
Chapter 6

Lattice models

Microscopic models for statistical mechanics span a broad range from detailed and complex, to
idealized and simple. At one end of this range are atomistic representations of real molecules,
with detailed potentials meant to represent accurately the interactions between atoms. The goal
of simulations based on such models is quantitatively accurate representation of the real system
in all its particular behavior. Such simulations are inevitably expensive and therefore limited.
In the middle are models in which groups of atoms or entire molecules are represented by single
interacting particles, with some more or less reasonable potential. Simulations based on such
lumped-atom models are faster to perform, and can represent the physical behavior of the system
semiquantitatively.

Lattice models are a class of microscopic models that do away entirely with the complications
arising from particles moving arbitrarily in space. In a lattice model, space is represented by
a regular array (lattice) of locations, with some simple degree of freedom at each location. For
example, consider a lattice model of a binary mixture of two fluids A and B, in which each lattice
site contains either an A or a B molecule. The degree of freedom at each site is a variable s that
can take two values (say, zero if A is present, one if B is present). Interactions in such a model are
typically limited to nearest neighbors.

The same lattice model interpreted slightly di↵erently can be used to describe a single-component
fluid (molecules plus vacancies), a binary fluid mixture (mixed species A and B, no vacancies), or
a simple model of a magnet (array of up and down spins).

Lattice models are much simpler to simulate than “o↵-lattice” models of particles, because
the degrees of freedom are simple, the interaction energies are easy to calculate, and the lattice
sites know where to find their neighbors. Of course, we lose some fidelity to the physical system
with such an idealized representation. But remarkably, lattice models do capture many essential
properties of the real system, especially when those properties depend on the collective behavior of
degrees of freedom over some extended region of space.

In such cases, the local details are of little consequence; what matters are larger-scale properties
of the real system shared by the lattice model, such as 1) the type of degrees of freedom the lattice
model contains (the “order parameter”), 2) symmetry properties (e.g., invariance under interchange
of A and B in a binary mixture), 3) the type of interactions (local or long-range, “attractive” or
“repulsive”), 4) the dimension of space (lattice is a line, or a plane, or a volume). Thus a properly
formulated lattice model can capture the essential properties of a real system. [Exactly what
constitutes a “properly formulated” lattice model, and what properties are “essential”, are topics
of renormalization group analysis, well beyond the scope of these lectures.]
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Figure 6.1: (a) Molecules in a liquid or dense gas. (b) Lattice representation of the configuration
in (a). (c) Alternate view as binary mixture. (d) Alternate view as up or down (+ or -) “spins”.

6.1 Ising model

[Newman & Barkema, p. 45↵]
The simplest lattice model is the Ising model, in which each lattice site contains a single degree

of freedom s that can take on two values, say ±1. Interactions are nearest neighbor, tending to
favor adjacent lattice sites with the same value of s.

The Ising Hamiltonian can be written

H = �J
X

n.n. pairs

sisj � h
X

sites

si (6.1)

In the above, J is the interaction strength between nearest neighbors, and h is an external field
coupling linearly to the sites. The cost from the first term of a “bad bond” (between sites with
opposite values of s) is 2J , relative to a completely “aligned state” (all sites with the same value
of s). The field h favors “up spins” (for h > 0); the field energy cost of flipping a spin from up to
down is 2h.

The energy of the aligned state is �(z/2)J per site, in which z is the “coordination number” of
the lattice (number of bonds starting or ending on a given site). The lattice may be taken to be a
variety of structures, but for our purposes we shall assume a simple square or cubic lattice in d = 2
or d = 3 dimensions respectively. For the square or cubic lattices, z = 4 or z = 6 respectively.

6.1.1 Ising model interpretations

The Ising model arises in many di↵erent physical situations. The variable s may represent an “up”
or “down” magnetic moment or “spin” in a simple model of a magnetic material, in which nearby
spins tend to align with each other, and are coupled to an externally applied magnetic field h.
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We may also interpret s as related to the occupation of a lattice site by one of two di↵erent
species A and B in a fluid binary mixture. In d = 2 dimensions, the two species A and B may be
interpreted as “occupied” and “nonoccupied” sites in a model of molecules adsorbed to a surface.

The Ising model can be cast in a variety of equivalent forms. For problems in which we interpret
the site variable as related to the occupation of site i by some species, we prefer to define a site
variable �i = (1 + si)/2 that takes on the values 0 (unoccupied) or 1 (occupied).

Then the Hamiltonian can be written as

H = �
X

n.n. pairs

(�i(1� �j) + (1� �i)�j)� µ
X

sites

�i

= �(�/2)
X

n.n. pairs

sisj � (µ/2)
X

sites

si + (�z/2� µ/2)N (6.2)

The first term imposes a cost of � for a “bad bond” (adjacent sites occupied with di↵erent species),
relative to a state in which all sites are occupied with the same species. Likewise, the second term
imposes a bias towards occupied states (for µ > 0). The cost of changing a single site from � = 1
(occupied) to � = 1 (unoccupied) is simply µ.

The “occupation” Hamiltonian is equivalent to the Ising Hamiltonian, as can be seen by sub-
stituting �i = (1 + si)/2 and rearranging, to obtain the second line in Eq. (6.2). (Here z is the
number of neighbors per site, and N the number of sites in the lattice). With � = 2J and µ = 2h,
the two Hamiltonians are the same up to a constant shift (�z/2� µ/2) of the energy per site.

The Ising model can be generalized in many ways; one interesting generalization is to let the
site variable take on p > 2 di↵erent values instead of just two values (+1 and �1 for spins, or 0
and 1 for occupation). We may think of this as corresponding to a lattice occupied by p di↵erent
species.

Of course, this invites the question of how these p species should interact, which in general
involves p(p� 1)/2 di↵erent interaction energies, even for near-neighbor interactions. The simplest
model would be to assume that each pair of adjacent sites occupied by di↵erent species has the
same energy cost J , no matter what di↵erent species are present.

This is the p-state Potts model, with Hamiltonian

H = J
X

n.n. sites

�
1� �si sj

�
� b

X

sites

�si 0 (6.3)

in which the si take on p distinct values, say 0, 1, . . . p � 1. The cost of a bad bond is J , relative
to an aligned state (all si the same value). For p = 2 we recover the Ising model, written in yet
another equivalent form.

6.1.2 MC for lattice models

To simulate a lattice model with Monte Carlo using the Metropolis method, we need to specify a
set of proposed moves. The simplest move for a lattice model is to choose a site at random, and
then to change its site variable from its present value to one of the other possible values, chosen at
random. For the Ising model, this amounts to trying to “flip” a randomly chosen “spin”.

This prescription will evidently satisfy detailed balance; any spin is equally likely to be chosen
to flip, and any target value is equally likely to be chosen, so that the attempt rates to and from
microstates r and s connected by a single spin flip are clearly equal.

Note that single spin flips do not conserve the quantity of each species present. We are sometimes
interested in simulations in which the number of each species is conserved. We may either be



178 CHAPTER 6. LATTICE MODELS

+

+

+ +

--

-

- -

+

+

+

+ +

---

-

- - - +

+

+

+ +

---

-

- - -

+

+

+

--

-

- -

-

Figure 6.2: Top: single spin flip. Bottom: exchange of neighboring spins, conserving total spin.

concerned with an equilibrium problem in which the relevant ensemble is one in which the total
number of some species is conserved, such as the shape of a droplet of one component surrounded
by another.

In such cases, instead of single spin flips, we can construct Monte Carlo moves in which pairs
of spins are exchanged. If we are only interested in preserving the total number of spins, but not
representing the time-dependence of how spins move around, we can exchange distant pairs of spins,
which evidently samples configuration space faster than obliging spins to di↵use.

Alternatively, we may actually be interested in representing the dynamical behavior of the
simulation, i.e., we may want the spins to di↵use locally. In such a case, we can construct Monte
Carlo moves in which pairs of adjacent spins are exchanged. This local spin-exchange dynamics
(called Kawasaki dynamics) will be faithful to the conservation law, but will be much slower to
explore the equilibrium ensemble than either spin flip or nonlocal spin exchange Monte Carlo. The
equilibrium ensemble contains microstates with local variations in the concentration of species;
to get from one such state to another in which the variations are unrelated, under spin-exchange
dynamics the excess in species must di↵use across the region. If the regions are large (as near a
critical point, see below) this process is very slow. We shall discuss local and nonlocal spin exchange
Monte Carlo further below.
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6.2 Mean-field theory

Very few systems are simple enough that we can evaluate their partition functions exactly. Es-
sentially, only those systems that can be thought of as a set of noninteracting degrees of freedom
(particles in an ideal gas, or independent spins on a lattice, or independent modes of oscillation in
a harmonic solid) are simple enough for an exact calculation of the partition function.

For the vast majority of systems, we need approximate methods for computing the partition
function. Simulations provide one approach, in which we contrive to generate a large set of mi-
crostates that are representative of the desired ensemble; averaging numerically over the microstates
allows us to perform ensemble averages on a computer. While extremely useful, this approach does
not of course give any analytical results.

Here, we present a broadly applicable analytical approximation to the partition function, called
mean field theory. Mean field theory can be introduced and derived in many ways. In essence, it
represents an instance of Polya’s dictum for solving hard problems:

If you can’t solve a problem, then there is an easier problem you can solve: find it.

Here, the hard problem we cannot solve is computing the partition function for many interacting
entities; the easier problem we can solve is computing the partition function for a single degree
of freedom in a “mean field” that represents the average influence of all the other entities in the
system.

An intuitive argument for a mean-field approximation to the lattice free energy can be given
quite simply, as follows. The Helmholtz free energy F is quite generally equal to Ē � TS. For
a nontrivial interacting system such as the Ising model, there is no easy analytical calculation
for either the average energy Ē or the entropy S. However, we can give a simple estimate of
both quantities, by assuming that the typical microstates of a homogeneous phase are completely
randomly mixed.

This is a reasonable assumption at high temperatures, but certainly not accurate at lower tem-
peratures, where the two mixed species begin to be correlated in their locations, with A molecules
tending to be located next to other A molecules, so as to avoid at least some unfavorable A-B
contacts. These correlations evidently reduce the entropy, relative to completely random mixing of
the two species.

Nevertheless, we can estimate the average energy Ē assuming random mixing by replacing all
appearances of �i in Eq. 6.2 with its average value �, to obtain an estimate of the average energy
per site as

Ē/N ⇡ �z�(1� �) (6.4)

Here N is the total number of lattice sites and z is the number of neighbors per site. Each site
“owns” z/2 bonds, each of which is a “bad bond” with probability 2�(1� phi). (In the above, we
have dispensed with the chemical potential term, which we may colloquially say was present only
to enforce the desired average value of �.)

Correspondingly, we can estimate the entropy per site S/N by saying that the occupation of
each site is chosen independently of other sites (random mixing again), with probability � to be
species A and 1 � � to be species B. Using the information-theoretic entropy from Section 2.4.3,
we have

S/(kN) ⇡ �� log �� (1� �) log(1� �) (6.5)

This expression can be obtained as well by elementary counting arguments. The number of
ways ⌦ of placing nA molecules of species A and nB of species B on a lattice with N sites and no
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vacancies (i.e., N = nA + nB) is simply given by

⌦ =

✓
N

nA

◆
=

N !

nA!nB!
(6.6)

The entropy S is k log⌦; using the simplest form of the Stirling formula, we soon obtain Eq. (6.5),
with � = nA/N and 1� � = nB/N .

We note in passing that if of the species (A, say) is dilute in the other, S becomes

S/(kN) ⇡ �� log �+ � ⇡ �� log � (6.7)

which is the lattice entropy of a dilute ideal gas (the last term being the leading contribution for
small �).

Putting together Eqs. (6.4) and (6.5) as Ē � TS, we have finally

F/N ⇡ z��(1� �) + kT [� log �+ (1� �) log(1� �)] (6.8)

which is certainly a manageable (and thus popular) approximate free energy. This expression is
called a mean-field approximation, for reasons that will become clear in the next section. The
approximate free energy is symmetric under interchange of � and 1 � �, which corresponds to
exchange of the species labels A and B. The two terms in Eq. 6.8 approximate the energy and
entropy per site, and favor demixing and mixing respectively. The first term is concave down in �,
the second concave up; the second term favors a minimum at � = 1/2 (mixed state), while the first
term struggles against such a mixed state.

One question that immediately arises: how good an approximation is this to the true free
energy? We can immediately observe that the approximations for both E and S are overestimates.
The energy assuming random mixing ignores how correlations can avoid repulsive interactions, and
the entropy assuming random mixing assumes all site occupations can be chosen independently —
which they cannot, if the system is correlated to avoid repulsive interactions. We may hope that
because F is the di↵erence E � TS, that fortune may favor us with canceling errors in E and S.
In the next section, we shall show that this free energy is in fact an upper bound to the true free
energy.

6.2.1 Variational theorem

We relate the easy (mean-field) problem to the hard (exact) problem with the aid of a variational
theorem, which states that the true free energy F is lower than any estimate Fest we can make
based on a model partition function:

F  Fest ⌘ hHi0 � TS0 (6.9)

Here the subscript 0 refers to a “model” partition function, in which the actual energies Er and
microstate probabiities Pr = e��Er/Z are replaced by a more convenient set of model microstate
energies Er,0 and probabilities Pr,0, defined by

Pr0 =
e��Er,0

Z0

Z0 =
X

r

e��Er,0 = e��F0 (6.10)

The entropy of the model partition function is S0.
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The model free energy F0 can be written E0 �TS0, in which E0 is the average model energy in
the model ensemble, given by hH0i0. Using this, we can rewrite the estimated free energy Fest in
an alternate form as

Fest = F0 + hH �H0i0 (6.11)

The point of the theorem (which we shall prove below) is that any model partition function

provides an upper bound to the free energy. In practice, we choose the microstate energies E(0)
r in

some convenient way, so that we can evaluate the model partition function exactly, while at the
same time providing some reasonable approximation to the physics of the system.

Most commonly, the model partition function involves approximating a system of many inter-
acting particles or molecules with a system in which each particle or molecule interacts with the
others only through some mean field, such as the average concentration. We shall introduce such
a mean-field approximation in the next section.

We now set about proving the theorem. We will show that the right-hand side, when minimized
over the choice of weights Pr0, gives the left hand side, with Pr0 equal to the actual microstate
probabilities Pr. (The discussion here is closely related to the arguments given in Section 2.4.3 that
maximizing the information-theoretic entropy subject to the constraint of fixed average energy leads
to the canonical ensemble.)

We begin by expressing Fest in terms of Pr0, using the result Eq. (??) for the information-
theoretic entropy of the model ensemble to write

Fest =
X

r

ErPr0 + kT
X

r

Pr0 logPr0 (6.12)

Now we minimize the above with respect to Pr0 subject to the normalization constraint on Pr0,
using the method of Lagrange multipliers. [This we do by minimizing �Fest � �(

P
r
Pr0 � 1).] We

find

0 = �Er + logPr0 + 1� � (6.13)

Solving for Pr0 and imposing normalization (which determines �), we find the optimum value P ⇤
r0

is the true microstate probability,

P ⇤
r0 =

e��Er

P
r
e��Er

= Pr (6.14)

We can verify that this is a minimum, by expanding Fest to second order around the optimum
values P ⇤

r0. The second order correction is

�Fest = (1/2)
X

r,r0

@2Fest

@Pr0@Pr00
(Pr0 � P ⇤

r0) (Pr00 � P ⇤
r00) (6.15)

The only contribution to the second derivative matrix comes from the terms kT
P

r
Pr logPr,

so that we have
@2Fest

@Pr0@Pr00
=

kT

P ⇤
r0

�r r0 (6.16)

which is evidently a diagonal matrix, with all positive terms. Thus the second-order corrections to
Fest when we shift away from P ⇤

r0 are guaranteed to be positive, and the extremum we have found
is a minimum.
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6.2.2 Bragg-Williams approximation

We make use of the variational theorem of the previous section, to derive a mean-field theory for a
binary mixture described by the “occupation” form of the Ising Hamiltonian. We write our model
Hamiltonian as a system of single spins interacting only with an e↵ective chemical µm:

H0 = �µm

X

i

�i (6.17)

The strength of µm will be determined by minimizing the mean-field free energy estimate, given by
the right-hand side of the variational theorem.

In the present problem, the number of particles present fluctuates, while the chemical potential
µ is fixed; hence we write the mean-field free energy as Am, corresponding to its status as a grand
canonical potential.

It turns out to be more convenient to work in terms of the average site fraction �(µm), given by
the average of the local site occupation variable �i in the model ensemble, which takes on values
zero or one.

� = h�i0 (6.18)

This average in the model ensemble is simple to evaluate, because each occupation variable interacts
only with µm; we have

� =
e�µm

e�µm + 1
= (1/2) (1 + tanh (�µm/2)) (6.19)

We may think of µm in turn as a function of the true µ, since the value of µm on minimizing Am

will depend on µ.
The model ensemble entropy is simple to evaluate, because the site occupation variables �i are

all independently varying. Since the probability of any �i being equal to 1 is �, we can write the
model entropy S0 as

S0 = �N
X

r

Pr logPr

= �N (� log �+ (1� �) log(1� �)) (6.20)

Likewise, the average of the true Hamiltonian in the model ensemble is easily evaluated, because
the value of each occupation variable varies independently. The average hHi0 can be expressed in
terms of � as

hHi0 = z��(1� �)� µ� (6.21)

The combined right-hand side is the model grand canonical free energy Am, given by

Am/N = z��(1� �) + T (� log �+ (1� �) log(1� �))� µ�

⌘ Fm(�)/N � µ� (6.22)

This form of Fm(�) is the Bragg-Williams approximation, which we informally wrote down at the
beginning of this section.

Minimizing with respect to µm, which indirectly controls the value of � in the model ensemble,
leads to

0 =
@

@µm

(Fm(�)/N � µ�)

=
@Fm/N

@�

@�

@µm

� µ
@�

@µm

(6.23)
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which evidently results in
@Fm/N

@�
= µ (6.24)

6.2.3 Legendre transform

This is the same relationship that holds for the true grand canonical free energy A(h), defined via
Legendre transform from the Helmholtz free energy F (�) as

A(µ) = F (n)� µn (6.25)

with � = n/N (n the number of occupied sites, N the total number of sites). Standard thermody-
namic derivatives give µ = @F/@n, and so

µ =
@F/N

@�
(6.26)

consistent with the results of the previous section.
We recall from Section 2.4 that the Legendre transform arises when we change ensembles. We

start with a partition function in which we sum over microstates at fixed total number of sites of
each species,

Z = e��F =
X

r

e��H (6.27)

To relax the constraint of fixed total number of occupied sites, we introduce a field µ that
couples to the operator

P
i
�i, and extend the sum over microstates to include states with di↵erent

total number of occupied sites,

Zg = e��A =
X

r

e��(H�µ
P

i �i) (6.28)

Evidently we have

� =
1

N

*
X

i

�i

+
= �@A/N

@µ
(6.29)

The connection between the two thermodynamic potentials arises as in Section 2.4 from approx-
imating the extended partition sum with its dominant terms, that correspond to the most likely
value of �, so that

Zg ⇡ Ze�µN� (6.30)

This leads to
A(µ) = F (�)� µN� (6.31)

which is the same relation for the true potentials as holds for the model potentials.
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6.3 Mean-field phase behavior

As the strength of the repulsive interaction � between unlike species A and B is increased, a binary
mixture will ultimately cross a phase boundary, and demix into coexisting A-rich and B-rich phases.
The shape of f(�) determines the phase behavior of a binary mixture.

For symmetric binary mixture, invariant under interchange of A and B, f(�) is symmetric about
� = 1/2. Note that the function f(�) is the sum of a concave down function (the repulsive energy)
and a concave up function (the entropy). At high temperatures, the entropy dominates, and f(�)
has a single minimum at � = 1/2.

As the temperature is reduced, the repulsive energy becomes more important, and f(�) devel-
ops a pair of minima of equal depth, symmetrically displaced from � = 1/2. The dimensionless
quantity �� measures the relative importance of the repulsive energy between unlike species, and
the configurational entropy of a random mixture of two species.

6.3.1 Coexistence

In Section 2.5.2, we showed directly from the grand canonical ensemble that one form of the
conditions for coexisting phases are equal temperatures, chemical potentials, and equal minimum
values of the grand potential A.

From the Legendre transform relations, the slope of the function F (�)/N (henceforth written
f(�)) is the chemical potential µ. For some ranges of µ, there is only a single value of � at which
f 0(�) = µ, and hence only one possible phase for this value of µ. But when the function f(�) is
not everywhere convex, there will be some values of µ for which there are multiple values of � at
which @f(�)/@� equals µ.
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Figure 6.3: Free energy curve f(�) in Bragg-Williams approximation for symmetric binary mixture
at �� = 2.3, with tangency points �0, �1, �2 for µ = �0.05. Both �a10 and �a20 are positive; �0

is equilibrium phase.

Now consider the line t(�;�0) tangent to the curve f(�) at �0. The equation for this line is
t(�;�0) = f(�0)+µ0(���0), where µ0 equals f 0(�0). The vertical distance d(�;�0) from the curve
f(�) to this tangent line can be written

d(�;�0) = f(�)� (f(�0) + µ0(�� �0)) (6.32)
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The Legendre transform tell us that A(µ)/N (henceforth a(µ)) is equal to f(�) � µ�, with
µ = f 0(�). Suppose there are two points �0 and �1 on f(�) with the same slope. We can find
which has the smallest value of A, by taking the di↵erence

a(�1)� a(�0) = (f(�1)� µ0�1)� (f(�0)� µ0�0)

= f(�1)� (f(�0) + µ0(�1 � �0)) = d(�1;�0) (6.33)

But this is simply the vertical distance from the curve f(�) at �1, down to the tangent line t(�;�0).
So if the point on the curve f(�1) lies above the tangent line through �0, the state at �0 has

lower grand potential, and corresponds to the equilibrium phase. Whereas, if the point on the
curve f(�1) lies on the tangent line, the states at �0 and �1 have the same value of grand potential
(and the same chemical potential µ, and temperature). Thus the conditions for coexisting phases
are fulfilled, and the states at �0 and �1 represent coexisting phases.

0.0 0.2 0.4 0.6 0.8 1.0
�0.16

�0.14

�0.12

�0.10

�0.08

�0.06

⇥

f�⇥⇥

Figure 6.4: Free energy curve f(�) in Bragg-Williams approximation for symmetric binary mix-
ture at �� = 2.3, with two tangents corresponding to single phases, and one common tangent
corresponding to two coexisting phases.

This graphical recipe for finding coexisting phases is called the common tangent construction.
We can find the single or coexisting phases for f(�) by “rocking” a tangent along the outside of
the curve. The tangency point is the value of � for the given µ value.

When we encounter a curve f(�) which is not entirely convex — for example, which takes the
form of a double well potential, as does our model f(�) for a symmetric binary mixture — we
discover that a portion of the curve (between the points of common tangency) is not accessible.
Any value of � between the two points of common tangency is then achieved not by a homogeneous
single phase, but by an appropriately weighted combination of the two coexisting states.

As we systematically lower the temperature (by increasing the control parameter ��), the
shape of the free energy f(�) varies from a simple convex curve, to become increasingly flat at the
midpoint � = 1/2. Beyond �� = 2, the curve develops a pair of minima displaced just to either
side of � = 1/2, which move progressively outward as �� increases.

By plotting the � values of the coexisting phases as a function of ��, we obtain a coexistence
curve or “phase envelope”, which defines the region of two-phase coexistence for the symmetric
binary mixture. (Here we plot �� for theoretical simplicity; for correspondence with more usual
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Figure 6.5: Bragg-Williams free energy per site f(�), for indicated values of ��. Dashed lines are
common tangents between coexisting phases. Smaller points are limits of metastability (discussed
next section).

experimental plots we would invert this axis and plot 1/(��), which is proportional to Kelvin
temperature; this would invert the parabolic shape of the coexistence curve.)
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Figure 6.6: Coexistence curve (solid) and limit of metastability or “spinodal” curve (dashed), for
the Bragg-Williams free energy.

6.3.2 Stability and metastability

Now suppose we have a symmetric binary mixture with a specified fraction � of species A, initially at
su�ciently high temperature that the system is miscible. The function fm(�) is convex (everywhere
concave up); for whatever value of concentration � we specify, there is some corresponding field
value h that gives a single phase tangent.
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Suppose the fixed value of � is A-rich, somewhere slightly to the right of � = 1/2. Now consider
what happens when we “quench” the system, i.e., lower the temperature suddenly to a temperature
below Tc. If we lower the temperature enough, the composition � will fall into the region of two-
phase coexistence. Then the equilibrium state with average composition � is a mixture of the two
coexisting states �0 and �1. The fractions f0 and f1 = 1� f0 of the two phases are determined by
the “lever rule”,

f0�0 + f1�1 = � (6.34)

However, the kinetic pathway for our homogeneous initial state to reach the equilibrium state
of coexisting phases is very di↵erent, depending on whether or not the quenched free energy curve
f(�) is concave up or down at the initial composition �.
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Figure 6.7: Closeup of free energy curve for �� = 2.3; f(�) has inflection point (dot) at � = 0.68 —
a point on the spinodal curve. f(�) to left (right) of � = 0.68 is concave down (up), thus unstable
(stable).

In Fig. 6.7, the free energy f(�) below Tc has an inflection point at � = 0.68. Suppose first that
our initial composition lies to the right of this point, but to the left of the right-hand coexisting
phase (at the minimum, � = 0.8 or so). Then, f(�) is concave up at the value of � for our single
phase. In this case, our homogeneous initial phase remains locally stable, in the sense that small
variations of the species fraction away from the prescribed value would lead to an increase in the
free energy. Our initial phase is metastable. For example, if we had a system which was a 50-50
mixture of � values symmetrically slightly larger and smaller than � = 0.75, the free energy would
by the lever rule correspond to the midpoint of the line segment connecting the two phi values
(midpoint of right-hand dashed line in Fig. 6.7), which lies above the curve.

If our initial composition lies instead to the left of the inflection point, f(�) is concave down at
the value of � for our single phase. Then, even a tiny variation in local species concentration, for
example replacing a uniform � by a smooth sinusoid �+ �� sin(kx), leads to a lowering of the free
energy. This is because nearby values of �, say �± ��, give rise to a lower average value of f than
the uniform f(�). Our single phase is now unstable to tiny perturbations. (As an example, make
the same construction as before, but now around � = 0.55; the free energy is the midpoint of the
left-hand dashed line in Fig. 6.7, which lies below the curve.)

The spinodal is the locus of inflection points of the free energy curve, as the temperature (here
��) is varied. The spinodal composition �s thus satisfies f 00(�s;�) = 0. For the simple Bragg-
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Williams free energy, we can compute the second derivative explicitly, to find

0 = �2��+
1

�s

+
1

1� �s

(6.35)

Anticipating a result symmetric about �s = 1/2, we write �s = 1/2+ ��s, and combine the two
fractions to obtain

�� =
2

1� 4��2
s

(6.36)

Thus the spinodal temperature 1/�s as a function of � is for this model a parabola,

1/(�s�) = 1/2� 2(�� 1/2)2 (6.37)

For an initial composition somewhere away from the critical composition (here �c = 1/2), if
we cool slowly (thereby increasing ��) from the one-phase region, our initial homogeneous phase
first crosses the phase boundary, thereby passing into the metastable region, and then crosses the
spinodal, passing into the unstable region. (See Fig. 6.6.)

In the laboratory, single phases brought by a temperature quench into the metastable region
may persist for a considerable time, until tiny droplets of the minority phase form (nucleate).
After droplets of the minority phase of su�cient size are formed, they can grow by di↵usion of the
minority species towards the droplets, in a process called “Ostwald ripening”, whereby equilibrium
coexistence is ultimately achieved (see Section 9.4 below for a more detailed account of nucleation
and ripening).

Whereas, for a single phase quenched into the spinodal region, even tiny concentration fluctu-
ations present in equilibrium in the single stable phase can grow immediately, without nucleating
a minority phase. This process is called “spinodal decomposition”. The tiny concentration fluc-
tuations grow in amplitude, quickly saturating at concentrations corresponding to the coexisting
phases. Then the “spinodal pattern” of local regions of the two coexisting phases slowly “coarsens”,
with a steadily increasing characteristic size for the A-rich and B-rich regions, as the two species
di↵use and flow to more fully phase separate (see Section 9.2 below for a more detailed account of
this coarsening process.)

6.3.3 Experimental coexistence curves

The simple Bragg-Williams free energy gives qualitatively reasonable predictions for the behavior
of a binary fluid mixture. The model leads to a critical point at � = 1/2 and �c� = 2, with a
parabola-shaped coexistence curve and a parabolic spinodal.

However, a closer examination of experimental data for a typical binary fluid mixture reveals
that while these predictions are qualitatively reasonable, they do not agree well with the shape of
experimental coexistence curves. Fig. 6.8 displays the coexistence curve for a binary mixture of
cyclohexane and methanol.

It is apparent that the coexistence curve is much flatter than a parabola; the dashed curve is
an attempt to fit a parabola to the data. The solid curve is a fit to the data assuming a form
T (�) = Tc � a|�� �c|b, with the exponent b slightly greater than 3 (3.063).

It turns out that this qualitative discrepancy in the shape of the coexistence curve predicted by
mean field theory and observed experimentally, is echoed in discrepancies in predictions for other
thermodynamic quantities such as the heat capacity and isothermal compressibility in the vicinity
of the critical point. We shall discuss the mean-field predictions for these quantities in the next
chapter.
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Figure 6.8: Coexistence curve for cyclohexane-methanol. Solid line: fit, of the form Tc�a|���c|1/� ,
with � = 0.3265 (3d Ising critical exponent). Dashed line: similar fit, but with � = 1/2 (mean field
exponent).

For now, we observe that while mean-field theories are simple and convenient, and capture
much of the qualitative behavior of the systems they describe, they cannot be relied upon for
quantitatively accurate descriptions near the critical point. Furthermore, it turns out that “near the
critical point” for binary mixtures actually means most of the interesting shape of the coexistence
curve. Fig. 6.8 makes clear that a parabola is not a good description of the coexistence curve
even for temperatures far enough below the critical point that the coexisting phases are quite well
separated (10 and 90 percent compositions, say).

The origin of these discrepancies is the random mixing approximation itself, which works well at
high temperatures, when configurational entropy is much more important than repulsive energy, but
is progressively worse as we cool a system towards the critical point and ultimate phase separation.
As we cool, the location of A and B molecules becomes more correlated, with progressively larger
A-rich and B-rich patches appearing in typical system configurations. Because the error in the
mean-field approximation depends on the distance to the critical point T � Tc, it is not surprising
that the approximation fails to capture the experimentally observed dependence of quantities on T
near Tc, such as the volume fractions �1(T ) and �2(T ) of coexisting phases.

The qualitative discrepancies between mean-field theory and experiment are the reason for the
many largely phenomenological attempts to construct more accurate equations of state for simple
fluids and fluid mixtures, which play an important role in practical calculations of phase behavior
in chemical engineering and related disciplines.
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6.4 Flory-Huggins models

Placing molecules on a regular lattice inevitably involves some compromises. Di�culties arise for
example when we treat a binary mixture of molecules of somewhat di↵erent sizes: how do we choose
the lattice size, and what do we do about the unpleasantly under- or overfilled lattice sites? Also,
many molecules are not very well represented as roughly round; to place a long thin molecule or a
plate-shaped molecule on a lattice, the molecule must occupy more than one lattice site.

Figure 6.9: Rod-shaped and plate-shaped molecules on a lattice.

One important case that can be handled gracefully, is that of polymer-solvent or polymer-
polymer mixtures. On a lattice, we may hope to represent the polymer as a sequence of moeties
(“beads”) of about the same size as the solvent molecules (which we hope are reasonably round,
and will thus fit in a single lattice site). The polymer will then fill a contiguous sequence of lattice
sites.

We seek an extension of the simple random-mixing estimates of the interaction energy and con-
figurational entropy, to the case of polymer-solvent and polymer-polymer mixtures. This extension
was provided by Flory, and results in the Flory-Huggins free energy, which we describe in the next
sections.

6.4.1 Polymer solutions

Consider a mixture of nA polymer molecules each consisting of NA monomers, together with nB

solvent molecules, on a lattice of N total sites. Each monomer and each solvent molecule occupies
a single lattice site. We would like to make random-mixing estimates for the average interaction
energy per site E/N and the configurational entropy per site S/N .

Estimating the interaction energy assuming completely random mixing is easy; in fact, the
simplest answer is the same as we wrote in Eq. (6.4). (This expression neglects even the connectivity
of each individual polymer, which guarantees that two of the z nearest neighbors of each monomer
will also be monomers.)

It is more di�cult to estimate the configurational entropy, because we cannot as before simply
count the number of ways of placing the monomers on the lattice, making each choice independently
from among the remaining open sites.
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Flory introduced the following approximate scheme for counting the number of configurations
⌦, as follows. First, place the nB identical solvent molecules on the lattice; the number of ways to
do this is

⌦B =

✓
N

nB

◆
=

N !

nB!(N � nB)!
(6.38)

Now, we estimate the number of ways to place the nA polymers on the remaining open sites of
the lattice. We proceed by randomly choosing a lattice site for one end of each of the nA chains,
without worrying about whether the site is filled or not. Then, we generate a random configuration
for each chain, starting from its free end, again without worrying about whether the needed lattice
sites are open. For each chain, there are zNA possible configurations. The total number of possible
configurations for the A chains is then

⌦A =
NnA(zNA)nA

nA!
(6.39)

where the factor of nA! accounts for indistinguishability of the A chains.
Finally, we estimate the (rather small!) chance that the configuration we generated actually

works, i.e., that all the necessary sites were unfilled before we placed the A chains. We have nANA

monomers to place, and an equal number of lattice sites to hold them; but we placed the monomers
blindly. So the probability that the first site we choose is open is (N � nB)/N (because nB sites
are filled already), the probability that the second site is open is (N � nB � 1)/N , and so forth
down to 1/N .

We need all of the sites to be open for the configuration to be valid; this happens with (very
small!) probability

P =
(N � nB)!

NnANA
(6.40)

(Note that this expression for P is an estimate, not exact, because it neglects the correlations in
where we place monomers that result from the connectivity of the chains.)

The number of valid configurations is then the total number of configurations ⌦A⌦B, times the
probability P that a configuration is valid:

⌦ =
N !NnAzNAnA

nA!nB!NnANA
(6.41)

Evaluating S/k as log⌦, using the Stirling approximation, gives after some algebra

S/(kN) = �(nA/N) log(nA/N)� (nB/N) log(nB/N) + (nA/N)(1 +NA log z) + (nB/N) (6.42)

The last two terms are linear in the number of A chains and B solvent molecules, and can be
absorbed by a redefinition of the zero of chemical potential for each species.

(The factor (NA log z) is an estimate of the conformational entropy of each A chain, which
chooses among z directions to take each step in its random walk conformations. In our approxi-
mation, this conformational entropy is independent of the translational entropy, i.e., where on the
lattice the chain ends were located.)

Writing � as the site fraction of A monomers, we have � equal to nANA/N , and hence

S/(kN) = �(�/NA) log(�/NA)� (1� �) log(1� �) (6.43)

Combined with the random mixing estimate of the repulsive energy, we arrive at the Flory-
Huggins free energy per site,

F/N = ��(1� �) + kT [(�/NA) log(�/NA) + (1� �) log(1� �)] (6.44)
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Evidently this function is no longer symmetric under exchange of � and 1� �, because monomers
and polymers are not structurally identical entities. The entropy term is suggestive of the sum of
two ideal gases, one of polymer ends (or centers of mass), and one of solvent particles.

The Flory-Huggins free energy reduces to the Bragg-Williams result for NA = 1 (the polymer
is a single A monomer, the same size as a B solvent molecule). However, the Flory-Huggins free
energy and the behavior that derives from it are not symmetric under interchange of A and B, for
NA greater than unity.
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Figure 6.10: Flory-Huggins free energy per site f(�) for N = 10, and �� values equal to 0.8, 0.9,
1.0, . . . 1.6 times the critical value.

For polymers (NA >> 1), the phase diagram that results from Eq. (6.44) is quite asymmetric.
Below the critical point, the solvent-rich phase tends to be extremely dilute in polymer, while the
polymer-rich phase contains a decent amount of solvent. This is because the translational entropy
per monomer is extremely small for polymers, so there is little entropy gain per monomer from
dragging polymers into the unfavorable solvent. Whereas, the translational entropy per solvent
molecule is enough of an incentive for at least some solvent molecules to enter the polymer-rich
phase despite the repulsive polymer-solvent interaction.

6.4.2 Origin of �

In writing Eq. (6.2) for the interaction energy of binary mixtures on a lattice, we simply assumed
that the local energetic interaction took the form of a penalty for unlike species occupying adjacent
sites. But really, all molecules in a nonpolar liquid interact attractively with each other by van der
Waals or dispersive interactions, even when the molecules are dissimilar. The r�6 attractive tail of
the Lennard-Jones potential is a representation of this attraction, which arises from the interaction
of quantum-mechanical dipole fluctuations on one molecule and the dipole on a second molecule
induced by the dipole field of the first molecule.

Here, we briefly consider how a single repulsive � parameter results from competing attractive
interactions between AA, AB, and BB pairs of molecules. In a lattice model, we may approximate
the Lennard-Jones interaction as being su�ciently short-ranged to only involve nearest-neighbors
pairs of molecules, with an attractive energy ✏AA between an adjacent pair of A molecules, ✏AB

between an A and an adjacent B, and ✏BB between a B pair.
Then, in a random mixing approximation, the energy per site would be

E/N = �(z/2)
�
✏AA�

2
A + 2✏AB�A�B + ✏BB�

2
B

�
(6.45)
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Figure 6.11: Flory-Huggins phase diagram, for NA = 20. Connected points, coexistence curve;
dashed line, spinodal.

To write the above, we observe that there are z/2 bonds per site in the lattice, and that each bond
will connect two A molecules with probability �2

A
(the probability that both molecules are A), will

connect an A and a B with probability 2�A�B (we could have either AB or BA on the bond), and
so forth. The overall minus sign denotes attractive interactions (we take the signs of the various ✏
values to be positive for simplicity).

In writing the above equation, we have implicitly taken the zero of energy to be a reference
state of isolated A and B molecules, with no interactions whatsoever. A more convenient choice for
the reference state turns out to be a system completely demixed into pure A and pure B regions,
for which the energy per site would be

E0/N = �(z/2) (✏AA�A + ✏BB�B) (6.46)

Taking the di↵erence �E = E � E0 and rearranging, we find

�E/N = (z/2)(✏AA + ✏BB � 2✏AB)�A�B (6.47)

which allows us to identify
� = (1/2)(✏AA + ✏BB � 2✏AB) (6.48)

We see that � is positive if the attraction between like pairs of molecules is greater on average than
the attraction between an unlike pair of A and B, even if all interactions are attractive.

For dispersive interactions, it turns out that ✏↵� for interaction between molecules of type ↵
and type � can be written as

✏↵� = �↵�� (6.49)

The physical origin of this simplification is that the same quantity governing the strength of
quantum-mechanical dipole fluctuations of a molecule also governs the polarizability of that molecule
by an external field (such as the dipole field of another molecule).

Writing the various ✏ parameters in this way, we have finally

� = (1/2)(�A � �B)
2 (6.50)

which is evidently positive, for any values of �A and �B. If the interactions between molecules in a
binary mixture are purely dispersive, then the net interaction is always repulsive, and can only be
made zero by arranging for the two species to have matched molecular polarizabilities.
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However, not all interactions between monomers are the result of dispersive interactions. An
important origin of local interactions between certain classes of polar monomers are hydrogen-
bonding (H-bonding) interactions. A simple view of H-bonding interactions is as follows. Some
monomers have a localized region on their surface that is somewhat positively charged; most often,
this is a relatively acidic proton on some monomer, partly stripped of its electronic cloud by being
bonded directly or indirectly to an electron-withdrawing atom or group.

Other monomers may display on their surface a localized region that is somewhat negatively
charged; this may be for example the “lone pair” of electrons on an ether oxygen, or the slightly
negative electron cloud on a chlorine bonded to a carbon. These oppositely charged surface groups
can then be electrostatically attracted to each other, in much the same way as the slightly positively
charged hydrogen atom is attracted to the lone pair on the oxygen in an H-bond in water.

H-bonds can be either strong or weak depending on how large, localized, and accessible are the
charges of the H-bond “acceptor” (positive moiety) and “donor” (negative moiety). For our present
purposes, the important feature of H-bonds between monomers A and B is that their strength can
be roughly represented as the product of the “donor strength” � and the “acceptor strength” ↵.
Each monomer can be represented as having both a donor strength and an acceptor strength. The
interaction energy ✏AB between monomers A and B can then be written

✏AB = �A↵B + �B↵A (6.51)

because either monomer can in principle play the role of donor or acceptor, depending on the
orientations of the monomers (not explicitly represented in a simple lattice model).

Substituting this result into Eq. (6.48) for �, results in

� = (�A � �B)(↵A � ↵B) (6.52)

Unlike Eq. (6.50) for � resulting from dispersive interactions, the above expression is not necessarily
positive. In fact, we can arrange for � arising from H-bonding to be negative and thus attractive,
by selecting a pair of monomers such that one is a strong H-bond acceptor but a weak donor, and
the other is a strong donor but a weak acceptor. In such a case, strong H-bonds can only form when
the polymers are mixed. This strategy is an important practical technique for designing miscible
polymer blends.

6.4.3 Polymer blends

It is straightforward to generalize the counting argument of Section 6.4.1 above to the case in which
both species B is also polymeric, with nB chains present each with NB monomers. We simply use
the same approximate technique to count the number of ways to place the B chains on the lattice,
that we used for the A chains previously.

Thus we replace the counting factor ⌦B with

⌦B =
NnB (zNB )nB

nB!
(6.53)

identical in form to the ⌦A factor previously. Likewise, we amend the success probability factor P
to read

P =
N !

NnANANnBNB
(6.54)

Assembling the factors ⌦A, ⌦B, and P results in

⌦ =
N !NnAzNAnANnBzNBnB

nA!nB!NnANANnBNB
(6.55)



6.4. FLORY-HUGGINS MODELS 195

Evaluating S/k as log⌦ using the Stirling approximation, gives after some algebra

S/(kN) = �(nA/N) log(nA/N)� (nB/N) log(nB/N)

+ (nA/N)(1 +NA log z) + (nB/N)(1 +NA log z) (6.56)

Writing S in terms of the monomer fractions �A = nANA/N and �B likewise, and dropping linear
terms as previously, results in

S/(kN) = �(�A/NA) log(�A/NA)� (�B/NB) log(�B/NB) (6.57)

For large NA and NB, in the approximation we have made, the polymer blend looks essentially
like a mixture of two ideal gases of chain ends, with the implicit assumption that the conformational
entropy of the chains is una↵ected by where the chains are placed. (This is actually a rather good
assumption for polymer blends, as we shall explain below.)

The full Flory-Huggins free energy per site for the polymer blend is then

F/N = ��A�B + kT [(�A/NA) log(�A/NA) + (�B/NB) log(�B/NB)] (6.58)

For the particular case of polymers of equal length (NA = NB), we once again have symmetry
under interchange of A and B species.

Indeed, the Flory-Huggins free energy for NA = NB = N looks almost the same as the Bragg-
Williams free energy, if we dispense with some linear terms arising from the logs in the entropy
(which, as we remarked earlier, only serve to shift the chemical potential):

F/N = ��(1� �) + kT/N [� log(�) + (1� �) log(1� �)] (6.59)

The important di↵erence between the above expression and that for a binary mixture of
monomers is that the entropy is multiplied by a factor of 1/N , since only each chain (rather
than each monomer) has an independent translational degree of freedom. As a result, a much
smaller value of � su�ces to drive phase separation; instead of the critical point being located at
�� = 2 (and � = 1/2), the critical temperature now satisfies �� = 2/N .

Physically, we say that polymers are much more susceptible to demixing, because even very
weak repulsive interactions per monomer (� of order 2kT/N) su�ces to overcome the very weak
translational entropy (of order kT per chain). All polymers have dispersive interactions, which we
have argued generically lead to repulsive (positive) � parameters, and can only be made small by
matching the molecular polarizabilities of the two species. This makes it very di�cult to design
miscible blends of long nonpolar polymers (large N).

But, as we observed at the end of Section 6.4.2, interactions such as hydrogen bonding are
qualitatively di↵erent from dispersive attractions in that the simple rule is not “like prefers like”,
but “opposites attract”. This suggests a general strategy for designing miscible polymer blends,
which is to arrange for one monomeric species to be a good hydrogen bond donor but a poor
acceptor, and the other species to be a good acceptor but poor donor, so that favorable hydrogen
bonds can only be formed by mixing the two species. Then � can be negative, favoring mixing.


