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1 Introduction

The shell is the program we interact with when we type at a Unix command line prompt. There
are actually several different Unix shell programs; the most commonly used is bash. bash and
other shells include facilities for writing programs, called “shell scripts”. (Different shells have
overlapping but distinct capabilities and syntax; in this tutorial, we assume the shell is bash.)

Shell scripts can be used to automate tasks involving Unix, as well as command-line programs that
run under Unix. The shell scripting language reflects an accretion of good ideas and convenient
tricks, in contrast to coherently designed, full-featured programming languages such as Python,
which can also be used to write scripts for automating tasks. However, shell scripting is convenient
because of its direct relationship to the well-conceived set of command-line tools that Unix com-
prises. All Unix commands can be used directly in shell scripts; indeed, many useful shell scripts
consist of little more than a sequence of commands that could be typed at the command line.

Shell scripting benefits immensely from the Unix concept of small, well-defined command line
utilities that can be combined to perform larger tasks by use of pipes and redirection of standard
input and output. Familiarity with this approach is a prerequisite for writing good scripts. Likewise,
powerful and versatile command line tools such as grep, sed, and awk greatly extend the range
of what simple scripts can do.

The disadvantages of shell scripting for tasks beyond a certain complexity arise as well from its
simple design. First among these limitations is the lack of convenient facilities for mathematical
operations on real numbers, or data structures beyond integers, strings, and simple arrays. As a
result, shell scripts are preferred for automation tasks, but not for “number crunching”.

Of course, other shell scripting tutorials exist; many are rather brief and thus of limited use. One
extensive tutorial is http://tldp.org/LDP/abs/html/, which is a useful reference but formidable
to digest. This tutorial presents those features of shell scripting that commonly appear in scripts
written for my research group.

The elements of the language are introduced here with brief but functional sample code. By them-
selves, these examples are too limited to give a clear indication of how real scripts are constructed.
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However, similar tasks and consequently similar techniques occur again and again in our scripts.
Therefore, in the final part of this tutorial we present several complete scripts from real applications,
annotated to highlight techniques we have found useful.

2 Language elements

2.1 Variables

The traditional first program in any language prints out “Hello world”. Here is a shell script that
illustrates the use of variables:

#!/bin/bash

# to use a variable, just assign it

sayIt="Hello"

sayit=$sayIt" world"

echo $

In bash scripts, # denotes a comment, and blank lines are allowed. The first line above is a comment
to Unix, that the script should be executed with bash.

In the script above, sayIt is first assigned the value “Hello”. Then, sayIt is assigned its old value,
concatenated with “ world”. The value of a variable is accessed with $.

Shell variables need not be “declared” or “defined” first; just start using them. Shell variables do
not have “types” (integer, real, string, etc.). More precisely, all shell variables are strings, but can
be interpreted and used as integers (discussed below).

2.2 Arguments

Values can be passed to shell scripts by command-line arguments. Here is an example (script1.sh):

#!/bin/bash

echo Hello $1

script1.sh Scott prints out “Hello Scott”. Up to 9 command-line arguments are accessed with
$1 and so forth. $# is the number of arguments passed.
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2.3 Strings

Shell variables hold strings, which are assigned with = (no space on either side):

myString=Hello

To assign a string containing spaces, enclose it in double quotes:

myString="Hello world"

To assign a string containing special characters that should not be “processed”, enclose it in single
quotes:

myString=’echo $1’

Strings are concatenated by placing them together:

string1="Hello "

string2="world!"

bothStrings=$string1$string2

2.4 Catching output from commands

Shell scripts can contain any Unix command. Often, we want to save the output of the command
in a variable. This is done with backquotes (‘...‘), as follows:

myFiles=‘ls‘

myFiles now contains a string with all the filenames separated by spaces.

An equivalent form is $(...):

myFiles=$(ls)

As usual in Unix, the command inside ‘...‘ or $(...) can be a sequence of commands separated
by semicolons, or a compound command involving pipes.
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2.5 Integers

Shell variables are fundamentally strings; however, shell scripting includes syntax that allows us to
treat variables as integers.

One way is to use let, which allows us to do math on variables that contain integers, using
operations +, -, *, /, ** (exponentiation), and parentheses:

z=4

let z=($z/2 + 4**2)*$z

which replaces z with 72. Note that division (/) here is integer, i.e., 5/2=2. Spaces are not
permitted around the =, but can appear in the expression.

A more convenient way to do math on integer-valued variables is with ((...)). Expressions inside
double parentheses act as they would in C/C++, with no need to use $ to obtain the value of
variables. For example:

((e=4*e+3**2))

The right side evaluates without typing $e, and the assignment is made. Operators like ++ (incre-
ment) and % (mod) also work inside ((...)).

2.6 Loops

Automation scripts typically involve looping. We may loop over values of some parameter, or a list
of files to be processed. Or, we may continue a process while or until some condition is met.

Shell scripting includes three constructs for looping: for, while, and until. All have a similar
syntax, with the body of the loop enclosed by do and done. while and until loops are controlled
by a logical test (described below):

while <logical test>

do

<command1>

<command2>

...

done

for loops in shell scripts are different from those in C/C++; they iterate over a list of choices:
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for fruit in apple pear orange

do

echo $fruit

done

The list of choices can be contained in a variable, or the output of a command:

choiceList="apple pear orange"

for fruit in $choiceList

...

for file in ‘ls‘

...

To get a C-like for loop, use the shell command seq to generate a sequence to iterate over:

for i in ‘seq 1 10‘

...

The general form of seq is seq <start> <step> <end>, where <start> and so forth are integers
(or expressions that evaluate to integers), and <step> is optional (with default 1).

2.7 Logical tests

To compare two variables, we use a logical test (note the spaces between the brackets, variables,
and ==):

[ $string1 == $string2 ]

To test for inequality, use !=.

If the variables contain integers (see below), comparison operators -eq, -ne, -le, -ge, -lt, -gt

can be used.

A more convenient form of logical test for integer-valued variables is to use ((...)). In the same
way as arithmetic operations on integers (see above), expressions inside ((...)) using the usual
comparison operators <, >, <=, >=, != ==, && (and), and || (or) will evaluate to “true” or
“false”.

Thus we can write logical tests in loops like
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while ((x**2+y**2 < 100))

...

and in if statements (see below) like

if ((x < 2*y));

then

...

2.8 Control statements

In addition to looping, shell scripting provides control statements to direct the execution. The
simplest is the if-statement:

if [ $string1 == $string2 ];

then

echo "equal"

else

echo "not equal"

fi

The logical test [...] takes the form described in the previous section, and must be followed by a
semicolon. The then and else sections can contain multiple commands. The else clause may be
omitted.

An if-statement with an “else-if” secondary test can be written as

if [ $string1 == $string2 ];

then

echo "equal"

elif [ $string1 == "default" ];

then

echo "default"

fi

In the above example, for simplicity the else cases have been omitted from the primary and
secondary tests.
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2.9 Random choices

The shell provides a facility for generating 16-bit random integers (ranging from 0 to 215-1 = 32767).
Each time the shell variable $RANDOM is evaluated, a different pseudorandom number is obtained.

These can be used to make random choices among a relatively small number of alternatives, in
conjunction with the mod (%) operator and integer arithmetic.

The mod operator computes the remainder of an integer divided by the modulus: echo $((5 % 2))

gives 1, while echo $((-5 % 2)) gives -1.

For example, to choose between two possibilities with equal probability,

if (($RANDOM % 2 == 0));

...

2.10 Case statements

Multiway branching can be performed with a case statement. The comparison is different from
if; here, the argument is matched to a succession of “patterns”, each of which is terminated with
a closing parenthesis ):

case $percent in

[1-4]*)

echo "less than 50 percent" ;;

[5-8]*)

echo "less than 90 percent" ;;

*)

echo "90 percent or greater" ;;

esac

Note the double semicolon terminating each command (which as usual can be multiple commands
on multiple lines).

The patterns to be matched use the same syntax as in other Unix operations (commonly used in
vi, grep, ls, rm, and the like). For completeness, patterns are described briefly in the next
section.

2.11 Patterns

Patterns (or “regular expressions”) are used by several Unix command-line programs and utilities.
File management programs like ls, cp, mv, rm, and tar use patterns to select files to operate on.
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The Unix utility grep selects lines from its input (stdin) that match a pattern, and prints those
lines to stdout. The Unix visual editor vi, and the stream editor sed use patterns in its searching
and substitution.

Patterns are strings, possibly containing special characters, which match part or all of other strings.
A simple example is ls *.sh, which lists all files with names ending in .sh (i.e., all shell scripts,
if we adhere to that naming convention). Because effective use of patterns extends the capabilities
of Unix tools like grep and sed that frequently appear in scripts, we include here a table of the
special characters used in patterns and their meanings.

Table 1: Special characters used in regular expressions and their meanings.

pattern matches

^ beginning of string
$ end of string
. any single character
* zero or more repeats of previous character

[...] any one of the enclosed characters
[a-k] any one of the range of characters
[2-5] any one of the range of digits
[^...] any character not in . . .
\<...\> pattern . . . only matches a word
\(...\) saves pattern matched by . . .

\1, \2, ... the first, second, . . . pattern saved

Pattern matching is useful in many contexts, but can be tricky — it is often a good idea to test
patterns in a safe situation before relying on them where errors can do damage (as with rm).

2.12 Functions

In longer scripts it is often convenient to define functions, to perform a well-define subtask that is
called upon multiple times.

Command-line arguments can be passed to functions in the same way as for scripts generally, with
variables $1, $2 and so forth. Variables declared with local are protected from meddling by the
main program. Shell script functions do not return values, so functions must communicate with
the calling program through global variables.

The syntax for defining a function is simple:

function newFcn {

...

}
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in which ... are one or more commands.

2.13 Return status

Functions can return a value that indicates the status of the function call; by convention, 0 indicates
success and nonzero values indicate some error. For a user-defined function, the return value is set
with return <value>.

All built-in shell functions return such values. The return value of the most recently called function
can be accessed with $?.

Return values of functions can be used as logical tests. For example:

while read nextLine

do

echo $nextLine

done

reads successive lines and echoes them until the file is empty, at which point read returns a nonzero
value, and the while loop ends.

Another way to use return status of functions and commands, is together with the operators &&

(logical and) and || (logical or). The syntax

<cmd1> && <cmd2>

executes the second command only if the first one succeeds (i.e., returns status 0). This construct
can be used to run a “check” (for the existence of a file) before executing a command.

Similarly,

<cmd1> || <cmd2>

executes the second command only if the first one fails (i.e., returns status 1). This construct can
be used to run a “fallback” command if the first one fails.

2.14 Writing to files

Output to files can be written using Unix command line tools, including echo, cat, and printf.
echo writes strings; cat concatenates one or more files; and printf prints one or more variables in
a specified format, similar to print statements in C/C++.
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For example,

echo "var1 equals" $var1

writes the concatenated string consisting of the text strings and variable.

printf writes one or more variables using a C-style format string, which provides a convenient way
of controlling the output format:

printf "%5s %10.5f%12.4g %5i\n" $s1 $f1 $f2 $i1

writes string $s1 in 5 spaces, followed by floating-point variable $f1 in 10 spaces with 5 decimal
places, $f2 in scientific notation in 12 spaces with 4 decimal places, and integer $i1 in five spaces.

Finally, cat concatenates a list of files into a single file directed to stdout, as in:

cat file1 file2 file3

2.15 Output redirection

All three utilities echo, cat, and print write to stdout (standard output). However, this output
can be redirected to write or append to a file with > or >>. If a script is invoked with redirection,
as in

myScript.sh > myFile.out

all commands in the script that write to stdout are redirected to myFile.out. This is convenient
if the script only produces one output file, since redirection can be used to save the file with any
desired name.

Sometimes, a script writes more than one output file. Then, it is convenient to redirect output of
commands within the script. This is done with the same > and >> syntax. For example,

cat file1 file2 > file3

writes file3 (overwriting if it exists); whereas,

cat file1 file2 >> file3

appends to file3 if it exists (and creates it otherwise).
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2.16 “here” documents

Sometimes, it is convenient to store a small file within a script, for use with a utility like cat that
requires a file as input. This can be accomplished with a “here” document:

cat << EOF

first line

second line

third line

EOF

In this example, cat will write the file (consisting of three lines) to stdout. Here documents can be
combined with output redirection, by replacing the first line with

cat > myFile.out << EOF

Here documents can be used with any command that requires a file as input, as an alternative to
maintaining a separate “database file” that is redirected to input, like this:

cat < database.in > myFile.out

2.17 Reading input

The Unix utility read is used to get input from files. By default, read takes input from stdin. To
read a single line of text:

read newLine

To read multiple arguments (separated by spaces) from a single line of text:

read arg1 arg2 arg3

Often, we want to read all the lines in a file, processing each line in some way until the file is empty.
This can be done with a while loop:

while read newLine

do

echo $newLine

done
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The read command returns status 0 (“true”) if a line is read, and nonzero (”false”) if the end of
file is reached. This serves as a logical test to control the while loop. If input is read from stdin
(the keyboard), ctrl-D acts as an end-of-file to terminate input.

2.18 Reading from a string

Sometimes it is convenient to read from a string; for example, we can use read to parse a string
into arguments. This may be regarded as a form of input redirection, or a variation on a “here”
document.

To read from a string:

read arg1 arg2 arg3 <<< $mystring

2.19 Input redirection

If a script is invoked with input redirection, as in

myScript.sh < myFile.in

all read commands in the script that have not been redirected then take input from myFile.in.
This is convenient if the script only reads from one file, which we specify when we invoke the script.

Sometimes, a script reads from more than one file. Then, we can also invoke input redirection
within the script. For example:

while read newLine

do

echo $newLine

done < myFile.txt

Note how the redirection follows the entire while loop construct; all reads inside the while loop
come from myFile.txt.

However, if we want to read two successive lines from a file, the obvious code

read line1 < myFile.txt

read line2 < myFile.txt
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does not work as intended; both reads take the first line from myFile.txt. To achieve the desired
result requires a different approach, described in the next section.

2.20 Open a file

In languages like C/C++ or Python, facilities exist for “opening” a file, which provides a file
“pointer” that advances with each successive read. When reading is done, the file must be “closed”.

The following syntax accomplishes this in a shell script:

# open the file

exec 3< inFile

# read from the file (first line)

read 0<&3 arg1 arg2

# read again (second line)

read 0<&3 arg3 arg4

# close the file

exec 3<&-

Here 3 is a file “channel”, where 0 is standard input (stdin), 1 is standard output (stdout), and 2 is
standard error (stderr). If more than one file must be opened at once, channels 4, 5, and so forth
can be used.

2.21 Arrays

Full-featured programming languages offer data structures more complex than a single variable.
The simplest of these are arrays. The shell provides array variables, which are lists of simple
variables that can be accessed by index and iterated over.

An array can be created by reading a list of arguments separated by spaces from a single line (the
flag -a directs read to create an array):

read -a myArray

Arrays can also be assigned by listing the elements within parentheses:

myArray=("apple" "pear" "orange" $otherFruit)

Elements of the array can be accessed by index, as
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firstElement=${myArray[0]}

(The array index starts at 0.) The length of the array is accessible with the same syntax as the
length of a string:

${#myArray[@]}

The entire array can be accessed as a single string (with elements separated by spaces):

${myArray[@]}

Arrays can be iterated over with a for loop:

for i in ${myArray[@]}

do

...

done

2.22 Substrings

Often we need to take part of a string. Substrings can be accessed as follows:

myString="abcdefg"

newString=${myString:2:3}

newString then equals bcd, i.e., a substring starting at character 2, of length 3.

If the 2 above is omitted, the substring starts at 1; thus ${myString::3} equals abc.

Likewise, if the :3 is omitted, the substring goes to the end; thus ${myString:2} equals bcdefg.

Characters can be removed from the end of a string with

${myString%<pattern>}

where <pattern> is a string possibly including “wildcard” characters. For example, ? matches any
single character, so that
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${myString%???}

drops the last three characters from myString.

Finally, the length of a string is given by

${#myString}

2.23 Floating point math

Floating point math operations in shell scripting are limited and awkward, which constrains its use
in programs that crunch numbers. However, many shell scripts require only a few floating-point
calculations. For this purpose, the Unix utility bc (basic calculator) can be used.

bc implements a rather modest calculator, with arithmetic operations +, -, *, /. When invoked
with option -l, a very few scientific functions are available (s(x) = sine, c(x) = cosine, a(x) =
arctan, l(x) = natural log, e(x) = exponential, sqrt(x) = square root).

bc is normally an interactive program; launched from the command line, it responds to typed input.
To use bc in a script, input can be supplied from echo via a pipe:

echo "c(3.14159/2)" | bc -l

The output can be saved in a variable using backquotes ‘...‘:

myResult=‘echo "c(3.14159/2)" | bc -l‘

Variables can be included in the input expression:

echo "$var1*$var2" | bc -l

The number of output digits can be controlled with the command scale=<n>. This only works if
the expression includes division, which can be worked around by dividing by 1 somewhere.

echo "scale=3;3.14*7/2+1" | bc -l
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2.24 Automating interactive programs

Using echo to supply what would have been typed input to bc is an example of a general approach
to make interactive programs “scriptable”.

Another way to do this is with input redirection from a string, which we encountered with read in
constructions like read arg1 arg2 <<< $inputLine.

The same syntax can be used with bc, and any other program or utility that expects typed input
from stdin:

myResult=‘bc -l <<< "c(3.14159/2)"‘

2.25 Auxiliary programs

Unix provides a number of very powerful utility programs, chief among them grep, sed, and awk,
which can be used to great advantage in shell scripts.

grep (Globally search for Regular Expression and Print) searches for patterns (“regular expres-
sions”) on each line of its input, and writes the lines matching the pattern to stdout. The basic
format is

grep <pattern> <file>

in which <pattern> is any string, possibly containing one or more regular expressions (see “Pat-
terns” above). If <file> is not specified, grep takes its input from stdin.

awk (named for its co-creators Aho, Weinberger, Kernihan) acts on each line of its input, splitting
it into fields, doing simple calculations, and printing output.

Finally, sed (Stream EDitor) acts with editing commands on each line of its input, producing a
stream of output lines. An important use of sed is to produce a sequence of files from a common
“template file”, in which only a few parameters are replaced by some iterated value. A typical use
of sed looks like this:

sed "s/ANG1/$myAng1/; s/ANG2/$myAng2/" < infile > outfile

Here all occurrences in infile of the “template parameter” ANG1 are replaced by the value of the
variable $myAng1, and likewise for ANG2 and $myAng2. The commands within quotes are standard
vi substitution commands.
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3 Example scripts

In this section, we present several scripts that automate various tasks arising in my research.
Although the particular applications pertain to my group, the categories of tasks they represent
and the scripting techniques they employ are relevant to any computational researcher.

The scripts fall roughly into three categories:

1. extracting data from output or log files of computational programs;

2. automating compute jobs, submitted to PBS or other queue systems;

3. constructing long and repetitive input files.
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3.1 Extracting results from files

...¬1
 SCF Done:  E(RB3LYP) =  -552.938806292     A.U. after   10 cycles¬2
...¬3
 Alpha  occ. eigenvalues --  -88.90122 -10.22991 -10.22991 -10.21007 -10.20983¬4
 Alpha  occ. eigenvalues --   -7.97827  -5.94170  -5.93770  -5.93284  -0.87872¬5
 Alpha  occ. eigenvalues --   -0.73873  -0.73631  -0.57462  -0.56304  -0.52033¬6
 Alpha  occ. eigenvalues --   -0.43087  -0.40782  -0.38726  -0.37642  -0.34632¬7
 Alpha  occ. eigenvalues --   -0.25864  -0.24890¬8
 Alpha virt. eigenvalues --   -0.02966   0.00606   0.01137   0.03129   0.03259¬9
 Alpha virt. eigenvalues --    0.03474   0.04011   0.06137   0.06196   0.06943¬10
 Alpha virt. eigenvalues --    0.09110   0.09179   0.10201   0.10545   0.11620¬11
 Alpha virt. eigenvalues --    0.14021   0.14641   0.15230   0.15333   0.16807¬12
 Alpha virt. eigenvalues --    0.16835   0.20141   0.20394   0.21203   0.21387¬13
 Alpha virt. eigenvalues --    0.25377   0.26555   0.27470   0.31453   0.36792¬14
 Alpha virt. eigenvalues --    0.45975   0.49534   0.51152   0.53956   0.58259¬15
 Alpha virt. eigenvalues --    0.61709   0.67887   0.69572   0.69799   0.70991¬16
 Alpha virt. eigenvalues --    0.73149   0.74013   0.77902   0.87953   0.92346¬17
 Alpha virt. eigenvalues --    0.97386   0.98760   1.00561   1.07732   1.08930¬18
 Alpha virt. eigenvalues --    1.17629   1.19135   1.22912   1.32897   1.42423¬19
...20

Figure 1: Excerpt from Gaussian log file.

A common task for scripts is to extract values of interest from the log file of some computational
program. Such log files are typically long text files, full of comments and information. Shell text
processing commands are helpful in finding the relevant lines and extracting the desired fields from
those lines.

Above is an example of log file output from the quantum chemistry program Gaussian, where
the energy levels are printed sequentially from most to least strongly bound. The occupied and
unoccupied orbitals are denoted Alpha occ. and Alpha virt. respectively. The HOMO (highest
occupied molecular orbital) is thus the last Alpha occ. entry, and the LUMO (lowest unoccupied
molecular orbital) is the first Alpha virt. entry. Separately, the ground state energy is reported
on the line beginning SCF Done:.

The script below (analyz.sh) extracts the HOMO, LUMO, and ground state energy from a list of
files read from stdin ((CHANGE THIS IN SCRIPT)), and computes the difference of these values
from those in a reference calculation. (The purpose here is to analyze how the HOMO, LUMO,
and ground state energy change with molecular distortion corresponding to different amplitudes of
a normal mode. The set of Gaussian jobs with different imposed normal mode amplitudes were
generated manually from a reference job in which normal modes were computed, by examining the
normal mode, setting the amplitude manually, and saving a new compute job.)

The script uses command-line tools grep, head, and tail to extract the lines containing the ground
state energy, HOMO, and LUMO ((FIX THIS — no need to use head and tail both on each line.
And put SCF Done first.)). Briefly, grep searches stdin for all lines containing a given pattern.
Usually, the desired line in a file can be uniquely specified by a well-chosen grep (as here for the
ground state). But for the HOMO and LUMO, the obvious grep (of “Alpha occ” and “Alpha virt”)
finds multiple lines. So we use head -n 1 and Alpha occ. to print the first and last lines of stdin,
to obtain the relevant line in each case. The commands are strung together with pipes |), which
directs the output (stdout) of one command into the input (stdin) of the next.
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The relevant field is extracted and printed with awk, which is a command-line tool useful for this
purpose. The same thing could be accomplished using read -a to fill an array args with the
successive fields in the extracted line, and extracting the desired field by indexing the array, as
indicated in the comments.

The difference between the extracted and reference values are computed using bc, and printed to
stdout in a desired format with printf.

#!/bin/bash¬1
¬2
# awk is convenient here to select fields; this could also be done as¬3
# read -a args <<< `grep "Alpha occ" thiophene.log | tail -1`¬4
# eh0=${args[5]}¬5
¬6
eg0=`grep "SCF Done" thiophene.log | awk '{ print $5 }'`¬7
eh0=`grep "Alpha  occ" thiophene.log | tail -n 1 | awk '{ print $6 }'`¬8
el0=`grep "Alpha virt" thiophene.log | head -n 1 | awk '{ print $5 }'`¬9
printf "%12s%12s%12s\n" "Delta E_H" "Delta E_L" "Delta E_g"¬10
while read file¬11
do¬12
   eg=`grep "SCF Done" $file | awk '{ print $5 }'`¬13
   eh=`grep "Alpha  occ" $file | tail -n 1 | awk '{ print $6 }'`¬14
   el=`grep "Alpha virt" $file | head -n 1 | awk '{ print $5 }'`¬15
   deh=`echo "$eh - $eh0" | bc`¬16
   del=`echo "$el - $el0" | bc`¬17
   deg=`echo "$eg - $eg0" | bc`¬18
   printf "%12.5f%12.5f%12.5f\n" $deh $del $deg¬19
done¬20
¬21

22
Figure 2: analyz.sh, a script to extract results from a Gaussian log file.

The script is used with input redirection, with a list of files like mode11.txt below. (The names
indicate the mode amplitude: “m4” equals minus 0.4Å, and so forth.)

mode11m4.log¬1
mode11m3.log¬2
mode11m2.log¬3
mode11m1.log¬4
thiophene.log¬5
mode11p1.log¬6
mode11p2.log¬7
mode11p3.log¬8
mode11p4.log¬9

10

Figure 3: Input file list for analyz.sh.
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3.2 Batch job

#PBS -A open¬1
#PBS -l nodes=1:ppn=8¬2
#PBS -l walltime=8:00:00¬3
#PBS -l pmem=1gb¬4
#PBS -m aeb¬5
#PBS -M stm9@psu.edu¬6
#PBS -j oe¬7
¬8
# load group local copy of Gromacs¬9
source /gpfs/group/stm9/default/SOFTWARES/gromacs-5.1.4STM/single/bin/GMXRC¬10
¬11
# cd to working directory, define directories¬12
cd $PBS_O_WORKDIR¬13
MDP=$PBS_O_WORKDIR/MDP¬14
SYSTEM=$PBS_O_WORKDIR/System¬15
¬16
# energy minimization¬17
mkdir EM ¬18
cd EM¬19
gmx grompp -f $MDP/em.mdp -c $SYSTEM/system.gro -p $SYSTEM/topol.top -o em.tpr -maxwarn 20¬20
gmx mdrun -nt 8 -deffnm em¬21
¬22
# NVT equilibration¬23
cd ../¬24
mkdir NVT¬25
cd NVT¬26
gmx grompp -f $MDP/nvt.mdp -c ../EM/em.gro -p $SYSTEM/topol.top -o nvt.tpr -maxwarn 20¬27
gmx mdrun -nt 8 -deffnm nvt¬28
¬29
# NPT equilibration¬30
cd ../¬31
mkdir NPT¬32
cd NPT¬33
gmx grompp -f $MDP/npt.mdp -c ../NVT/nvt.gro -p $SYSTEM/topol.top -o npt.tpr -maxwarn 20¬34
gmx mdrun -nt 8 -deffnm npt¬35
¬36
# MD production run¬37
cd ../¬38
mkdir MD¬39
cd MD¬40
gmx grompp -f $MDP/md.mdp -c ../NPT/npt.gro -p $SYSTEM/topol.top -o md.tpr -maxwarn 20¬41
gmx mdrun -nt 8 -deffnm md42

Figure 4: job.sh, a typical Gromacs batch job script.

A very common use of shell scripts is for submitting batch jobs to PBS (Portable Batch System).
Batch scripts are ordinary shell scripts, plus a set of comments at the beginning that contain direc-
tives to PBS. These directives request resources (nodes, cores, memory, and time), direct the job to
a particular queue or allocation, request that mail be sent when the job starts or ends, and so forth.
For details on PBS directives, see https://albertsk.files.wordpress.com/2011/12/pbs.pdf.

The script below (job.sh) is a typical Gromacs batch job, with no control statements or other
automation features. It consists essentially of a set of commands that could have been entered
sequentially at the command line.

The only difference is the line cd $PBS_O_WORKDIR, which navigates to the folder from which the
job was launched. The shell variable $PBS_O_WORKDIR (Original WORKing DIRectory) is the full
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path to the directory from which the command qsub job.sh was executed. For convenience,
variables $MDP and $SYSTEM are defined as paths to subfolders of $PBS_O_WORKDIR.
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3.3 Morphing simulation scripts

#!/bin/bash¬1
#PBS -A open¬2
#PBS -l nodes=1:ppn=8¬3
#PBS -l walltime=24:00:00¬4
#PBS -l pmem=1gb¬5
#PBS -j oe¬6
¬7
source /gpfs/group/stm9/default/SOFTWARES/gromacs-5.1.4STM/single/bin/GMXRC¬8
¬9
echo $PBS_O_WORKDIR¬10
cd $PBS_O_WORKDIR¬11
MDP=$PBS_O_WORKDIR/MDP¬12
SYSTEM=$PBS_O_WORKDIR/System¬13
¬14
TEMP=/gpfs/scratch/stm9/vanish¬15
mkdir $TEMP¬16
¬17
INIT=$SYSTEM/equil.gro¬18
¬19
for LAMBDA in `seq 0 20`¬20
do¬21
    mkdir Lambda_$LAMBDA¬22
    cd Lambda_$LAMBDA¬23
¬24
    cp ../Tables/table_${LAMBDA}.xvg md_${LAMBDA}_A_B.xvg¬25
    cp ../Tables/table_0.xvg md_${LAMBDA}_A_A.xvg¬26
    cp ../Tables/table_0.xvg md_${LAMBDA}_B_B.xvg¬27
    cp ../Tables/table_0.xvg md_${LAMBDA}.xvg¬28
    gmx grompp -f $MDP/md.mdp -c $INIT -p $SYSTEM/system.top -n $SYSTEM/system.ndx -o 29
md_$LAMBDA.tpr -maxwarn 20¬…
    gmx mdrun -nt 8 -deffnm md_$LAMBDA¬30
    mv md_$LAMBDA.trr $TEMP¬31
    ¬32
    cd ..¬33
    INIT=../Lambda_$LAMBDA/md_$LAMBDA.gro¬34
done¬35
¬36

37
Figure 5: morphAll.sh, a typical “morphing” simulation batch script.

The above script (morphAll.sh) is a typical batch script with automation. Here a sequence
of gromacs simulation jobs are prepared and executed, each placed in its own folder Lambda_1,
Lambda_2 and so forth.

(In this “morphing” simulation, the interactions between groups A and B are progressively weak-
ened. This is achieved by using a series of tabulated potentials table_1.xvg (original), table_1.xvg,
table_2.xvg and so forth, which are copied into each job as needed.)

The initial configuration for the ith job is obtained from the final configuration of the previous job,
the path to which is stored in the variable $INIT.
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The second part of the “morphing” simulation uses a similar automated workflow, in which previ-
ously saved trajectory files md_<k>.trr are “rerun” with slightly different interactions, to produce
energy data files rerun_<k-1>.edr and rerun_<k+1>.edr.

#PBS -A open¬1
#PBS -l nodes=1:ppn=8¬2
#PBS -l walltime=48:00:00¬3
#PBS -l pmem=1gb¬4
#PBS -j oe¬5
¬6
source /gpfs/group/stm9/default/SOFTWARES/gromacs-5.1.4STM/single/bin/GMXRC¬7
¬8
cd $PBS_O_WORKDIR¬9
SYSTEM=$PBS_O_WORKDIR/System¬10
MDP=$PBS_O_WORKDIR/MDP¬11
TEMP=/gpfs/scratch/stm9/vanish¬12
¬13
for LAMBDA in `seq 1 20`¬14
do¬15
    let LP=$LAMBDA+1¬16
    let LM=$LAMBDA-1¬17
¬18
    cd Lambda_$LAMBDA¬19
¬20
    cp ../Tables/table_${LP}.xvg rerun_${LP}_A_B.xvg¬21
    cp ../Tables/table_0.xvg rerun_${LP}_A_A.xvg¬22
    cp ../Tables/table_0.xvg rerun_${LP}_B_B.xvg¬23
    cp ../Tables/table_0.xvg rerun_${LP}.xvg¬24
    gmx grompp -f $MDP/md.mdp -c md_$LAMBDA.gro -p $SYSTEM/system.top -n $SYSTEM/system.ndx 25
-o rerun_$LP.tpr -maxwarn 20¬…
    gmx mdrun -nt 8 -deffnm rerun_$LP -rerun $TEMP/md_$LAMBDA.trr¬26
    rm rerun_$LP.trr¬27
¬28
    cp ../Tables/table_${LM}.xvg rerun_${LM}_A_B.xvg¬29
    cp ../Tables/table_0.xvg rerun_${LM}_A_A.xvg¬30
    cp ../Tables/table_0.xvg rerun_${LM}_B_B.xvg¬31
    cp ../Tables/table_0.xvg rerun_${LM}.xvg¬32
    gmx grompp -f $MDP/md.mdp -c md_$LAMBDA.gro -p $SYSTEM/system.top -n $SYSTEM/system.ndx 33
-o rerun_$LM.tpr -maxwarn 20¬…
    gmx mdrun -nt 8 -deffnm rerun_$LM -rerun $TEMP/md_$LAMBDA.trr¬34
    rm rerun_$LM.trr¬35
¬36
    cd ..¬37
done¬38

39

Figure 6: remorphAll.sh, a “morphing” simulation batch script for rerunning the trajectory files.

The .edr files produced by the script remorphAll.sh are analyzed in turn by a third script
getDhDl.sh, which uses gmx energy to extract time series for the potential energy, computes
the difference between the two time series, and uses these data to evaluate the average 〈∆H/∆λ〉
and its uncertainty.

getDhDl.sh takes a single argument, the value of $LAMBDA to be processed. A small driver script
(not shown) loops over all the desired $LAMBDA values. Separating this looping leads to a simpler
and more versatile main script.

In the script, note the use of echo to automate the interactive utility gmx energy. echo ’8’

supplies the input that would otherwise be typed in.
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#!/bin/bash¬1
# argument is LAMBDA¬2
¬3
# adjacent lambda values¬4
LAMBDA=$1¬5
LP=$((LAMBDA+1))¬6
LM=$((LAMBDA-1))¬7
¬8
# go to directory¬9
cd Lambda_$LAMBDA¬10
¬11
# run gmx energy on LP and LM output¬12
# field 8 is potential energy (rerun has no KE)¬13
echo '8' | gmx energy -f rerun_${LP}.edr -o energy_${LP}.xvg &> energy_${LP}.out¬14
echo '8' | gmx energy -f rerun_${LM}.edr -o energy_${LM}.xvg &> energy_${LM}.out¬15
¬16
# read comments atop .xvg files¬17
exec 3< energy_${LP}.xvg¬18
exec 4< energy_${LM}.xvg¬19
for n in `seq 1 12`¬20
do¬21
    read 0<&3 line1¬22
    read 0<&4 line2¬23
done¬24
¬25
# read the xvg header, echo to diff.xvg¬26
for n in `seq 1 11`¬27
do¬28
    read 0<&3 line1¬29
    read 0<&4 line2¬30
    echo $line1 > diff.xvg¬31
done¬32
¬33
# read 100 data lines, compute avg and variance¬34
# write difference to diff.xvg¬35
avg=0.¬36
var=0.¬37
for n in `seq 1 100`¬38
do¬39
    read 0<&3 t e1¬40
    read 0<&4 t e2¬41
    diff=`echo "$e1 - $e2" | bc -l`¬42
    printf "%15.5f%15.5f\n" $t $diff > diff.xvg¬43
    avg=`echo "$avg + $diff" | bc -l`¬44
    var=`echo "$var + $diff*$diff" | bc -l`¬45
done¬46
# normalize¬47
avg=`echo "$avg/100." | bc -l`¬48
var=`echo "$var/100." | bc -l`¬49
¬50
# write avg and error estimate to stdout¬51
# /0.1 because dH/d lambda¬52
dhdlam=`echo "$avg/0.1" | bc -l`¬53
err=`echo "sqrt($var/100.)/0.1" | bc -l`¬54
printf "%15.5f%15.5f" $dhdlam $err¬55
¬56
# close files¬57
exec 3<&-¬58
exec 4<&-¬59

60

Figure 7: getDhDl.sh, a script for extracting and analyzing the morphing results.
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The other noteworthy feature of this script is the use of exec 3< and so forth to open multiple
files for reading, The file is then read with read 0<&3; successive reads from the same “file handle”
read successive lines in the file. The file is finally closed with exec 3<&-.
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3.4 Index file construction

#!/bin/bash --login¬1
¬2
chains=32 #Total chains in the box¬3
monomers=20 #Residues in a given chains¬4
backbone="aC1|aC2" #List all atoms that are part of the monomer backbone separated by | 5
and prefix with a¬…
¬6
nGroup=5 # index on group created (groups 0-4 exist a priori)¬7
chain=1 # index on chain ¬8
for chain in `seq 1 $chains`¬9
do¬10
   r1=$((monomers*(chain-1)+1))¬11
   r2=$((monomers*chain))¬12
¬13
   echo $backbone"&r$r1-$r2" >> make_ndx_cmds¬14
   echo "name ${nGroup} chain${chain}" >> make_ndx_cmds¬15
   nGroup=$((nGroup+1))¬16
¬17
   echo $backbone"&!r$r1-$r2" >> make_ndx_cmds¬18
   echo "name ${nGroup} notchain${chain}" >> make_ndx_cmds¬19
   nGroup=$((nGroup+1))¬20
done¬21
echo "q" >> make_ndx_cmds¬22
¬23
cat make_ndx_cmds | gmx make_ndx -f newBox.pdb -o PS.ndx¬24
rm "#"*"#"¬25
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Figure 8: packing ndx.sh, a script to drive the interactive utility gmx make ndx to produce an
index file of backbone carbons for a polymer melt.

The above script (packing_ndx.sh) is a more elaborate example of automating an interactive
utility, in this case gmx make_ndx, to produce an index file that identifies the backbone carbons on
all the chains in a polymer melt. (The system here consists of 32 chains of 20 monomers each, which
values are “hard coded” into the script, but could have been input as command-line arguments.)

gmx make_ndx ordinarily responds to a sequence of typed queries and commands to create groups
of atoms satisfying certain criteria, rename those groups as desired, and ultimately write an index
file. Here we create a group for each chain, consisting of those atoms of type C1 or C2 (i.e., the
main-chain carbons) with atom numbers within range for that chain.

The automation approach here is to assemble a file make_ndx_cmds that contains all the input we
would ordinarily type. When the file is complete, we cat the file piped to gmx make_ndx.
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3.5 Building a polymer .pdb file

#!/bin/bash¬1
# reads monomer list from stdin¬2
# arguments $1 $2 $3 are box dimensions¬3
read monomer¬4
gmx editconf -f $monomer.pdb -box $1 $2 $3 -noc -o newChain.pdb &> insert.log¬5
read a b dx dy dz < $monomer.pdb¬6
zOff=`echo "scale=4;$dz/10" | bc -l`¬7
echo "0. 0. $zOff" > pos.dat¬8
¬9
# loop over monomers¬10
while read monomer¬11
do¬12

    mv newChain.pdb oldChain.pdb¬13
        gmx insert-molecules -f oldChain.pdb -ci $monomer.pdb -ip pos.dat \¬14
           -rot none -scale 0. -o newChain.pdb &> insert.log¬15
        read a b dx dy dz < $monomer.pdb¬16
        zOff=`echo "scale=4;$zOff + $dz/10" | bc -l`¬17
        echo "0. 0. $zOff" > pos.dat¬18
done¬19
rm oldChain.pdb20

Figure 9: buildChain.sh, a script to drive gmx insert-molecules to assemble a polymer chain
from monomer .pdb files.

The above script (buildChain.sh) uses the utility gmx insert-molecules to construct a .pdb file
for a polymer chain from .pdb files for the constituent monomers. The list of monomers is read
from stdin.

The script leverages the ability of gmx insert-molecules to renumber the atoms and residues of
each monomer it adds, so that the entire molecule is appropriately labeled.

The script needs to know where to place each successive monomer. The monomer .pdb files for
this purpose are specially constructed in “standard orientation” along the chain (z) axis, with the
first atom to be bonded at the origin.

Furthermore, the displacement vector from the bonded atom to the next bonded atom is included
as a comment at the top of the file. This comment is read (lines 6 and 16) and converted to a z
offset, which is added to the variable zOff. The current value of zOff is written to a short file
pos.dat, which tells gmx insert-molecules where to insert the next monomer.
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#!/bin/bash¬1
¬2
nMon=$1¬3
echo "PSB"¬4
for i in `seq 1 $((nMon-2))`¬5
do¬6
   if (($RANDOM % 2));¬7
   then¬8
      echo "PSML"¬9
   else¬10
      echo "PSMR"¬11
   fi¬12
done¬13
echo "PST"¬14

15

Figure 10: buildChainPS.sh, a script to drive buildChain.sh to assemble an atactic polystyrene
chain.

The above script (buildChainPS.sh) can be used with buildChain.sh to build an atactic polystyrene
chain. The script simply constructs a list of monomer names to be piped to buildChain.sh:

buildChainPS.sh 25 | buildChain.sh

The number of monomers nMon is passed as a command-line argument. The random tacticity is
accomplished by making a random choice in the loop over the number of monomers, with the use
of $RANDOM % 2, which randomly evaluates to 0 or 1 each time it is accessed. The structure of the
end monomers is different from the internal monomers, so they are written separately outside the
loop.
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3.6 Building a polymer .itp file

The script below (itpMake.sh) assembles an .itp file for a polymer from a set of specially con-
structed “monomer .itp files”. itpMake.sh reads a list of monomer names from stdin, in the same
way as buildChain.sh above. This script serves as an alternative to gmx pdb2gmx, which works
well for proteins (and all-atom polymers, for which new residues can be defined and added to
aminoacids.rtp).

The work is done by a (long) function addMonITP, defined at the top of the script. It is often
convenient to define the function to be iterated separately from the iteration (as we did for the
script getDhDl.sh above).

The actual body of the script is rather short (lines 108–129); it consists of writing headers to
temporary files for the different declaration sections, looping over the monomers (lines 119–124),
and using cat to write the completed declaration sections to stdout.

addMonITP reads through the monomer .itp file, incrementing the atom numbers, residue numbers,
and charge group numbers throughout, and using printf to write the incremented values in a
convenient format to a set of temporary output files for the various declaration sections ([ atoms ],
[ bonds ], and so forth). Global variables cAtom, cRes, and cChgrp store the current “offset
values” of these numberings.

Finally, note again the use of exec 3&< $line.itp to open the monomer .itp files for sequential
access, so that the multiple read commands within addMonITP access successive lines in the file.
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#!/bin/bash¬1
¬2
# function to add one monomer¬3
# all variables are global¬4
function addMonITP {¬5
itpFile=$1¬6
# read header line; read counts¬7
read 0<&3 line ¬8
read 0<&3 nAtom nChgrp nCons nVsite nExcl nBond nAng nDih ¬9
# read atom header¬10
read 0<&3 line ¬11
read 0<&3 line ¬12
# copy atoms (iAtom is 1, res is 3, chgrp is 6)¬13
for i in `seq 1 $nAtom`¬14
do¬15
   read 0<&3 f0 f1 f2 f3 f4 f5 f6 f7 ¬16
   let f0=$f0+$cAtom¬17
   let f2=$f2+$cRes¬18
   let f5=$f5+$cChgrp¬19
   printf "%5s%5s%5s%5s%5s%5s%10s%10s\n" $f0 $f1 $f2 $f3 $f4 $f5 $f6 $f7 >> fAtom.temp¬20
done¬21
¬22
# read constraint header¬23
read 0<&3 line ¬24
read 0<&3 line ¬25
# copy constraints (atom nums are 1,2)¬26
for i in `seq 1 $nCons`¬27
do¬28
   read 0<&3 f0 f1 f2 f3 ¬29
   let f0=$f0+$cAtom¬30
   let f1=$f1+$cAtom¬31
   printf "%5s%5s%5s%10s\n" $f0 $f1 $f2 $f3 >> fCons.temp¬32
done¬33
¬34
#read vsites header¬35
read 0<&3 line ¬36
read 0<&3 line ¬37
# copy vsites (atom nums are 1, 2, 3, 4)¬38
for i in `seq 1 $nVsite`¬39
do¬40
   read 0<&3 f0 f1 f2 f3 f4 f5 f6 f7 ¬41
   let f0=$f0+$cAtom¬42
   let f1=$f1+$cAtom¬43
   let f2=$f2+$cAtom¬44
   let f3=$f3+$cAtom¬45
   printf "%5s%5s%5s%5s%5s%10s%10s\n" $f0 $f1 $f2 $f3 $f4 $f5 $f6 $f7 >> fVsite.temp¬46
done¬47
¬48
# read exclusions header¬49
read 0<&3 line ¬50
read 0<&3 line ¬51
# copy exclusions (atom nums are 1, 2)¬52
for i in `seq 1 $nExcl`¬53
do¬54
   read 0<&3 f0 f1 ¬55
   let f0=$f0+$cAtom¬56
   let f1=$f1+$cAtom¬57
   printf "%5s%5s\n" $f0 $f1 >> fExcl.temp¬58
done¬59
¬60
# read bonds header¬61
read 0<&3 line ¬62
read 0<&3 line ¬63
# copy bonds (atom nums are 1, 2)¬64
for i in `seq 1 $nBond`¬65
do¬66
   read 0<&3 f0 f1 ¬67
   let f0=$f0+$cAtom¬68
   let f1=$f1+$cAtom¬69
   printf "%5s%5s\n" $f0 $f1 >> fBond.temp¬70
done¬71

Figure 11: First page of itpMake.sh, a script to assemble a polymer .itp file from .itp files for
the constituent monomers.
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       ¬72
# read angles header¬73
read 0<&3 line ¬74
read 0<&3 line ¬75
# copy angles (atom nums are 1, 2, 3)¬76
for i in `seq 1 $nAng`¬77
do¬78
   read 0<&3 f0 f1 f2 ¬79
   let f0=$f0+$cAtom¬80
   let f1=$f1+$cAtom¬81
   let f2=$f2+$cAtom¬82
   printf "%5s%5s%5s\n" $f0 $f1 $f2 >> fAng.temp¬83
done¬84
¬85
# read dihedrals header¬86
read 0<&3 line ¬87
read 0<&3 line ¬88
# copy dihedrals (atom nums are 1, 2, 3, 4)¬89
for i in `seq 1 $nDih`¬90
do¬91
   read 0<&3 f0 f1 f2 f3 ¬92
   let f0=$f0+$cAtom¬93
   let f1=$f1+$cAtom¬94
   let f2=$f2+$cAtom¬95
   let f3=$f3+$cAtom¬96
   printf "%5s%5s%5s%5s\n" $f0 $f1 $f2 $f3 >> fDih.temp¬97
done¬98
¬99
# increment counts¬100
let cAtom=$cAtom+$nAtom¬101
let cRes=$cRes+1¬102
let cChgrp=$cChgrp+$nChgrp  ¬103
}¬104
¬105
# main program¬106
# write headers into each temp file¬107
echo "[ atoms ]" > fAtom.temp¬108
echo "[ constraints ]" > fCons.temp¬109
echo "[ virtual_sites3 ]" > fVsite.temp¬110
echo "[ exclusions ]" > fExcl.temp¬111
echo "[ bonds ]" > fBond.temp¬112
echo "[ angles ]" > fAng.temp¬113
echo "[ dihedrals ]" > fDih.temp¬114
¬115
cAtom=0; cRes=0; cChgrp=0 ¬116
# read monomers from stdin;¬117
# open file descriptor for each monomer¬118
while read line¬119
do¬120
    exec 3< $line.itp¬121
    addMonITP¬122
    exec 3<&-¬123
done¬124
¬125
# concatenate files¬126
cat fAtom.temp fCons.temp fVsite.temp fExcl.temp fBond.temp fAng.temp fDih.temp¬127
# delete temp files¬128
rm fAtom.temp fCons.temp fVsite.temp fExcl.temp fBond.temp fAng.temp fDih.temp¬129

130

Figure 12: Second page of itpMake.sh.
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3.7 Building a salt solution

As a final example of a job script, buildSystem.sh prepares the set of files needed to simulate
a salt solution in which the ions are confined by a harmonic “umbrella potential”. (The purpose
of the simulation is to measure the resulting concentration profile; from the profile, the osmotic
pressure as a function of concentration can be obtained, by analyzing the balance of forces on each
slice of the concentration profile.) The script takes as input parameters the number of ions of each
kind, the linear dimension of the system, and the “spring constant” (curvature) of the confining
potential.

The script is unremarkable until the final portion (lines 37–60), in which the index (.ndx) and
MD parameters (.mdp) files are generated. Because the confining potential acts independently on
every ion, the index file must contain a group for every ion, and the .mdp file must contain a set of
“pulling options” specifying the (identical) force acting on each of these groups.

The entries to the index file are generated by a brief script writeIndex.sh, which iterates over
the number of ions to write the necessary lines to stdout. The main script buildSystem.sh calls
writeIndex.sh, and appends its output by redirection (>>) to the existing index file.

The repetitive “pulling options” for all the ion groups are generated by a script writePulls.sh.
This script uses the stream editor sed to modify a “template file”, replacing keywords within the
file with the corresponding variable values. Here, pullHeader.mdp is the template file for the initial
lines in the section of .mdp that describe the pulling, with NIONS as the variable to be replaced.
Similarly, pullTemplate.mdp is the template file for the pulling options for each ion group, with
ION (the ion number), CTR (the center of the harmonic potential), and KVAL (the potential “spring
constant”) to be replaced by the corresponding variable values $i, $kVal, and $ctr.

#!/bin/bash¬1
# arguments are # ions, spring constant, center position¬2
¬3
nIons=$1¬4
kVal=$2¬5
ctr=$3¬6
¬7
# copy the non-pull .mdp lines¬8
cat mdTop.mdp ¬9
# copy the top pull .mdp lines, replace NIONS¬10
sed "s/NIONS/${nIons}/g" < pullHeader.mdp¬11
¬12
# loop over the ions¬13
for i in `seq 1 $nIons`¬14
do¬15

# replace the template .mdp lines with correct values¬16
sed "s/ION/${i}/g;s/KVAL/${kVal}/g;s/CTR/${ctr}/g" < pullTemplate.mdp¬17

done¬18
19

Figure 13: writePulls.sh, a script to construct the repetitive “pulling options” for all the ions.
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; pull settings¬1
pull = yes¬2
pull-ngroups = NIONS¬3
pull-ncoords = NIONS¬4
pull-nstxout = 0¬5
pull-nstfout = 06

Figure 14: pullHeader.mdp, a “template file” used by writePulls.sh.

pull-groupION-name=ionION¬1
pull-coordION-type = umbrella¬2
pull-coordION-geometry = direction-periodic¬3
pull-coordION-vec = 0 0 1¬4
pull-coordION-groups = 0 ION¬5
pull-coordION-origin = CTR CTR CTR¬6
pull-coordION-dim = N N Y¬7
pull-coordION-k = KVAL8

Figure 15: pullTemplate.mdp, a “template file” used by writePulls.sh.

#!/bin/bash¬1
¬2
nOffset=$1¬3
nIons=$2¬4
for i in `seq 1 $nIons`¬5
do¬6

echo "[ ion"$i" ]"¬7
echo $((i+nOffset))¬8

done¬9
10

Figure 16: writeIndex.sh, a script to construct the repetitive “index file” entries for all the ions.
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#!/bin/bash¬1
# nEach = # of + and - ions, lBox = box dimension, kVal = spring constant¬2
nEach=$1¬3
lBox=$2¬4
kVal=$3¬5
¬6
# make job folder¬7
JOB=${nEach}ions_${lBox}box¬8
mkdir $JOB¬9
¬10
# copy job scripts into folder¬11
cp equil.sh job.sh $JOB¬12
¬13
# make the system folder¬14
mkdir $JOB/System¬15
¬16
# copy .mdp files¬17
cp em.mdp nvt.mdp npt.mdp mdTop.mdp $JOB/System¬18
¬19
# start the .top file¬20
cp systemTop.top $JOB/System/system.top¬21
cd $JOB/System¬22
¬23
# add water¬24
gmx solvate -box $lBox $lBox $lBox -cs spc216.gro -o solvate.gro -p system.top &> 25
solvate.log¬…
¬26
# make a tpr file for genion to use¬27
gmx grompp -f em.mdp -c solvate.gro -p system.top -o system.tpr -maxwarn 2 &> grompp.log¬28
¬29
# add ions¬30
cp solvate.gro system.gro¬31
echo "2" | gmx genion -s system.tpr -o system.gro -p system.top -neutral -pname NA -pq 1 32
-np $nEach -nname CL -nq -1 -nn $nEach -rmin 0.45 &> genion.log¬…
¬33
#create ndx file #¬34
echo "q" | gmx make_ndx -f system.gro -o system.ndx &> make_ndx.log¬35
¬36
# compute nOffset (index of last non-ion atom)¬37
# get second line from solvate.gro¬38
inputLine=`head -n 2 solvate.gro | tail -n 1`¬39
# parse as input (eliminates stray spaces)¬40
read -a args <<< "$inputLine"¬41
nAtoms=${args[0]}¬42
let nOffset=$nAtoms-2*$nEach¬43
¬44
# write index file lines¬45
cd ../..¬46
writeIndex.sh $nOffset $nIons >> $JOB/System/system.ndx¬47
¬48
# write pullCount.txt¬49
let nIons=2*$nEach¬50
newLine="pull-ngroups = "$nIons¬51
echo $newLine > pullCount.txt¬52
newLine="pull-ncoords = "$nIons¬53
echo $newLine >> pullCount.txt¬54
¬55
# write pull lines¬56
writePulls.sh $nIons $kVal > pullLines.txt¬57
¬58
# write .mdp file¬59
cat mdTop.mdp pullCount.txt pullLines.txt > $JOB/System/md.mdp¬60
¬61
# clean up¬62
rm pullCount.txt pullLines.txt¬63
rm $JOB/System/"#"*"#"¬64
¬65

66
Figure 17: buildSystem.sh, a script to construct the set of input files to simulate a salt solution
confined by an external “umbrella” potential.
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