
tprof: Performance profiling via structural
aggregation and automated analysis of distributed

systems traces
Lexiang Huang

The Pennsylvania State University

Timothy Zhu

The Pennsylvania State University

Abstract
The traditional approach for performance debugging re-

lies upon performance profilers (e.g., gprof, VTune) that pro-

vide average function runtime information. These aggregate

statistics help identify slow regions affecting the entire work-

load, but they are ill-suited for identifying slow regions that

only impact a fraction of the workload, such as tail latency

effects. This paper takes a new approach to performance pro-

filing by utilizing distributed tracing systems (e.g., Dapper,

Zipkin, Jaeger). Since traces provide detailed timing informa-

tion on a per-request basis, it is possible to group and aggre-

gate tracing data in many different ways to identify the slow

parts of the system. Our new approach to trace aggregation

uses the structure embedded within traces to hierarchically

group similar traces and calculate increasingly detailed ag-

gregate statistics based on how the traces are grouped. We

also develop an automated tool for analyzing the hierarchy

of statistics to identify the most likely performance issues.

Our case study across two complex distributed systems il-

lustrates how our tool is able to find multiple performance

issues that lead to 10× and 28× performance improvements

in terms of average and tail latency, respectively. Our com-

parison with a state-of-the-art industry tool shows that our

tool can pinpoint performance slowdowns more accurately

than current approaches.

CCS Concepts
• Software and its engineering→ Software testing and
debugging; • General and reference → Performance.
Keywords
performance debugging, distributed systems tracing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00

https://doi.org/10.1145/3472883.3486994

ACM Reference Format:
Lexiang Huang and Timothy Zhu. 2021. tprof: Performance profil-

ing via structural aggregation and automated analysis of distributed

systems traces. In ACM Symposium on Cloud Computing (SoCC ’21),
November 1–4, 2021, Seattle, WA, USA. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3472883.3486994

1 Introduction
Diagnosing performance issues is a slow and labor-intensive

process. While correctness issues are more easily identified

due to crashes or erroneous output, performance issues man-

ifest themselves as slowdowns, which are hard to detect.

For example, using inefficient serialization/deserialization

doesn’t break functionality, but it adds unnecessary delays

that can surprisingly be a major slowdown [45]. Further-

more, it is often difficult to determine whether the speed of

a component is normal or slow since processing times are

typically variable. Especially when issues involve tail latency

(i.e., the time to process the slowest fraction of requests),

identifying the root cause(s) often requires significant debug-

ging time and instrumentation. As a result, companies often

ignore or defer non-critical performance issues that can be

hidden by adding more resources [68]. Even so, performance

bugs are still a widespread problem – a recent cloud study of

over 3,000 bugs identifies 23% of them as being performance

related [24], and another study of Google Cloud Platform

incident reports show that 34.7% of them are related to un-

desirable slowdowns [63].

The traditional approach for performance diagnosis is per-

formance profiling. Performance profilers (e.g., gprof [23],

VTune [17]) automatically instrument code to measure the

average computation time within functions in the code base.

By providing a sorted list of the most time-consuming func-

tions, developers can quickly identify candidates for perfor-

mance optimization. While this provides useful information

for identifying slow code in the average case, these tools lack

the ability to capture the parts contributing to tail latency as

well as pinpoint problems that only affect a fraction of the

traffic. These tools are also primarily designed for single pro-

grams rather than distributed systems, which are growing in

popularity and usage in modern system designs. Our goal is

to build a better performance profiler that can provide useful

aggregate statistics while overcoming these limitations.

https://doi.org/10.1145/3472883.3486994
https://doi.org/10.1145/3472883.3486994

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lexiang Huang and Timothy Zhu

Figure 1: Example trace from Jaeger [26] with annotations to illustrate subspans in our novel subspan analysis.

To address these issues, especially in the context of com-

plex distributed systems, we propose a radically different ap-

proach to performance profiling by using distributed tracing.

Distributed tracing systems (e.g., Dapper [53], Zipkin [44],

Jaeger [26]) are being integrated into many of today’s dis-

tributed systems as a fundamental tool for debugging [34].

In the context of this work, a trace consists of detailed timing

information about how a single request traverses the system.

A request represents the work that a user submits to the

system, such as a web request. Fig. 1 illustrates an example

trace of a request traversing a social network web service.

Each of the time ranges is known as a span, which represent

the starting/ending time of operations being performed.

Research has shown that distributed tracing is a power-

ful tool for debugging [1, 4, 15, 18, 26, 29–31, 35, 36, 44, 49,

53, 56, 66], but the standard practice for trace analysis is a

slow process where engineers manually look through a large

number of traces [5, 46, 60, 69]. Without looking at many

traces, it is easy to be misled about performance bottlenecks

– the advantage of traditional performance profilers is their

ability to present aggregate information over a large amount

of data. However, current tracing tools (e.g., Jaeger [26]) are

primarily designed to present detailed information about a

single trace at a time. The state of the art in using traces for

performance analysis is based on comparing a “good” trace

with a “bad” trace [5, 16, 26, 32, 50]. However, this relies

upon a user to identify the right pair of traces to compare,

which can be difficult with the variability that is often seen

in complex systems. For identifying performance regressions

or anomalies, it’s possible to identify an interesting or repre-

sentative trace, but this is not the right approach for general

performance profiling.

What’s needed for performance profiling is methodolo-

gies for aggregating traces to reveal performance problems.

Recent systems like Canopy [29] provide a framework for

efficiently analyzing many traces, but users are still respon-

sible for deciding how to analyze the trace data. The diffi-

culty in aggregating traces lies in deciding (i) what group

of traces should be aggregated, and (ii) what data should be

aggregated. For example, aggregating all the traces that com-

municate with a cache and database would yield different

results from aggregating the traces that only communicate

with the database. Furthermore, when aggregating all traces,

one is limited to aggregating data that is common across the

traces (e.g., all database accesses). However, when aggregat-

ing a group of traces that all share the same trace structure,

one can aggregate more detailed information about indi-

vidual spans (e.g., first database access vs. second database

access). In practice today, trace aggregation relies upon a

lot of human effort and expertise to craft the appropriate

queries for aggregating traces, and the resulting aggregated

data is often limited to coarse-grained statistics at the gran-

ularity of overall latency or operation latency. Even with

some of the most advanced tracing tools available in indus-

try (e.g., Lightstep [32], Canopy [29]), they only allow for

coarse-grained grouping and filtering at the granularity of

trace features (e.g., HTTP status code, span latency), and

the grouping/filtering is user-driven. Our goal is to design

new automated aggregation methods that take advantage

of the trace structure to enable a more detailed analysis of

performance problems.

In this paper, we introduce a new trace aggregationmethod-

ology and tool, tprof, that hierarchically groups traces to-

gether and provides aggregate information at each layer of

the hierarchy. At the top layer, all the traces are summarized

together with overall statistics (avg latency, tail latency, etc.).

At the second layer, the traces are organized by request type.

For example, requests that post a new message to a social

network will be separated from requests that read the posts.

At the third layer, traces are partitioned based on the trace

structure and what services/operations are used. For exam-

ple, traces that have a cache miss and query the database

would be separated from traces that have a cache hit.

At the fourth layer, traces are grouped such that each span

has the same child spans in the same order. Since this layer

can assume that traces (within a group) have the same order-

ing and structure of spans, this allows for a more detailed

trace analysis, which we call subspan analysis. We define the

subspans of a span as the time periods where the span is likely

doing work (e.g., time between first child span finishing and

second child span starting). For example, Fig. 1 illustrates

the subspans of the user-timeline-service ReadUserTimeline

tprof: Performance profiling via aggregating distributed systems traces SoCC ’21, November 1–4, 2021, Seattle, WA, USA

span. One advantage of this novel subspan analysis is the

ability to automatically extract more detailed subspan in-

formation without any additional tracing instrumentation.

Another key benefit is that we can use this subspan informa-

tion to synthesize an “aggregate” trace that represents the

average span and subspan durations. This hypothetical ag-

gregate trace allows users to visualize the average behavior

of a group of traces.

Once we’ve calculated all of these statistics, a key chal-

lenge is in navigating the large number of statistics. So to

help users quickly identify performance problems, we design

an automated diagnosis tool that analyzes the hierarchy and

generates reports of potential issues. Starting from the top

of the hierarchy, it narrows into a smaller set of traces that

exhibits slow behavior identified in the upper layers. The

benefit of a hierarchical approach is that each layer provides

increasingly more detailed information, which is only possi-

ble due to how the traces are aggregated at each layer. For

example, it is only possible to aggregate information at the

operation level for the top layers, but the bottom layer is

able to perform a subspan analysis since all traces in a group

have the same trace structure and span ordering.

We evaluate tprof on both the recent TrainTicket bench-

mark [69, 70] and DeathStarBench benchmark [21] to illus-

trate how our tool can reveal multiple subtle performance

issues. In our results, we show that fixing these issues leads to

significant performance benefits, improving overall average

latency by 10× and tail latency by 28×.
We make three primary research contributions:

• We design a novel performance profiler, tprof, that hier-

archically aggregates distributed systems traces. At each

layer of the hierarchy, tprof partitions traces into groups

that are aggregated and analyzed, where lower layers are

finely grouped to enable more detailed analyses. Our tool

is open-sourced at https://github.com/lexiangh/tprof.

• We propose a new subspan analysis technique for extract-

ing timing information about time periods between child

spans of a span (Sec. 3.4). We use average subspan and

span data to generate a synthetic “aggregate” trace that is

representative of the average aggregate behavior (Sec. 3.5).

• We introduce a novel automated performance diagnosis

that analyzes the aggregated statistics and generates a

report of potential performance issues (Sec. 3.7).

2 Related work and background
Existing profilers can be divided into two categories. On

the one side, there are traditional coarse-grained performance

profilers that accumulate function runtimes and provide av-

erage durations. These are good for identifying issues that

affect the overall behavior for all the requests, but they are ill-

suited to finding slowdowns that affect only a fraction of the

workload. On the other side, there are distributed tracing sys-

tems that provide fine-grained timing information about each

request. This allows for detailed analysis of where a specific

request is taking all of its time, but analyzing many traces

is difficult for engineers due to the large quantity of data.

Our research introduces a new hierarchical approach for

spanning the space from coarse-grained to fine-grained per-

formance profiling by providing aggregate statistics across

progressively smaller groups of traces. Our automated anal-

ysis starts with a coarse-grained overview of all the traces

and traverses the hierarchy to identify subgroups of traces

that exhibit slow behavior.

2.1 Coarse-grained: Performance profilers
Traditional performance profiling tools [17, 23, 27, 37, 54,

55, 58, 59], developed over decades, are essential for diagnos-

ing performance issues. These tools are typically program-

ming language specific and automatically instrument the

code to collect information about the cumulative runtimes

of functions in the code base. Instrumentation is the process

of adding monitoring code for the purpose of debugging. For

example, gprof [23] integrates with the compiler to auto-

matically insert monitoring code at the beginning and end

of functions to measure function statistics. For high-level

languages such as Python, some profilers (e.g., cProfile [55])

hook into language-specific profiling and tracing infrastruc-

ture to automatically track function performance.

There are many enhancements to traditional performance

profiling techniques. First, it is possible to calculate both the

time spent within a function as well as time spent within a

function excluding calls to other functions. For example, if

f() calls g() and f takes a long time, then it is possible to de-

termine whether this is due to g or code within f. In Python,

the cumtime metric represents the cumulative time spent

in a function and subfunctions, whereas the tottime metric

represents the total time spent in a function excluding sub-

functions. Second, some profilers (e.g., [17, 23]) are able to

collect and display call graph information to provide struc-

tural information on how functions are called. For example,

VTune [17] shows a graphical call hierarchy and highlights

the critical path and most time-consuming functions.

While these coarse-grained tools are great at providing

overall aggregate information without the need for manual

instrumentation, they are fundamentally limited by design

to only provide average information for the entire workload.

Issues that only affect a fraction of the workload may be

hidden in the averages. For example, a performance bug

where data is unnecessarily copied between buffers multiple

times may be hidden if it only occurs on a cache hit code

path since averages are often heavily skewed by the slower

cache miss code paths. Additionally, slowdowns that cause

high tail latency for services may not show up in averages.

https://github.com/lexiangh/tprof

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lexiang Huang and Timothy Zhu

2.2 Fine-grained: Tracing systems
Modern distributed tracing systems [4, 18, 26, 36, 44, 53]

have become mainstream debugging tools for complex dis-

tributed systems [13, 34]. Tracing systems work by either

manual instrumentation or using libraries with built-in trac-

ing support [41–43]. These tracing infrastructures log fine-

grained information about how requests traverse the services

and components within a system. Thus, one is able to in-

vestigate details at the granularity of single requests rather

than overall averages. Additionally, a key benefit of tracing

systems is the ability to correlate how a request accesses

services and components in the distributed system. By con-

trast, coarse-grained performance profilers were originally

designed for single programs and are not suited for tracking

a request’s performance across many servers and services.

Tracing systems provide mechanisms for uniquely identi-

fying time periods within a request, known as spans. Spans
belonging to the same request are grouped together into

a trace, which provides a complete view of the time spans

within a request. Additionally, parent and child span infor-

mation is tracked to capture the trace graph structure, similar

to a call graph structure in a single program.

Fig. 1 shows a graphical representation (known as a Gantt

chart) of an example trace for a request traversing a social

network web service. The x-axis provides a timeline, and

the y-axis shows the various spans, arranged hierarchically

based on the parent/child information. The rectangles corre-

spond to the starting/ending time of the spans, which typ-

ically correspond to operations such as Remote Procedure

Calls (RPCs). However, users are able to track any time range,

so one common approach to debugging is to add additional

spans to investigate more detailed timing information for

suspicious parts of the system. Additionally, users are able

to tag information with spans such as RPC parameters, de-

bugging info, request type, etc. [36, 53]. This makes tracing

a powerful tool not only for performance issues, but also

for general debugging and monitoring. Thus, many papers

and systems have been developed to make the trace col-

lection process scalable and practical [1, 2, 4, 15, 18, 26, 29–

31, 35, 36, 44, 49, 53, 56, 66]. As research has lowered the over-

head costs of tracing, production systems often have some

tracing enabled for general monitoring of system health [34].

While much research has focused on tracing infrastruc-

ture, the trace analysis process is still mostly human-driven,

where engineers visually inspect traces to identify prob-

lems [5, 46, 60, 69]. Trace analysis systems like Canopy [29]

and Lightstep [32] provide mechanisms for filtering and sort-

ing to identify interesting traces, but the standard approach

still involves looking at traces. Not only is this slow and

unscalable for engineering time, but developers can also be

misled into investigating false positives; it is sometimes hard

to distinguish between normal system variability and per-

formance problems. Computing the critical path within a

trace (e.g., [10, 11, 32]) is helpful when inspecting traces, but

users can still be misled as shown in Sec. 4.4.2. Rather than

inspecting individual traces, performance profiling needs to

aggregate and summarize trends across many traces.

Recent systems from industry like Canopy [29], Light-

step [32], and Pintrace [14] have basic support for aggrega-

tion, but only at the coarse granularity of operations and

overall latency. Furthermore, these systems still require hu-

man effort and expertise in deciding what relevant features

to query (e.g., which request type to investigate). Our work

advances the state of the art in trace analysis by aggregating

traces via a hierarchical multi-pronged approach including

fine-grained trace aggregation based on the structure em-

bedded in traces. We also develop an automated approach

for analyzing and traversing the hierarchy of aggregated

statistics to identify slow regions for users to investigate.

2.3 Other related work
Besides distributed tracing, there is a variety of other

performance debugging approaches. A few papers such as

Zeno [63], lprof [68], and Stitch [67] use logging data to re-

construct code execution paths for performance debugging.

However, logs may not contain all the events for a request, so

it does not work as well as tracing for performance profiling.

A number of papers present methods for debugging anom-

alies [4, 6, 8, 9, 12, 12, 19, 22, 25, 33, 38–40, 51, 64, 65]. Anom-

aly debugging focuses on identifying outliers, whereas our

performance profiler’s goal is to identify the most relevant

parts of the system that exhibit consistently slow perfor-

mance. This includes tail latency issues, which are not nec-

essarily caused by anomalies.

A few papers provide a root cause diagnosis of tail latency,

but since they do not build upon tracing systems, their di-

agnosis is mostly centered around identifying problematic

servers and anomalous system metrics rather than narrow-

ing in on slow code regions that contribute to tail latency. For

example, CloudPD [52], CloudRanger [57], and Roots [28]

assume the system design and implementation is good and

identify the faulty or slow server/VM/container/service that

is causing high tail latency. SEER [22] and Sage [20] take

a step further and react to slowdowns by provisioning ex-

tra resources to avoid high tail latency. However, these ap-

proaches are not designed to diagnose root cause issues with

the system design and implementation itself. CauseInfer [7],

𝜖-Diagnosis [51], X-ray [3], and FChain [40] take another

approach in root cause diagnosis by identifying the system at-

tributes andmetrics (e.g., high CPU usage) that are correlated

with tail latency. This is helpful for developers to understand

the factors leading to tail latency but cannot pinpoint the

code regions where further investigation is needed.

tprof: Performance profiling via aggregating distributed systems traces SoCC ’21, November 1–4, 2021, Seattle, WA, USA

3 tprof
tprof is our new performance profiling tool that uses dis-

tributed tracing systems to provide aggregate statistics about

subsets of traces. The key challenge is in aggregating traces

with potentially different request structures and operations.

This involves answering two primary research questions:

(1) Which traces should be grouped together so they can be

aggregated in a meaningful way?

(2) What information (e.g., spans vs. operations vs. subspans)

can be aggregated within a group?

There is a trade-off when aggregating traces. Aggregating

many diverse traces provides a broad system view, but one

cannot aggregate in a detailed fashion since traces may not

have the same structure. Aggregating similar traces allows

for a more precise analysis based on trace structure, but there

are fewer traces to aggregate in each group.

Our solution is to design four different methods of group-

ing and analyzing traces where each method defines two

functions: 1) a grouping function that partitions a set of

traces into subsets based on trace properties (e.g., structure),

and 2) an analysis function that calculates aggregate statis-

tics about the subsets of traces. These methods are organized

hierarchically as a four-layer tree of traces where the top

of the tree aggregates all traces and the lower layers pro-

gressively partition the traces into smaller groups with more

detailed aggregation techniques. Of note, the bottom layer

enables our new subspan analysis (Sec. 3.4), which we use

to generate our novel “aggregate” trace representing the av-

erage behavior of the group of traces (Sec. 3.5). tprof also

supports separating tail latency requests from non-tail la-

tency requests to help in identifying issues with the slowest

requests (Sec. 3.6). Lastly, tprof introduces an automated

performance diagnosis that generates a report of potential

performance issues (Sec. 3.7).

3.1 Definitions
In this work, we focus on distributed systems composed

of multiple services. A service corresponds to a program

running within one or more containers or virtual machines

(VMs) that provides some functionality to other services or

end-users. Services are instrumented with tracing code to

label spans within a service. Spans correspond to time pe-

riods (start, end) within a service, and are labeled with an

operation name that describes the span. For example, spans

are typically created to represent the time to complete RPC

operations. Production systems often have some spans al-

ready instrumented for basic system monitoring, and many

common libraries have built-in support for tracing [41–43].

Developers can easily insert additional spans as well to help

in the debugging process.

Spans are typically created in a hierarchical manner with

parent/child relationships. This provides a mechanism to

operationoperation_self

Figure 2: Illustrates layer 1/2 operation_self metric.

correlate how services utilize other services. That is, an end-

user submits a high-level request to the system to perform

some work (e.g., generate a report). This request starts at

a service (e.g., web server) that will contact multiple other

services to help in gathering data and computing the desired

output. The parent/child relationships allow for the tracing

system to correlate how the services communicate and serve

the request. All the span data associated with a request is

identified in the tracing system as a trace, and we often use

the terms request and trace synonymously in this paper.

3.2 Layers 1/2: Operation analysis
In the first layer, all the available traces are grouped to-

gether to form one group that represents the overall behavior

of the system. This allows us to analyze the system similarly

to existing coarse-grained performance profilers. In the sec-

ond layer, traces are grouped based on the request type. For

example, this could correspond to a get vs. put request in

a key-value store, or a browse vs. checkout request in an

e-commerce website. By default, tprof uses the root span

in the trace, which is typically an API endpoint, to group

the trace, but request type identification can be user-defined

(e.g., based on an attribute). The benefit of the second layer

is the ability to calculate aggregate statistics for each request

type whereas traditional performance profilers only have

enough information to calculate averages across all requests.

Since the first and second layers make no assumptions on

trace structure, we can only aggregate based on the names of

the operations/services. This mimics traditional performance

profilers analyzing programs at the granularity of functions.

Currently, tprof calculates latency averages, std deviations,

and 50th/99th percentiles for each operation as well as the

overall latency, though data is available to calculate other

statistics as needed.

In addition to calculating the statistics for operation dura-

tions, tprof also analyzes the operation durations excluding

time periods where one or more of the operation’s child

spans is running, which we label operation_self. That is,

operation_self represents the amount of time where an oper-

ation is definitely not waiting on a child span to finish. Fig. 2

illustrates the difference between the operation duration and

operation_self metric. This idea is similar to mainstream

performance profilers such as python’s profiling with the

tottime and cumtime metrics as well as gprof’s call graph

profiling with the self and children metrics.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lexiang Huang and Timothy Zhu

child_diff 2 child_diff 3child_diff 1 end_diff

Figure 3: Illustrates layer 3 child_diff/end_diff metric.

3.3 Layer 3: Span and child analysis
In the third layer, we consider the structure of a trace’s

spans in the grouping process. Traces are grouped such that

they have the same spans and the same parent/child span

relationships. That is, two traces belong to the same group

if they have the same spans, and each matching span has

the same corresponding child spans. For example, if a trace

consists of a span performing operation A, with two child

spans performing operations B and C, then it is grouped with

any other trace that consists of one operation A span that

has exactly two child spans performing operations B and C.

In the third layer, we do not consider the order in which

the child spans occur. The purpose of selecting this grouping

methodology is to capture the structure of the trace in a way

where parallel fanout operations would not be separated

into different groups. So in our example, the first child span

could perform operation C and the second child span could

perform operation B or vice versa, and both types of traces

would be grouped together.

Since layer 3’s groups have the same structure, we can

perform a more detailed aggregation based on spans rather

than operations. In our running example, suppose operation

C also has a child operation B. If we calculate statistics based

on operations, then the two operation B durations would

all be averaged together. By contrast, calculating statistics

based on spans would separate the operation B that’s a child

of A from the operation B that’s a child of C.

In addition to analyzing the spans, we also introduce a

new metric for analyzing the start times of a span’s children,

which we label as child_diff (Fig. 3). Specifically, we calculate

the time from (start of span→ start of first child), (start of

first child→ start of second child), (start of second child→
start of third child), and so forth. This information can help

narrow down where a problem occurs within a span. For

example, if the time till the first child span is large, then one

might consider inspecting the initial code for that operation.

If the child spans are executed in parallel, but the time be-

tween the start of the first and second child spans is large,

then there might be a thread-related problem with launching

the child operations. We also track the last part of the span

after all child spans are complete, which we label as end_diff.

3.4 Layer 4: Subspan analysis
In the fourth layer, we consider both the structure and

order of a trace’s spans in the grouping process. That is, two

traces belong to the same group if they have the same spans,

and each matching span has the same corresponding child

spans that begin and end in the same order. For example,

Fig. 4 illustrates an example of the six possible orderings

for a trace with an operation A that has child operations B

and C. Depending on the code being debugged, many of the

orderings may not show up. If operation C is performed after

operation B completes, then in the example, only the first

ordering would be present in the traces.

The purpose of ensuring the identical ordering of both the

begin and end times is to enable our novel subspan analysis
technique. Our goal is to define time periods, which we call

subspans, within a span that corresponds to time periods

where the operation is definitely performing some work.

Fig. 4 illustrates the subspans A0, A1, and A2 within span

A. Since operation A invokes both operations B and C, then

it must be performing some work to launch the operations,

and this is represented by subspans A0 and A1. At the end

of the operation after both B and C are complete, A must be

performing some work to finish up the operation, and this is

represented by subspan A2. We do not define subspans in the

other time periods where A might be waiting for operations

B and/or C to complete.

A benefit of the subspan analysis is to provide a more

detailed breakdown of time periods without instrumenting

or collecting additional information. But to aggregate the

subspans between traces in a meaningful way (i.e., have

the first subspan corresponds to the same time period), the

traces must have the same subspans. This is precisely why

our grouping function ensures that traces within a group

have the same ordering of begin/end times of child spans.

Thus, the subspan analysis produces identical subspans for

traces in the same group. With identical subspans, tprof then

analyzes the traces by aggregating all of the subspans to pro-

duce statistics such as the average, std deviation, 50th/99th

percentiles, etc.

Alg. 1 presents our subspan analysis algorithm for calcu-

lating the subspans of a span, which we recursively apply

to all spans within a trace. For a given span, we collect all

the events of which there are four possible types: span_start

(start of span), child_start (start of child span), child_end (end

of child span), span_end (end of span). We sort the events

by time and then define subspans where (i) the subspan end

time is determined by a child_start or span_end event, and

(ii) the subspan start time is determined by the previous

event (in time). For example, in the first case in Fig. 4, three

subspans are defined that end at the events corresponding

to the start of child B (A0), the start of child C (A1), and the

end of span (A2). These subspans start at the event prior to

these events (i.e., start of span occurs prior to start of child B,

end of child B occurs prior to start of child C, end of child C

occurs prior to end of span). We label subspans numerically

tprof: Performance profiling via aggregating distributed systems traces SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Span A

Span B

Span C

Subspans: A0 A1 A2
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

A0 A1 A2A0A1 A2 A0A1 A2 A0A1 A2 A0A1 A2

Figure 4: Illustrates six possible orderings for a trace with a span A that has child spans B and C. In layer 4, these
would be separate into separate groups, with the corresponding subspan analysis for subspans A0, A1, and A2.

Func generate_subspans(span s):
subspans = []

prev_event_time = s.start_time

subspan_number = 0

events = get_sorted_events(s)

foreach e in events do
if e == "child_start" or e == "span_end" then

new_subspan = Subspan()

new_subspan.end_time = e.time

new_subspan.start_time =

prev_event_time

new_subspan.span = s

new_subspan.number = subspan_number

subspans.append(new_subspan)

subspan_number++

if e == "span_end" then
break

end
end
prev_event_time = e.time

end
return subspans

Algorithm 1: Algorithm for generating subspans.

to have a consistent numbering scheme to allow us to easily

aggregate traces within the same group (where traces are

assumed to have the same structure and span ordering).

We find the algorithm is relatively fast, so we haven’t

spent any time optimizing our prototype. In terms of scala-

bility, we find that tprof scales linearly with respect to the

number of traces, taking seconds to minutes to analyze thou-

sands of traces. Note that tprof doesn’t need to analyze every

trace, and sampling is a typical approach in tracing. Further-

more, tprof is easily parallelizable between layers, though

this engineering is left to future work.

3.5 Aggregate trace visualization
A key benefit of subspan analysis is the ability to synthe-

size an “aggregate” trace based on average span and subspan

durations. Specifically, each span’s duration is set to its av-

erage span duration, and the start times of child spans are

determined based on the average subspan durations. For ex-

ample, consider the first case in Fig. 4, and suppose span A

is on average 9ms, subspans A0, A1, and A2 are on average

1ms each, and spans B and C are on average 3ms each. Then

span A, B, and C durations would be 9ms, 3ms, and 3ms, and

they would start at 0ms, 1ms, and 5ms, respectively. This can

then be visualized with existing tools (e.g., Jaeger [26]).

This synthetic aggregate trace gives users a “representa-

tive” view of an average trace that combines all the informa-

tion across the traces within a layer 4 group. Prior work has

aggregated coarse-grained trace statistics at the granularity

of operation durations and overall latency [46], but we are

the first to present the idea of an aggregate trace. This is

because the aggregate trace is only suitable with our layer 4

grouping and subspan aggregation technique.

Theorem 1. Creating an aggregate trace using average span
and subspan durations always produces a valid trace. 1

The proof works by decomposing a span into a sum of

subspans and child spans and then applying the linearity of

expectation. The formal proof is included in Appendix A.

By contrast, aggregating based on non-average statistics

does not always work. For example, consider the 99th per-

centile in the prior example where half of the traces have

span B and C durations of 5ms and 1ms, respectively, and

the other half of the traces have 1ms and 5ms durations,

respectively. Assume all subspans are 1ms and span A is

9ms in all traces. Thus, the 99th percentile metric would

be 9ms, 5ms, and 5ms for spans A, B, and C, respectively.

However, there’s no way to create a synthetic trace with

non-overlapping child spans B and C each of duration 5ms

while being contained within a 9ms span A duration.

3.6 Tail latency support
Another benefit of using tracing data over performance

profiling averages is the ability to diagnose tail latency issues.

tprof specifically takes advantage of this by providing an

explicit tail latency analysis at each layer in the hierarchy. For

each group of traces being analyzed, tprof further subdivides

the group into “normal” traces and “tail” traces based on a

user-defined threshold (e.g., 90%). The slowest requests above

the threshold percentile are marked as tail requests and the

rest are marked as normal requests. tprof then performs the

same analysis (depending on the layer) on the normal traces,

tail traces, and all the traces collectively.

1
A valid aggregate trace maintains the trace structure and span averages.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lexiang Huang and Timothy Zhu

3.7 Automated performance diagnosis
To aid users in performance diagnosis, tprof analyzes the

aggregated statistics and auto-generates a report of the most

relevant subspans to investigate. In the first layer, tprof iden-

tifies the slowest operations across all of the available traces

by sorting based on the average operation_self duration mul-

tiplied by the count of executions. This provides a global

perspective to identify important operations to focus on

when debugging, which mimics the information presented

in traditional coarse-grained performance profilers.

In the second layer, tprof narrows into the request type

where the slowdown seen in layer 1 has the largest impact.

Specifically, we iterate through all groups in layer 2 and rank

them based on the operation_self duration multiplied by

the count similar to in layer 1. In addition, tprof classifies

whether the slowdown is tail-specific or not by comparing

tail and normal traces (Sec. 3.6). If the ratio of tail/normal

operation_self durations exceeds a threshold, tprof labels it

as a tail issue. Empirically, we find that the specific threshold

isn’t very sensitive (anywhere between 3.5× and 8× works

in our experiments), so we default to 4×.
Since an operationmay be utilized inmultiple spanswithin

a trace (e.g., multiple calls to database), tprof uses the layer

3 data to narrow into the specific problematic span as well

as the slow region within the span. Specifically, tprof sorts

the child_diff metric multiplied by the count of invocations

across all spans of the slow operation to identify the slow

part of the span. We use the index of the child that starts late

to identify the problematic subspan in the layer 4 group.

Finally, tprof analyzes the layer 4 data to identify which

layer 4 group best exhibits the problematic subspan. We sort

the groups by the average subspan durationmultiplied by the

count and fraction of time of the subspanwithin its span. This

pinpoints slow subspans that are frequent and constitute a

large fraction of its span. Once the layer 4 group is identified,

tprof synthesizes an aggregate trace to visually point out the

problematic subspan in the context of the average behavior of

the layer 4 group. With this problematic subspan, a user can

then correlate the slow subspan with the code. Once a user

has narrowed the scope of the problem to a specific part of the

code, the user can add additional spans to instrument more

detailed regions of code. Our tool can then be used again to

narrow down which parts of the code is slow. Additionally,

one can run A/B tests and use tprof to evaluate whether a

proposed fix helps performance.

Since each layer in the automated report generation is

based on rankings, we actually generate multiple perfor-

mance diagnosis reports in a hierarchy so that even if the

top issue is not a bug, a user can look into the second or

third ranked issues. Some slowdowns may be due to nat-

ural variability or heavy computation, and it is up to the

user to decide whether it is a bug or not as with traditional

performance profilers. As a performance profiler, tprof is

also not designed to fix issues, but rather to provide helpful

information for users to diagnose performance slowdowns.

Nevertheless, as shown in Sec. 4.2.1, tprof saves users a lot

of engineering time in identifying important areas to focus

on to find performance bugs and/or optimize performance.

Fig. 5 in Sec. 4.3 shows an example report generated by

tprof. The report is dynamically generated via a simple web

application so that the different parts of the report hierarchy

can be easily collapsed and navigated in a web interface.

4 Evaluation
To show the benefits and generality of tprof, we conduct

evaluations on two systems, TrainTicket [70] and DeathStar-

Bench [21]. We evaluate tprof to answer these key questions:

(1) How effective is tprof in detecting slowdowns? (Sec. 4.2)

(2) Can tprof expose unknown slowdowns? (Sec. 4.3)

(3) How does tprof compare to the state of the art? (Sec. 4.4)

4.1 Experimental setup
DeathStarBench:DeathStarBench [21] is a suite ofmicroser-

vice benchmark applications, and we use the social network

application, which represents an example of a modern dis-

tributed systems design using microservices with 30 services

including databases, caches, web servers, and application

logic. Each microservice is designed to be simple and modu-

lar, but performance diagnosis is complex by virtue of having

many services all working in conjunction to serve requests.

We focus on the ComposePost (CP) and ReadUserTimeline

(RUT) workloads provided by the benchmark. After initializ-

ing the social network with a sample Facebook dataset [47],

the CP requests insert random messages (i.e., posts) for ran-

dom users. These posts show up in the users’ timeline views,

which are read by the RUT requests. In our system, we send

CP and RUT requests in a 1:4 ratio under a 90% load.

TrainTicket: TrainTicket [70] is a complex microservice

benchmark system that currently consists of 41 services

excluding databases and caches. It is designed to mimic the

microservice systems seen in industry.

A key difference between the systems is that TrainTicket

often directly accesses the different microservices through

REST APIs in the javascript code whereas DeathStarBench

funnels requests through a frontend nginx web server. This

architectural difference in the workloads results in traces

that look very different. For example, the DeathStarBench

traces start with a root nginx span, whereas the TrainTicket

traces have a variety of root spans. Thus, our evaluation with

both systems demonstrates that tprof generalizes to different

types of systems and use cases.

Cluster configuration: Our experiments are conducted in

our dedicated experimental cluster consisting of 20 dual-

socket servers with 12 cores, 16-32GB of memory, and 10GbE

networking. The cluster is set up with CloudStack [48] to

tprof: Performance profiling via aggregating distributed systems traces SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Figure 5: tprof’s auto-generated performance diagnosis report, which includes the aggregate trace combining av-
erage subspan and span durations. The report is structured hierarchically, matching tprof’s 4 layers. The most
relevant statistics are summarized in each layer, but the best information to initially investigate is the PROBLEM-
ATIC_SUBSPAN within the aggregate trace.

support Ubuntu 18.04 virtual machines (VMs) using KVM

under default settings. We launch VMs on each node and

place microservices in Docker containers provided by the

benchmarks to achieve load balancing in the initial setting.

We also launch a VM for sending requests to the system.

Once an experiment is completed, we run tprof to collect

traces from Jaeger and generate a report of the performance.

4.2 Effectiveness in detecting slowdowns
4.2.1 Real-world slowdowns

Zhou et al. [69] conduct an industry survey on real-world

bugs and perform a detailed user study evaluating the amount

of human effort required to find the real-world bugs when

they’re injected into the TrainTicket benchmark [70]. We

compare tprof against this work and demonstrate that tprof

successfully pinpoints both of the performance slowdowns

described in the paper without any human effort.

SSL slowdown: The first performance bug studied in [69]

is due to the SSL protocol slowing down requests. Using

the same fault injection code as in that paper, we replicate

this bug in our cluster by injecting the fault into one of

the frequently used services in the benchmark (ts-station-

service). tprof successfully identifies the ts-station-service :

queryForStationId operation as the top performance problem.

Even though the operation is short (6.14ms) compared to

other operations (100s of ms), it is executed many times

and contributes significantly to the overall latency. tprof

correctly identifies that it is not a tail-specific bug, indicating

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lexiang Huang and Timothy Zhu

Slowdowns Fixes Average Latency Improvement 99-percentile Latency Improvement

1. User Timeline

->Nginx

network delay

Service migration:

User Timeline->

Nginx

Subspan: 54.1ms -> 10.1ms (5.36x)

RUT: 164ms -> 109ms (50%faster)

Subspan: 450ms -> 27.1ms (16.6x)

RUT: 1190ms->1070ms (Timed out)

2. Post Storage

->User Timeline

network delay

Service migration:

Post Storage

->User Timeline

Subspan: 34.8ms -> 14ms (2.49x)

RUT: 109ms->66.9ms (63% faster)

Subspan: 432ms -> 90.1ms (4.79x)

RUT: 1070ms->1040ms (Timed out)

3. Post Storage -

ReadPosts’ child

late start

Code Modification:

Remove

memcached_quit()

Subspan: 16.4ms->0.276ms (59.4x)

RUT: 66.9ms->32.9ms (103% faster)

Subspan: 1010ms -> 4.16ms (243x)

RUT: 1040ms -> 88.8ms (11.7x)

4. Compose Post -

UploadText’s child

late start

Service migration:

Compose Post

->Post Storage

Child_diff: 90.7ms->8.15ms (11.1x)

CP: 82.6ms -> 49.9ms (66% faster)

Child_diff: 239ms->9.44ms (25.3x)

CP: 273ms -> 94.1ms (190% faster)

5. Post Storage -

MemcachedMget

slow

Code Modification:

Use native BSON

format instead of

JSON

MemcachedMget span:

9.35ms -> 2.42ms (3.86x)

MongoFindPost span:

6.46ms -> 2.14ms (3.02x)

RUT:

34.5ms -> 12.6ms (174% faster)

MemcachedMget span:

45.9ms -> 10.2ms (4.50x)

MongoFindPost span:

37.4ms -> 10.4ms (3.60x)

RUT:

98.8ms -> 31.5ms (214% faster)

6. Post Storage -

MongoFindPost slow

7. Write HomeTime-

line - RedisUpdate

inefficiency

Library usage change:

Asynchronous

commit instead of

synchronous commit

Span: 18.8ms -> 0.549ms (34.2x)

CP: 47.8ms -> 39.7ms (20% faster)

Span: 43.3ms -> 1.94ms (22.3x)

CP: 164ms -> 64.9ms (153% faster)

8. User Timeline

- Mongo Insert

inefficiency

Library usage change:

Replace mongoc_
collection_find_and_
modify() with mongoc
_collection_update()

Span: 17.7ms -> 1.91ms (9.27x)

CP: 39.7ms -> 24.9ms (59% faster)

Span: 24.1ms -> 5.20ms (4.63x)

CP: 64.9ms -> 48.0ms (35% faster)

9. User Timeline -

ReadUserTimeline’s

child late start

Library usage change:

std::async() in deferred

instead of async mode

Subspan: 3.62ms->0.508ms (7.13x)

RUT: 12.7ms->10.9ms (17% faster)

Subspan: 10.7ms -> 3.50ms (3.06x)

RUT: 31.0ms -> 27.1ms (14% faster)

Summary

ComposePost (CP) 58ms -> 25.2ms (2.30x) 296ms -> 47.1ms (6.28x)

ReadUserTimeline

(RUT)

164ms -> 10.9ms (15.0x) 1190ms -> 27.1ms (43.9x)

All request types 142ms -> 13.7ms (10.4x) 1130ms -> 40.6ms (27.8x)

Table 1: Summary of performance issues and improvements in DeathStarBench case study. Relevant metrics that
most accurately reveal the slowdowns are presented in their corresponding Latency Improvement cells.2

that the slowdown affects typical requests. As the amount of

code in this operation is relatively small, one would consider

environmental factors such as SSL, network overhead, etc.,

whichwould lead to the root cause. As a performance profiler,

tprof is not designed to reveal the SSL root cause or fix the

bug, but it does reveal the right location to investigate further.

Slow SQL queries: The second performance bug studied

in [69] is due to using too many nested “select” and “from”

clauses in a SQL statement. The authors reproduce this effect

by injecting a delay into the ts-voucher-service to simulate

the slow SQL queries, and we reproduce the problem in the

same way. tprof successfully identifies the slow operation as

the top performance problem. It also identifies it as a non-

tail-specific problem since the slowdown affects all requests.

We extend this bug into a tail bug by only injecting the

delay 2% of the time. tprof successfully reports the operation

as the top performance problem, but this time it is marked

as a tail bug, which indicates a user should be investigating

a rarer phenomenon than the typical behavior.

Debugging effort comparison: Zhou et al. [69] conduct

an industry survey that both identifies these bugs and also

tracks the debugging effort. In the first SSL bug, the survey

reports that experienced engineers spent 56 hours debug-

ging and fixing this bug, with 22 hours spent on identifying,

2
Slowdowns evaluated on spans are detected by operation_self metric.

tprof: Performance profiling via aggregating distributed systems traces SoCC ’21, November 1–4, 2021, Seattle, WA, USA

0%

20%

40%

60%

80%

100%

5 10 15 20 25 30 35 40

D
et

ec
tio

n
pe

rc
en

ta
ge

Injected delay (ms)
Read top 1 report Read top 2 reports Read top 3 reports

Figure 6: tprof’s accuracy in identifying 10 randomly
injected slowdowns. When a slowdown is large, tprof
is able to pinpoint the subspan corresponding to the
injected slowdown.

scoping, and localizing the fault [69]. In the second slow

SQL query bug, the survey reports 8 hours of engineering

time, with 2 hours spent on localizing the fault [69]. Zhou et

al. [69] also conduct an in-house evaluation with industrial

debugging practices and the state-of-the-art trace visualiza-

tion ShiViz [5] tool. In the first bug, they failed to find the

bug using any of the techniques. In the second bug, they

found the bug in 1.7-2.6 hours. By comparison, tprof is able

to identify the slow operations in both cases automatically.

Additionally, tprof is able to identify the more complex tail

version of the second bug.

4.2.2 tprof accuracy
To evaluate tprof’s accuracy in identifying slowdowns,

we randomly pick 10 locations within the DeathStarBench

system and inject delays to mimic slowdowns. Fig. 6 shows

tprof’s accuracy in identifying the correct subspan where the

delays are injected. Our injected delays range from 5ms to

40ms, which is roughly half of the average ReadUserTimeline

(RUT) request type latency (10.7ms) to 50% larger than the

average ComposePost (CP) request type latency (25.5ms).

Among the 10 randomly selected locations, 7 are related to

the more complex CP request type and the other 3 are related

to the RUT request type. When the injected delay is 5ms (20%

of CP/50% of RUT), tprof reports other subspans as being

the dominant slow region to investigate. But as the delay

increases and becomes a major slowdown, tprof correctly

identifies the subspan with the delay in all but one of the

cases. In that case, the injected delay was in an infrequently

executed code path comprising only 7% of the traces. tprof

is able to identify it as a (tail) slowdown, though it is the

second ranked issue.

4.3 Exposing unknown performance slowdowns
To evaluate how well tprof works in realistic settings

where we do not have prior knowledge about the perfor-

mance problems, we conduct a case study using DeathStar-

Bench to discover entirely new issues. We first provision and

tprof rank Lightstep rank

Operation Operation Tail

1 1 2 2

2 1 2 5

3 1 (tail) 7 4

4 1 (tail) 3 1

5&6 2 13 N/A

7 1 9 N/A

8 2 5 N/A

9 2 5 4

Table 2: Comparing tprof with state-of-the-art ap-
proaches (coarse-grained aggregation with Lightstep)
by ranking slowdowns from Tbl. 1. tprof identifies all
slowdowns as the top-ranked issue excluding previ-
ously identified issues.
configure the system as best as we could to avoid bottlenecks

and then proceed to search for performance issues. We run

tprof over a benchmark experiment and read the top-ranked

performance report. The auto-generated report points out a

problematic subspan, and we look at the corresponding code

to figure out how to resolve the issue.

Tbl. 1 presents the summary of the slowdowns, fixes, and

performance improvements that we identified. Performance

issues in complex systems are notoriously difficult to identify,

andwe find a variety of problems ranging from code bugs and

design inefficiencies to deployment/resource management

issues (e.g., suboptimal VM placement). Compared to the

original code base with a manually optimized configuration,

we see a 10× average latency improvement and 28× 99th

percentile tail latency improvement. This demonstrates the

potential of tprof in identifying issues that can significantly

impact the overall system performance.

Fig. 5 shows an example report for slowdown 3 to illustrate

tprof’s automated report generation. Since tprof operates in

a hierarchical fashion, the report is also hierarchical where

each layer is collapsible to facilitate navigation. From the

report, we see that the ReadPosts operation in post-storage-

service is slow for the ReadUserTimeline request type. In

particular, the tail latency traces (top 10%) are 16.2× higher

than the other traces using the operation_self metric (Fig. 2),

so tprof classifies this as a tail-specific issue. tprof then iden-

tifies that the first part of the span (i.e., before the first child

is launched) is slow, which corresponds to the first subspan

as marked by PROBLEMATIC_SUBSPAN. Our synthetically

generated aggregate trace is not from any single trace, but

instead represents an aggregation of many traces (6.9% of

all traces in this case). Thus, we have confidence that this

subspan is slow on average across many traces.

After looking at the relevant code, we discover a bug in

the code where connections are not properly reused due to

an erroneous memcached_quit() invocation. After fixing the

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lexiang Huang and Timothy Zhu

(a) Tail latency trace with a long delay at the start of the ReadUserTimeline operation in the nginx-web-server service.

(b) Tail latency trace with a slow MongoFindUserTimeline operation in user-timeline-service.
Figure 7: Along with Fig. 1, three tail latency traces near the 99th percentile. The traces show very different behav-
ior so looking at any one of them can lead to misleading conclusions. Aggregating many more traces, as is done
in tprof, will provide a clearer picture of the system performance characteristics and potential bugs.

issue, we find that performance is drastically improved with

the subspan’s 99th percentile latency improving by 243×
(1010ms -> 4.16ms), which corresponds to an 11.7× 99th

percentile reduction for ReadUserTimeline requests.

4.4 Comparison with state-of-the-art approaches
We compare against the state-of-the-art approaches and

tools used in practice today using the slowdowns in Sec. 4.3.

4.4.1 Coarse-grained aggregation
Trace analysis systems such as Lightstep [32], Canopy [29],

and Pintrace [14] support basic aggregation of tracing data

at the granularity of operations. We use Lightstep to group

by the operation name and sort to identify the slowest oper-

ations (Lightstep rank - Operation). We repeat this process

with an initial filtering step for tail spans (top 10%) to identify

tail latency issues (Lightstep rank - Operation Tail). We also

try other aggregation approaches suggested by Lightstep’s

documentation and tutorials such as aggregating by service,

but these approaches perform worse.

Tbl. 2 shows the ranking of each slowdown identified in

Sec. 4.3. tprof identifies all issues as the top-ranked issue

(excluding previously identified issues), whereas the coarse-

grained aggregation ranks the issue much lower in most

cases. This is because the slowest operations are often par-

ents of the actual slowdown. Furthermore, tprof identifies the

part of the span (i.e., subspan) that is slow, whereas Lightstep

can only denote an entire operation as being slow.

In some of the Lightstep rank - Operation Tail cases, the

operation is not in the ranking since the non-tail issues were

all filtered out from the tail spans. For the tail slowdowns (3

& 4), Lightstep rank - Operation Tail has a higher ranking

than Lightstep rank - Operation, but without knowing in

advance whether an issue is a tail issue or not, it is difficult

to know which issue one should spend time investigating.

4.4.2 Debugging individual traces
A common and well-established approach to debugging

with traces is to manually look through “interesting” or slow

traces. For example, one can use Lightstep to identify the

slowest spans and look at the corresponding traces [62], or

one can use Jaeger directly to view/compare the high latency

traces [16]. The problemwith this approach is that individual

traces can be misleading when investigating slowdowns.

Fig. 1 shows an example trace of a 99th percentile request,

and Fig. 7 shows two other traces near the 99th percentile.

The three traces show completely different results. In Fig. 7a,

one would think to investigate the ReadUserTimeline op-

eration in nginx-web-server. In Fig. 7b, one would think to

investigateMongoFindUserTimeline in user-timeline-service.

In Fig. 1, one would think to investigate subspan 3 in the

ReadUserTimeline operation in user-timeline-service. Look-

ing at any one of these traces could lead to a lot of wasted

time chasing slowdowns that only affect an insignificant

fraction of requests. Looking at all three of these traces could

lead to confusion or a conclusion that it’s all random noise.

Users experience the same issues even when applying critical

path analysis. It turns out that only Fig. 1 is an actual bug,

which tprof identifies as the last slowdown in Tbl. 1.

We also use an advanced correlation feature in Lightstep

to identify operations that are correlated with high latency

following their tutorial [60]. The approach works by using

their correlation metric to identify the operation to filter by,

tprof: Performance profiling via aggregating distributed systems traces SoCC ’21, November 1–4, 2021, Seattle, WA, USA

and then manually investigating traces where the operation

is slow. While the correlation metric performs reasonably

well in identifying the slow operation, the resulting traces

are similarly misleading. Like with Jaeger, actual problematic

traces are sometimes among these traces, but there is somuch

noise across traces that it’s hard to pick out the consistently

slow regions without aggregation.

5 Discussion
5.1 Generality of layers

In practice, users may sometimes want to partition or filter

tracing data based on date/time and other attributes (e.g.,

HTTP status code). This can be accomplished by performing

a user-defined pre-filtering step before using tprof.

Users may also desire to compare traces based on fea-

tures other than request types, such as geographic locations

of clients, traces traversing through a particular service, re-

quests withwarning/errormessages, etc. In these cases, those

features can be used alternatively to partition in layer 2.

5.2 Handling complex trace structures
Complex trace structuresmay result inmany layer 4 groups,

and tprof employs two design principles to address this chal-

lenge. First, the automated analysis can swiftly pinpoint the

relevant trace group that manifests the performance issues.

Our evaluation shows that tprof is able to accurately point

out the problematic group from dozens to over one hun-

dred layer 4 groups. Second, we use a hierarchical design to

provide different granularities of aggregation. For example,

slowdown 4 in Tbl. 1 is most accurately detected via the

child_diff metric in layer 3, which aggregates nearly 9x more

traces than the most relevant layer 4 group.

5.3 Subspans not on the critical path
Critical path analysis on traces, which has been studied

in academia [10] and is commercially available [61], is or-

thogonal to tprof’s contributions. Those approaches can be

easily applied to the aggregate traces generated by tprof.

Users can choose whether to consider subspans not on the

critical path of the trace. Nevertheless, our evaluation in

Sec. 4.3 shows that tprof is able to unveil many unknown

performance issues without critical path information.

6 Conclusion
We present tprof as a new performance profiler that ag-

gregates distributed systems traces to diagnose performance

bugs and inefficiencies. It uses four different analyses to hi-

erarchically group and aggregate traces based on the trace

structure. Our novel subspan analysis enables the creation of

aggregate traces for easy visualization. Our automated per-

formance diagnosis tool analyzes the aggregated statistics

to report the most likely performance issues. Our evaluation

demonstrates how tprof is able to accurately identify both

tail latency and average latency bugs, leading to 28× and

10× improvements, respectively.

Appendix
A Proof of aggregate trace: Theorem 1

Proof. We begin by showing that (i) spans can always

be decomposed into a sum of subspans and child spans;

(ii) the time between the beginning of a span till the start

of any child span can also be decomposed into a sum of

subspans and child spans. It then follows from a linearity of

expectation argument that the aggregate traces are valid.

To give some concrete examples on decomposing a span (i),

consider the example traces in Fig. 5. In a group 1 trace, A =

A0 + B + A1 + C + A2. In a group 2 trace, A = A0 + A1 + C +

A2. In a group 3 trace, A = A0 + B + A2. It is always possible

to find this decomposition due to how subspans are defined.

Starting at the end of the span, we find the prior event in

time, and this period refers to the last subspan, which is part

of the decomposition. The prior event must be one of the

other events (start of span, end of child span, start of child
span). If it is the start of span, then we are done. If it is the end
of child span, then the next component in our decomposition

would be that child, and we would repeat this decomposition

process from the start of that child’s span. If it is the start of
child span, then the next component in our decomposition

would be the subspan ending at this event and starting at the

prior event, and we would repeat this decomposition process

from the prior event. In other words, we can recursively

define decomposition as follows:

decompose(event) =
if (event is start of span)
return None

if (event is end of span or
event is start of child span)

return subspan(prior event, event)
+ decompose(prior event)

if (event is end of child span)
return child_span(start of child span, event)

+ decompose(start of child span)

This decomposition also applies to the time between the

beginning of a span till the start of any child span (ii).

We can now treat each component in the decomposition

as a random variable. We do not need to make any assump-

tions about the distribution of the random variables or even

whether they are independent or not. By the linearity of

expectation, the expected value of a sum of random vari-

ables can always be decomposed as a sum of expected values.

Therefore, by using averages for each component (i.e., sub-

span or child span), we maintain the overall average span

duration as well as the average start time of each child span,

and thus our aggregate traces are always valid. We note

that this only applies to averages since other metrics do not

decompose linearly, as explained in Sec. 3.5. □

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lexiang Huang and Timothy Zhu

References
[1] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Perfor-

mance Analysis of Cloud Applications. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). USENIX As-

sociation, Renton, WA, 405–417. https://www.usenix.org/conference/

nsdi18/presentation/ardelean

[2] Emre Ates, Lily Sturmann, Mert Toslali, Orran Krieger, Richard Meg-

ginson, Ayse K. Coskun, and Raja R. Sambasivan. 2019. An Automated,

Cross-Layer Instrumentation Framework for Diagnosing Performance

Problems in Distributed Applications. In Proceedings of the ACM Sym-
posium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19). As-
sociation for Computing Machinery, New York, NY, USA, 165–170.

https://doi.org/10.1145/3357223.3362704

[3] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Au-

tomating root-cause diagnosis of performance anomalies in produc-

tion software. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12). 307–
320. https://www.usenix.org/system/files/conference/osdi12/osdi12-

final-33.pdf

[4] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.

2004. Using Magpie for Request Extraction and Workload

Modelling. In 6th Symposium on Operating Systems Design &
Implementation (OSDI 04). USENIX Association, San Francisco,

CA. https://www.usenix.org/conference/osdi-04/using-magpie-

request-extraction-and-workload-modelling

[5] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst.

2016. Debugging Distributed Systems. Commun. ACM 59, 8 (July

2016), 32–37. https://doi.org/10.1145/2909480

[6] Pengfei Chen, Yong Qi, and Di Hou. 2015. InvarNet-X : A Black-Box

Invariant-Based Approach to Diagnosing Big Data Systems. IEEE
Transactions on Emerging Topics in Computing 5, 4 (nov 2015), 450–465.
https://doi.org/10.1109/tetc.2015.2497143

[7] Pengfei Chen, Yong Qi, and Di Hou. 2016. CauseInfer : Automated

End-to-End Performance Diagnosis with Hierarchical Causality Graph

in Cloud Environment. IEEE Transactions on Services Computing 12, 2

(sep 2016), 214–230. https://doi.org/10.1109/tsc.2016.2607739

[8] Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and

Evgenia Smirni. 2009. Automated anomaly detection and perfor-

mance modeling of enterprise applications. ACM Transactions on
Computer Systems 27, 3 (nov 2009), 1–32. https://doi.org/10.1145/

1629087.1629089

[9] L. Cherkasova, K. Ozonat, Ningfang Mi, J. Symons, and E. Smirni. 2008.

Anomaly? application change? or workload change? towards auto-

mated detection of application performance anomaly and change. In

2008 IEEE International Conference on Dependable Systems and Net-
works With FTCS and DCC (DSN). 452–461. https://doi.org/10.1109/

DSN.2008.4630116

[10] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.

Wenisch. 2014. The Mystery Machine: End-to-end Performance Analy-

sis of Large-scale Internet Services. In 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 14). USENIX Associ-

ation, Broomfield, CO, 217–231. https://www.usenix.org/conference/

osdi14/technical-sessions/presentation/chow

[11] Charlie Curtsinger and Emery D. Berger. 2016. COZ: Finding Code

that Counts with Causal Profiling. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16). USENIX Association, Denver,

CO. https://www.usenix.org/conference/atc16/technical-sessions/

presentation/curtsinger

[12] Daniel J. Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang, Junghwan

Rhee, Nipun Arora, and Geoff Jiang. 2014. PerfScope: Practical On-

line Server Performance Bug Inference in Production Cloud Com-

puting Infrastructures. In Proceedings of the ACM Symposium on

Cloud Computing - SOCC ’14. ACM Press, New York, NY, USA, 1–13.

https://doi.org/10.1145/2670979.2670987

[13] Distributed Systems Tracing with Zipkin 2012. https:

//blog.twitter.com/engineering/en_us/a/2012/distributed-systems-

tracing-with-zipkin

[14] Pinterest Engineering. 2017. Analyzing distributed trace data.

https://medium.com/pinterest-engineering/analyzing-distributed-

trace-data-6aae58919949

[15] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai Budiu, and Glo-

ria Mainar-Ruiz. 2012. Fay: Extensible distributed tracing from kernels

to clusters. ACM Transactions on Computer Systems 30, 4 (2012), 311–
326. https://doi.org/10.1145/2382553.2382555

[16] Joe Farro. 2018. Trace comparisons arrive in Jaeger 1.7.

https://medium.com/jaegertracing/trace-comparisons-arrive-

in-jaeger-1-7-a97ad5e2d05d

[17] Fix Performance Bottlenecks with Intel® VTune™ Profiler Septermber

2021. https://software.intel.com/en-us/vtune.

[18] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott

Shenker. 2007. X-Trace: A Pervasive Network Tracing Frame-

work. In 4th USENIX Symposium on Networked Systems Design
& Implementation (NSDI 07). USENIX Association, Cambridge,

MA. https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-

network-tracing-framework

[19] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution

Anomaly Detection in Distributed Systems through Unstructured Log

Analysis. In 2009 Ninth IEEE International Conference on Data Mining.
149–158. https://doi.org/10.1109/ICDM.2009.60

[20] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-

itrou. 2021. Sage: Practical and Scalable ML-Driven Performance

Debugging in Microservices. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Virtual, USA) (ASPLOS 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 135–151.

https://doi.org/10.1145/3445814.3446700

[21] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,

Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon

Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris

Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,

Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina

Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices

and Their Hardware-Software Implications for Cloud & Edge Systems.

In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA, 3–18.

https://doi.org/10.1145/3297858.3304013

[22] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna

Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging Big Data

to Navigate the Complexity of Performance Debugging in Cloud Mi-

croservices. In Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY,

USA, 19–33. https://doi.org/10.1145/3297858.3304004

[23] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982.

Gprof: A Call Graph Execution Profiler. In Proceedings of the 1982
SIGPLAN Symposium on Compiler Construction (Boston, Massachusetts,

USA) (SIGPLAN ’82). ACM, New York, NY, USA, 120–126. https:

//doi.org/10.1145/800230.806987

[24] Haryadi S. Gunawi, Vincentius Martin, Anang D. Satria, Mingzhe

Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake, Thanh Do,

Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, and Jeffrey F.

Lukman. 2014. What Bugs Live in the Cloud?. In Proceedings of the
ACM Symposium on Cloud Computing - SOCC ’14. 1–14. https://doi.

https://www.usenix.org/conference/nsdi18/presentation/ardelean
https://www.usenix.org/conference/nsdi18/presentation/ardelean
https://doi.org/10.1145/3357223.3362704
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-33.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-33.pdf
https://www.usenix.org/conference/osdi-04/using-magpie-request-extraction-and-workload-modelling
https://www.usenix.org/conference/osdi-04/using-magpie-request-extraction-and-workload-modelling
https://doi.org/10.1145/2909480
https://doi.org/10.1109/tetc.2015.2497143
https://doi.org/10.1109/tsc.2016.2607739
https://doi.org/10.1145/1629087.1629089
https://doi.org/10.1145/1629087.1629089
https://doi.org/10.1109/DSN.2008.4630116
https://doi.org/10.1109/DSN.2008.4630116
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
https://www.usenix.org/conference/atc16/technical-sessions/presentation/curtsinger
https://www.usenix.org/conference/atc16/technical-sessions/presentation/curtsinger
https://doi.org/10.1145/2670979.2670987
https://blog.twitter.com/engineering/en_us/a/2012/distributed-systems-tracing-with-zipkin
https://blog.twitter.com/engineering/en_us/a/2012/distributed-systems-tracing-with-zipkin
https://blog.twitter.com/engineering/en_us/a/2012/distributed-systems-tracing-with-zipkin
https://medium.com/pinterest-engineering/analyzing-distributed-trace-data-6aae58919949
https://medium.com/pinterest-engineering/analyzing-distributed-trace-data-6aae58919949
https://doi.org/10.1145/2382553.2382555
https://medium.com/jaegertracing/trace-comparisons-arrive-in-jaeger-1-7-a97ad5e2d05d
https://medium.com/jaegertracing/trace-comparisons-arrive-in-jaeger-1-7-a97ad5e2d05d
https://software.intel.com/en-us/vtune
https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-framework
https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-framework
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1145/3445814.3446700
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/800230.806987
https://doi.org/10.1145/800230.806987
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1145/2670979.2670986

tprof: Performance profiling via aggregating distributed systems traces SoCC ’21, November 1–4, 2021, Seattle, WA, USA

org/10.1145/2670979.2670986

[25] Dan Gunter, Brian L. Tierney, Aaron Brown, Martin Swany, John

Bresnahan, and Jennifer M. Schopf. 2007. Log summarization and

anomaly detection for troubleshooting distributed systems. In 2007 8th
IEEE/ACM International Conference on Grid Computing. IEEE, 226–234.
https://doi.org/10.1109/GRID.2007.4354137

[26] Jaeger: open source, end-to-end distributed tracing 2021. https://www.

jaegertracing.io/.

[27] Java Profiler - JProfiler 2021. https://www.ej-technologies.com/

products/jprofiler/overview.html.

[28] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. 2017. Perfor-

mance Monitoring and Root Cause Analysis for Cloud-hosted Web

Applications. In Proceedings of the 26th International Conference on
World Wide Web - WWW ’17. ACM Press, New York, NY, USA, 469–478.

https://doi.org/10.1145/3038912.3052649

[29] Jonathan Kaldor, Brendan Viscomi, Vinod Venkataraman, Kaushik

Veeraraghavan, Yee Jiun Song, Jonathan Mace, Michał Bejda, Edison

Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, and

Pingjia Shan. 2017. Canopy: An End-to-End Performance Tracing And

Analysis System. In Proceedings of the 26th Symposium on Operating
Systems Principles - SOSP ’17. 34–50. https://doi.org/10.1145/3132747.

3132749

[30] Pedro Las-Casas, Jonathan Mace, Dorgival Guedes, and Rodrigo

Fonseca. 2018. Weighted Sampling of Execution Traces: Captur-

ing More Needles and Less Hay. In Proceedings of the ACM Sym-
posium on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). As-
sociation for Computing Machinery, New York, NY, USA, 326–332.

https://doi.org/10.1145/3267809.3267841

[31] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and Jonathan

Mace. 2019. Sifter: Scalable Sampling for Distributed Traces, without

Feature Engineering. Proceedings of the ACM Symposium on Cloud
Computing - SoCC ’19 (2019), 312–324. https://doi.org/10.1145/3357223.

3362736

[32] Lightstep: The DevOps observability platform 2021. https://lightstep.

com/.

[33] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo, J.

Zeng, W. Xue, and D. Pei. 2020. Unsupervised Detection of Microser-

vice Trace Anomalies through Service-Level Deep Bayesian Networks.

In 2020 IEEE 31st International Symposium on Software Reliability Engi-
neering (ISSRE). 48–58. https://doi.org/10.1109/ISSRE5003.2020.00014

[34] Jonathan Mace. 2017. End-to-End Tracing: Adoption and Use Cases.
Survey. Brown University.

[35] Jonathan Mace and Rodrigo Fonseca. 2018. Universal Context Propa-

gation for Distributed System Instrumentation. In Proceedings of the
Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). Associa-
tion for Computing Machinery, New York, NY, USA, Article 8, 18 pages.

https://doi.org/10.1145/3190508.3190526

[36] JonathanMace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing:

Dynamic Causal Monitoring for Distributed Systems. In Proceedings
of the 25th Symposium on Operating Systems Principles (Monterey,

California) (SOSP ’15). ACM, New York, NY, USA, 378–393. https:

//doi.org/10.1145/2815400.2815415

[37] Rashmi Mudduluru and Murali Krishna Ramanathan. 2016. Efficient

Flow Profiling for Detecting Performance Bugs. In Proceedings of the
25th International Symposium on Software Testing and Analysis (Saar-
brücken, Germany) (ISSTA 2016). Association for Computing Machin-

ery, New York, NY, USA, 413–424. https://doi.org/10.1145/2931037.

2931066

[38] S. Nedelkoski, J. Cardoso, and O. Kao. 2019. Anomaly Detection and

Classification using Distributed Tracing and Deep Learning. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). 241–250. https://doi.org/10.1109/CCGRID.2019.

00038

[39] S. Nedelkoski, J. Cardoso, and O. Kao. 2019. Anomaly Detection from

System Tracing Data Using Multimodal Deep Learning. In 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). 179–186.
https://doi.org/10.1109/CLOUD.2019.00038

[40] Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. 2013.

FChain: Toward black-box online fault localization for cloud systems.

In Proceedings - International Conference on Distributed Computing
Systems. 21–30. https://doi.org/10.1109/ICDCS.2013.26

[41] OpenTelemetry auto-instrumentation and instrumentation libraries

for Java 2021. https://github.com/open-telemetry/opentelemetry-java-

instrumentation.

[42] OpenTelemetry instrumentation for Python modules 2021. https:

//github.com/open-telemetry/opentelemetry-python-contrib.

[43] OpenTelemetry JavaScript Client 2021. https://github.com/open-

telemetry/opentelemetry-js.

[44] OpenZipkin · A distributed tracing system Septermber 2021. https:

//zipkin.io/.

[45] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and

Byung-Gon Chun. 2015. Making Sense of Performance in Data Ana-

lytics Frameworks. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). USENIX Association, Oakland,

CA, 293–307. https://www.usenix.org/conference/nsdi15/technical-

sessions/presentation/ousterhout

[46] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs. 2020.

Distributed Tracing in Practice: Instrumenting, Analyzing, and Debug-
gingMicroservices. O’Reilly Media, Incorporated. https://books.google.

com/books?id=fgfIyAEACAAJ

[47] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repos-

itory with Interactive Graph Analytics and Visualization. In AAAI.
http://networkrepository.com

[48] Navin Sabharwal and Ravi Shankar. 2013. Apache CloudStack Cloud
Computing. Packt Publishing.

[49] Raja R. Sambasivan, Ilari Shafer, JonathanMace, Benjamin H. Sigelman,

Rodrigo Fonseca, and Gregory R. Ganger. 2016. Principled workflow-

centric tracing of distributed systems. In Proceedings of the Seventh
ACM Symposium on Cloud Computing - SoCC ’16. ACM Press, New

York, NY, USA, 401–414. https://doi.org/10.1145/2987550.2987568

[50] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat,

Spencer Whitman, Michael Stroucken, William Wang, Lianghong Xu,

and Gregory R. Ganger. 2011. Diagnosing Performance Changes by

Comparing Request Flows. In 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 11). USENIX Association,

Boston, MA. https://www.usenix.org/conference/nsdi11/diagnosing-

performance-changes-comparing-request-flows

[51] Huasong Shan, Yunpeng Zhang, Yuan Chen, Xiao Xiao, Haifeng Liu,

Xiaofeng He, Min Li, and Wei Ding. 2019. 𝜖-Diagnosis: Unsupervised

and real-time diagnosis of small-window long-tail latency in large-

scale microservice platforms. In The Web Conference 2019 - Proceedings
of the World Wide Web Conference, WWW 2019. 3215–3222. https:

//doi.org/10.1145/3308558.3313653

[52] Bikash Sharma, Praveen Jayachandran, Akshat Verma, and Chita R.

Das. 2013. CloudPD: Problem determination and diagnosis in shared

dynamic clouds. In 2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Vol. 1. IEEE, 1–12. https:

//doi.org/10.1109/DSN.2013.6575298

[53] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat

Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chan-

dan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical Report. Google, Inc. https://research.google.

com/archive/papers/dapper-2010-1.pdf

https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1109/GRID.2007.4354137
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://doi.org/10.1145/3038912.3052649
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3267809.3267841
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/3357223.3362736
https://lightstep.com/
https://lightstep.com/
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1145/3190508.3190526
https://doi.org/10.1145/2815400.2815415
https://doi.org/10.1145/2815400.2815415
https://doi.org/10.1145/2931037.2931066
https://doi.org/10.1145/2931037.2931066
https://doi.org/10.1109/CCGRID.2019.00038
https://doi.org/10.1109/CCGRID.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/ICDCS.2013.26
https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-python-contrib
https://github.com/open-telemetry/opentelemetry-python-contrib
https://github.com/open-telemetry/opentelemetry-js
https://github.com/open-telemetry/opentelemetry-js
https://zipkin.io/
https://zipkin.io/
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://books.google.com/books?id=fgfIyAEACAAJ
https://books.google.com/books?id=fgfIyAEACAAJ
http://networkrepository.com
https://doi.org/10.1145/2987550.2987568
https://www.usenix.org/conference/nsdi11/diagnosing-performance-changes-comparing-request-flows
https://www.usenix.org/conference/nsdi11/diagnosing-performance-changes-comparing-request-flows
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1109/DSN.2013.6575298
https://doi.org/10.1109/DSN.2013.6575298
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Lexiang Huang and Timothy Zhu

[54] Pengfei Su, Shuyin Jiao, Milind Chabbi, and Xu Liu. 2019. Pinpoint-

ing Performance Inefficiencies via Lightweight Variance Profiling. In

Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (Denver, Colorado) (SC ’19).
Association for Computing Machinery, New York, NY, USA, Article

19, 19 pages. https://doi.org/10.1145/3295500.3356167

[55] The Python Profilers 2021. https://docs.python.org/3/library/profile.

html.

[56] Eno Thereska, Brandon Salmon, John Strunk, MatthewWachs, Michael

Abd-El-Malek, Julio Lopez, and Gregory R. Ganger. 2006. Stardust:

Tracking Activity in a Distributed Storage System. SIGMETRICS Per-
form. Eval. Rev. 34, 1 (June 2006), 3–14. https://doi.org/10.1145/1140103.

1140280

[57] Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Yuan

Wang, and Pengfei Chen. 2018. CloudRanger: Root Cause Identifica-

tion for Cloud Native Systems. In 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE,
492–502. https://doi.org/10.1109/CCGRID.2018.00076

[58] Shasha Wen, Milind Chabbi, and Xu Liu. 2017. REDSPY: Exploring

Value Locality in Software. In Proceedings of the Twenty-Second Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Xi’an, China) (ASPLOS ’17). ACM, New York,

NY, USA, 47–61. https://doi.org/10.1145/3037697.3037729

[59] Shasha Wen, Xu Liu, John Byrne, and Milind Chabbi. 2018. Watching

for Software Inefficiencies with Witch. SIGPLAN Not. 53, 2 (March

2018), 332–347. https://doi.org/10.1145/3296957.3177159

[60] Robin Whitmore. 2019. Find Correlated Areas of Latency and Errors

| Lightstep Learning Portal. https://docs.lightstep.com/docs/find-

correlated-areas-of-latency

[61] RobinWhitmore. 2019. See the Critical Path | Lightstep Learning Portal.

https://docs.lightstep.com/docs/view-traces#see-the-critical-path

[62] Robin Whitmore. 2019. View Traces | Lightstep Learning Portal. https:

//docs.lightstep.com/docs/view-traces

[63] YangWu, Ang Chen, and Linh Thi Xuan Phan. 2019. Zeno: Diagnosing

Performance Problems with Temporal Provenance. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19). USENIX Association, Boston, MA, 395–420. https://www.usenix.

org/conference/nsdi19/presentation/wu

[64] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I.

Jordan. 2009. Detecting large-scale system problems by mining console

logs. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles - SOSP ’09. ACM Press, New York, NY, USA, 117.

https://doi.org/10.1145/1629575.1629587

[65] Xu Zhang, Qingwei Lin, Yong Xu, Si Qin, Hongyu Zhang, Bo Qiao,

Yingnong Dang, Xinsheng Yang, Qian Cheng, Murali Chintalapati, You-

jiang Wu, Ken Hsieh, Kaixin Sui, Xin Meng, Yaohai Xu, Wenchi Zhang,

Furao Shen, and Dongmei Zhang. 2019. Cross-dataset Time Series

Anomaly Detection for Cloud Systems. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19). USENIX Association, Renton, WA,

1063–1076. https://www.usenix.org/conference/atc19/presentation/

zhang-xu

[66] Zhihong Zhang, Jianfeng Zhan, Yong Li, Lei Wang, Dan Meng, and

Bo Sang. 2009. Precise request tracing and performance debugging

for multi-tier services of black boxes. In 2009 IEEE/IFIP International
Conference on Dependable Systems Networks. 337–346. https://doi.org/

10.1109/DSN.2009.5270321

[67] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm.

2016. Non-Intrusive Performance Profiling for Entire Software Stacks

Based on the Flow Reconstruction Principle. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16).
USENIX Association, Savannah, GA, 603–618. https://www.usenix.

org/conference/osdi16/technical-sessions/presentation/zhao

[68] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu

Luo, Ding Yuan, and Michael Stumm. 2014. lprof: A Non-intrusive

Request Flow Profiler for Distributed Systems. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14).
USENIX Association, Broomfield, CO, 629–644. https://www.usenix.

org/conference/osdi14/technical-sessions/presentation/zhao

[69] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan

Ding. 2018. Fault Analysis and Debugging of Microservice Systems:

Industrial Survey, Benchmark System, and Empirical Study. IEEE
Transactions on Software Engineering 14, 8 (2018), 1–18. https://doi.

org/10.1109/TSE.2018.2887384

[70] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and

Wenyun Zhao. 2018. Benchmarking microservice systems for software

engineering research. Proceedings - International Conference on Soft-
ware Engineering (2018), 323–324. https://doi.org/10.1145/3183440.

3194991

https://doi.org/10.1145/3295500.3356167
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://doi.org/10.1145/1140103.1140280
https://doi.org/10.1145/1140103.1140280
https://doi.org/10.1109/CCGRID.2018.00076
https://doi.org/10.1145/3037697.3037729
https://doi.org/10.1145/3296957.3177159
https://docs.lightstep.com/docs/find-correlated-areas-of-latency
https://docs.lightstep.com/docs/find-correlated-areas-of-latency
https://docs.lightstep.com/docs/view-traces#see-the-critical-path
https://docs.lightstep.com/docs/view-traces
https://docs.lightstep.com/docs/view-traces
https://www.usenix.org/conference/nsdi19/presentation/wu
https://www.usenix.org/conference/nsdi19/presentation/wu
https://doi.org/10.1145/1629575.1629587
https://www.usenix.org/conference/atc19/presentation/zhang-xu
https://www.usenix.org/conference/atc19/presentation/zhang-xu
https://doi.org/10.1109/DSN.2009.5270321
https://doi.org/10.1109/DSN.2009.5270321
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zhao
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1145/3183440.3194991
https://doi.org/10.1145/3183440.3194991

	Abstract
	1 Introduction
	2 Related work and background
	2.1 Coarse-grained: Performance profilers
	2.2 Fine-grained: Tracing systems
	2.3 Other related work

	3 tprof
	3.1 Definitions
	3.2 Layers 1/2: Operation analysis
	3.3 Layer 3: Span and child analysis
	3.4 Layer 4: Subspan analysis
	3.5 Aggregate trace visualization
	3.6 Tail latency support
	3.7 Automated performance diagnosis

	4 Evaluation
	4.1 Experimental setup
	4.2 Effectiveness in detecting slowdowns
	4.3 Exposing unknown performance slowdowns
	4.4 Comparison with state-of-the-art approaches

	5 Discussion
	5.1 Generality of layers
	5.2 Handling complex trace structures
	5.3 Subspans not on the critical path

	6 Conclusion
	A Proof of aggregate trace: Theorem 1
	References

