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1 Getting started

This tutorial is written to help a new user learn to run simulations using GROMACS
(GROningen MAchine for Chemical Simulations). This tutorial is not a substitute for the
Gromacs manual, which is well-written and comprehensive, available online and as a pdf.
Throughout this document, text in this font are commands and keywords verbatim.

Gromacs 5 is installed on the Penn State cluster, called ACI. (https://ics.psu.edu/
advanced-cyberinfrastructure/). This tutorial assumes you are running Gromacs 5 on
ACI.

Gromacs comes in several “flavors”. First, calculations can be done either in single
precision (recommended for most purposes) or double precision (only necessary for precise
energy calculations). Second, calculations can be speeded up by using multiple processors,
which either run on multiple cores on a single cluster node (using “thread-MPI”), or are
distributed across multiple nodes (using “MPI”). The difference between thread-MPI and
MPI is discussed further below; in short, thread-MPI is for smaller simulations (up to roughly
105 atoms), and MPI for larger simulations.

All the many programs within Gromacs are accessed from just one executable, called
gmx. The double-precision version, which is rarely used, is called gmx.

ACI-i and ACI-b

The ACI cluster has two “faces”: ACI-i (interactive) and ACI-b (batch). ACI-b is for
submitting and running batch jobs — big calculations that use multiple compute cores and
take a long time to run. (For how to submit and run batch jobs, see Section 5 below.)
ACI-i is intended for using programs that are intensively “visual”, i.e., programs that open
windows to display things.

ACI-i and ACI-b share a common filesystem, but not all the same software is available on
both. The main difference ultimately is how the two systems are accessed. ACI-i is accessed
via a web interface called Open On Demand, at https://portal.aci.ics.psu.edu. (For
Mac users: this webpage does not work with Safari; use Chrome or Firefox.)

From this webpage, under Interactive Apps, the first item is ACI Interactive Desk-
top. Selecting this item, you can request an interactive desktop session, which allocates
multiple cores to you for use with computationally demanding visual applications (such as
Mathematica, Matlab, COMSOL, Materials Studio, and the like).

After a few minutes, the desktop is ready to launch; once launched, you see a “visual
desktop” reminiscent of the desktop on a PC or Mac; The applications however are all Unix
apps. The app of main interest is the Terminal Emulator (which provides a command line
connection to ACI).

The web-based connection to ACI has pros and cons:

• It is web-based, so requires no software install on your computer.

• The desktop environment resembles a PC or Mac.

• However, the software is all Unix, so the resemblance is not very helpful.

• It takes several minutes to launch a session, so it is inconvenient to quickly logon.
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• If you stay logged on, you are preempting multiple cores others may need.

For these reasons, we recommend logging onto ACI-b, as described in the next section.

Logging onto ACI-b

To log into ACI-b from your computer (PC or Mac), use a “terminal application”. On
the Mac, use either Terminal (comes with OS X) or iTerm2 (improved version of Terminal,
downloadable from https://www.iterm2.com). On the PC, use PuTTY, downloadable from
https://www.putty.org.

To run programs on the cluster than are “visual” (open a window to display pictures,
or take input from the cursor and mouse), you need an “XWindows” terminal application.
On the Mac, use XQuartz (https://www.xquartz.org); on the PC, use XMing (https:
//sourceforge.net/projects/xming/).

To logon from a terminal window, enter

ssh <username>@<hostname>

where hostname (see below) is the cluster you are logging onto (see table below). You
will be prompted for your password, and then a 2FA (two-factor authentication) option.
Recommended is “Duo Push”, which must be installed on your smartphone. To set up 2FA,
see
https://ics.psu.edu/advanced-cyberinfrastructure/accounts/.

If you are logging onto ACI-b and want to use window-based programs, logon with ssh -X

from a terminal window. The option -X enables “X forwarding”. On Mac, XQuartz will be
launched automatically.

Text editors

To work with a computer like ACI that runs a Unix operating system, a good text editor is
necessary, both on your “local” computer (your Mac or PC desktop or laptop), and on the
Unix machine itself. Word processor apps such as Microsoft Word insert invisible formatting
characters to control the appearance of documents; these formatting characters play havoc
with Unix text files. Don’t use word processor apps for editing files for ACI or other Unix
machines.

On ACI, the simplest text editor for users accustomed to the modern visual mouse-and-
menu interface is gedit. gedit can be launched from the command line, either with or
without a filename to edit; it automatically opens a file window in XQuartz or XMing. To
avoid a long list of spurious error messages on launching gedit, define an alias in your
.bashrc file,

# avoids dbus errors on launching gedit

alias gedit=’dbus-run-session gedit’

The old-school choice for text editing under Unix is vi. vi was designed before the advent
of the mouse-and-menu interface, so learning vi takes some practice. Once learned, vi is a
fast, powerful, and convenient editor, which is universally available on all Unix computers.
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It is also useful to have a text editor on your local computer, to prepare files for use on
the cluster without being logged in. On the PC, you might try Notepad++, available at
https://notepad-plus-plus.org.

On the Mac, a good text editor is BBEdit, available at https://www.barebones.com/

products/bbedit/. Another option on the Mac is to use vi, which can be launched from
a terminal window. (Indeed, the terminal window on the Mac is a console for the Unix
machine that underlies the Apple visual interface.)

File transfer

A necessary utility for working with ACI or other remote computers is a way to transfer files
to and from your local computer to the remote system. One convenient way to upload and
download files from ACI is to use Cyberduck, available at http://cyberduck.io.

In Cyberduck, “bookmarks” can be made for connections to remote machines. Click Open
Connection to open a connection to the cluster. Choose SFTP from the drop down menu.
Enter the hostname under Server, and your PSU username under Username (you do not
need to enter your password now). Click Connect. Enter your password when prompted.
Upon successful connection, click the Action menu, and choose New Bookmark from the
bottom of the menu. This will save this connection for easy access next time. Change the
Nickname to ACI-b (or whatever cluster you logged into). Next time you open Cyberduck,
you can double click on this bookmark to log in.

To upload files, simply drag them from your local system onto the Cyberduck window.
To download files, drag them to your local system.

Cyberduck can be used together with BBedit to edit cluster files, by automatically down-
loading a copy to edit on your laptop/desktop, then automatically uploading it again when
you save. From within Cyberduck Preferences/Browser, set double-click to open a file in the
editor; in Preferences/Editor, choose BBEdit as the default for opening files.

Finally, the Open On Demand webpage (see above) has an interface to your files on ACI
(under the Files top menu), which can be used to upload and download files from your local
computer to ACI.

Getting access to Gromacs

Gromacs is installed on ACI, but not available to you by default. To get access to it, you
need to load it. The first commands load software used by Gromacs:

module load gcc/5.3.1

module load openmpi/1.10.1

Then, Gromacs itself is loaded. The Milner research group prefers to use its own compiled
version of Gromacs (because the ACI version of Gromacs is double-precision, which is a factor
of two slower). The Milner group version of Gromacs is loaded with the following command:

source /gpfs/group/stm9/default/SOFTWARES/gromacs-5.1.4STM/single/bin/GMXRC
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Each time you log in, these commands must be executed for you to use Gromacs. The
easy way to do that is to add these lines to your .bashrc file, located in your home directory.
.bashrc is a script that executes each time you log in. (After you first make the change,
run source .bashrc, which executes the script.)

You can verify that you have access to Gromacs using the which command, as in

[stm9@aci-lgn-001 stm9]$ which gmx

/gpfs/group/stm9/default/SOFTWARES/gromacs-5.1.4STM/single/bin/gmx

(which searches for executables on your “search path”.) You can verify that the commands
are working, with gmx --version (which prints information about the version installed) or
gmx -h (which prints help on how to use the command).

Making local Gromacs library

We will now create a local copy of the Gromacs “topology” folder top in our work directory.
This will allow us to make an important modification later — adding new monomers to the
predefined list of predefined amino acids, which helps us build topology files for synthetic
polymers.

cp -r /gpfs/group/stm9/default/SOFTWARES/gromacs-5.1.4STM/share/top ~/work/top

Then, add the following line to .bashrc

export GMXLIB=~/work/top

and source .bashrc again. Finally, enter echo $GMXLIB, and check that the output matches
the location of your new local copy of top.

1.1 Other useful modules

A complete list of software on ACI is available at
https://ics.psu.edu/advanced-cyberinfrastructure/support/software/.
module spider lists all modules available to load; module spider <package> searches for
a specific software package. For some packages, module spider specifies other packages
that must be loaded first. This can be recursive: gromacs/5.1.4 requires gcc/5.3.1 and
openmpi/1.10.1 to be loaded first. When you use module spider to find out how to load
those, you find that openmpi/1.10.1 requires gcc/5.3.1 or pgi/16.4 to be loaded first. In
short, modules can be loaded with one or more module load <package> commands, which
can be added to ~/.bashrc to load every time you log in.

1. Mathematica. Mathematica is a powerful language for numerical and analytical calcu-
lations. Mathematica can be run on ACI, as well as installed and run on your personal
computer. To use it, load with:
module load mathematica/<version>
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2. VMD: Visual Molecular Dynamics. VMD is useful for visualizing configurations and
simulation results. As of this writing, vmd is installed on ACI only in the Milner group
space. To use it, add these lines to your .bashrc file (the first line is a comment):

# add path to local vmd

export PATH=$PATH:/gpfs/group/stm9/default/SOFTWARES/vmd-1.9.2/build/bin

2 Example simulation

A simulation run in Gromacs (or any comparable platform) consists of a set of tasks and
associated input files. In general, the input to a simulation consists of:

1. The starting configuration, i.e., the initial positions and velocities of all the atoms or
particles.

2. The topology of the system — a list of the number and type of molecules your simulation
contains, and the structure of each type of molecule, including what kind of atoms it
contains, and how they are bonded together.

3. The force field, which determines the forces on each atom in terms of the locations of
bonded neighboring atoms and nonbonded nearby atoms.

4. Simulation parameters, including things like the system dimensions, temperature, pres-
sure, run time, and timestep, as well as how often to save various simulation coordinates
(particle positions, velocities, forces, and energies).

Executing a single simulation involves two steps: preprocessing the input files to produce
a “run file” used by the simulation itself, and running the simulation to produce various
output files. The output files are what we want, and what we use to analyze the system.
They include:

1. The trajectory file (positions of all the atoms in a succession of “snapshots” or “frames”).

2. The “energy” file (values of the kinetic and potential energy, pressure, temperature,
and other such quantities at a succession of timesteps).

3. Other special output files, such as the position of a given group of atoms, or the force
acting on that group of atoms, at a succession of timesteps.

A full simulation starting from scratch typically consists of four simulation steps, the
first three of which are used to equilibrate the system. Often, the starting configuration
is not representative of typical atomic arrangements. If the atoms are awkwardly placed,
forces can be large, which would lead to violent motion when a simulation starts. This is
dealt with by a first step of energy minimization, which relaxes the atom positions until the
forces are small. After this, local arrangements and atom velocities may still be unrealistic,
which can be alleviated by simulating for a while at constant volume and temperature (often
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written “NVT”, for constant Number, Volume, and Temperature). After this, the density of
the system may be unrealistic; this can be alleviated by simulating for a while at constant
pressure and pressure (often written “NPT”). This sequence of three equilibrations — energy
minimization, NVT, and NPT — is typical before a “production run”, i.e., a simulation which
we actually observe and measure.

Here, we will simulate a lysozyme protein solvated in water, in which this three-step equi-
libration protocol is used. This example was originally developed by Justin Lemkul; his web-
site (http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/)
is an excellent resource for Gromacs help.

2.1 System generation

In this example, we are given a PDB file for the protein (1AKI.pdb), which serves as the
initial configuration. If this were not supplied, a reasonable starting configuration would
need to be generated. (This can be challenging; below, we consider the task of generating a
reasonable configuration for a melt of decane molecules.)

Topology

First, we make a topology file for the protein using pdb2gmx (“PDB to Gromacs”):

gmx pdb2gmx -f 1AKI.pdb -o 1AKI.gro -p 1AKI.top

The OPLS-AA force field includes a special .rtp (Residue ToPology) file for amino acids,
which tells pdb2gmx how to build the topology file. Below, we solvate the protein with water,
which we shall represent with the SPC/E water model. Correspondingly, when prompted,
type 16 to choose the OPLS-AA force field, and type 7 to choose the SPC/E water model.

The .top file pdb2gmx delivers is a “standalone” topology file, which contains in addition
to the molecule topology definitions, the additional lines to read in the forcefield and define
the system. We prefer to strip this file down to a “molecule .itp” file, which only defines
the 1AKI protein. To do this, rename the file 1AKI.top as 1AKI.itp, then delete the lines
up to [ moleculetype ] at the top, and the lines after the position restraint (starting with
; Include water topology) at the bottom.

Then we write our own system.top topology file:

#include "oplsaa.ff/forcefield.itp"

#include "oplsaa.ff/spce.itp"

#include "oplsaa.ff/ions.itp"

#include "1AKI.itp"

[system]

1AKI in water

[molecules]

; name count

1AKI 1
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Simulation box

Now we use editconf to change the system size:

gmx editconf -f 1AKI.gro -o 1AKI.gro -c -d 1.0 -bt cubic

Our system will have periodic boundaries, so it needs to be big enough that the protein does
not interact with its periodic images. To do this, we place the protein in a cubic box with
-bt cubic, center it with -c and pad it with 1.0 nm on each side with -d 1.0. That the
nearest image of the protein is then 2.0 nm away, which is far enough that interactions are
negligible. Note that this use of editconf overwrites the file 1AKI.gro with the new version.

Solvation

Now we surround the protein with water, using solvate:

gmx solvate -cp 1AKI.gro -cs spc216.gro -o 1AKI_solv.gro -p system.top

The option -cp denotes the protein configuration, and -cs the solvent configuration, which
is spc216.gro for SPC, SPC/E, and TIP3P water. The option -p updates the topology file
with the number of water molecules. (this convenience works if we are solvating with water).

The existing file system.top is overwritten, and a backup created with ## wrapped
around the name. (Gromacs does this automatically for all files that are overwritten.) In
the new topol.top, a line has been ended at the end to include the new water molecules.
Correspondingly, their configurations have been added to the end of 1AKI_solv.gro.

Add anions

Because lysozyme is charged (+8), we use genion to add anions to neutralize the system.
Awkwardly, genion requires a .tpr file as input. So we create one with grompp first, using
any plausible .mdp file, in this case em.mdp, which is the .mdp file we use later for the energy
minimization.

gmx grompp -f em.mdp -c 1AKI_solv.gro -p system.top -o ions.tpr

Now we can use genion to add ions to the solvent. Options -pname and -nname are the
names for the ions we will use (typically Na+ and Cl−). We use -nn 8 to add 8 anions:

gmx genion -s ions.tpr -o 1AKI_solv_ions.gro -p system.top -pname NA -nname CL -nn 8

Type 13 to declare the ions part of the solvent group. In the new .gro and .top files, 8 solvent
molecules have been replaced with 8 chloride ions. The file system.top is again updated
with the count of CL ions at the bottom.

The system configuration and topology files are now assembled and ready for equilibra-
tion, which proceeds in three steps, as described above.
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2.2 Energy minimization

First, we perform an energy minimization to ensure there are no large interatomic forces in
the starting configuration, which would cause a simulation to “blow up”. We run grompp to
prepare for energy minimization:

gmx grompp -f em.mdp -c 1AKI_solv_ions.gro -p system.top -o em.tpr

In the .mdp (MD Parameter) file em.mdp, we use steepest-descent minimization steep, and a
reasonably generous force tolerance of 1000 kJ/mol/nm, which is still sufficient to eliminate
large forces.

After processing, we run the minimization with:

gmx mdrun -deffnm em

The option -deffnm (DEFine File NaMe) sets a default file name for all inputs and outputs,
so we need not specify each file individually. For example, the expected input .tpr (ToPology
Run) file is em.tpr, created above by our preprocessing step.

By typing this command, the energy minimization job is done “interactively”, as we wait.
Output from this command, typed at the command line, appears directly on the screen. This
is not a good approach if the command takes a long time or generates a lot of output. In
fact, this is not how we normally execute mdrun commands; instead, we submit batch scripts
to the queue (see below).

2.3 NVT equilibration

After minimization, we equilibrate the system at fixed temperature and volume (NVT). In
this step, we restrain the heavy atoms in the protein, so that the water can equilibrate
around the protein without disturbing the delicate protein folded structure. Details can be
found in the .mdp file nvt.mdp.

Again, we perform the preprocessing step, as:

gmx grompp -f nvt.mdp -c em.gro -p system.top -o nvt.tpr

Note how grompp takes the initial configuration (-c option) as em.gro, which was the last
frame of the energy minimization.

For a system of this size (over 30,000 atoms), a significant amount of computing power
and time is needed to run this simulation. Instead of running the job interactively (as we
did with the energy minimization), we submit it to the batch queue, which runs the job. To
run faster, we run the job on multiple cores, which share the work of the simulation.

The “batch script” nvt.sh contains the code to submit the job. The script nvt.sh

begins with directives to the queue, which request resources (nodes, cores, running time,
and memory). Then the script uses essentially the same mdrun command we would type at
the console to run the job.

To submit the job, enter:

qsub nvt.sh
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To check the status of your jobs, enter

qstat -u <userid>

(replace <userid> with your userID). Once it starts, the job should take about around 10
minutes to run. Batch scripts will be discussed in more detail below.

After the simulation runs, we can check that the temperature has equilibrated. Use
gmx energy to extract from the .edr (Energy Data Run) file the variation with time of
important quantities:

gmx energy -f nvt.edr -o temp.xvg

Enter 15 0 to select only the temperature.
The resulting file temp.xvg can be opened with Grace (type xmgrace temp.xvg). or

using the Mathematica notebook xvg_reader.nb. Plot the temperature versus time; it
should stabilize and fluctuate around 300 K (Figure 1).
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Figure 1: Temperature versus time for NVT simulation (black), and moving average over 5
timesteps (red).

2.4 NPT equilibration

The third step in our equilibration protocol for lysozyme in water is an NPT simulation,
in which a barostat is used to set the system pressure to a desired value. This allows the
simulation box size to adjust. During this step, we again restrain the protein position to
prevent its unfolding as the surrounding fluid equilibrates. The preprocessing command
takes the form

gmx grompp -f npt.mdp -c nvt.gro -t nvt.cpt -p system.top -o npt.tpr -maxwarn 2

The option -t uses the “checkpoint” (.cpt) file from the previous NVT equilibration as
the initial configuration. Alternatively, we could rely on -c nvt.gro, which is the last saved
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frame of the NVT run. In general, checkpoint files allow simulations to be restarted using
the exact positions and velocities they ended with.

Restarting from a checkpoint is useful when transferring trajectories to a simulation with
different conditions (as from NVT to NPT); .gro files have limited numerical precision, which
can cause problems. A “continuation” parameter is required in the .mdp file, which prevents
Gromacs from randomly setting the initial velocities.

We run the NPT simulation as a batch job on ACI-b, just as we did for the NVT
simulation, this time submitting the job script with qsub npt.sh. Once started, the job will
take about 10 minutes to run.

Once the simulation has finished, we use energy to check the pressure and density fluc-
tuations:

gmx energy -f npt.edr -o pres.xvg

and enter 16 0 to extract only the pressure versus time. Then, extract the density versus
time, with

gmx energy -f npt.edr -o density.xvg

Enter 22 0 to get the density.
Plot both of these files using either Grace or xvg_reader.nb. You should find that the

pressure stabilizes to an average of about 1 bar, with substantial fluctuations about this
value (Figure 2).
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Figure 2: Pressure versus time for NPT simulation (black), and moving average over 10
timesteps (red).

Correspondingly, the density should have stabilized close to the density of water, since the
system is mainly water (Figure 3). so we are now equilibrated with respect to temperature,
pressure, and density.
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Figure 3: Density versus time for NPT simulation (black), and moving average over 10 time
steps (red).

2.5 Production MD

For the final production run, we remove all constraints on the protein, to see how the
protein moves under thermal agitation, and whether it retains its folded shape. We will run
the simulation for 1.0 ns (which is rather short in practice, but sufficient here for illustrative
purposes). The grompp command here takes the form

gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p system.top -o md.tpr

in which the -t option again restarts the new simulation from the checkpoint of the NPT
run.

The batch script for the production md run is submitted with qsub md.sh, which is
submitted to the batch queue as before. This run should take about an hour to complete.

Once the simulation has finished, we can use the visualization program VMD to examine
the trajectory. (See https://www.youtube.com/watch?v=LqKNzaHLfi0 for a tutorial on
how to use VMD.)

Many different properties can be analyzed from a simulation trajectory .trr file. As an
example, we will measure the radius of gyration of the protein. If Rg is stable over time, we
infer that the protein has not unfolded during the simulation.

First, we use trjconv to convert the output trajectory to remove periodic boundaries.

gmx trjconv -s md.tpr -f md.xtc -o md_noPBC.xtc -pbc mol -ur compact

Then, we use gyrate to compute Rg:

gmx gyrate -s md.tpr -f md_noPBC.xtc -o rg.xvg

Enter 1 to select just the protein.
Plot the resulting data in the file rg.xvg. We are most interested in the second column,

which contains the 3D Rg. The resulting plot (Figure 4) should be stable over time, showing
that the protein has not denatured.
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Figure 4: Radius of gyration versus time for lysozyme protein in SPC/E water.

2.6 Grompp and mdrun options; workflow

The calculations above exhibit a variety of grompp and mdrun jobs. It is useful to have a table
of the different “option flags” used by these two routines, which highlights the common syntax
of the different commands. The Gromacs manual online (http://manual.gromacs.org/
documentation/5.1-current/index.html) has a complete description of each command
and its many options. For a list of commands by name, see http://manual.gromacs.

org/documentation/5.1-current/user-guide/cmdline.html#commands-by-name; for a
list of commands organized by topic, see http://manual.gromacs.org/documentation/5.

1-current/user-guide/cmdline.html#commands-by-topic. Most options pertain to files
that are either input to the command (i), or output by the command (o). Some inputs and
outputs are required, some are optional.

Here, we summarize the most important options for both grompp and mdrun.. There are
default names for the input and output files; for example, topol.top is the default name for
the topology file. Below, we give the default name for each file after the flag, and indicate
whether this is an input (i) or output (o) file; a prime (i’ or o’) indicates an optional file. If
the mandatory option flags are omitted, or if the filename is omitted with an optional flag,
the default name is used. Supplying an output option with filename renames the output file.

Option Default filename I/O/optional Description
-f grompp.mdp (i) MD parameter file
-p topol.top (i) topology file
-c conf.gro (i) configuration file
-t traj.trr (i’) high-precision configuration (often .cpt)
-n index.ndx (i’) index file, needed if .mdp refers to certain groups
-o topol.tpr (o) topology run file
-po mdout.mdp (o) .mdp file with all parameters

Table 1: Most common option flags for grompp.
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Option Default name I/O/optional Description
-deffnm (i’) “base name” to construct all filenames

-s topol.tpr (i) topology run file
-o traj.trr (o) trajectory run file
-e ener.edr (o) energy data run file (E, P, etc. vs. time)
-g md.log (o) log file
-c confout.gro (o) final configuration

Table 2: Most common option flags for mdrun.
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Figure 5: Flowchart of workflow, from configurations to topology files to mdrun.
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3 Simulations in more detail

Now that we have seen an example of a simulation, with its progression of equilibration steps,
preprocessing and job submission, and subsequent analysis routines, we turn to a discussion
of the elements underlying the simulation.

3.1 Simulation units

Gromacs employs the following fundamental and derived units:

quantity unit
length nm
mass amu
time ps
temperature K
charge e (≈ 1.6 × 10−19 C)

energy kJ/mol
force kJ/mol-nm
pressure kJ/mol-nm3

velocity nm/ps

More details about units can be found in the Chapter 2.2 of the Gromacs manual.

3.2 Types of files

In the example simulations for lysozyme, we encountered many different types of input and
output files used by Gromacs. Here is a list of different files used by Gromacs (not all of
which we have yet encountered):

1. .gro GROmacs configuration file. Positions are given in nm, and velocities in nm/ps.

2. .pdb Protein Data Bank configuration file. Used by biochemists. Fixed column posi-
tions. Useful for pdb2gmx (see below).

3. .rtp Residue ToPology File. Originally for amino acids and DNA building blocks;
we use this for building polymer chains. Contains information about atom types and
connectivity in a residue or monomer.

4. .top TOPology file. Tells how atoms in a molecule or system are connected. This file
is complicated to build “by hand” for all but small molecules; special tools exist to
help. See below.

5. .itp Input ToPology file. The .top file is often short, reading in several .itp files
that specify the topology of each kind of molecule in the simulation.
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6. .ndx iNDeX file. Lists atoms that are in certain named groups. Useful for controlling
behavior of groups (e.g., freezing their positions), or getting data about a subset of the
system. Format is [ group ] followed by rows of atom numbers in that group.

7. .mdp MD Parameter file. Tells Gromacs what it needs to know about the simulation
during pre-processing.

8. .tpr ToPology Run file. Binary. Output of simulation pre-processing, input to mdrun

to run the simulation.

9. .trr TRajectory Run file. Binary. Output of an MD simulation, includes “snapshots”
of the system at different times, which could be turned into a “movie”.

10. .log LOG file. Output by mdrun. Can be used to diagnose problems.

11. .edr Energy Data Run file. Binary. Contains run data such as energy, pressure, etc.
Can be analyzed with Gromacs tools.

3.3 Configuration file

All simulations from scratch start from a configuration file, that gives the initial positions of
all the atoms. Configuration files for systems containing many molecules are all ultimately
built from single-molecule configurations. Configurations of individual molecules can be
downloaded from repositories of molecular structures such as the Protein Data Bank (http:
//www.rcsb.org/pdb/home/home.do). Molecular structures can also be built and visualized
using Avogadro 1.2, available at http://avogadro.cc) for both PC and Mac.

Files from the Protein Data Bank are in PDB format (described below); Avogadro can
read and write PDB format among many others. Gromacs can import configuration files in
PDB format, but its “native” format is the .gro file. Both .pdb and .gro files are human-
readable text files. Less conveniently, both are also “fixed format”, meaning that fields on
each line must occur in specified column ranges, or the file cannot be read by the computer.

The .pdb format is quite old, dating from the days of 80-column punch cards. Punch
cards were originally invented in the 1890s (!), standardized by IBM in the 1920s (decades
before the computer age), and used until the early 1980s. The information density on punch
cards was minuscule: to store 4MB of data required a stack of cards 30 feet high. And yet,
traces of the 80-column format still persist today.

.gro

In a .gro file, the first line describes the file; the second line gives the number of atoms, and
each following line describes one atom. In the atom lines, the column widths are: residue
number (5), residue name (5), atom name (5), atom number (5), position x, y, z (8, 3
decimals, in nm), velocity x, y, z (8, 4 decimals in nm/ps). The corresponding C format
form is

%5d%-5s%5s%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f

The last line of the file gives the simulation box lengths (in nm).
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.pdb

Details can be found online (http://deposit.rcsb.org/adit/docs/pdb_atom_format.
html). Necessary lines are CRYST1 (which sets the simulation box size), MODEL (com-
mences a list of several molecules), ATOM (information about each atom in a molecule),
TER (ends each chain), ENDMDL (ends the model), and END (ends the file).

Typical lines in a PDB file look like this:

Figure 6: Example atom lines from a .pdb file. Numbering at top is guide to counting
columns, not part of file.

The column ranges for fields in an atom line for a .pdb file are given in the following
table.

Columns Entry Comment
1 – 6 Record type ATOM

7 – 11 Atom # integer
13 – 16 Atom name C,H,...

18 – 20 Residue name
22 chainID

23 – 26 Residue number
31 – 38 x position 8.3 format, Angstroms
39 – 46 y position
47 – 54 z position

Table 3: Most important entries in PDB fixed format file.

3.4 Parameter file

The .mdp file tells Gromacs the details of the simulation that you will run. Every file needs a
section of basic run parameters, which choose an “integrator”, set the number of simulation
steps, the step size, the use of constraints, etc.

It is helpful to collect a few typical .mdp files as starting points for creating new .mdp
files, which are often different in only a few settings. A typical .mdp file for an MD simulation
looks like this:

; run control

integrator = md
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dt = 0.001 ; 1 fs

nsteps = 1000000 ; steps, = 1 ns

; output control

nstxout = 10000 ; steps per position save

nstlog = 10000 ; steps per log entry

nstenergy = 100 ; steps per energy file entry

; cutoffs

cutoff-scheme = Verlet

nstlist = 10 ; neighbor list update frequency

ns_type = grid ; neighbor list method (simple, grid)

pbc = xyz ; periodic boundary conditions

rlist = 1.2 ; short range cutoff

coulombtype = PME ; method for electrostatics

rcoulomb = 1.2 ; Short-range electrostatic cutoff

rvdw = 1.2 ; van der Waals cutoff

DispCorr = EnerPres ; long-distance contributions to E, P

; temperature control

tcoupl = v-rescale ; velocity rescaling thermostat

tc_grps = system ; coupled to entire system

tau_t = 1.0 ; time constant

ref_t = 300 ; temperature (K)

; pressure control

pcoupl = berendsen ; barostat type

tau_p = 10.0 ; time constant

ref_p = 1.0 ; pressure (bar)

compressibility = 4.5e-5 ; pressure bath compressibility (of water, bar^-1)

The .mdp file is “free form”; parameters can appear in any order. However, for good
readability it makes sense to group parameters by topic, as above. Brief comments (pref-
aced by “;”) as to the meaning of different parameters are helpful as well, particularly for
inexperienced users.

Timestep. A typical value is 1fs (0.001ps). This can be increased several fs with various
tricks (see “Running Faster” in the final section below).

Output control. Parameters nstxout, nstlog, and nstenergy are the number of steps
between saves of the configuration in the .trr file, entries in the .log file, and saves of run
parameters (energy, pressure, volume, etc.) in the .edr file. To avoid large .trr files, choose
nstxout with care; here, we take nstxout nsteps/100, to save 100 frames in the .trr
“movie” (enough to visualize the motion). The .edr file is much smaller, so we can save
many entries (here, 10000) for better statistics. When we need to average quantities over
the .trr trajectory, we set nstxout to save more frames for better statistics.

Temperature control. The v-rescale thermostat adjusts kinetic energies up or down by
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“rescaling” particle velocities (multiplying all by some factor), to regulate the temperature.
ref_t is the target temperature in Kelvin. tau_t governs how quickly the thermostat tries
to settle the temperature. Too short a value can give unstable behavior; too long a value
leads to long transients before equilibrating. Values of 1–10 ps work well.

Pressure control. The Berendsen barostat is robust but gives incorrect volume fluctu-
ations; the Parinello-Rahman barostat gives correct fluctuations, but tends to be unstable
when used on poorly equilibrated systems. (So use Berendsen to equilibrate, and if volume
fluctuations matter then switch to P-R.) ref_p is the target pressure in bar. tau_p is anal-
ogous to tau_t for the thermostat; compressibility is the compressibility of the “pressure
bath”. The values given above work well for most cases.

The above .mdp file is rather concise, in part because it relies on default values of pa-
rameters not explicitly specified. When grompp runs, one of its outputs is a “complete”
.mdp file, default name mdout.mdp, with absolutely all parameters included. A brief look
at mdout.mdp, which is thick with parameters and thus not very readable, makes clear the
importance of defaults.

An important part of the parameter file is the specification of a “cutoff scheme”, i.e.,
how the long-range nonbonded Lennard-Jones (van der Waals) and electrostatic (Coulomb)
interactions will be cut off and neglected beyond some distance.

For choosing van der Waals cutoffs, bear in mind that the typical values of σ range up
to 3.5–4Å, with ε values smaller than 1.0 kJ/mol (=120K), so that at a separation of of
2.5σ, the force derived from the potential 4ε(r/σ/)6 is down by a factor of 2.57 = 0.0016.
This suggests a cutoff length of 2.5 × 4Å or about 10Å. Beyond this distance, there are
residual contributions to the attractive energy and pressure; these can be computed with
“tail corrections”, using the EnerPres .mdp directive.

Verlet cutoff

Since Gromacs 4.6, a simpler and more efficient Verlet cutoff scheme has been introduced
(See http://manual.gromacs.org/online/mdp_opt.html#nl). This scheme works with
PME (particle mesh Ewald) electrostatics. GPU acceleration in Gromacs requires the Verlet
scheme. However, Verlet cutoffs are not yet available for all simulation methods and con-
ditions; for example, Verlet cutoffs cannot be used with tabulated interactions. This limits
the use of GPU acceleration at present.

The Verlet scheme has an explicit, exact cut-off at rvdw=rcoulomb, at which both
Lennard-Jones and Coulomb interactions are shifted to zero by default. Currently only
cut-off, reaction-field, PME electrostatics and plain LJ are supported. Some mdrun function-
ality is not yet supported with Verlet cutoffs; grompp checks for this. With GPU-accelerated
PME or with separate PME ranks, mdrun automatically tunes the CPU/GPU load balance
by scaling rcoulomb and the grid spacing. The sample .mdp file above uses Verlet cutoffs,
and presents typical parameter values.

Group cutoff

Prior to Gromacs 4.6, specifying cutoffs was more complicated. For van der Waals inter-
actions, the choices were cutoff (abrupt cutoff; potential is discontinuous), shift (shift
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potential to zero beyond cutoff; forces are discontinuous), and switch (potential is smoothly
transitioned to zero). For cutoff and shift, the cutoff length is rvdw. For switch, the
interaction is turned off smoothly from rvdw_switch to rvdw.

For Coulomb interactions, an analogous cutoff schemes cutoff, shift, and switch can
be specified. In addition, there is PME (particle mesh Ewald). With PME, rcoulomb is not
a cutoff per se, but rather the crossover between treatment of Coulomb interactions in real
space and Fourier space. Generally speaking, PME gives a more accurate treatment than a
cutoff of slowly-decaying 1/r Coulomb interactions.

The length rlist is the range of the neighbor lists maintained for each atom; neighbor
lists are updated every nstlist steps (typically 10fs or so, hence 5-10 steps). If particle
mesh Ewald (PME) electrostatics are used, we must take rcoulomb equal to rlist.

If we use either switch or shift for the van der Waals interactions, Gromacs requires
us to have rvdw less than rlist, by a length equal to the size of the largest charge groups.

If we use PME, hence rcoulomb equal to rlist, and cutoff van der Waals, we can take
rvdw larger than rcoulomb. In this case, forces from particles beyond rlist up to rvdw are
only updated every nstlist steps. This is a “twin-range” cutoff, and can be applied to any
simple cutoff interaction.

If instead we use PME and switch or shift van der Waals, Gromacs requires that
rvdw_switch < rvdw < rcoulomb = rlist, with a width between rvdw and rlist of the
size of the largest charge groups.

This is a complicated set of conditions to satisfy. A set of sample choices are:

vdw-type = switch

rvdw_switch = 0.8

rvdw = 1.0

coulombtype = pme

rcoulomb = 1.3

rlist = 1.3

For very small systems, with linear dimension 20Å or so, it is hard to wedge in all these
lengths, so the simplest cutoff scheme is something like:

vdw-type = cutoff

coulombtype = pme

rlist = 1.0

rvdw = 1.0

rcoulomb = 1.0

which is not very accurate but at least can run.

3.5 Topology file

The topology file contains all the information about the types of atoms present in a simu-
lation, how they are bonded together, what intramolecular bonded interactions are present
and what their potentials are, what are the interaction potentials between nonbonded atoms.
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Topology files are typically built and best understood “from the top down”. The .top
file for the entire simulation can be quite short, as it can consist entirely of references to .itp
(Input ToPology) files for the molecules and forcefield used in the simulation.

A typical example is the .top file we constructed for the lysozyme example (for more
details on .top files see Gromacs manual 5.7.2):

#include "oplsaa.ff/forcefield.itp"

#include "oplsaa.ff/spce.itp"

#include "oplsaa.ff/ions.itp"

#include "1AKI.itp"

[system]

1AKI in water

[molecules]

; name count

1AKI 1

SOL 10636

CL 8

The #include declaration reads the contents of the named file at that point in the .top file.
Here oplsaa.ff/forcefield.itp is the topmost .itp file of the forcefield to be used (OPLS-
AA); oplsaa.ff/spce.itp and oplsaa/ff/ions.itp are the .itp files for the SPC/E water
model and for ions like Cl− present in the simulation. Finally, 1AKI.itp is the molecule .itp
file we made using pdb2gmx. The remaining declarations are the name of the system, and
the number of each type of molecules.

3.6 Force field

In MD simulation, Newton’s equations of motion are solved on many atoms. The forces
on each atom are computed according to a force field, which includes both bonded and
nonbonded interactions. Bonded interactions describe how the energy of a single molecule
varies with shape, as defined by the bond lengths, bond angles, and dihedral angles of the
molecule.

For example, a bond between two atoms will have a preferred bond length b. The potential
around this length can be approximated as harmonic:

U =
1

2
kb(r − b)2 (1)

where r is the separation between the atoms, and b the preferred bond length. The force is
then given by F = −∂U/∂r.

Non-bonded interactions act between atoms that are not bonded, either within the same
molecule or between different molecules. Non-bonded interactions are of three types: short-
range repulsive, dispersion (van der Waals), and electrostatic (between charges).
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Short-range repulsive and dispersion forces are described by the Lennard-Jones potential

U = 4εij

(
σ12
ij

r12
ij

−
σ6
ij

r6
ij

)
(2)

where rij is the separation between atoms i and j. Here the first term represents the repul-
sions between atoms as they begin to overlap, and the second term represents attractive dis-
persion forces. The electrostatic interaction between atoms i and j is given by the Coulomb
potential,

U =
1

4πε0

qiqj
εrij

(3)

in which qi and qj are the charges of the atoms.
The parameters that appear in these interactions for the different types of atoms present

in complex molecules are defined by a “force field”, such as OPLS-AA (Optimized Parameters
for Liquid Simulation, All-Atom). Here, different types of atoms means not just the element
itself (C, N, O, . . . ), but the local chemical environment of that atom bonded to its neighbors
(C in -CH2-, C in -CH3, C in -CH=CH-, . . . ).

How the force field organizes these parameters, as well as how they are determined and
validated, is described below.

forcefield.itp

Similarly to the .top file, the file forcefield.itp for a given potential is defined “top down”.
forcefield.itp contains only a single definition and three #include statements:

[ defaults ]

; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 3 yes 0.5 0.5

#include "ffnonbonded.itp"

#include "ffbonded.itp"

#include "gbsa.itp"

The [defaults] declaration chooses the non-bonded potential function (type 1 = LJ, type
2 = Buckingham), and the “combining rule” for nonbonded parameters between different
atom types. (For details on combining rule, see Gromacs manual 5.3.2; comb-rule 3 is the
“sigma-epsilon” system.)

The first two #include files contain nonbonded and bonded declarations for all atom
types. The file ffnonbonded.itp (see Gromacs manual 5.2.1) contains [atomtypes] declara-
tions for all atoms:

[atomtypes]

; name bondtype mass charge ptype epsilon sigma

...
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Here “name” is the atomtype name (from atomtypes.atp). “ptype” is the particle type
(A = atom, V = virtual site). The last two parameters are LJ parameters, the mean-
ing of which depends on the default form of the nonbonded potential, set by nbfunc in
forcefield.itp.

The “bondtype” is a more general name, that declares how the bonded potentials are set
by entries in ffbonded.itp. Many different but related atom types share the same bond
type, which helps to reduce the potentially vast number of bonded interactions between
different molecules. For example, the saturated hydrocarbon C with different numbers of
bonded H (opls_136 through opls_139) all have bonding type CT.

Likewise, the file ffbonded.itp (Gromacs manual 5.3.3) specifies parameters for bonded
interactions between atoms of different “bondtypes” (specified in ffnonbonded.itp):

[bondtypes]

; i j func b0 kb

...

[angletypes]

; i j k func th0 cth

...

[dihedraltypes]

...

3.7 Molecule .itp file

To keep the topology files neat, each kind of molecule should have its own .itp file. A molecule
.itp file contains the type of each atom in the molecule, and the set of bonds, angles, and
dihedrals to be included in the intramolecular potentials.

The structure of a molecule .itp file is (see Gromacs manual 5.7.2):

[moleculetype]

; name nrexcl

...

[atoms]

; # type res# residue atom cg# charge mass

...

[bonds]

; i j func b0 kb

...

[angles]

; i j k func th0 cth

...
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[dihedrals]

...

[position_restraints]

; i func fc

...

The [moleculetype] declaration gives the molecule name, and the “number of exclusions” —
how many bonded neighbors away are excluded from non-bonded interactions (typically 3
if dihedral potentials are present), so that bonded interactions are not “interfered with” by
non-bonded contributions.

Next comes [atoms], which lists all the atoms present in the molecule, with their number,
atom type, residue number and name, atom name, charge group number, and charge. If
the charge is not present, the default value from the potential is used. The atom type must
match one of the types in the atomtypes.itp file of the potential you are using, unless you
are defining custom atom types (see below).

Next comes [bonds], which lists all the pairs of bonded atoms (by number), the bonded
function type (1 is harmonic spring), rest length b0 and spring constant kb. Then [angles],
similarly listing all the sets of three successive bonded atoms by number on which angular
potentials are acting, with the function type (1 is harmonic spring), minimum energy angle
th0 and spring constant cth. Then comes [dihedrals], which lists all sets of four successive
bonded atoms, in similar fashion. There are two types of dihedral functions, each with its
own parameters (see Gromacs manual for details).

Note: bond angles are defined as between the first and last atom through the middle
atom. The preferred C-C-C angle is around 112◦. Dihedral angles are defined as the angle
that the first and last atom form over the bond. In butane, the C-C-C-C dihedral angle is
180◦ in the trans configuration.

If only atom numbers are given for entries in [bonds], [angles], or [dihedrals], the corre-
sponding potential defaults to values specified in the force field (in the file ffbonded.itp).
The nonbonded (Lennard-Jones) interaction parameters for all the atoms in a molecule are
set by default from the atomtype, by referring to the file ffnonbonded.itp for the chosen
force field (e.g., OPLS-AA).

Methods for building

A molecule .itp file contains all the bonds, angles, and dihedrals that contribute to the
intramolecular potential. Constructing .itp files for polymers and other large molecules is a
challenging and tedious task.

Fortunately, there are several useful tools to help automate this task. There are four
basic approaches to build topology files:

1. By hand. This is tractable for small molecules, or very simple polymers such as a
linear bead-spring chain, because of the very simple structure (bead n is bonded to
bead n+ 1; angle interactions if present connect beads n, n+ 1, and n+ 2).

2. Use a web-based tool. A useful website exists that takes a .pdb configuration file as in-
put, and (sometimes) returns a usable .itp file [\http://erg.biophys.msu.ru/tpp/].
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This tool assigns atom types and builds the bonds, angles, and dihedrals from the
molecular structure. Unfortunately, it fails to produce useful output if the OPLS force
field does not include all the parameters for bonded forces between the given atoms.

3. Use “residues” and pdb2gmx. Proteins are polymers, with 23 different kinds of “residues”
(monomers). Molecular biologists have simulated proteins for a long time, and devel-
oped automated tools to build the topology files for these molecules. In Gromacs, this
tool is pdb2gmx, which takes advantage of the fact that the topology of the residues
is relatively simple to specify, and the topology of the entire protein is determined by
the sequence of residues. We can use this tool to create topology files for polymers, by
defining new residues that correspond to our monomers (described in detail below).

4. Use topology utilities.nb. The set of bonds, angles, and dihedrals for a given
molecule are completely determined by the list of bonded neighbors. (The list of
bonded neighbors is not painful to generate by hand for even large molecules, and any-
how can be generated automatically for .pdb files from the distances between atoms.)
It is simply a bookkeeping problem to list all the sets of three consecutive neighbors
that contribute an angular interaction, and all the sets of four nonrepeating consecu-
tive neighbors that contribute a dihedral interaction. Our group has written a set of
Mathematica routines that generate the list of angles and dihedrals from the list of
bonded neighbors.

Choosing atom types.

Generating the structure of the molecule .itp file is only half the battle. If the .itp file is
built by hand (or using topology utilities.nb), or if residues are invented for monomers
to use with pdb2gmx, atom types for every atom in the molecule or residue must be chosen.

When using the OPLS-AA force field, the first step in choosing atom types is to scan
through atomtypes.atp, which lists the many atom types with brief comments as to their
chemical nature. Another route to choosing atom types is to examine small molecules in the
catalog of topology files archived at http://virtualchemistry.org, looking for analogous
structures to see what atoms are used.

Comprehensive as it is, the OPLS-AA force field does not contain all possible atom
types. And even if appropriate entries are found in the list of existing OPLS-AA atom
types, sometimes not all bond, angle, and dihedral interactions present in a given molecule
are listed in ffbonded.itp. The number of possible bonded interactions grows rapidly in the
progression from bonds to angles to dihedrals with the increase in number of participating
atoms, so it is not surprising that some bonded interactions are missing. When appropriate
atom types cannot be found, or bonded interactions are missing, the user must supply the
missing parameters in an “interaction” .itp file, that serves to augment the definitions in
opls-aa/forcefield.itp.

Modified potentials

Determining missing force field parameters is a complex task. Generally speaking, bonded
interactions and atomic “partial charges” can be computed using modern quantum chemistry
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methods (density functional theory). Repulsive interactions between atoms can likewise be
fitted to DFT results. But attractive dispersion interactions are beyond the capability of
DFT methods, and must be fitted to experimental results for liquid densities and boiling
points.

Generally, we use potential parameters from OPLS as much as possible. Sometimes, we
want to override the default values for a given atom type. The most common reason for
doing this is to adjust atomic charges to better represent the charge distribution of a given
molecule. (Partial charges can be obtained by electrostatic fitting to quantum chemistry
calculations performed in a package like Gaussian.)

Or, we may need to supply bonded potentials, when the OPLS force field does not contain
definitions for some particular bonds, angles, or dihedrals in a given molecule. Finally, we
may need to create atom types for new situations, possibly by modifying existing types.

There are two ways to modify or extend the force field. The simplest is to modify the
molecule .itp file. If we use only existing OPLS atom types, we can override atomic charges
in the [ atoms ] section. We can likewise override any bonded interaction or supply any
missing bonded parameters in the [ bonds ], [ angles ], or [ dihedrals ] sections,
instead of relying on grompp to look them up from the OPLS force field.

We cannot override the Lennard-Jones parameters for given atom types in this way,
because there is no place to include them in the [ atoms ] section. Instead, we must use
the more general approach to modifying the force field, which is to include in the .top file
an “addendum” .itp file, immediately after the force field is read in:

#include "oplss-aa.ff/forcefield.itp"

#include "additions.itp"

The addendum .itp file (here additions.itp) can contain additional [ atomtypes ],
[ bondtypes ], [ angletypes ], or [ dihedraltypes ] sections. These can redefine ex-
isting atom types or add new types, and can likewise override existing or add new bonded
interactions. Such addendum .itp files must appear before any molecule .itp files are read in.
Once molecule .itp declarations ([ atoms ] etc.) have begun, no more forcefield declarations
([ atomtypes ] etc.) can be read.

Finally, we can also override the nonbonded interactions between specific atomtypes, i.e.,
overriding the “combination rules” used by default to set those interactions, by including in
an addendum .itp file declarations like this (see Gromacs manual 5.3.2):

[ nonbond_params ]

; i j func epsilon sigma

...

Sometimes we want to create an entirely new atomtype, to correspond to a moiety not
included in the OPLS atomtypes.atp file, or to correspond to some fictitious “model atom”;
we do this with an addendum .itp file. First, we add an [ atomtype ] declaration those
in ffnonbonded.itp, which gives the atom type name, “bonding type”, mass, charge, and
LJ parameters. Then we add in [ bondtype ], [ angletype ], and [ dihedraltype ]

sections any missing bonded interactions. If we use an existing bonding type, we can make
use of bonded interactions defined for that type, already present in ffbonded.itp.
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4 Building a decane liquid

In this example, we simulate a liquid of decane. Setting up such a simulation requires us
to 1) build a molecule .itp file for a large molecule, and 2) construct a reasonable initial
configuration for the liquid.

For the first task, we demonstrate an approach that can be applied more generally to
polymer chains. First, we use the molecular visualization / drawing software Avogadro
(available at http://avogadro.cc) to create a .pdb file for a single decane molecule in an
energy-minimized all-trans configuration (we will use this file also for building the initial
configuration, below). Then, we define new residues to build alkane chains, and adapt the
Gromacs utility pdb2gmx to generate the molecule .itp file. To use pdb2gmx, we must reorder
and relabel the .pdb file to match the order and name conventions of the residue entries in
the .rtp file.

For the second task, we use the simulation itself to construct a reasonable initial config-
uration for the decane liquid, starting from a configuration that is not at all realistic but
at least easy to build. We start from regular array of all-trans chains, with sufficient space
between them to ensure the chains do not overlap and have plenty of room to wiggle around
when the simulation starts. Then, we make use of the .mdp option -deform, which allows us
to shrink the system dimensions at a constant rate. We choose the rate to reach the correct
density after some few nanoseconds, during which time the decane molecules can randomize
and interpenetrate, achieving a liquid-like packing.

4.1 Create new residues

In the topology folder top/oplsaa.ff, the residues for amino acids are contained in the
file aminoacids.rtp. We will add entries for our new residues to this file. Each residue
contains two sections: [ atoms ] and [ bonds ]. Some more complicated residues also
contain sections for overriding dihedrals and for setting improper dihedrals; we will not need
these for moieties to build alkanes.

The [ atoms ] gives each atom in the residue a name, a type, and a partial charge. It
also classifies each atom into a charge group. A charge group is (loosely) defined as the
group that, when all the partial charges are added together, combine to some integer net
charge (usually zero). An example of a simple charge group is a CH2 in a long alkane, since
the carbon takes a partial negative charge equal to the sum of the hydrogen partial positive
charges.

The [ bonds ] section lists which pairs of atoms are bonded to each other. Duplicate
entries are not required: A B is equivalent to B A, and should only be listed once. If a given
atom bonds to the previous (next) residue, place a - (+) before the bonded atom.

[ atoms ]

To make residues for decane, we treat it as a short piece of polyethylene. The ethylene
monomers are shown in Figure 7. We need separate monomers for the beginning and end
of the chain; for example, the beginning monomer has an extra hydrogen, and does not
bond to the previous residue. We name each residue with a three-letter name: PolyEthylene
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Beginning (PEB), PolyEthylene Middle (PEM), and PolyEthylene Terminal (PET). (All
residue names in aminoacids.rtp must be unique.) FIgure 7 includes our naming convention
for the atoms in each residue; the carbon atoms are C1 and C2, and their bonded hydrogens
H11, H12, and so forth.

C1 

C2 

H21 H22 

H11 H12 

+C1 

H13 

(a) [ PEB ]

C1 

C2 

H21 H22 

H11 H12 

+C1 

-C2 

(b) [ PEM ]

C1 

C2 

H21 H22 

H11 H12 

-C2 

H23 

(c) [ PET ]

Figure 7: Naming schemes for polyethylene monomers

We must identify an OPLS atom type for atom, and get the information for the [ atoms ]

section of each residue.

1. Open atomtypes.atp; atoms near opls_135 are for alkanes.

2. Classify each atom type in each monomer. You will use opls_135, opls_136, and
opls_140.

3. Open ffnonbonded.itp and find the partial charges for these atoms.

Check that each charge group (there are two in each monomer) is net neutral.
Create a new text file PE.rtp in which to create the new residues; later, we will append

them to aminoacids.rtp. The residue for the middle monomer (PEM) should look like this

[ PEM ]

[ atoms ]

C1 opls_136 -0.120 1

H11 opls_140 0.060 1

H12 opls_140 0.060 1

C2 opls_136 -0.120 2

H21 opls_140 0.060 2

H22 opls_140 0.060 2

Repeat for the PEB and PET residues.

[ bonds ]

Now, we list the bonds, starting with the middle monomer (PEM). The C1 atom is bonded
to H11, H12, and C2, as well as to the C2 in the previous residue. Similarly, C2 is bonded to
H21, H22, and C1, as well as the C1 in the next residue. So, the bond section for PEM should
look like:
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...

H22 opls_140 0.060 2

[ bonds ]

C1 -C2

C1 H11

C1 H12

C1 C2

C2 H21

C2 H22

C1 +C1

Repeat for PEB and PET, and add these bond sections. Compare your result to the PE.rtp

file included with this tutorial.
Once you are sure that your residues are correct, Copy and paste your residues at the end

of aminoacids.rtp. Finally, append the new residue names to the file residuetypes.dat

in your /top directory:

PEB Other

PEM Other

PEB Other

4.2 Make a PDB configuration file

We use Avogadro to make a .pdb configuration file for decane, in the energy minimized
all-trans configurations. To draw the molecule, select the pencil tool; click to form your first
carbon (it will appear as CH4, with hydrogens automatically added). Click on a hydrogen
to add another carbon (you can also click on a carbon and drag to form a C-C bond, with
hydrogens automatically adjusted). All-trans decane looks like a zig-zag from the side, so
draw the molecule this way, either by choosing the correct H to add the next C, or by
dragging to form the next C-C bond in the right direction.

Once you have placed ten carbon atoms, click on the blue Navigation Tool in the tool
bar. You can now drag your screen and inspect your molecule. Use the energy minimization
tool to clean up the structure (click E in the tool bar, and Start to minimize).

Next, align your molecule along the z-direction. To do this, select the alignment tool (two
parallel lines icon); select the 1st and 9th carbon, choose “z axis” and “Align Everything”,
then click “Align”. This places the first atom at the origin, and the second along the z axis
(this alignment will be useful when we use the .pdb file to build the initial configuration).
Save your file as decane_avogadro.pdb. Then copy this file as decane.pdb, in which we
will reorder and relabel the atoms.

Atom renaming

Avogadro does not know the atom or residue names we have chosen, so we must modify
decane.pdb using BBEdit.
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Delete the CONECT records and MASTER record, which are not needed for Gromacs. Replace
all occurrences of HETATM with ATOM__ (“ATOM” followed by two spaces). PDB files are
fixed format files: each number or keyword appears at a fixed position (number of characters
from the start of the line). Make sure to preserve the spacing when making modifications.

Column 2 are the atom numbers; we will number these sequentially after we reorder the
atoms to correspond to the order in our residues. Initially, the atoms are numbered in an
order set by Avogadro. To find out which atom is which, open decane_avogadro.pdb in
Avogadro. In Display Settings, make sure Label is checked. Each atom should have its
number on it. (If not, check the “wrench” next to Display Settings, to make sure the
label is displaying the atom number, and not something else.) Sometimes the labels do
not work; another way to find out which atom is which, is to select View/Properties/Atom
Properties... from the top menu, and click on atoms in the first column; the corresponding
atom in the picture will be highlighted.

We want the atoms to appear in the .pdb file “residue by residue”, and within each
residue in the order specified in the .rtp file. Starting from one end of the chain in Avogadro,
find the numbers of the atoms in the first residue; moves these lines to the top of the .pdb
file, and place them in the proper order. Change the atom names (third column entries) to
match those used in the .rtp file (C1, H11, H12, and so forth). It does not matter which H is
H11 and which is H12 on a given residue, since both are structurally equivalent, bonded to
the same C1. As you change names, remember to maintain the column widths and positions
in the .pdb file. Repeat this process residue by residue along the chain, using Avogadro as
a guide to identify which atoms go where in the modified .pdb file.

Once all atoms are in order, organized into residues, and renamed, replace the generic
residue LIG in Column 4 with the proper residue name, either PEB, PEM, or PET. To preserve
the spacing, replace the three characters in LIG with the three-letter residue name.

Column 5 contains the residue numbers, which initially are all 1. These should be
1, 2, 3, . . . in sequence by residue. Finally, the atom numbers in Column 2 should be renum-
bered in order starting from 1. Again, be sure to preserve the column locations when
renumbering.

To check that your .pdb file is correctly formatted, open the unedited decane_avogadro.pdb

in BBEdit, copy one of its atom lines, and paste it before the first atom line in your edited
PDB file. Check that the columns line up correctly (and then delete the added line). Com-
pare your file with decane.pdb, included in this tutorial.

4.3 Prepare and run simulation

We carry out the following steps to prepare and run a simulation of a decane liquid:

• use pdb2gmx to prepare the molecule .itp file for decane;

• build the initial configuration of all-trans decane moleclues in an ordered array;

• compute the deformation rate needed to shrink the system to the correct density;

• create the .mdp and .sh files by modifying files from the lysozyme example;

• submit and examine the equilibration job.
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To begin, create a new folder on the cluster called decane, and upload decane.pdb. Use
pdb2gmx to create a topology file decane.top:

gmx pdb2gmx -f decane.pdb -o decane.gro -p decane.top

(when prompted, enter 16 for the OPLS-AA force field, and then 8 not to include any water).
pdb2gmx produces a complete .top file; we only want the molecule definition. So make a

copy named decane.itp, and edit it to remove the beginning and ending material, as was
done in the lysozyme tutorial. Change the [ moleculename ] to “decane”.

The system topology file system.top can be readily adapted from the lysozyme example,
as:

#include "oplsaa.ff/forcefield.itp"

#include "decane.itp"

[system]

decane liquid

[molecules]

; name count

decane 100

Use editconf to create decane.gro with the appropriate dimensions, with the molecule
centered in the box. Then, use genconf to create a system consisting of a 10 x 10 x 1 array
of boxes, each containing one all-trans decane:

gmx editconf -f decane.gro -box 0.4 0.4 4.0 -o decane.gro

gmx genconf -f decane.gro -nbox 10 10 1 -nmolat 32 -o system.gro

Here -nmolat specifies the number of atoms per molecule (32 for decane, C10H22).
The initial system size of the regular array (a cube 4 nm on a side) is much larger than

the corresponding decane liquid. We compute the final liquid volume from the density of
decane (0.730 g/cm3), the molar mass (142.29 g/mol), and the number of molecules (100),
as equal to a cube 3.187 nm on a side. To reach the final system size, We deform the linear
dimensions of the system in 1 ns (= 1000 ps) from 4 nm to 3.187 nm, at a rate of -0.000813
nm/ps. The corresponding .mdp option is

# resize from 4^3 to 3.187^3 in 1ns

deform = -0.000813 -0.000813 -0.000813 0. 0. 0.

(The last three deform values, all zero, are shear deformations, not used here.)
We can build the .mdp file resize.mdp by adapting the file md.mdp from the lysozyme

example, with the following changes:

• no pressure coupling (hence like nvt.mdp)

• not a continuation; generate velocities (again like nvt.mdp)
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• constrain the lengths of only h-bonds, not all-bonds (constraining all bond lengths does
not work well for long-chain molecules)

• correspondingly, reduce the timestep to 1 fs

Compare your result to the file resize.mdp, included with this tutorial.
Running grompp for this simulation is a straightforward adaptation of the lysozyme ex-

ample, taking account of the names of the various files:

gmx grompp -f resize.mdp -c system.gro -p system.top -o resize.tpr

Correspondingly, the job script resize.sh (submitted as usual with qsub resize.sh)
can be based on md.sh from the lysozyme example, with the appropriate name change
(replacing md with resize). Also, since we only have 100 chains of 32 atoms totaling 3200
atoms, two cores is plenty for the job.

After the resize run has completed, visualize the trajectory using VMD, to verify that
the regular array of all-trans decane chains has been compressed to liquid density, and the
chains have randomized their configurations.
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5 Batch job submission

During our lysozyme simulation, we submitted three batch jobs to to run on ACI-b. All other
tasks were run interactively; that is, we executed them in a terminal session, and waited for
output to appear on the screen. Batch jobs have several advantages over interactive jobs.
They run on dedicated processors, so you can do other work while you wait for the job to
finish. And, batch jobs can be parallelized across multiple computing nodes, to run much
faster than they would on a single processor. More memory is also accessible to batch jobs
than to a terminal session.

At Penn State, batch job submission is controlled by PBS. Jobs are submitted to a PBS
queue on a given cluster; PBS manages the queue. When it is your turn, PBS executes the
UNIX commands in the script you submitted, as if you were entering them interactively
from the command line. Any output that would have gone to the screen, is printed to a file
you can read after the job has finished.

5.1 Batch scripts

Each batch script start with commands that tell PBS about the job, including: which queue
to submit to, the maximum run time, how much memory is needed, and how many cores
(processors) are requested. Jobs with long run times or many processors requested tend to
wait in the queue longer before running because the resources must become available.

Batch scripts are text files, conventionally with file extension .sh. The file name should
remind you something about the job; for example, md.sh, which runs an MD simulation.
Choose filenames wisely.

A typical batch script may perform several simulations in succession. For example, we
can automate the entire sequence of lysozyme equilibration followed by the production MD
run, as follows:

#PBS -A <accountName>

#PBS -l nodes=1:ppn=4

#PBS -l walltime=24:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

# energy minimization

gmx grompp -f em.mdp -c 1AKI_solv_ions.gro -p system.top -o em.tpr

gmx mdrun -deffnm em

# NVT equilibration

gmx grompp -f nvt.mdp -c em.gro -p system.top -o nvt.tpr

gmx mdrun -nt 4 -deffnm nvt

# NPT equilibration

gmx grompp -f npt.mdp -t nvt.cpt -p system.top -o npt.tpr
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gmx mdrun -nt 4 -deffnm npt

# production MD

gmx grompp -f md.mdp -t npt.cpt -p system.top -o md.tpr

gmx mdrun -nt 4 -deffnm md

The first line gives the queue (account, -A) to access (an example is stm9_b_t_bc_default,
not currently active). Ask your PI for the queue where you should submit your jobs. Queues
with the designation “sc” run on “standard” nodes, and those with designation “bc” run on
“basic” nodes. Jobs that exceed the confines of the queue can run in “burst” mode, which
may wait longer in queue.

One possibility is the “open” queue, ( -A open, running on basic nodes), which offers
extra computing cycles for free. However, if your job is long, it may be “suspended”, pre-
empted by a job from someone who “owns” the node on which you are running. If this
happens, your job waits until the preempting job finishes, which may take several days to a
week.

The next line requests nodes and processors (cores) per node; odes=1:pp=4* means
4 cores on one node. “Nodes” are collections of processors that share common memory.
“Basic” nodes on ACI-b have two CPU chips with 12 cores each, so 24 cores per node
(“standard” nodes have two CPUs with 10 cores each, or 20 cores per node). As a general
rule, a job should have a few thousand atoms per core, otherwise the cores spend too much
time exchanging information about atoms on the boundary between regions handled by
neighboring cores.

PBS directives that request nodes and processors interact with corresponding options
in the mdrun command, discussed in more detail below. Here, the cores are used to run
mdrun with four “threads”, indicated by the option -nt 4, which divides the simulation
work among the 4 requested cores.

The third line sets the “wall time” for the process — the maximum time the job can
run. If the job exceeds the wall time, it is immediately killed, so it is important to request
enough wall time for the job. However, jobs with longer wall times wait longer in the queue.
The maximum walltime for our queues is 192 hours (8 days). Long simulations often take
longer than that, so they must be broken into a succession of jobs, each of which starts up
from the checkpoint file of the last job (see below).

The fourth line combines the job screen output and error messages into a single file.
This file will be named after your script and the computer assigned job ID number, like
md.sh.o12345.

After this, we change directories to $PBS_O_WORKDIR, which is the directory where the
job was submitted. (You typically submit jobs from the directory you want them to run in;
whereas, PBS scripts are executed from your home directory.)

5.2 Checkpoint files

Some jobs take longer than the maximum run time (typically 1 week, or 168 hours). To run
jobs that take longer, we restart from checkpoints. A checkpoint (.cpt) file with complete
state of the system is written by default every 15 minutes (unless overridden by option -cpt).
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A simulation can be continued by reading the full state from the checkpoint file by calling
mdrun with option -cpi <filename>. If no checkpoint file is found, Gromacs assumes a
normal run, and starts from the first step of the .tpr file. By default, outputs will append
to existing files; with -noappend new output files are opened and the simulation part number
is added to all output file names.

5.3 Timing studies

Before launching a big job that will take a long time to run, it is a good idea to do a timing
study. By running the same job with a much shorter total time, the speed of the job (in
simulated nanoseconds per day) can be measured, and the total execution time predicted.

A short test job also helps ensure the big job will run without errors and perform as
expected. Usually, if a simulation job is going to go awry, the error will appear either in the
preprocessing step, or immediately on starting the simulation (because some input files or
options are incorrect), or shortly after the simulation begins (because the simulated system
misbehaves in some way, as a result of a bad initial configuration, poor equilibration, too
large a timestep, or problems with the pressure control).

5.4 PBS commands

The PBS system has its own language of commands. Most commonly used are:

• To submit a batch job, qsub <scriptname>.

• To check the status of your batch jobs, qstat -u <userid>.

• To check the status of a specific job, qstat -n <job_id> where <job_id> is the num-
ber of the running job (obtained from qstat -u).

• To delete a specific job, qdel <job_id>.

• To delete all your jobs (hopefully you will never need this!), qdel $(qselect -u <userid>.

5.5 Parallelizing

There are two ways to run parallel jobs in Gromacs: multiple threads on a single node, or
multiple nodes. These use different compiled versions of Gromacs: gmx is for multthreading,
gmx_mpi is for multinode jobs. Each approach involves both a PBS request for the compute
resources (nodes and cores), and the corresponding version of the mdrun command.

To execute a multithread job (multiple cores on a single node), use

gmx mdrun -nt N ...

which requests N threads on a single node. Multithread jobs are only run in batch. The
batch file needs to contain a matching directive,

#PBS -l nodes=1:ppn=N
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To execute a multinode job (one core on multiple nodes, communicating with OpenMPI
[Message Passing Interface]), use

mpirun -np N gmx_mpi mdrun ...

where N is the number of cores you want to use. Note the prefacing command mpirun.
Multinode jobs are only run in batch. The batch file needs to contain a matching directive,

#PBS -l nodes=N:ppn=1

Which is better? On some clusters (e.g., the now-retired Lion-X clusters), the queue
was designed to keep the machine busy, and a job that needed an entire node to run would
have to wait a while for a complete node to become idle. In contrast, the queue on ACI-b
prioritizes access to resources owned by a given PI, at the expense of leaving cores idle.

So on now-defunct Lion-X, it made sense to submit jobs that requested many cores, one
per node, because nodes were not kept idle to be ready for their owners. On ACI-b, it makes
sense to do the opposite — to request 10 cores and 1 node, so as to stay within our queue
resources. This remains true even for submitting to the “open” queue.

The full range of options within Gromacs for running on multiple cores and nodes are a
lot more varied and complicated than the above: see
http://manual.gromacs.org/documentation/5.1/user-guide/mdrun-performance.html.

To efficiently use a single node to run multiple jobs, we should consider using a number
of cores for each job that corresponds to an integer number of quarter nodes. In this way,
multiple jobs can run alongside each other without cores sitting idle.

On ACI-b, “basic” nodes have two CPUs with 12 cores each, hence 24 cores per node;
“standard” nodes have two CPUS with 10 cores each, so 20 cores per node. So in a queue
running on the basic nodes, we should aim to run jobs on 6, 12, 18, or 24 cores; on the
standard nodes, jobs should be sized for 5, 10, 15, or 20 cores.

5.6 GPU support

GPUs (Graphical Processing Units) are video cards used to do parallel calculations for
simulations. In Gromacs, GPUs can efficiently handle the parallel calculation of nonbonded
forces. Using one or more GPUs to assist the cores running the simulation, Gromacs can
be speeded up by a factor of 2–3, depending on what kind of simulation is run and what
hardware is used.

A key question is how many cores per GPU is the most “efficient” ratio. The answer
depends on the relative cost of cores and GPUs: if GPUs were free, it would make sense to
use more of them. This question is most relevant to designing and buying computers, since
a workstation or cluster node has a fixed ratio of CPUs per GPU, which limits the range of
ratios you can use.

For atomistic simulations, our group has run tests that suggest ratios of 8–12 cores per
GPU give a speedup in the range of 2.5–3 over using the same cores and no GPU. Reducing
the ratio below about 8 cores per GPU begins to have diminishing returns, as there are not
enough cores to do the rest of the simulation work, to keep the GPU “busy”.

In the simplest arrangement, one or more GPUs work with some or all of the cores on a
single CPU. Given the cost of GPU cards, the number of cores on present-day CPUs, and
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our observations of speedup, our GPU-assisted workstation has dual 14-core CPUs and 2
GPUs (instead of e.g., dual 14-core CPUs and 4 GPUs, for a ratio of 7:1).

With a rough guide of 2500–5000 atoms per core for jobs with no GPUs, 12 cores is
sufficient for jobs of 30–60,000 atoms, which is the scale of most simulations our group runs.
Such jobs can then run 2.5–3 times faster on the cores of a single CPU with one GPU
assisting.the

ACI has a few nodes with GPU support, but they are priced very expensively compared
to the basic nodes, on a basis of dollars per nanosecond of simulation time. As a result, the
Milner group does not own any such nodes. ACI does not at present provide any access to
GPU nodes in the open queue.

However, another cluster at Penn State with GPU-enabled nodes that does permit open
access is Cyberlamp, once permission is granted by its owner group. Cyberlamp shares the
same file system as ACI, so running on Cyberlamp is simple.

To run on 8 cores with 1 GPU, in the job script include the lines

#PBS -A cyberlamp

#PBS -l nodes=1:ppn=8:gpus=1

and for the mdrun command, use

export OMP_NUM_THREADS=8

...

gmx mdrun -nt 8 -gpu_id 0 -deffnm <jobname>

Here option -nt 8 requests 8 “threads” (cores), and option -gpu_id 0 requests GPU “num-
ber 0” (i.e., the first one you requested, numbering starting from 0).

Milner group cluster and workstation

The Milner research group owns two computing resources, both supplied with GPU support,
available for group members. The first of these is a workstation called “closet” (it was once
in a telecom closet), consisting of a single node with 28 cores and one K80 GPU (with two
logical GPUs). The second is a small cluster called “nccise” (Next-generation Cluster for
Computationally Intensive Science and Engineering — pronounced “incise”, like incisive,
cutting-edge . . . ). The nccise cluster consists of 9 nodes, each with 32 cores and one K80
GPU.

Closet and nccise are only accessible from the local LAN. When off campus, the local
LAN can be accessed by logging onto a VPN using Cisco AnyConnect Secure Mobility Client,
available at https://downloads.its.psu.edu/# under “Connecting to Penn State”. Once
installed, connect to vpn.its.psu.edu and join the group “ISPtoPSU”. Then, to logon to
closet or nccise from your computer, use

ssh -Y <userid>@closet.dc.psu.edu

ssh -Y <userid>@nccise.dc.psu.edu

Closet and nccise both have a single batch queue called “batch”, which works like ACI
except that instead of the PBS directive #PBS -A <account>, use PBS -q batch. Please be
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courteous in using our cluster — no one actively monitors it to make sure jobs are correctly
sized, killed if they get stuck, etc.

To run with 8 cores and 1 GPU on closet or nccise, use the PBS directive

#PBS -l nodes=1:ppn=8:gpus=1

with the command

gmx mdrun -nt 8 -gpu_0 -deffnm <jobname>

Because nccise nodes have 32 cores and the closet workstation has 28 cores, it is good
practice to size jobs in multiples of 4 cores (e.g., on nccise, jobs of 4, 8, 16, 32 cores; on
closet, 4, 8, 16, 24 cores) so that nodes have a chance to completely fill.

6 Advanced topics

In this section, we will briefly highlight some advanced features of Gromacs. More details
can be found in the Gromacs manual, online, or by asking experienced group members.

6.1 Tabulated potentials

Sometimes it is useful to have complete control of the form of the nonbonded interactions,
beyond the predefined options available within Gromacs. For this purpose, Gromacs offers
the use of tabulated potentials (Gromacs manual 6.7.2). These are accessed from the .mdp
file.

The nonbonded potential takes the general form

U(r) = qiqj/(4πε0)f(r) + C6g(r) + C12h(r) (4)

For nbfunc equal to 1 (LJ), the default choices for the functions f(r), g(r), and h(r) are
f(r) = 1/r, g(r) = −1/r6 and h(r) = 1/r12.

The values of C6 and C12 are determined from [ atomtype ] entries, which may ei-
ther give C6 and C12 explicitly, or implicitly through values for σ and ε, depending on the
combination rule chosen in the [defaults] section at the start of the .top file.

With comb-rule = 2 or 3, the nonbonded parameters input are σ and ε, and C6 and C12

are computed from C6 = 4εσ6 and C12 = 4εσ12. With comb-rule = 1, C6 and C12 are entered
directly. (Comb-rule = 2 specifies Berthelot combination rule; 1 or 3 specifies harmonic
mean mixing for C6 and C12.)

In the simplest case, keyword vdw-type=user signals the replacement of g(r) and h(r)
(and coulombtype=user the replacement of f(r)) by tabulated potentials for nonbonded
interactions between all particles.

These tabulated potentials are provided by the user in a file table.xvg, in which each
line contains values for r, f,−f ′, g,−g′, h,−h′ (separated by tabs or spaces). The r values
must be equally spaced (recommended spacing 0.002 nm), up to the cutoff radius plus 1nm.

Sometimes, we want to specify tabulated interactions only for certain types of particles,
or perhaps different tabulated interactions for different combinations of particles. This can
be accomplished using energy groups: in the .mdp file, include
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energygryps = xx, yy ...

energygrp_table = xx xx xx yy ...

where xx and yy are different groups (possibly defined using make_ndx). With this dec-
laration, Gromacs uses tabulated potentials table_xx_xx.xvg for the xx-xx interactions,
table_xx_yy.xvg for the xx-yy interactions, and so forth for each successive pair of energy
groups listed after energygrp_table.

Note: with tabulated interactions, the cutoff scheme must be cutoff-scheme = Group

(the new Verlet cutoff scheme is not yet compatible with tabulated interactions).
See http://www.gromacs.org/Documentation/How-tos/Tabulated_Potentials

6.2 Running faster

Everyone wants their simulation to run faster. There are several ways to coax a few more
nanoseconds per day out of Gromacs.

Add processors. The same size system running on twice the number of cores will run
twice as fast, until each core is handling so few atoms that cores waste lots of time swapping
information with neighboring cores about atoms on the boundaries between domains. But
diminishing returns is a crossover, so it may be tempting to push the number of atoms per
core down from 4–5000 to closer to 1–2000. Do timing studies: see how many ns/day/core
you are getting with your system before wasting valuable resources.

Use GPUs. GPUs (Graphical Processing Units, i.e., video cards) have amazing parallel
computation capability, now being harnessed by Gromacs and other simulation codes to
handle nonbonded (Lennard-Jones) interactions. At present, the ACI cluster has no nodes
with GPU support; our group has a single-node workstation, with 2 GPUs supporting twin
CPUs with 14 cores each. The CPUs on this workstation are comparable to those on ACI
nodes, and the GPU support speeds typical jobs by factors of 2.5–3. Some national super-
computing center (XSEDE) machines also have GPU support. See above for details on how
to run Gromacs jobs on GPU nodes.

Constrain bonds. Molecular bonds are stiff and vibrate at high frequencies. It takes
a very short timestep to follow this rapid motion accurately, which for most purposes is
not interesting anyhow. In the .mdp file, you can specify that bond lengths be constrained
to be constant. The dynamics then uses a special algorithm called LINCS to satisfy the
constraints.

With constrained bond lengths for bonds involving hydrogen atoms, timesteps can often
be boosted from the usual 1 fs to more like 2 fs. (We constrain these bonds especially, because
hydrogen atoms are light, and so have high “thermal velocity” compared to all other atoms.)
To check whether your timestep is too large, check the stability of the energy versus time in
a short simulation with the thermostat turned off.

Typical parameters are

constraints = h-bonds

constraint_algorithm = lincs

See Gromacs manual section 7.3.18 and
http://www.gromacs.org/Documentation/How-tos/Removing_fastest_degrees_of_freedom.
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In general, it is not a good idea to constrain the lengths of bonds along the backbone
of a polymer. As the polymer explores multiple configurations, satisfying all the length
constraints is a numerically challenging problem best avoided.

Note that bond lengths in water are automatically constrained (using a special algo-
rithm called SETTLE), unless water is explicitly declared flexible in the .mdp file with
define -DFLEXIBLE.

Two times when you should not constrain bond lengths are 1) minimizing the energy
(the minimizer does not work well with constraints), and 2) computing normal modes (see
below).

Virtual sites for hydrogen. A step beyond constraints is to “make H atoms virtual sites”,
i.e., to determine the position of H atoms at each timestep by applying deterministic rules
about bond lengths and angles. For molecules with .itp files built by pdb2gmx, this can be
done by calling pdb2gmx with option -vsite h.

A leading Gromacs developer (David van der Spoel) reports that his usual setup is to
use virtual site hydrogens, fixed bond lengths and LINCS, and a 4fs timestep.

Note that when boosting the timestep in this way, the parameter nstlist specifying the
steps between neighbor list rebuilds should be decreased from the usual value of around 10
to more like 5 (as the timestep is doubled from 2 fs with only bond constraints, to 4 fs with
vsite hydrogens), so that the elapsed time between neighbor list rebuilds is constant. See
http://www.gromacs.org/Documentation/How-tos/Speeding_Up_Simulations

Shorten the cutoff. If you are desperate, one way to speed up a simulation at the expense
of quantitative accuracy is to shorten the nonbonded cutoff distance, which reduces the
number of pairwise interactions computed. Decreasing the cutoff by a factor λ reduces the
number of particles within range by a factor of λ3, so reducing the cutoff from 2.5σ (a
standard recommendation for LJ interactions) to 2σ is worth a factor of 2 in speed.

Change the physical parameters. If you are simulating a glassy fluid, things will be slow
near the glass transition; maybe you need to raise the temperature. If you are simulating a
polymer melt or concentrated solution, things will be slow if the chains are long enough to
become entangled; maybe you need to shorten the chains. (If your aim is to study glassy
fluids or entangled polymers, you must think carefully about how close to Tg or how entangled
a melt you can approach.)

Simplify the model. Atomistic simulation is appealing because it represents real molecules
with chemical specificity, but some systems are too big and too slow to simulate atomistically.
There are various levels of “coarse-graining” that can be applied. For example:

1. “united-atom” models, in which hydrogens are lumped together with the atoms to
which they are bonded;

2. Martini models, in which 2–3 heavy atoms at a time are lumped together as a single
“bead”;

3. bead-spring models, in which a polymer chain is idealized as a sequence of beads
bonded by springs, with the bead representing some small polymer segment of several
monomers or more.
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6.3 Walls

Gromacs provides support for included Lennard-Jones 9-3 or 10-4 walls. A 9-3 wall is
equivalent to interacting with a semi-infinite slab of a given atom type, and can be useful
for equilibration. The 9-3 wall potential is

U = πρj
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Walls are placed along the z-axis, and you can choose to include either one or two walls. A
typical set of .mdp parameters looks like

; wall

nwall = 2 ; number of walls

wall_atomtype = opls_135 opls_135 ; atom type for each wall

wall_type = 9-3 ; choose the potential

wall_r_linpot = 0.03 ; 0.3 A

wall_density = 100 100 ; wall density (nm^-3)

The parameter wall_r_linpot lets you set a distance beyond which the potential is contin-
ued linearly (with a constant force). This forces atoms that lie beyond the wall back into
the system. It is a good idea to always include this parameter if there is a chance atoms may
be placed beyond the wall, since a fatal error will result without it. Setting the distance as
very close to the wall will have negligible effect on your simulation physics (since atoms will
almost always prefer to be farther than the vdW radius from the wall).

Sometimes you may want to simulate a wall as an interaction with many atoms. However,
you are limited to a single wall-type in Gromacs. A way to avoid this is by introducing
your own “custom” wall atoms. To do this, create a dummy name for your atom (such as
“wallatm”) and append it to atomtypes.atp and ffnonbonded.itp in your force field. For
atomtypes.atp, you can enter 0.0 for the mass column because it will not matter for a wall.
For ffnonbonded.itp, you can again add zeros to the columns. Follow the example of the
section of special dummy-type-particles in oplsaa.ff. Then, create a new file called
walls.itp in your force field. Append the following line to forcefield.itp:

#include "walls.itp"

Open walls.itp. Here, you can define the Lennard-Jones parameters for each atom type in
your system interacting with your dummy wall atom. A sample walls.itp for the OPLS-AA
force field looks like this

[nonbond_params]

; i j func sig eps
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; iPP wall @ 300 K from s.c. lattice

; wall_density = 100

ppwall opls_135 1 3.36558e-01 2.09866e-01 ; wall-CH3

ppwall opls_136 1 3.36558e-01 2.09866e-01 ; wall-CH2

ppwall opls_137 1 3.36558e-01 2.09866e-01 ; wall-CH

ppwall opls_140 1 2.84443e-01 1.41492e-01 ; wall-H

The Lennard-Jones parameters are chosen according to the following formulae
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where ρw is a free choice for the wall density. It is advisable to choose a wall density so that
the Lennard-Jones parameters are of the same order of magnitude as typical nonbonded
parameters. The wall density in the .mdp file must match the wall density that you choose.

6.4 Building polymer .pdb files

We illustrated one scheme for building polymer configurations using Avogadro and topol-
ogy files using pdb2gmx, for the simple example of decane. This scheme is workable but
increasingly tedious for very long molecules. It is particularly painful if the system of in-
terest contains random copolymers, in which different chains have a different sequence of
the same types of monomers. Then each different sequence is a different species, requiring
its own topology file. Another example are atactic polymers, in which sidegroups on each
monomer are randomly on one side or the other of the all-trans chain. A single molecule .itp
file works for all such chains, but we must still generate many different .pdb files to represent
the system. Either way, we have an unpleasantly large number of .pdb files to generate and
clean up.

In such cases, we can use scripts to help us build .pdb files for long chains, which can
then be processed by pdb2gmx and used to construct initial configurations. The basic idea is
to prepare .pdb files for the constituent monomers, in which the atoms have been properly
ordered and labeled to match our residue definitions. The script (see below) then uses
insert-molecules to assemble the monomers together into a single chain.

To generate .pdb files for the monomers, proceed as follows. First, use Avogadro to draw
the monomer in the all-trans state, including methyl groups at the attachment points for
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the “previous” and “next” monomers. Energy minimize the structure, then align the chain
so that it points along the z axis, with the zig-zag of the all-trans bonds in the x-z plane.

Aligning the zig-zag in the x-z plane can be tricky. For a chain like polyethylene, this can
be done by aligning two H atoms in a CH2 group along the y axis. Alignment along z can
be then performed by selecting as the atoms to align 1) the monomer first carbon C1, and
2) the terminal methyl carbon C∗, which is structurally equivalent to C1. This will place C1
at the origin, and place C∗ along z. Measure and record the distance from C1 to C∗.

Once the alignment has been performed, delete the initial and terminal methyl groups,
and save the monomer .pdb file. Now edit the file, in much the same way as for decane;
remove the CONECT statements, reorder and renumber the atoms to correspond to the
residue definition, and replace the atom and residue names.

Finally, add a comment line at the top of the .pdb file, which we use to record the
monomer “offset vector”:

REMARK 999 0. 0.000 z.zzz

where z.zzz is replaced by the distance along z from C1 to C∗.
Now we use a script buildChain.sh to automate the process of using gmx insert-molecules

to add monomer .pdb files to a configuration, which will build up a chain. buildChain.sh

is written in the “language of the shell”, that we use whenever we type at the command line.
Shell scripting is convenient, because much of the script is ordinary commands.

#!/bin/bash

# args are xBox, yBox, zBox

# insert first monomer (read from stdin)

read monomer

cp $monomer.pdb newChain.pdb

read a b dx dy dz < $monomer.pdb

zOff=‘echo "scale=4;$dz/10" | bc -l‘

echo "0. 0. $zOff" > pos.dat

# loop over monomers

while read monomer

do

mv newChain.pdb oldChain.pdb

gmx insert-molecules -f oldChain.pdb -ci $monomer.pdb -ip pos.dat \

-rot none -scale 0. -o newChain.pdb -box $1 $2 $3 &> insert.log

read a b dx dy dz < $monomer.pdb

zOff=‘echo "scale=4;$zOff + $dz/10" | bc -l‘

echo "0. 0. $zOff" > pos.dat

done

Shell scripting in general is beyond the scope of this document; here we present some
comments on the script above.

buildChain.sh takes three inputs, which are the dimensions of the box containing
the chain. Script arguments are accessed with $1, $2 and so forth (for the 1st, 2nd,

45



. . . arguments). (In general, $<variable> means “the value of ¡variable¿”.) This script reads
a list of monomer names from “standard input” (stdin), which by default means typing from
the command line, but can be supplied from any file by “input redirection”:

buildChain.sh 1. 1. 20. < monFile.txt

This syntax avoids the need for an “open and save” file dialog box to specify the input file.
The script produces a file newChain.pdb, by copying the first monomer .pdb file to

newChain.pdb, and then looping over the monomer names read from stdin, adding each
one to the growing chain with insert-molecules. Before each monomer addition, the file
newChain.pdb is renamed (with mv) to oldChain.pdb, and the new monomer added to
oldChain.pdb to give newChain.pdb.

The top line of each monomer .pdb file is read to extract the “offset” value, which is
added to the total z offset zOff. The total offset is written (using echo) to a file pos.dat,
and used by insert-molecules to place the next monomer.

One shortcoming of shell scripting is that floating-point arithmetic is awkward. zOff is
updated by adding the next offset increment dz, but we cannot simply write “zOff=zOff+dz”.
Instead, we use the “basic calculator” bc (with option -l, which loads a “math library”). To
use bc, use echo to “type in the commands”, much as we would do on an actual calculator.
The commands are “piped into” bc using |. Finally, the output of the entire operation is
saved into the variable zOff by enclosing the command string in “backquotes” (‘...‘).

6.5 Self-connectivity through periodic boundary

It is sometimes desirable to bond a molecule to itself through the periodic boundary. This
effectively creates an infinitely long chain, which can be useful for studying polymer crystals
without end effects. However, pdb2gmx cannot generate topologies for these systems. The
simplest approach in such cases is to build the ordinary molecule first, use pdb2gmx to
generate its topology file, and then hand-edit the topology to remove the terminal atoms,
and include the “extra” bonds, angles, and dihedrals resulting from the connection through
the periodic boundary.

If you instead only want to build a simple ring polymer, you can still use pdb2gmx, if you
edit the file specbond.dat (Special Bonds) to construct the bond between the beginning and
the end of the chain. Documentation of specbond.dat is available on the Gromacs website.
This method does not work for linear chains self-connected through the boundary because
pdb2gmx is not aware of the periodic bonding of the molecule when it checks the tolerance
radius for building the “special” bonds.

6.6 Normal mode analysis

The phonon spectrum for a system can be computed with normal mode analysis. This is
most useful for crystalline systems, for which the set of deformations is well described by a
set of normal modes about the lowest-energy state. The total free energy of a system can
be computed analytically, in the approximation that the normal modes are not interacting
(which is true if the amplitudes of thermal oscillation are small enough). The total free
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energy of a system of decoupled quantum harmonic oscillators is

F = U0 +
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)
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where U0 is the simulated potential energy, and ωi are the phonon frequencies. The sums are
taken over all non-zero normal modes. There should 3 zero modes for a system with periodic
boundaries in all directions and no walls, since there are modes of motion (bulk translation
in x, y, z) that result in no change for the system.

For a normal mode analysis, thorough energy minimization (force tolerance much less
than 1 in Gromacs units) is required. Typically, a force tolerance between 10−4 and 10−2 is
sufficient, although this will depend on your system. Minimization should be done using the
L-BFGS minimizer. If machine precision is reached before the force tolerance is met, you
may need to perturb the structure and try minimizing again, since machine precision is not
sufficient to guarantee you are close enough to the energy minimum. Then, modify the .mdp

file to use the nm integrator. This will construct a Hessian matrix for you in .mtx format.
Then, use g_nmeig to diagonalize the matrix, and obtain the eigenvalues.

Memory usage for the matrix construction and diagonalization scales very unfavorably,
so a limit of about 7,000-8,000 atoms is all that is practical for this type of analysis.

6.7 Pulling

You can use Gromacs to “pull” on certain groups of atoms. This can be useful for many
purposes; one common application is “umbrella sampling”, used to map out the potential
of mean force of some coordinate. In umbrella sampling, a system is biased into into un-
likely configurations, by applying a harmonic “umbrella” potential to some coordinate. The
tendency of the coordinate to move away from the bottom of the umbrella is a measure of
the mean force acting on it. Another common setup is to constrain some coordinate, and
measure the force required to hold the coordinate at the specified value. Still another option
is to apply a fixed force to a coordinate, and measure the resulting average displacement.

The groups of atoms to be pulled on are specified using an index (.ndx) file, which are
built using the interactive utility make_ndx. The options for what kind of pulling to do, what
groups to pull on and how to pull on them, are given in the .mdp file. Numerous options
are available, and are documented in the Gromacs manual. The options changed completely
from Gromacs 4 to 5, and again from 5.0.7 to 5.1.4, so be sure to look at the correct help file
for the version you are using. For 5.1.4, the full set of mdp options is well documented online
at \http://manual.gromacs.org/documentation/5.1/user-guide/mdp-options.html.

Here is an example .mdp file for 1D constant force pulling.

; pull code

pull = yes

pull-ngroups = 2

pull-ncoords = 1

pull-group1-name = Cleft

pull-group2-name = Cright
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pull-coord1-type = constant-force

pull-coord1-geometry = distance

pull-coord1-dim = N N Y

pull-coord1-k = -1500 ; -force in kJ/mol/nm
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