Quantification of methane emissions from the natural gas gathering system using distributed sensors

Albert Presto
Dept. of Mechanical Engineering
Center for Atmospheric Particle Studies
Project objectives

- Demonstrate the ability of a distributed, low-cost sensor network to quantify temporally varying methane emissions from natural gas gathering infrastructure
- Apply this approach to measure emissions from gathering pipelines and pig launchers
Project objectives

• Demonstrate the ability of a distributed, low-cost sensor network to quantify temporally varying methane emissions from natural gas gathering infrastructure

• Apply this approach to measure emissions from gathering pipelines and pig launchers
 • Our NETL partners did not find any gathering pipelines with large enough leaks to target
Characterization of inexpensive metal oxide sensor performance for trace methane detection

Daniel Furuta1, Tofigh Sayahi2, Jinsheng Li1, Bruce Wilson1, Albert A. Presto2,3, and Jiayu Li1,3

1Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA

2Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA

3Department of Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA
We tested sensors using different operating principles:

Metal oxide semiconductor
- MQ-4
- Sensirion SVM30
- SGX IR12GJ, VQ549ZD
- TGS 2600, 2602, 2611
- Alphasense MOX

Photo ionization
- Alphasense PID (10.6 & 9.6eV)

Furuta et al, *AMT*, 2022
We conducted laboratory tests to identify candidate sensors.
Some sensors performed well
Others did not
We tested sensors using different operating principles.

Metal oxide semiconductor

- MQ-4
- Sensirion SVM30

SGX IR12GJ, VQ549ZD
- TGS 2600, 2602, 2611
- Alphasense MOX

Photo ionization

- Alphasense PID (10.6 & 9.6eV)

Furuta et al, AMT, 2022
Sensors displayed inter-unit precision

Furuta et al, AMT, 2022
Sensors displayed inter-unit precision, but inter-unit variability suggests that individual calibrations are needed.

TGS2600

- $R = 1.00$
- $\beta = 1.11$

MQ4

- $R = 0.97$
- $\beta = 0.67$

Furuta et al, AMT, 2022
Sensors displayed inter-unit precision, but inter-unit variability suggests that individual calibrations are needed.

Furuta et al, *AMT*, 2022
“Good” sensors showed humidity and T dependence
“Good” sensors showed humidity and T dependence
“Good” sensors showed humidity and T dependence
We built calibration models that worked well under laboratory conditions.
We built calibration models that worked well under laboratory conditions.
We built calibration models that worked well under laboratory conditions.

\[CH_4 = \alpha + \beta_1 (\text{sensor resistance}) + \beta_2 (H_2O) + \beta_3 (H_2O)(\text{sensor resistance}) + \epsilon. \]

Carnegie Mellon University

Furuta et al, AMT, 2022
We tested multiple models for calibration
We tested multiple models for calibration
We tested multiple models for calibration.
We tested multiple models for calibration

\[\text{CH}_4 = 1.425 + 0.12 S_c + 0.375/S_c - 0.0065 T_a +
 +53.3 \rho_v + 0.0022 S_c \cdot T_a - 0.0017 T_a/S_c +
 +4.9 S_c \cdot \rho_v - 67.4 \rho_v/S_c - 0.39 S_c \cdot T_a \cdot \rho_v
 +1.15 T_a \cdot \rho_v/S_c , \]
We tested multiple models for calibration.

Models that incorporate multiple sensor responses might be better equipped to handle T, RH.
We tested the sensors outdoors
We tested the sensors outdoors

There was almost no variability in methane concentrations at our ambient location
We tested the sensors outdoors in an environment doped with methane
We tested the sensors outdoors in an environment doped with methane.

The calibration model could not account for rapid changes in ambient T and RH.
Stratifying by RH yields good correlation between CH\textsubscript{4} and sensor signal, with best performance at low RH.
Sub-selecting periods of constant RH yields better results
We deployed sensors near a pig launcher on multiple locations
We deployed sensors near a pig launcher on multiple locations. CH$_4$ was elevated at the pig launcher, but we never encountered any CH$_4$ plumes that would allow for emission estimation.
Next steps and lessons learned

• The RH and T interferences are difficult to correct in real time
• Sensors perform best at low RH
 • This suggests that drying the sample flow will lead to better performance
• Limit of detection is 0.3 ppm for a 5-minute sample under dry conditions. This should be sufficient to quantify leaks in the near field