All responses were dichotomized to have binary values (either 1 =“yes” or 0 =“no”). The

data include n = 316 respondents for the p = 12 items described above; the resulting Ising

network model has 12 +
(
12
2

)
= 78 parameters.

In order to detect significant interactions among items, we apply the spike and slab DMH

sampler (Park et al., 2022) that poses spike and slab priors for θ as follows:

θi | λi, σ
2, ω

ind∼ λiN(0, ω2σ2) + (1− λi)N(0, σ2),

λi
iid∼ Bernoulli(1/2),

1

σ2
∼ Uniform(4, 100),

ω ∼ 1 + Y, Y ∼ Gamma(1, 1/100),

(1.4.2)



22 CHAPTER 1. NORMALIZING FUNCTIONS

1

2

3

4

5

6

7

8

9

10

11

12

Figure 1.5: An estimated network structure for the verbal aggression data. The width of
the lines indicates the strength of the connection between the relevant items; thicker lines
indicate stronger interaction between items.

where λi is a latent variable indicating whether θi is included in the model (λi = 1) or not

(λi = 0), and σ2 and ω control the variances of spike and slab distributions, respectively.

Inference for the parameters is carried out by the DMH algorithm. DMH is a practical

option for such high-dimensional hierarchical models with intractable normalizing functions.

DMH can be implemented in general cases once we have an inner sampler. Other algorithms

like VB and LikeEm can be hard to tune. For DMH, the length m of the inner sampler

should be carefully chosen. However, ACD is impractical as it requires approximating the

3,081 × 3,081 covariance matrix of d(θ) the dimension of which is . To provide a reliable

approximation to the covariance matrix, we need long posterior sample paths, resulting in

huge demands on memor. Park et al. (2022) study the performance of the spike and slab

DMH sampler with different lengths m of inner sampler. Following the suggestion in Park

et al. (2022), we run the algorithm with m = 10n, where n is the number of respondents.

Of the 66 pairwise interaction parameters γjk, the spike and slab DMH shrinks 45 inter-

action parameters toward 0 and provides positive values for the others. Figure 1.5 illustrates

the resulting estimated network structure. We observe that γ2,5, γ1,4, and γ3,6 have the great-

est posterior means, indicating the strongest positive interactions. The strongest positive
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interaction is observed between items (2) (“A bus fails to stop for me. I would want to

scold”) and (5) (“I miss a train because a clerk gave me faulty information. I would want

to scold”), which makes sense because both items are about scold behavior. The second

strongest positive interaction appears between items (1) (“A bus fails to stop for me. I

would want to curse”) and (4) (“I miss a train because a clerk gave me faulty information.

I would want to curse”); both items are about curse behavior. Lastly, the third strongest

positive interaction occurs between items (3) (“A bus fails to stop for me. I would want

to shout”) and (6) (“I miss a train because a clerk gave me faulty information. I would

want to shout”), indicating that shout behaviors are also strongly connected. This example

illustrates the shortcomings of the state-of-the-art in computing for INF problems. While

DMH appears to be practical in this context, the closest we have to assurance about the

quality of sample-based inference is based on a heuristic that relies on experience.

1.5 Summary

Inference in the presence of intractable normalizing functions is an exciting computing prob-

lem with lots of room for creativity. While it is difficult to provide an exhaustive review,

we hope we have provided a reasonably broad perspective on key ideas for this problem.

Because of the number of algorithms and the vast difference among them, as well as the

scarcity of theory and heuristics for comparing them, it can be difficult to determine which

algorithm to apply for any given situation. The recent measures of sample quality in Kang

et al. (2023) may be helpful in this regard, as they have some potential for evaluating not

only the quality of samples from a particular algorithm but for comparing algorithms from

very different categories, including asymptotically exact and inexact algorithms. We find

through our study, using the ACD diagnostic (Kang et al., 2023) to measure sample quality

where possible, that the double Metropolis-Hastings algorithm is quite effective and broadly

applicable when used in tandem with ACD, and also has the advantage of being easier to

code than most algorithms for Bayesian inference with intractable normalizing functions. Of

course we must add the caveat that our study of algorithms is necessarily limited to a few

challenging examples and a small set of interesting algorithms and hence we do not claim
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that our results will necessarily hold across the enormous spectrum of intractable normalizing

function problems.

Potential Directions for Research

This chapter has provided a sampling of the many creative ideas that have emerged in recent

years for inference with intractable normalizing functions and intractable likelihoods. There

are clearly many open practical and theoretical issues. The computational complexity of

algorithms for intractable likelihood and intractable normalizing function problems makes

them computational expensive, and sometimes impractical, for many real applications. Ex-

amples of such problems include interaction point process models (cf. Goldstein et al., 2015),

network psychometrics (cf. Van Borkulo et al., 2014), exponential random graph models (see

Hunter and Handcock, 2006b; Robins et al., 2007a), mixed graphical models (cf. Cheng et al.,

2017; Lauritzen and Wermuth, 1989; Lee and Hastie, 2015), and Conway–Maxwell-Poisson

regression models (cf. Chanialidis et al., 2018; Conway and Maxwell, 1962; Shmueli et al.,

2005). A major computational bottleneck for most algorithms is the need to generate a large

number of expensive auxiliary samples from the probability model. Variational methods offer

a promising alternative because the sampling can be parallelized and done in advance; they

are potentially very fast but the amount of problem-specific tuning they require to make

them work well can make them impractical for many settings; finding ways to make VB

work well in these scenarios is an open area for research. While they have been around for a

while, composite likelihood methods avoid the need for auxiliary simulation, can be relatively

easy to implement, and seem to work well in certain contexts. It may be worth exploring

composite likelihood approaches for a variety of INF problems. Finally, more generalized

likelihood approximation approaches show much promise. We show in a real example in Sec-

tion 1.4 that a Gaussian process-based likelihood approximation can be much more efficient

while remaining just as reliable as other algorithms for inference. Approximations based on

machine learning techniques have advanced a great deal beyond Gaussian processes. Hence,

the application of fast machine learning techniques to likelihood function approximations is

a promising avenue for future research as well, with many interesting challenges to address

in terms of theory and applications.
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An important problem is assessing the quality of approximations obtained from asymp-

totically inexact algorithms. The ACD and AIKS methods (Kang et al., 2023) provide a nice

way to measure sample quality for asymptotically inexact algorithms, but do not actually

provide a way to measure the error in the approximation of particular quantities of interest,

typically taking the form of a specific expectation Eπg(X) for a given target π and real-

valued function g. As is well known to MCMC users, the requisite length of the chain varies

depending on the required accuracy (MCMC standard error) and the specific targeted func-

tion g (Flegal et al., 2008). For instance approximating tail probabilities, g(x) = I(x > c)

for large c and higher moments, g(x) = x2, tend to require more samples than simple expec-

tations (g(x) = x). There are, to our knowledge, no methods for measuring the accuracy of

approximations for these different quantities for an asymptotically inexact algorithm when

the normalizing function or likelihood function is intractable. Another big open problem

is measuring the quality of samples produced by inexact algorithms when the entire likeli-

hood function is intractable, though we found some ABC-specific tools that may be useful

(Prangle et al., 2014; Rendsburg et al., 2022).
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