
1. Introduction
When seismic waves travel through the Earth's interior, from shallow crust to deep mantle to the core, both 
velocity and attenuation show direction-dependent characteristics (Anderson,  1989; Carcione,  1992; Stein & 
Wysession, 2003). The variation of seismic velocity and attenuation with directions is the intrinsic property of the 
Earth's interior structure for several reasons including the distribution of aligned fluid-filled fractures (Chichinina 
et al., 2009; Hosten et al., 1987), the preferential alignment of fractures (Liu et al., 1993; Lynn et al., 1999), and 
the anisotropic Zener relaxation of iron in the inner core (Mäkinen et al., 2014). Seismic anisotropy plays an 
important role in the identification of the inner core boundary (Yu & Wen, 2006), plate-motion deformation (Bao 
et al., 2020; Li et al., 2018), interpretation of rock physical properties (Piane et al., 2014), and fractured reser-
voirs (Guo & McMechan, 2017). To capture the anisotropy of velocity and attenuation simultaneously in seismic 
modeling and imaging, it is necessary to develop such an anisotropic viscoelastic wave equation.

In the past three decades, velocity anisotropy has been incorporated into seismic modeling and imaging practice 
(e.g., Carcione, 1995; Komatitsch et al., 2000; Thomsen, 1986; Tsvankin, 2012). It is straightforward to derive 
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a full anisotropic seismic wave equation by defining an elastic stiffness matrix or simplified acoustic-anisotropy 
wave equation by eliminating shear waves (Alkhalifah, 2000). However, attenuation anisotropy is often ignored in 
seismic modeling, even though this phenomenon has been extensively observed in laboratory rock measurements 
and field data (Carcione, 1992; Tao & King, 1990; Tsvankin, 2012; Zhubayev et al., 2016). Moreover, attenua-
tion anisotropy is found to be more significant than the velocity anisotropy as a result of fractures (Chichinina 
et al., 2004; Lynn et al., 1999). The difficulty of formulating such an anisotropic viscoelastic wave equation is the 
involvement of a complex-valued stiffness matrix and its numerical solution.

The most common method to consider both velocity and attenuation anisotropy is predominantly developed 
based on mechanical (rheological) models, where frequency-independent Q behavior (McDonal et  al.,  1958; 
Spencer, 1981) of seismic wave propagation in the Earth's interior is approximated by a superposition of mechan-
ical elements, such as Maxwell or standard linear solid (SLS) elements (Liu et al., 1976). Excellent pioneer-
ing work of time-domain viscoelastic modeling has been developed based on mechanical models (e.g., Blanch 
et al., 1995; Carcione et al., 1988; Day & Minster, 1984; Emmerich & Korn, 1987; Kristek et al., 2019; Kristek & 
Moczo, 2003), and detailed reviews of this development are provided by Carcione (2014) and Moczo et al. (2014). 
It is worth mentioning that the above rheological models (generalized Maxwell body and generalized Zener body) 
are essentially equivalent—shown by Moczo and Kristek (2005). Carcione (1990, 1992, 1995) established the 
wave equation theory of incorporating linear viscoelastic anisotropy and laid the foundation for later study of 
attenuation-velocity anisotropy media. Bai and Tsvankin (2016) developed a detailed numerical demonstration 
and analysis of vertical transversely isotropic (VTI) attenuation by 2D time-domain finite-difference modeling. 
Although mechanical models have been widely adopted in the literature of seismic forward modeling and inverse 
problems, it is worth pointing out two essential issues (Xing & Zhu, 2022): first, these mechanical model-based 
modeling approaches introduce the memory variables (most often L  =  3 relaxation elements for seismology 
studies), which require significant computation time and memory, especially in 3D (e.g., Robertsson et al., 1994; 
Savage et al., 2010; Zhu et al., 2013); second, these approaches bring about difficulties in inverse problems as the 
Q is implicitly parameterized by a set of relaxation times (Fichtner and Van Driel, 2014).

Alternatively, a category of fractional wave equations built from the frequency-independent Q model (Caputo, 1967; 
Kjartansson, 1979) has drawn more attention because of its concise mathematical form and capacity of well 
describing the frequency-independent attenuation behavior. In earlier attempts, the fractional wave equation 
involving a time-fractional derivative has been studied in seismology, mathematics, and acoustic-bioengineering 
(e.g., Caputo, 1967; Caputo et al., 2011; Mainardi, 2010). The numerical implementation of the time-fractional 
derivative is hampered by the excessive memory requirement of storing the entire wave-field history. To avoid 
this storage, Chen and Holm (2004) resort to the fractional Laplacians to substitute the time-fractional operators 
with considering amplitude attenuation only. Treeby and Cox (2010) proposed to split the velocity dispersion and 
the amplitude attenuation effects by using the fractional Laplacians in a decoupled form.

In seismology, Zhu and his collaborators (Zhu & Carcione, 2014; Zhu & Harris, 2014) developed the decou-
pled fractional Laplacian (DFL) viscoelastic/viscoacoustic wave equations, which have benefited the attenua-
tion-compensation seismic imaging (Li et al., 2016; Wang et al., 2017; Zhao et al., 2018; Zhu et al., 2014; Zhu 
& Sun, 2017) and inversion (Chen et al., 2020; Xing and Zhu, 2020, 2022; Xue et al., 2017; Yang et al., 2020). 
Subsequently, several decoupled-form viscous wave equations are proposed. For instance, Yang and Zhu (2018) 
derived a complex-valued wave equation by inserting the complex-valued velocity into acoustic wave equation 
and neglecting high-order terms related to Q; Li et al. (2019) developed a fractional viscoacoustic wave equation 
consisting of a single SLS; Mu et al. (2021) proposed a viscoelastic wave equation that describes the constant 
Q behavior via several variable-order fractional Laplacians. Taking Q anisotropy into account, Zhu  (2017) 
first derived a time-fractional viscoelastic anisotropic wave equation. Further, Zhu and Bai  (2019) and Qiao 
et al. (2019) replaced the time-fractional operators with efficient fractional spatial operators via different approx-
imation methods. The latter derivation (Qiao et al., 2019) is built on the assumption that the anisotropy charac-
teristics of attenuation and velocity are similar and the Thomsen parameter of 𝐴𝐴 𝐴𝐴 is small. In all above mentioned 
derived fractional wave equations, the power terms of DFL are mixed-domain (spatial and wavenumber) oper-
ators, which is challenging to be numerically solved in an efficient manner. To improve the efficiency, several 
intermediate approaches (e.g., Chen et al., 2016; Sun et al., 2015; Wang et al., 2018; Wang et al., 2020; Zhang 
et al., 2020) have been proposed. Recently, Xing and Zhu (2019) developed a novel spatial-independent-order 
DFL viscoacoustic wave equation that fully avoids the difficulty of computing mixed-domain operators.
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In this paper, to propagate P-, S-, converted waves, and surface waves, we derive a VTI viscoelastic wave equation 
to incorporate both velocity and attenuation anisotropy. The proposed DFL viscoelastic wave equation not only 
inherits the advantages of decoupled wave amplitude and phase dispersion, but also has the ability to characterize 
strong VTI attenuation. We also analyze the stability condition using the eigenvalue method (Gazdag, 1981) 
and describe the numerical implementation of the staggered-grid pseudo-spectral (SGPS) method for solving 
the proposed wave equations. The propagation of surface waves with free boundary is based on the vacuum 
formalism (Zahradník et al., 1993). We use a series of 2D models with different levels of model complexities to 
demonstrate the accuracy of the proposed wave equations, and a 3D Salton Trough model to show the feasibility 
in crustal-scale seismic modeling. By comparing the computational cost of 2D and 3D synthetic tests, we show 
that the proposed VTI-DFL wave equations can achieve a few 10 times faster than the time-fractional based wave 
equations with MATLAB codes and even five hundred times faster with a GPU CUDA code.

The rest of this paper is organized as follows. In the methodology section, we provide a detailed description of 
the proposed VTI-DFL viscoelastic wave equation followed by analyzing the stability conditions, detailing its 
numerical implementation, and summarizing its advantages. In the numerical examples, we conduct a series of 
experiments to verify the accuracy and demonstrate the advantages of the proposed viscoelastic wave equations. 
Then, we discuss computational efficiency. Finally, we draw conclusions.

2. Theory
2.1. Dispersion Relation of the Frequency-Independent Q Model

Both laboratory experiments and in-situ seismic surveys (e.g., McDonal et al., 1958) suggested that seismic Q 
is almost independent of frequency over the narrow seismic frequency band. According to the Kjartansson's 
frequency-independent Q model (Kjartansson, 1979), the dispersion relation between the complex wavenumber 
k and the angular frequency 𝐴𝐴 𝐴𝐴 is

𝑘𝑘(𝜔𝜔) =
1

𝑐𝑐
𝜔𝜔

𝛾𝛾

0
𝜔𝜔

1−𝛾𝛾
𝑒𝑒
−𝑖𝑖𝑖𝑖𝛾𝛾∕2

, (1)

where attenuation strength 𝐴𝐴 𝐴𝐴 = arctan𝑄𝑄−1∕𝜋𝜋 ; the “propagation velocity” 𝐴𝐴 𝐴𝐴 is related to the phase velocity 𝐴𝐴 𝐴𝐴0 
at frequency 𝐴𝐴 𝐴𝐴0 by 𝐴𝐴 𝐴𝐴 = 𝐴𝐴0 cos(𝜋𝜋𝜋𝜋∕2) . To achieve computational efficiency and accuracy, Xing and Zhu (2019) 
proposed a viscoacoustic wave equation, which can be expressed in frequency-wavenumber domain as

𝜔𝜔
2 = 𝑑𝑑1𝑘𝑘 + 𝑑𝑑2𝑘𝑘

2 + 𝑑𝑑3𝑘𝑘
3 + 𝑑𝑑4(𝑖𝑖𝜔𝜔)𝑘𝑘 + 𝑑𝑑5(𝑖𝑖𝜔𝜔)𝑘𝑘

2
, (2)

where 𝐴𝐴 (𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑3, 𝑑𝑑4, 𝑑𝑑5) are real parameters related to media properties (i.e., reference frequency 𝐴𝐴 𝐴𝐴0 , velocity 𝐴𝐴 𝐴𝐴 
and attenuation strength 𝐴𝐴 𝐴𝐴 ). To make Equation 2 to satisfy Equation 1, Xing and Zhu (2019) searched for opti-
mized parameters 𝐴𝐴 (𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑3, 𝑑𝑑4, 𝑑𝑑5) so that the solution of Equation 2 approximates the Kjartansson wavenumber 
k in Equation 1 for all the frequencies in the seismic range. These coefficients are derived as follows:

(𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑3, 𝑑𝑑4, 𝑑𝑑5) =
(

−𝛾𝛾𝛾𝛾𝛾𝛾0, 𝛾𝛾
2
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−1
0
, 𝜋𝜋𝛾𝛾𝛾𝛾, 𝜋𝜋𝛾𝛾

2
𝛾𝛾
2
𝛾𝛾

−1
0

)

. (3)

Thus, the approximate dispersion relation (Equation 2) can well capture the wavefield behavior described by the 
Kjartansson model (Equation 1) in terms of dynamic dissipation (imaginary part of k) and kinematic dispersion 
(real part of k). The detailed derivation of Equation 3 can be found in Xing and Zhu (2019). We have to emphasize 
that the wavenumber k has a constant power (i.e., spatially independent) in Equation 2, which leads to fractional 
Laplacian operators with spatially independent-order in the time-space domain (Section 2.2) and thus guarantees 
the accuracy when handling heterogeneous Q media.

2.2. Isotropic Viscoelastic Wave Equation

We generalize the viscoacoustic dispersion relation (Equation 2) to describe both P- and S-modes of the viscoe-
lastic wave:

𝜔𝜔
2 = 𝑑𝑑𝜃𝜃𝜃1𝑘𝑘 + 𝑑𝑑𝜃𝜃𝜃2𝑘𝑘

2 + 𝑑𝑑𝜃𝜃𝜃3𝑘𝑘
3 + 𝑑𝑑𝜃𝜃𝜃4(𝑖𝑖𝜔𝜔)𝑘𝑘 + 𝑑𝑑𝜃𝜃𝜃5(𝑖𝑖𝜔𝜔)𝑘𝑘

2
𝜃 (4)

where 𝐴𝐴 𝐴𝐴 = 𝑃𝑃  or 𝐴𝐴 𝐴𝐴 represents P- or S-wave, respectively. Thus, the corresponding parameters are given by
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(𝑑𝑑𝜃𝜃𝜃1𝜃 𝑑𝑑 𝜃𝜃𝜃2𝜃 𝑑𝑑 𝜃𝜃𝜃3𝜃 𝑑𝑑 𝜃𝜃𝜃4𝜃 𝑑𝑑 𝜃𝜃𝜃5) =
(
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2
𝜃𝜃
𝑐𝑐
2
𝜃𝜃
𝜔𝜔0

−1
)

. (5)

where 𝐴𝐴 𝐴𝐴𝜃𝜃 and 𝐴𝐴 𝐴𝐴𝜃𝜃 are associated propagation velocity and attenuation strength, respectively. For each wave mode, 
the complex modulus 𝐴𝐴 𝐴𝐴𝜃𝜃 relates to the complex wavenumber k as

𝑀𝑀𝜃𝜃 = 𝜌𝜌
𝜔𝜔

2

𝑘𝑘2
= 𝐶𝐶𝜃𝜃

𝜔𝜔
2

𝑐𝑐
2
𝜃𝜃
𝑘𝑘2

, (6)

where 𝐴𝐴 𝐴𝐴𝜃𝜃 = 𝜌𝜌𝜌𝜌
2
𝜃𝜃
 is a real parameter with modulus/stiffness dimension. Substituting the dispersion relation (Equa-

tion 4) into Equation 6 leads to the complex modulus

𝑀𝑀𝜃𝜃 = 𝐶𝐶𝜃𝜃

1

𝑐𝑐
2
𝜃𝜃

(
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−1 + 𝑑𝑑𝜃𝜃𝜃2 + 𝑑𝑑𝜃𝜃𝜃3𝑘𝑘 + 𝑑𝑑𝜃𝜃𝜃4(𝑖𝑖𝑖𝑖)𝑘𝑘

−1 + 𝑑𝑑𝜃𝜃𝜃5(𝑖𝑖𝑖𝑖)
)

. (7)

This expression of complex modulus 𝐴𝐴 𝐴𝐴𝜃𝜃 in the frequency-wavenumber domain can be transformed into a consti-
tutive operator 𝐴𝐴 𝐴𝐴𝜃𝜃 in the time-space domain

𝐿𝐿𝜃𝜃 = 𝐶𝐶𝜃𝜃

1

𝑐𝑐
2
𝜃𝜃

(
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1
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(

−∇2
)

1
2 + 𝑑𝑑𝜃𝜃𝜃4

(
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1
2
𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝜃𝜃𝜃5

𝜕𝜕

𝜕𝜕𝜕𝜕

)

. (8)

The constitutive relation of both wave modes can thus be written with the constitutive operators (Wang 
et al., 2016):

⎧

⎪

⎨

⎪

⎩

𝜎𝜎
𝑝𝑝

𝑖𝑖𝑖𝑖
= 𝐿𝐿𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘𝑘𝑘

𝜎𝜎
𝑠𝑠

𝑖𝑖𝑖𝑖
= 𝐿𝐿𝑠𝑠 (2𝑒𝑒𝑖𝑖𝑖𝑖 − 2𝛿𝛿𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘𝑘𝑘)

, (9)

where 𝐴𝐴 𝐴𝐴
𝑝𝑝

𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑖𝑖𝑖𝑖
 denote the stress tensors for P- and S-modes, respectively, 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘 and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 are strain tensors, and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is 

the Kronecker delta. The indices i, j, k denote to spatial coordinates. The P-S coupled stress tensor is obtained by 
summing 𝐴𝐴 𝐴𝐴

𝑝𝑝

𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑖𝑖𝑖𝑖
 , written as:

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎
𝑝𝑝

𝑖𝑖𝑖𝑖
+ 𝜎𝜎

𝑠𝑠

𝑖𝑖𝑖𝑖
= 𝐿𝐿𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘𝑘𝑘 + 𝐿𝐿𝑠𝑠 (2𝑒𝑒𝑖𝑖𝑖𝑖 − 2𝛿𝛿𝑖𝑖𝑖𝑖𝑒𝑒𝑘𝑘𝑘𝑘) . (10)

In the meantime, we have the conservation of momentum

𝜕𝜕
2
𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕2
=

1
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𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

, (11)

and the definition of the strain tensor

𝑒𝑒𝑖𝑖𝑖𝑖 =
1

2

(

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

)

, (12)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 denotes the particle displacement of the ith direction. Combining Equations 10–12, we obtain the spatial-
ly-independent-order DFL viscoelastic wave equation

⎧
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𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

)
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, (13)

where the strain rate 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖 =
𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
 and the particle velocity 𝐴𝐴 𝐴𝐴𝑖𝑖 =

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
 . By eliminating 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖 , it is convenient to write the 2D 

DFL viscoelastic wave equation in the following first-order system:
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⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

����
��

= ����

��
+ ����

��

����
��

= ����

��
+ ����

��
����

��
= ��

(���
��

+ ���
��

)

− 2��
���
��

����

��
= ��

(���
��

+ ���
��

)

− 2��
���
��

����

��
= ��

(���
��

+ ���
��

)

. (14)

Note that the original DFL viscoelastic wave equation (Zhu & Carcione, 2014) contains spatially-dependent-or-
der fractional Laplacians (the power terms of the Laplacian operators are functions of 𝐴𝐴 𝐴𝐴 ), which introduces 
spatial-wavenumber mixed-domain problems, concerned in many following studies (Chen et  al.,  2016; Sun 
et al., 2015; Xing & Zhu, 2019; Yang & Zhu, 2018; Yao et al., 2016). Zhu and Harris (2014) adopt the average 
value of 𝐴𝐴 𝐴𝐴 to approximate the fractional power terms 𝐴𝐴 𝐴𝐴 (here, we refer it average scheme for short). The average 
scheme works well for homogeneous or smooth Q models, but it introduces significant simulation errors for 
sharp Q-contrast models (Chen et al., 2016). This problem is naturally avoided in our proposed spatially-inde-
pendent-order DFL viscoelastic wave equation (Equation 14), where the power terms of fractional Laplacians are 
constant (Equation 8).

2.3. VTI Viscoelastic Wave Equation

Here, we consider a particular type of anisotropy with a vertical transversely isotropic (VTI) symmetry that is 
common in the upper crust (Tsvankin, 2012) and deep mantle (Romanowicz & Wenk, 2017). A medium with 
such symmetry could be a laminated fabric defined by aligned minerals, such as sheet silicates, and/or lithological 
layering.

2.3.1. Elastic VTI Stiffness Matrix

The structure of stiffness tensor determines the velocity and polarization of seismic waves for any propagation 
direction (Tsvankin, 2012). The most general anisotropic model is triclinic, whose stiffness matrix consists of 21 
independent elements. The stiffness matrix of triclinic media has the following abbreviated Voigt notation form

𝐂𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝐶11 𝐶𝐶12 𝐶𝐶13 𝐶𝐶14 𝐶𝐶15 𝐶𝐶16

𝐶𝐶12 𝐶𝐶22 𝐶𝐶23 𝐶𝐶24 𝐶𝐶25 𝐶𝐶26

𝐶𝐶13 𝐶𝐶23 𝐶𝐶33 𝐶𝐶34 𝐶𝐶35 𝐶𝐶36

𝐶𝐶14 𝐶𝐶24 𝐶𝐶34 𝐶𝐶44 𝐶𝐶45 𝐶𝐶46

𝐶𝐶15 𝐶𝐶25 𝐶𝐶35 𝐶𝐶45 𝐶𝐶55 𝐶𝐶56

𝐶𝐶16 𝐶𝐶26 𝐶𝐶36 𝐶𝐶46 𝐶𝐶56 𝐶𝐶66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (15)

According to the number of symmetry axes, the stiffness matrix of 3D VTI media in abbreviated Voigt notation 
form is
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𝐂𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝐶11 𝐶𝐶11-2𝐶𝐶66 𝐶𝐶13 0 0 0

𝐶𝐶11-2𝐶𝐶66 𝐶𝐶11 𝐶𝐶13 0 0 0

𝐶𝐶13 𝐶𝐶13 𝐶𝐶33 0 0 0

0 0 0 𝐶𝐶55 0 0

0 0 0 0 𝐶𝐶55 0

0 0 0 0 0 𝐶𝐶66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (16)

With the assumption of weak anisotropy (Thomsen, 1986), the relation between the velocity and the elastic stiff-
ness can be simplified as

𝐶𝐶11 = 𝜌𝜌𝜌𝜌
2
𝑝𝑝ll
, 𝐶𝐶33 = 𝜌𝜌𝜌𝜌

2
𝑝𝑝⟂
, 𝐶𝐶55 = 𝜌𝜌𝜌𝜌

2
𝑠𝑠 , 𝐶𝐶66 = (1 + 2𝛾𝛾)𝐶𝐶55,

𝐶𝐶13 =
√

2𝛿𝛿𝐶𝐶33 (𝐶𝐶33 − 𝐶𝐶55) + (𝐶𝐶33 − 𝐶𝐶55)
2 − 𝐶𝐶55,

 (17)

where 𝐴𝐴 𝐴𝐴𝑝𝑝⟂ and 𝐴𝐴 𝐴𝐴𝑝𝑝ll represent the P-wave velocity at the vertical and horizontal directions, and 𝐴𝐴 𝐴𝐴𝑝𝑝⟂ =
𝐴𝐴𝑝𝑝ll

√

1+2𝜀𝜀
 ; 𝐴𝐴 𝐴𝐴𝑠𝑠 

denotes the SV-wave velocity. 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are the Thomsen parameters under the assumption of weak anisotropy 
(Thomsen, 1986). Note that the Thomsen parameters are usually less than 0.2. If only considering elastic waves 
in the x-z plane, Equation 16 reduces to

𝐂𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝐶11 𝐶𝐶13 0

𝐶𝐶13 𝐶𝐶33 0

0 0 𝐶𝐶55

⎤

⎥

⎥

⎥

⎥

⎦

. (18)

2.3.2. VTI Anisotropic Attenuation

Similarly, the Q matrix is proposed by Zhu and Tsvankin (2006) to describe the direction-dependent attenuation. 
In a 3D VTI medium, the Q matrix can be expressed as

𝐐𝐐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑄𝑄11 𝑄𝑄12 𝑄𝑄13 0 0 0

𝑄𝑄12 𝑄𝑄11 𝑄𝑄13 0 0 0

𝑄𝑄13 𝑄𝑄13 𝑄𝑄33 0 0 0

0 0 0 𝑄𝑄55 0 0

0 0 0 0 𝑄𝑄55 0

0 0 0 0 0 𝑄𝑄66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (19)

where 𝐴𝐴 𝐴𝐴11 and 𝐴𝐴 𝐴𝐴33 denote P-wave quality factors at the horizontal and vertical directions, respectively; 𝐴𝐴 𝐴𝐴55 and 
𝐴𝐴 𝐴𝐴66 represent the SV-wave and the SH-wave quality factors. Under the assumption of weak attenuation anisotropy 

(i.e., Q13 is of the same magnitude as Q33 and Q55), Zhu and Tsvankin (2006) derived the relations between Q11, 
Q33, Q12, and Q13 using the Thomsen style attenuation anisotropy parameters of 𝐴𝐴 𝐴𝐴𝑄𝑄 , 𝐴𝐴 𝐴𝐴𝑄𝑄 and 𝐴𝐴 𝐴𝐴𝑄𝑄 , given as

𝑄𝑄11 =
𝑄𝑄33

1 + 𝜀𝜀𝑄𝑄
, (20)

𝑄𝑄66 =
𝑄𝑄55

1 + 𝛾𝛾𝑄𝑄
, (21)

𝑄𝑄12 = 𝑄𝑄11
𝐶𝐶11 − 2𝐶𝐶66

𝐶𝐶11 − 2𝐶𝐶66
𝑄𝑄11

𝑄𝑄66

, (22)
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�13 =
2�33

(

���33 (�33 − �55) − �33 −�55
�55

�55(�13 +�33)2
�33 −�55

)

1
�13(�13 +�55) + 2

.
 (23)

If only considering attenuation in the x-z plane, the Q matrix of 2D VTI media is

𝐐𝐐 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑄𝑄11 𝑄𝑄13 0

𝑄𝑄13 𝑄𝑄33 0

0 0 𝑄𝑄55

⎤

⎥

⎥

⎥

⎥

⎦

. (24)

2.3.3. VTI-DFL Viscoelastic Wave Equation

Different from the anisotropic elastic media (elements of stiffness matrix 𝐴𝐴 𝐂𝐂 are real values), the anisotropic 
viscoelastic media introduce complex-valued stiffness matrix (or complex moduli, denoted by 𝐴𝐴 �̃�𝐂 ). Each element 
of 𝐴𝐴 �̃�𝐂 can be generalized from the 𝐴𝐴 𝐂𝐂 (Carcione, 1990) as following:

�̃�𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖 cos
2 (𝜋𝜋𝜋𝜋𝑖𝑖𝑖𝑖∕2)

(

𝑖𝑖𝑖𝑖

𝑖𝑖0

)2𝜋𝜋𝑖𝑖𝑖𝑖

, (25)

where

𝛾𝛾𝑖𝑖𝑖𝑖 =
1

𝜋𝜋
arctan

1

𝑄𝑄𝑖𝑖𝑖𝑖

. (26)

The above complex-valued stiffness matrix in Equation 25 can be parameterized to describe general Q anisotropy 
in the anisotropic time-fractional (VTI-TF) viscoelastic wave equation (Zhu, 2017). However, as we stated, this 
type of time-fractional wave equation demands huge computational memory. Below we show the derivation of 
the VTI viscoelastic wave equation with decoupled fractional Laplacian operators (VTI-DFL).

The constitutive relation of a 2D VTI medium in the frequency-wavenumber domain is:

�̃�𝜎𝑥𝑥𝑥𝑥 = �̃�𝐶11 (𝑒𝑒𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑧𝑧𝑧𝑧) +
1

2

(

�̃�𝐶11 − �̃�𝐶13

)

(−2𝑒𝑒𝑧𝑧𝑧𝑧) , (27)

�̃�𝜎𝑧𝑧𝑧𝑧 = �̃�𝐶33 (𝑒𝑒𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑧𝑧𝑧𝑧) +
1

2

(

�̃�𝐶33 − �̃�𝐶13

)

(−2𝑒𝑒𝑥𝑥𝑥𝑥) , (28)

�̃�𝜎𝑥𝑥𝑥𝑥 = �̃�𝐶55𝑒𝑒𝑥𝑥𝑥𝑥, (29)

Decomposing Equation 27 into P- and S-components, we have

�̃�𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �̃�𝐶11 (𝑒𝑒𝑝𝑝𝑝𝑝 + 𝑒𝑒𝑧𝑧𝑧𝑧) 𝑝 (30)

�̃�𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(

�̃�𝐶13 − �̃�𝐶11

)

𝑒𝑒𝑧𝑧𝑧𝑧. (31)

Equation 30 is associated with velocity 𝐴𝐴 𝐴𝐴𝑝𝑝ll , from Equation 7. We define 𝐴𝐴 �̃�𝐶11 as

�̃�𝐶11 = 𝐶𝐶11
1

𝑐𝑐
2
𝑝𝑝ll

(

−𝛾𝛾11𝑐𝑐𝑝𝑝ll𝜔𝜔0𝑘𝑘
−1 + 𝑐𝑐

2
𝑝𝑝ll
+ 𝛾𝛾11𝑐𝑐

3
𝑝𝑝ll
𝜔𝜔0

−1
𝑘𝑘 + 𝜋𝜋𝛾𝛾11𝑐𝑐𝑝𝑝ll(𝑖𝑖𝜔𝜔)𝑘𝑘

−1 + 𝜋𝜋𝛾𝛾
2
11
𝑐𝑐
2
𝑝𝑝ll
𝜔𝜔0

−1(𝑖𝑖𝜔𝜔)
)

. (32)

Equation 31 is associated with velocity 𝐴𝐴 𝐴𝐴𝑠𝑠 , and 𝐴𝐴 �̃�𝐶11 and 𝐴𝐴 �̃�𝐶13 are expressed as

�̃�𝐶11 = 𝐶𝐶11
1

𝑐𝑐
2
𝑠𝑠

(

−𝛾𝛾11𝑐𝑐𝑠𝑠𝜔𝜔0𝑘𝑘
−1 + 𝑐𝑐

2
𝑠𝑠 + 𝛾𝛾11𝑐𝑐

3
𝑠𝑠𝜔𝜔0

−1
𝑘𝑘 + 𝜋𝜋𝛾𝛾11𝑐𝑐𝑠𝑠(𝑖𝑖𝜔𝜔)𝑘𝑘

−1 + 𝜋𝜋𝛾𝛾
2
11
𝑐𝑐
2
𝑠𝑠𝜔𝜔0

−1(𝑖𝑖𝜔𝜔)
)

, (33)

�̃�𝐶13 = 𝐶𝐶13
1

𝑐𝑐
2
𝑠𝑠

(

−𝛾𝛾13𝑐𝑐𝑠𝑠𝜔𝜔0𝑘𝑘
−1 + 𝑐𝑐

2
𝑠𝑠 + 𝛾𝛾13𝑐𝑐

3
𝑠𝑠𝜔𝜔0

−1
𝑘𝑘 + 𝜋𝜋𝛾𝛾13𝑐𝑐𝑠𝑠(𝑖𝑖𝜔𝜔)𝑘𝑘

−1 + 𝜋𝜋𝛾𝛾
2
13
𝑐𝑐
2
𝑠𝑠𝜔𝜔0

−1(𝑖𝑖𝜔𝜔)
)

. (34)
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With these, we then transform Equation 27 into the time-space domain

��� = �11 (��� + ���) +
(

�13 −�11

)

���. (35)

We repeat similar manipulations for Equations 28 and 29. Combining with Equations 11 and 12 yields the follow-
ing 2D spatially-independent-order VTI-DFL viscoelastic wave equation in the first-order formulation

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

����
��

= ����

��
+ ����

��

����
��

= ����

��
+ ����

��
����

��
= �11

(���
��

+ ���
��

)

+
(

�13 −�11

) ���
��

����

��
= �33

(���
��

+ ���
��

)

+
(

�13 −�33

) ���
��

����

��
= �55

(���
��

+ ���
��

)

, (36)

with

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�11 = �11

⎛

⎜

⎜

⎝

−
�11�0

��ll
(

−∇2
)−

1
2 + 1 + �11

��ll
�0

(

−∇2
)

1
2 +

��11
��ll

(

−∇2
)−

1
2 �
��

+
��211
�0

�
��

⎞

⎟

⎟

⎠

�33 = �33

⎛

⎜

⎜

⎝

−
�33�0

��⟂
(

−∇2
)−

1
2 + 1 + �33

��⟂
�0

(

−∇2
)

1
2 +

��33
��⟂

(

−∇2
)−

1
2 �
��

+
��233
�0

�
��

⎞

⎟

⎟

⎠

�55 = �55

⎛

⎜

⎜

⎝

−
�55�0

��
(

−∇2
)−

1
2 + 1 + �55

��
�0

(

−∇2
)

1
2 +

��55
��

(

−∇2
)−

1
2 �
��

+
��255
�0

�
��

⎞

⎟

⎟

⎠

�13 = �13

⎛

⎜

⎜

⎝

−
�13�0

��
(

−∇2
)−

1
2 + 1 + �13

��
�0

(

−∇2
)

1
2 +

��13
��

(

−∇2
)−

1
2 �
��

+
��213
�0

�
��

⎞

⎟

⎟

⎠

�̄11 = �11

⎛

⎜

⎜

⎝

−
�11�0

��
(

−∇2
)−

1
2 + 1 + �11

��
�0

(

−∇2
)

1
2 +

��11
��

(

−∇2
)−

1
2 �
��

+
��211
�0

�
��

⎞

⎟

⎟

⎠

�̄33 = �33

⎛

⎜

⎜

⎝

−
�33�0

��
(

−∇2
)−

1
2 + 1 + �33

��
�0

(

−∇2
)

1
2 +

��33
��

(

−∇2
)−

1
2 �
��

+
��233
�0

�
��

⎞

⎟

⎟

⎠

,
 

(37)

Note that when 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 → ∞(𝛾𝛾𝑖𝑖𝑖𝑖 → 0) , Equation 37 reduces to

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�11 = �11 = �11

�33 = �33 = �33

�55 = �55

�13 = �13

. (38)

and Equation 36 reduces to the classic VTI elastic wave equation. When we further set the Thomsen parameters 
to zero, Equation 36 further reduces to the isotropic elastic wave equation. We also provide full three-dimension 
formulation of DFL and VTI-DFL viscoelastic equations in Appendix A.
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2.4. Stability Condition

We analyze the stability of the proposed DFL and VTI-DFL viscoelastic wave equations using the eigenvalue 
method (Gazdag, 1981). Equations 14 and 36 can be rewritten into the following second-order form

𝜕𝜕
2𝚽𝚽

𝜕𝜕𝜕𝜕2
= 𝐁𝐁𝚽𝚽, (39)

where 𝐴𝐴 𝚽𝚽 = [𝑣𝑣𝑥𝑥, 𝑣𝑣𝑧𝑧, 𝜎𝜎𝑥𝑥𝑥𝑥, 𝜎𝜎𝑧𝑧𝑧𝑧, 𝜎𝜎𝑥𝑥𝑧𝑧]
T , and B is the attenuation operator matrix. We discretize the second-order time 

derivative in Equation 39 by the FD operator, and perform Fourier transform to the spatial derivatives. Then we 
have

[

4

Δ𝑡𝑡2
sin 2

(

𝜔𝜔Δ𝑡𝑡

2

)

𝐄𝐄 − �̃�𝐁

]

𝚽𝚽 = 0, (40)

where 𝐴𝐴 𝐄𝐄 is a unit matrix, and the expression of 𝐴𝐴 �̃�𝐁 is shown as Equation D1 and D4 in Appendix D. Equation 39 
is a hyperbolic equation, a non-singular matrix 𝐴𝐴 𝐒𝐒 must exist and makes 𝐴𝐴 �̃�𝐁 = 𝐒𝐒−1𝚲𝚲𝐒𝐒 , where 𝐴𝐴 𝚲𝚲 is a diagonal matrix 
consisting of eigenvalues 𝐴𝐴 𝐴𝐴𝑖𝑖 of matrix 𝐴𝐴 �̃�𝐁 . Thus, we have

𝐒𝐒
−1
[

4

Δ𝑡𝑡2
sin 2

(

𝜔𝜔Δ𝑡𝑡

2

)

𝐄𝐄 − 𝚲𝚲

]

𝐒𝐒𝐒𝐒 = 0, (41)

Obtaining non-zero solutions requires 𝐴𝐴 det
(

𝐒𝐒−1

[

4

Δ𝑡𝑡2
sin 2

(

𝜔𝜔Δ𝑡𝑡

2

)

𝐄𝐄 − 𝚲𝚲

]

𝐒𝐒

)

= 0 (i.e. 

𝐴𝐴 det
(

4

Δ𝑡𝑡2
sin 2

(

𝜔𝜔Δ𝑡𝑡

2

)

𝐄𝐄 − 𝚲𝚲

)

= 0 ), yielding to

|

|

|

|

4
Δ�2

sin 2
(�Δ�

2

)

� − ��
|

|

|

|

= 0. (42)

Since 𝐴𝐴 0 ≤ sin 2
(

𝜔𝜔Δ𝑡𝑡

2

)

≤ 1 ,

0 ≤
4

Δ𝑡𝑡2
𝜆𝜆𝑖𝑖 ≤ 1. (43)

The expression of 𝐴𝐴 𝐴𝐴𝑖𝑖 is shown as Equation D3 and D6 in Appendix D. Setting density 𝐴𝐴 𝐴𝐴 = 1𝑔𝑔∕𝑐𝑐𝑐𝑐3 for simplicity, 
and selecting the wavenumber as the Nyquist spatial wavenumber of 𝐴𝐴 𝐴𝐴 = 𝜋𝜋∕Δ𝑥𝑥 , we obtain the stability condition 
of the VTI-DFL viscoelastic wave equation as follows

Δ𝑡𝑡 ≤

√

2Δ𝑥𝑥

𝜋𝜋

√

𝐺𝐺

, (44)

with 𝐴𝐴 𝐴𝐴 =
1

4

{

𝐴𝐴1 + 𝐴𝐴3 + 2𝐴𝐴5 +
√

(𝐴𝐴1 − 𝐴𝐴3)
2 + 4 (𝐴𝐴2 + 𝐴𝐴5) (𝐴𝐴4 + 𝐴𝐴5)

}

 , and parameters of G1 to G5 are defined 
in Appendix D. The stability condition of the DFL viscoelastic wave equation is

Δ𝑡𝑡 ≤

√

2Δ𝑥𝑥

𝜋𝜋

√

𝐷𝐷

, (45)

where 𝐴𝐴 𝐴𝐴 = 𝑑𝑑𝑝𝑝𝑝1𝑘𝑘
−1 + 𝑑𝑑𝑝𝑝𝑝2 + 𝑑𝑑𝑝𝑝𝑝3𝑘𝑘 +

(

𝑑𝑑𝑝𝑝𝑝4𝑘𝑘
−1 + 𝑑𝑑𝑝𝑝𝑝5

)

𝑖𝑖𝑘𝑘𝑖𝑖 , 𝐴𝐴 𝐴𝐴 = max {𝑐𝑐𝑝𝑝, 𝑐𝑐𝑠𝑠} , and parameters of 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝1 to 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝5 can be 
found in Equation 5. Particularly, as 𝐴𝐴 𝐴𝐴 = 0 , and the anisotropic parameters (𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝑄𝑄𝐴 𝐴𝐴𝑄𝑄 ) equal to zero, G and D 
reduce to 𝐴𝐴 𝐴𝐴

2
max , and Equations 44 and 45 reduce to the stability condition of the classical elastic wave equation 

(Gazdag, 1981):

Δ𝑡𝑡 ≤

√

2Δ𝑥𝑥

𝜋𝜋𝜋𝜋max

. (46)
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2.5. Numerical Implementation

We use the SGPS method to solve the proposed viscoelastic wave equation. 
Taking Equation 14 as an example, we rewrite Equation 14 as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
= 𝑏𝑏𝑥𝑥

(

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥

)

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
= 𝑏𝑏𝑥𝑥

(

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥

)

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
= 𝐿𝐿𝑝𝑝

(

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥

)

− 2𝐿𝐿𝑠𝑠

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
= 𝐿𝐿𝑝𝑝

(

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥

)

− 2𝐿𝐿𝑠𝑠

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
= 𝐿𝐿𝑠𝑠

∗
(

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥

)

. (47)

Figure 1 shows the distribution of all variables defined in Equation 47. We 
use the harmonic-averaging scheme (Moczo et al., 2002) to compute hetero-
geneous model parameters. Thus, we have

�
��+

1
2
,�
=

⎧

⎪

⎨

⎪

⎩

2
��+1,� + ��,� �� (��+1,� ≠ 0 or ��,� ≠ 0)

0 �� (��+1,� = 0, ��,� = 0)
,

���,�+ 1
2
=

⎧

⎪

⎨

⎪

⎩

2
��,� + ��,�+1 �� (��,�+1 ≠ 0 or ��,� ≠ 0)

0 �� (��,�+1 = 0, ��,� = 0)
,

 (48)

𝐿𝐿𝑠𝑠
∗

𝑖𝑖+
1
2
,𝑗𝑗+

1
2

=

⎧

⎪

⎨

⎪

⎩

[

1

4

(

1

𝐿𝐿𝑠𝑠𝑖𝑖,𝑗𝑗

+
1

𝐿𝐿𝑠𝑠𝑖𝑖+1,𝑗𝑗

+
1

𝐿𝐿𝑠𝑠𝑖𝑖,𝑗𝑗+1

+
1

𝐿𝐿𝑠𝑠𝑖𝑖+1,𝑗𝑗+1

)]−1

, if𝐿𝐿𝑠𝑠𝑖𝑖,𝑗𝑗
𝐿𝐿𝑠𝑠𝑖𝑖+1,𝑗𝑗

𝐿𝐿𝑠𝑠𝑖𝑖,𝑗𝑗
+ 1𝐿𝐿𝑠𝑠𝑖𝑖+1,𝑗𝑗+1

≠ 0

0 otherwise

. (49)

The numerical discretization is summarized as the following three steps:

 1.  Calculate the spatial derivatives
 The first-order spatial derivatives in Equation 14 can be solved by using SGPS

𝜕𝜕
±
𝑚𝑚𝜑𝜑 = F−1

𝑚𝑚

{

𝑖𝑖𝑖𝑖𝑚𝑚𝑒𝑒
±𝑖𝑖𝑖𝑖𝑚𝑚Δ𝑚𝑚∕2F𝑚𝑚𝜑𝜑

}

(𝑚𝑚 = 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥), (50)

 where 𝐴𝐴 𝐴𝐴 =
[

𝑣𝑣
+
𝑥𝑥 , 𝑣𝑣

+
𝑧𝑧 , 𝜎𝜎

−
𝑥𝑥𝑥𝑥, 𝜎𝜎

−
𝑧𝑧𝑧𝑧, 𝜎𝜎

−
𝑥𝑥𝑧𝑧

]

 . 𝐴𝐴 F𝑚𝑚 represents the 1D Fourier transform, and 𝐴𝐴 F−1
𝑚𝑚  is the corresponding inverse 

transform. The 𝐴𝐴 ± of e-exponential denote the half spatial interval shift, where + and − correspond to the left (up) 
and the right (down) shift, respectively. The + and − of partial derivative 𝐴𝐴 𝐴𝐴 represent the current and previous 
time, respectively.
 2.  Calculate the fractional Laplacians

𝐿𝐿𝜃𝜃

𝜕𝜕𝜕𝜕
+
𝑚𝑚

𝜕𝜕𝜕𝜕
= 𝜌𝜌

⎧

⎪

⎨

⎪

⎩

𝑑𝑑𝜃𝜃𝜃1F−1

[

𝑘𝑘
−1F

(

𝜕𝜕𝜕𝜕
+
𝑚𝑚

𝜕𝜕𝜕𝜕

)]

+ 𝑑𝑑𝜃𝜃𝜃2F−1

[

F

(

𝜕𝜕𝜕𝜕
+
𝑚𝑚

𝜕𝜕𝜕𝜕

)]

+ 𝑑𝑑𝜃𝜃𝜃3F−1

[

𝑘𝑘F

(

𝜕𝜕𝜕𝜕
+
𝑚𝑚

𝜕𝜕𝜕𝜕

)]

+𝑑𝑑𝜃𝜃𝜃4F−1

[

𝑘𝑘
−1F

(

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+
𝑚𝑚

𝜕𝜕𝜕𝜕

)]

+ 𝑑𝑑𝜃𝜃𝜃5F−1

[

F

(

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+
𝑚𝑚

𝜕𝜕𝜕𝜕

)]

⎫

⎪

⎬

⎪

⎭

𝜃 (51)

 with

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+
𝑚𝑚

𝜕𝜕𝜕𝜕
=

1

Δ𝜕𝜕

(

𝜕𝜕𝜕𝜕
+
𝑚𝑚

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕
−
𝑚𝑚

𝜕𝜕𝜕𝜕

)

(𝑚𝑚𝑚 𝜕𝜕 = 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥)𝑚 (52)

 where 𝐴𝐴 F and 𝐴𝐴 F−1 represent the 2D Fourier transform and the inverse transform, respectively. The subscript 𝐴𝐴 𝐴𝐴 = 𝑃𝑃  
or 𝐴𝐴 𝐴𝐴 represents P- or S-wave, respectively. The parameters of 𝐴𝐴 𝐴𝐴𝜃𝜃𝜃1 to 𝐴𝐴 𝐴𝐴𝜃𝜃𝜃5 are defined in Equation 5.

Figure 1. Layout of the wavefield variables and medium parameters on 
staggered grids in 2D Cartesian coordinates.
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 3.  Update the particle velocity and stress

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑣𝑣
+
𝑥𝑥 = 𝑣𝑣

−
𝑥𝑥 + 𝑏𝑏𝑥𝑥Δ𝑡𝑡

(

𝜕𝜕𝜕𝜕
−
𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜕𝜕
−
𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥

)

𝑣𝑣
+
𝑥𝑥 = 𝑣𝑣

−
𝑥𝑥 + 𝑏𝑏𝑥𝑥Δ𝑡𝑡

(

𝜕𝜕𝜕𝜕
−
𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜕𝜕
−
𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥

)

𝜕𝜕
+
𝑥𝑥𝑥𝑥 = 𝜕𝜕

−
𝑥𝑥𝑥𝑥 + Δ𝑡𝑡

[

𝐿𝐿𝑝𝑝

(

𝜕𝜕𝑣𝑣
+
𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝑣𝑣
+
𝑥𝑥

𝜕𝜕𝑥𝑥

)

− 2𝐿𝐿𝑠𝑠

𝜕𝜕𝑣𝑣
+
𝑥𝑥

𝜕𝜕𝑥𝑥

]

𝜕𝜕
+
𝑥𝑥𝑥𝑥 = 𝜕𝜕

−
𝑥𝑥𝑥𝑥 + Δ𝑡𝑡

[

𝐿𝐿𝑝𝑝

(

𝜕𝜕𝑣𝑣
+
𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝑣𝑣
+
𝑥𝑥

𝜕𝜕𝑥𝑥

)

− 2𝐿𝐿𝑠𝑠

𝜕𝜕𝑣𝑣
+
𝑥𝑥

𝜕𝜕𝑥𝑥

]

𝜕𝜕
+
𝑥𝑥𝑥𝑥 = 𝜕𝜕

−
𝑥𝑥𝑥𝑥 + Δ𝑡𝑡

[

𝐿𝐿𝑠𝑠
∗

(

𝜕𝜕𝑣𝑣
+
𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝑣𝑣
+
𝑥𝑥

𝜕𝜕𝑥𝑥

)]

. (53)

 In the following numerical examples, we utilize the convolutional perfectly matched layers (CPML; Komatitsch 
& Martin, 2007) to absorb artificial reflections.

3. Numerical Examples
3.1. Verifications of Simulation Accuracy

3.1.1. Homogeneous Model

We first solve the proposed DFL viscoelastic wave in homogeneous media and verify the accuracy by compar-
ing the numerical result with the analytical solution. For a homogeneous medium, the analytical solution can 
be obtained by convolving Green's function (Nabighian, 1988) and source wavelet (Carcione, 2007). The 2D 
model size is 512 × 512 with a spatial interval of 10 m. The reference phase velocities are 𝐴𝐴 𝐴𝐴𝑝𝑝 = 3.0 km/s and 

𝐴𝐴 𝐴𝐴𝑠𝑠 = 2.0 km/s defined at a reference frequency of 500 Hz. The time step is 1.0 ms and the density is 𝐴𝐴 𝐴𝐴 = 2200 
kg·m −3. The vertical stress source (Ricker wavelet) with a dominant frequency of 25 Hz is added. The source and 
receiver are located at the (256, 256) and (316, 316) grid points, respectively. In Figure 2, we show the traces of 

𝐴𝐴 𝐴𝐴𝑥𝑥 component, where Figures 2a and 2b correspond to the comparison of elastic and viscoelastic (𝐴𝐴 𝐴𝐴𝑝𝑝 = 32 and 
𝐴𝐴 𝐴𝐴𝑠𝑠 = 20 ) waveforms, respectively. The red line and the black line represent the traces computed by the proposed 

DFL viscoelastic wave equation and the analytical solution, respectively, and the blue line displays the residuals 
between them. We can see that the two solutions are well-matched.

3.1.2. Decoupling of Amplitude-Loss and Phase-Dispersion

As stated above the proposed VTI-DFL viscoelastic wave equation is able to separate phase dispersion and 
amplitude decay effects. The decoupled formula for modeling decoupled dispersion and amplitude can be found 
in Appendix B. We below illustrate the decoupled effects with a numerical example. A 2D homogeneous model 
is discretized in 512 × 512 grids with a spatial interval of 10  m. The reference velocities defined at a high 
reference frequency of 500 Hz are 𝐴𝐴 𝐴𝐴𝑝𝑝 = 2.0 km/s and 𝐴𝐴 𝐴𝐴𝑠𝑠 = 1.5 km/s. The time step is 1.0 ms and the density is 
ρ = 2,200 kg m −3. Again, we excite a vertical stress source at the center of the model, and the dominant frequency 
is 25  Hz. Figure  3a includes four wavefields, from left-top to right-bottom, that are, respectively, generated 
by the decoupled wave equations: elastic (no attenuation), the dispersion-dominated, the loss-dominated, and 
viscoelastic cases. Figure 3b shows the same results by considering VTI Q (where 𝐴𝐴 𝐴𝐴 = 0.1 , 𝐴𝐴 𝐴𝐴 = 0.2 , 𝐴𝐴 𝐴𝐴𝑄𝑄 = 0.2, 
and 𝐴𝐴 𝐴𝐴𝑄𝑄 = 0.4 ). In Figures 3a and 3b, we find that the wavefield generated by the loss-dominated operators has 
the same phase but weak amplitudes compared to the elastic wavefield; the dispersion-dominated wavefield has 
the uniform amplitude but visible phase delay; the viscoelastic wavefield shows both amplitude decay and the 
phase delay. We also show the amplitude spectra in Figures 3c and 3d and phase spectra in Figures 3e and 3f to 
highlight the decoupled effect. We observe that amplitude spectra of dispersion-dominated and elastic are almost 
identical, and loss-dominated and viscoelastic show smaller amplitude. In Figures 3e and 3f, good agreement of 
phase spectra between red (loss-dominated) and black (elastic) lines, blue (viscoelastic), and green lines (disper-
sion-dominated) can also be observed.
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3.1.3. Two-Layer Model

The proposed DFL viscoelastic wave equation is free of the mixed-domain problem, thus naturally adapts to heter-
ogeneous attenuation models. This superiority is demonstrated below. Figure 4a shows three two-layer models: 
(a) varying velocities and a homogeneous Q; (b) a homogeneous velocity and varying Q; (c) varying velocities 
and Q. Each model is discretized into an 800 × 800 grid with 10 m spatial interval. A horizontal interface exists 
at depth of 4.4 km. A Ricker wavelet source is located at the center of the model with a dominant frequency of 
25 Hz. The time step is 1.0 ms. Here, we use three approaches to perform simulation: the average 𝐴𝐴 𝐴𝐴 scheme of 
Zhu and Harris (2014); the proposed DFL viscoelastic wave equation; a reference (accurate) solution created by 
pointwise FFT scheme (Chen et al., 2016) where fractional Laplacians are computed independently for the top 
and bottom layers. Figure 4b displays the snapshots at 1.0 s, where the first column shows the reference solution, 
the second column highlights the residual between the reference and the average scheme, and the third column 
shows the residual between the reference and the new DFL viscoelastic wave equation. In Model 1, since the Q 
model is homogeneous, the wavefield by the average scheme is identical to the reference one. Nevertheless, with 
the varying Q (Model 2 and Model 3), the wavefield differences between two schemes are very clear. The third 
column in Figure 4b exhibits only subtle residuals, which verifies the capability of our new scheme to handle 
heterogeneous attenuation media.

3.2. Verifications of Simulating Q Anisotropy

3.2.1. Homogeneous Model

This section designs a set of anisotropic homogeneous models to verify the accuracy of the attenuation anisotropy 
simulated by the proposed VTI-DFL viscoelastic wave equation. These models select a range of anisotropic Q 
values to represent weak to strong anisotropy. Table 1 lists different attenuation anisotropy parameters of 𝐴𝐴 𝐴𝐴𝑄𝑄 and 

𝐴𝐴 𝐴𝐴𝑄𝑄 . The testing models contain 800 × 800 grid points with a uniform grid spacing of 10 m. We use a time step 
of 1.0 ms. The anisotropic elastic parameters are 𝐴𝐴 𝐴𝐴𝑝𝑝 = 3.0 km/s, 𝐴𝐴 𝐴𝐴𝑠𝑠 = 1.5 km/s, ρ = 2,000 kg m −3, Thomsen's 
parameters 𝐴𝐴 𝐴𝐴 = 0.16 and 𝐴𝐴 𝐴𝐴 = 0.1 . Figure 5 shows the circle acquisition geometry (receivers are represented by 

Figure 2. Comparison of seismograms computed by numerical (red dashed lines), analytical synthetic (black solid lines), and 
their waveform residual (blue solid lines) in (a) the elastic media and (b) the viscoelastic media.
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triangles and uniformly distributed at every 1°). The red star represents a Ricker wavelet with 25 Hz dominant 
frequency. Figure 6 displays the shot gathers of 𝐴𝐴 𝐴𝐴𝑥𝑥 component, in which the left and right columns correspond 
to the inner receiver array and the outer receiver array, respectively. Comparing the left and the right columns, 
the seismograms of the outer receivers show obvious late arrival of P- and S-waves. Moreover, the significant 
difference between seismograms of different models reflects the variation of attenuation anisotropy parameters.

Then, we use the spectral ratio method (Aki, 1980) to estimate Q values. The amplitude spectrum of left and right 
columns in Figure 6 are 𝐴𝐴 𝐴𝐴1(𝑓𝑓 ) and 𝐴𝐴 𝐴𝐴2(𝑓𝑓 ) , respectively. Defining the logarithm of 𝐴𝐴

𝑅𝑅1(𝑓𝑓 )

𝑅𝑅2(𝑓𝑓 )
 as 𝐴𝐴 𝐴𝐴(𝑓𝑓 ) , we have

𝐿𝐿(𝑓𝑓 ) = ln
𝑅𝑅1(𝑓𝑓 )

𝑅𝑅2(𝑓𝑓 )
= ln

𝐺𝐺1

𝐺𝐺2

−
𝜋𝜋Δ𝑡𝑡

𝑄𝑄
𝑓𝑓𝑓 (54)

where 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 represent the geometric spreading factors for two sets of receivers, 𝐴𝐴 Δ𝑡𝑡 is the time interval 
between inner seismogram and outer seismogram. 𝐴𝐴 𝐴𝐴(𝑓𝑓 ) is a linear function with intercept 𝐴𝐴 ln (𝐺𝐺1∕𝐺𝐺2) and slope 

Figure 3. Decoupled phase dispersion and amplitude loss of the proposed DFL and VTI-DFL viscoelastic wave equations. In (a) and (b), four wavefields (separated 
by dashed lines) from left-top to right-bottom are, respectively, generated by the decoupled wave equations: elastic (no attenuation), the dispersion-dominated, the loss-
dominated, and viscoelastic cases. (c) and (d) show amplitude spectra, and (e) and (f) phase spectra.
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𝐴𝐴 𝐴𝐴 = −𝜋𝜋Δ𝑡𝑡∕𝑄𝑄 . Thus, we estimate quality factors by 𝐴𝐴 𝐴𝐴 = −𝜋𝜋Δ𝑡𝑡∕𝑘𝑘 . It should be mentioned that since both P- and 
S- waveforms are included in Figure 6, we window out each waveform and estimate 𝐴𝐴 𝐴𝐴𝑃𝑃 and 𝐴𝐴 𝐴𝐴𝑆𝑆 separately. We 
compare dissipation factors 𝐴𝐴 1∕𝑄𝑄𝑝𝑝 and 𝐴𝐴 1∕𝑄𝑄𝑠𝑠 in Figures 7a and 7b, where solid lines represent the theoretical values 
obtained by solving the Christoffel equation (see Appendix C) and circles denote the numerical values estimated 
using the spectral ratio method. We can see that the accuracy of numerical Q values can be divided into two 
scenarios: Models 1–4 are well matched for both 𝐴𝐴 𝐴𝐴𝑃𝑃 and 𝐴𝐴 𝐴𝐴𝑆𝑆 ; for Models 5–7, 𝐴𝐴 𝐴𝐴𝑃𝑃 deviation appears when 𝐴𝐴 𝐴𝐴𝑄𝑄 
is bigger, but the accuracy of 𝐴𝐴 𝐴𝐴𝑠𝑠 is still satisfied even for the extreme case (𝐴𝐴 𝐴𝐴𝑄𝑄 = −1.68 ). We conclude that the 
proposed VTI-DFL viscoelastic wave equation can accurately describe the direction-dependent attenuation over 
a wide range of anisotropy.

3.2.2. Influence of Attenuation Anisotropy on the Waveform

To investigate the influence of attenuation anisotropy on the waveform, we set the velocity to be isotropic, and 
only consider the attenuation anisotropy (parameters are listed in Table 2). Model 1 presents isotropic attenuation 
as a reference. Model 2 and Model 3 are used to investigate the influence of 𝐴𝐴 𝐴𝐴𝑄𝑄 , while Model 4 and Model 5 will 
highlight the influence of 𝐴𝐴 𝐴𝐴𝑄𝑄 . In Figure 8, the left and right columns represent theoretical 𝐴𝐴 𝐴𝐴𝑝𝑝 and 𝐴𝐴 𝐴𝐴𝑠𝑠 predicted 

using the Zhu-Tsvankin definition (Zhu & Tsvankin,  2006), where the 
black, red, blue, green, and purple curves correspond to Model 1 to Model 
5, respectively. From Figure  8a, we can see that 𝐴𝐴 𝐴𝐴𝑄𝑄 predominantly affects 
P-wave attenuation in the horizontal direction: the attenuation increases 
monotonically when 𝐴𝐴 𝐴𝐴𝑄𝑄 increases from −0.5 to 0.5. Similarly, a larger 𝐴𝐴 𝐴𝐴𝑄𝑄 
causes a stronger attenuation, but the influence of 𝐴𝐴 𝐴𝐴𝑄𝑄 on P-wave attenuation is 
mainly reflected in the non-axial direction shown in Figure 8c. In Figures 8b 
and 8d, we find that S-wave attenuation mainly depends on the magnitude 
relationship between 𝐴𝐴 𝐴𝐴𝑄𝑄 and 𝐴𝐴 𝐴𝐴𝑄𝑄 : the non-axial attenuation becomes stronger 
when 𝐴𝐴 𝐴𝐴𝑄𝑄 > 𝛿𝛿𝑄𝑄 , and vice versa.

Below we show simulated wavefields in Figures  9a–9e for all models 
in Table  2. Figures  9f–9i represent the wavefield residuals between 
Figures  9b–9e and  9 (the isotropic attenuation case). Similar observations 

Figure 4. (a) A set of two-layer models, the left column is velocity, and the right column represents Q models, respectively. (b) Wavefield snapshots at 1.0 s. The 
reference is calculated by the pointwise FFT scheme; Residual one is the difference between the wavefield solved by the average scheme and the reference; Residual two 
is the difference between the wavefield computed by our DFL viscoelastic wave equation and the reference.

 Testing models Q11 Q13 Q33 Q55𝐴𝐴 𝐴𝐴𝑄𝑄 𝐴𝐴 𝐴𝐴𝑄𝑄

Model 1 20 30 20 15 0.00 0.00

Model 2 35 50 50 30 0.43 0.75

Model 3 50 40 25 20 −0.50 −0.22

Model 4 80 20 20 15 −0.75 −0.40

Model 5 50 68 35 60 −0.30 −0.90

Model 6 50 40 25 60 −0.50 −1.16

Model 7 50 40 15 60 −0.70 −1.68

Table 1 
Anisotropic Qij Properties of Seven 2D TI Homogeneous Models
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of the anisotropy impact on the waveform can be drawn from Figure 9: (1) 
when 𝐴𝐴 𝐴𝐴𝑄𝑄 ≠ 0 and 𝐴𝐴 𝐴𝐴𝑄𝑄 = 0 (Model 2 and Model 3), the difference of P-wave is 
mainly seen in the horizontal direction in Figures 9h and 9i; when 𝐴𝐴 𝐴𝐴𝑄𝑄 = 0 and 

𝐴𝐴 𝐴𝐴𝑄𝑄 ≠ 0 (Model 4 and Model 5), the difference of P-wave is mainly seen in the 
non-axial direction in Figures 9h and 9i; (2) For all models the difference of 
S-wave is mainly seen in the non-axial direction in Figures 9f–9i.

3.2.3. Complex Heterogeneous Model

Next, we demonstrate the numerical implementation of the proposed 
VTI-DFL viscoelastic wave equation in the complex heterogeneous media 
using the industrial standard BP velocity anisotropic model. Figures 10a–10d 
correspond to P-wave velocity, quality factor 𝐴𝐴 𝐴𝐴𝑝𝑝 , Thomsen's parameters of 

𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , respectively. The S-wave velocity and quality factor 𝐴𝐴 𝐴𝐴𝑠𝑠 are empiri-
cally obtained by 𝐴𝐴 𝐴𝐴𝑠𝑠 = 𝐴𝐴𝑝𝑝∕1.73 , and 𝐴𝐴 𝐴𝐴𝑠𝑠 = 𝐴𝐴𝑝𝑝∕1.2 . The anisotropic attenuation 
parameters are transformed by 𝐴𝐴 𝐴𝐴𝑄𝑄 = 2𝐴𝐴 , and 𝐴𝐴 𝐴𝐴𝑄𝑄 = 3𝐴𝐴 . The model contains 
500 × 270 grid points with a spacing of 10 m. An explosive source is added 
at (2500 m, 30 m), and the receivers are located at 50 m depth. The dominant 
frequency of the source is 25 Hz. The simulation time is 2.5 s with a time step 
of 1.0 ms. To verify the simulation accuracy, the existing VTI-TF viscoelastic 
wave equation (Zhu, 2017) acts as a reference solution.

Figure 11 shows wavefield snapshots and common shot gathers of a horizontal particle velocity 𝐴𝐴 𝐴𝐴𝑥𝑥 component. 
From top to bottom, they are corresponding to results from the proposed VTI-DFL viscoelastic wave equation, 
the VTI-TF viscoelastic wave equation, and the difference between VTI-DFL and VTI-TF viscoelastic wave 
equations, respectively. It can be found that the VTI-DFL and VTI-TF viscoelastic wave equations simulate 
matched wavefields and common shot gathers with minor differences (see Figures 11e and 11f). Wavefields in 
Figures  12a–12c correspond to the non-attenuated, the anisotropic attenuated, the isotropic attenuated cases. 
Compared to reference elastic wavefield (Figure 12a), it is not surprising that the attenuation significantly reduces 
the amplitude (see Figures 12b and 12c). Visible waveform residual between isotropic attenuation and anisotropic 
attenuation (see Figure 12d) reflect the effect of Q anisotropy on wavefields. Figure 13 displays seismograms 
recorded at (2,000 m, 30 m) for a detailed comparison. The well-matched seismograms (black and red lines) 
certify the accuracy of the VTI-DFL viscoelastic wave equation. The insert plot in Figure 13b is to highlight the 
difference between isotropy (red) and anisotropy (blue), implying that attenuation anisotropy affects both phase 
and amplitude.

3.3. Application to the Salton Trough Model

We finally choose the 3D Salton Trough model, shown in Figure 14a, to demonstrate the generalization and feasi-
bility of the proposed VTI-DFL viscoelastic wave equation for simulating wave propagation on the crustal-scale. 
The simulated area includes the Coachella Valley with the San Andreas fault located on its northeast flank. The 
original 3D P-wave velocity model inverted by Ajala et al. (2019) contains 19 grids within the depth from 0 to 
9 km, 101 grids in longitude from 115.7°W to 116.7°W, and 91 grids in latitude from 33.3°N to 34.2°N. Since 
the original data points are not uniformly distributed, we perform a linear interpolation and resampling to obtain 
a new P-wave velocity model in 505 × 455 × 48 grid points with spacing of 200 m in Figure 14b. Figures 14c 
and 14d show 2D P-wave velocity profiles at different latitudes and longitudes, and the S-wave velocity 𝐴𝐴 𝐴𝐴𝑠𝑠 is 
empirically obtained by 𝐴𝐴 𝐴𝐴𝑠𝑠 = 𝐴𝐴𝑝𝑝∕1.73 . Lateral seismic velocity contrasts are strong at the surface, and a low-ve-
locity region is visible on the eastern side of the Coachella Valley near the San Andreas fault. We estimate Q 
model from the P-wave velocity model with an empirical formula: 𝐴𝐴 𝐴𝐴𝑝𝑝 = 𝐴𝐴𝑠𝑠 = 3.516(𝑐𝑐𝑝𝑝∕1000)

2.2 (Li, 1993); thus, 
the low-velocity region also shows high attenuation. In addition, we set homogeneous anisotropic parameters of 

𝐴𝐴 𝐴𝐴 = 0.05 , 𝐴𝐴 𝐴𝐴 = 0.1 , 𝐴𝐴 𝐴𝐴 = 0.1 , 𝐴𝐴 𝐴𝐴𝑄𝑄 = 0.1 , 𝐴𝐴 𝐴𝐴𝑄𝑄 = 0.2 , and 𝐴𝐴 𝐴𝐴𝑄𝑄 = 0.2 .

A vertical stress point source with a dominant frequency of 5 Hz is located at the spot (50 km, 46 km, 1.6 km), 
and the receivers are placed at all grid points of the x-y plane at the surface. The free-surface boundary at the 
top is realized by vacuum formalism (Zahradník et al., 1993); specifically, the density above the surface is set to 
zero and the velocities close to zero (to avoid division by zero) to approximate a vacuum. On other edges of the 

Figure 5. Verification experiment: circle acquisition system for estimating 
anisotropic Q by the spectral ratio method. A red star marks the source, and 
720 receivers are represented by triangles. Note that every 10th receiver is 
shown.
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computational domain, we add the CPML to absorb artificial reflections. The simulation time lasts 15 s with a 
time step of 5.0 ms. Wavefield snapshots of 𝐴𝐴 𝐴𝐴𝑥𝑥 component at different times simulated by the proposed VTI-DFL 
viscoelastic wave equation are displayed in Figure 15, where red and blue denote the positive and negative values, 
respectively. After a propagation time of 7.5 s, we observe trapped seismic waves along the San Andreas fault and 
possible scattering energy around (marked by arrows). Along the fault, seismic waves propagate slower than in 
the surrounding areas. Meanwhile, significant amplitude decay of seismic waves in the Coachella Valley (marked 
by ellipses) is caused by high attenuation.

To evaluate the accuracy of the proposed VTI-DFL viscoelastic wave equation on the 3D Salton Trough model, 
we compute the reference waveform from a VTI-TF viscoelastic wave equation (Zhu, 2017). Because the VTI-TF 
viscoelastic wave equation requires substantial computer memory, to enable the time-fractional simulation to 
be feasible, we downsample the model by two in each direction to 252 × 227 × 24 grid points with a spacing 

Figure 6. Simulated seismograms of 𝐴𝐴 𝐴𝐴𝑥𝑥 component, where the left and right columns correspond to the receivers at inner and 
outer concentric circles in Figure 5, respectively.
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of 20  m. The source dominant frequency is increased to 25  Hz and the 
time step is reduced to 1.0 ms. We utilize the CPML at all boundaries to 
absorb artificial reflections. Figure  16 shows 3D common shot gathers of 

𝐴𝐴 𝐴𝐴𝑥𝑥 component, in which we show the snapshot at 1.5 s on a horizontal slice 
and display common shot gathers at the x- and y-directions on two vertical 
profiles. Figures 16a–16c are calculated by the proposed VTI-DFL method, 
the existing VTI-TF scheme, and the VTI elastic wave equation, respectively. 
We find that Figures 16a and 16b are very similar and their amplitudes are 
significantly weaker than Figure 16c due to high attenuation. Quantitatively, 
we evaluate the similarity of waveforms from two numerical schemes using 
the time-frequency envelope misfit (TFEM) and time-frequency phase misfit 
(TFPM, Kristekova et al., 2006; 2009) in Figure 17. We find well-matched 

Figure 7. Comparisons of the anisotropic dissipation factors (a) and (b). The solid lines represent theoretical values computed by the Christoffel equation, and the red 
circles denote numerical values estimated from the spectral ratio method.

 Testing models Q33 Q55 𝐴𝐴 𝐴𝐴𝑄𝑄 𝐴𝐴 𝐴𝐴𝑄𝑄

Model 1 25 20 0 0

Model 2 25 20 −0.5 0

Model 3 25 20 0.5 0

Model 4 25 20 0 −0.5

Model 5 25 20 0 0.5

Table 2 
A Group of Models Designed to Analyze the Effects of Anisotropic 
Attenuation Parameters on the Waveforms
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seismograms for all three components, and the TFEM and TFPM are within 2%, which indicates the seismograms 
generated by the proposed VTI-DFL viscoelastic wave equation are almost identical to the reference waveforms.

4. Discussion
In Table 3, we list the detailed computation time of the 2D BP model and the 3D Salton Trough model. The 
Matlab codes are run on a Linux workstation (Intel Xeon CPU v4, 3.00 GHz, 256 GB RAM). Compared to the 
proposed DFL or VTI-DFL viscoelastic wave equations, the numerical implementation of the time-fractional 
viscoelastic wave equation (e.g., Zhu, 2017) is much more expensive (about 70 times slower) due to its miscella-
neous intermediate variables and heavy I/O operation. We further simulate DFL viscoelastic wave equation using 
CUDA programming on a RTX 2080 GPU (8 GB memory), and the computational efficiency is further signifi-
cantly improved (about 500 times faster) due to the powerful multi-core advantage of GPU. In contrast, solving 
the time-fractional equation due to its huge memory requirement cannot be implemented in the limited-memory 
GPU card at this moment. We conclude that, compared to the time-fractional viscoelastic wave equation, the 
proposed DFL viscoelastic wave equation enjoys a great advantage in the computational efficiency for explora-
tion and regional seismic scales.

Figure 8. Theoretical values (left column) and values obtained by solving the Christoffel equation (right column). The black, red, blue, green, and purple curves 
correspond to Model 1 to Model 5 in Table 2.



Journal of Geophysical Research: Solid Earth

WANG ET AL.

10.1029/2021JB023280

19 of 31

Figure 9. (a)–(e) Snapshots generated by the proposed VTI-DFL viscoelastic wave equation for all five models listed in 
Table 2. (f)–(i) represent the differences between (b)–(e) with (a), respectively.
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Figure 10. 2007 BP VTI model: (a) P-wave velocity, (b) P-wave quality factor, (c) Thomsen parameter 𝐴𝐴 𝐴𝐴 , (d) Thomsen parameter 𝐴𝐴 𝐴𝐴 .

Figure 11. Wavefield snapshots at 1.8 s (left column) and common shot gathers (right column) that generated by solving (a) and (b) the proposed VTI-DFL viscoelastic 
wave equation, (c) and (d) existing VTI-TF viscoelastic wave equation. (e) represents the residual between (a) and (c), and (f) represents the residual between (b) and 
(d).
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In this study, we did not attempt to modeling the surface waves with topography because the DFL/VTI-DFL 
wave equations are commonly computed by the pseudo-spectral method, which requires a uniform sampling. To 
simulate surface wave propagation with topography, solving the DFL/VTI-DFL wave equations by non-uniform 
FFTs (NUFFT; Lee & Greengard, 2005) is a potential approach but needs further research.

5. Conclusions
Starting from the frequency-independent Q model, we derived a VTI viscoelastic wave equation using spatial-
ly-independent-order fractional Laplacians. The proposed equation is attractive because of these following 
features: first, it has the ability to model seismic anisotropy (VTI) of velocity and attenuation simultaneously; 
second, this wave equation is able to decouple the amplitude decay and the phase dispersion; third, the developed 
spatially-independent-order DFLs can naturally adapt to complex heterogeneous media; fourth, different from 
the conventional anelastic modeling (e.g., GSLS and fractional time derivative methods), the proposed scheme 

contains spatial fractional Laplacians thus exempts from the memory issue. 
The accuracy of the DFL viscoelastic wave equation is verified by match-
ing the analytical solution in homogeneous media; its ability to deal with 
heterogeneous media is further verified by numerical tests of the two-layer 
model. For the VTI-DFL viscoelastic wave equation, the ability to describe 
the attenuation anisotropy is demonstrated by a set of homogeneous models 
that the attenuation anisotropy parameters vary over a wide range. We show 
the applications in the crustal-scale seismic modeling including BP aniso-
tropic seismic model and the 3D Salton Trough model. Moreover, we show 
the computational efficiency of the proposed VTI-DFL viscoelastic wave 
equation over the traditional time-fractional wave equation. We anticipate 
that the proposed VTI-DFL viscoelastic wave equation is able to benefit seis-
mic simulation and imaging practice as well as the development of Q-FWI.

Appendix A: Three-Dimensional DFL and VTI-DFL 
Viscoelastic Wave Equations
The three-dimensional spatially independent-order DFL viscoelastic wave 
equation in the first-order form is

Figure 12. Wavefield snapshots with (a) no attenuation, (b) anisotropic attenuation, (c) isotropic attenuation. (d) represents the residual between (b) and (c). All 
snapshots in Figures 11 and Figure 12 are shown under the same colorscale.

Figure 13. Seismograms recorded at (2000 m, 30 m) computed by (a) 
VTI-DFL and VTI-TF viscoelastic wave equations; (b) seismograms 
comparison between non-attenuated, the anisotropic attenuated, and the 
isotropic attenuated cases.
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Figure 14. (a) Map of the Salton Trough, (b) 3D P-wave velocity model with a low velocity (high attenuation) region at the eastern side of Coachella Valley near the 
San Andreas fault (red curve); velocity profiles at four different cross-sections along (c) latitude and (d) longitude.

Figure 15. Wavefield snapshots calculated by the proposed VTI-DFL viscoelastic wave equation at different times. After 7.5 s, significant amplitude decay occurs 
in the Coachella Valley (marked by ellipses) due to high attenuation; seismic waves are trapped around the San Andreas fault (marked by arrows), and along the fault 
propagate slower than in the surrounding areas.
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where 𝐴𝐴 𝐴𝐴 is the density, 𝐴𝐴 𝐟𝐟 is the source function, 𝐴𝐴 𝐯𝐯 =
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𝜕𝜕𝜕𝜕

0
𝜕𝜕

𝜕𝜕𝜕𝜕
0

𝜕𝜕

𝜕𝜕𝜕𝜕
0

𝜕𝜕

𝜕𝜕𝜕𝜕

0 0
𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕

𝜕𝜕𝜕𝜕
0

⎤

⎥

⎥

⎥

⎥

⎦

T

, (A2)

for isotropic DFL viscoelastic wave equation, the attenuation coefficient matrix is

Figure 16. 3D common shot gathers generated by (a) our VTI-DFL viscoelastic wave equation, (b) the existing VTI-TF viscoelastic wave equation (Zhu, 2017), and (c) 
the VTI elastic wave equation.
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Figure 17. Waveforms comparison between the proposed VTI-DFL and the existing VTI-TF viscoelastic wave equations (middle row), time-frequency envelope 
(TFEM, top row), and the time-frequency phase misfit (TFPM, bottom row) of (a) 𝐴𝐴 𝐴𝐴𝑥𝑥 component, (b) 𝐴𝐴 𝐴𝐴𝑦𝑦 component, and (c) 𝐴𝐴 𝐴𝐴𝑧𝑧 component.

 Modeling examples 2D BP model 3D Salton model 3D Salton model

Size 500 × 270 252 × 227 × 24 505 × 455 × 48

Time steps 2,500 3,000 3,000

Fractional time (Matlab code) 4 hr 46 min 7 days 6 hr _______

Fractional Laplacian (Matlab code) 11 min 21 s 2 hr 35 min _______

Fractional Laplacian (CUDA code) 1 min 24 s 21 min 3 hr 18 min

Table 3 
Calculation-Time Comparison Between Different Simulation Schemes
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𝐋𝐋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐿𝐿𝑝𝑝 𝐿𝐿𝑝𝑝-2𝐿𝐿𝑠𝑠 𝐿𝐿𝑝𝑝-2𝐿𝐿𝑠𝑠 0 0 0

𝐿𝐿𝑝𝑝-2𝐿𝐿𝑠𝑠 𝐿𝐿𝑝𝑝 𝐿𝐿𝑝𝑝-2𝐿𝐿𝑠𝑠 0 0 0

𝐿𝐿𝑝𝑝-2𝐿𝐿𝑠𝑠 𝐿𝐿𝑝𝑝-2𝐿𝐿𝑠𝑠 𝐿𝐿𝑝𝑝 0 0 0

0 0 0 𝐿𝐿𝑠𝑠 0 0

0 0 0 0 𝐿𝐿𝑠𝑠 0

0 0 0 0 0 𝐿𝐿𝑠𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A3)

The 3D VTI-DFL viscoelastic wave equation can be obtained by replacing the attenuation coefficient matrix, 
which is defined by

𝐌𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑀𝑀11 𝑀𝑀11-2𝑀𝑀66 𝑀𝑀13 +𝑀𝑀11 − �̄�𝑀11 0 0 0

𝑀𝑀11-2𝑀𝑀66 𝑀𝑀11 𝑀𝑀13 +𝑀𝑀11 − �̄�𝑀11 0 0 0

𝑀𝑀13 +𝑀𝑀33 − �̄�𝑀33 𝑀𝑀13 +𝑀𝑀33 − �̄�𝑀33 𝑀𝑀33 0 0 0

0 0 0 𝑀𝑀55 0 0

0 0 0 0 𝑀𝑀55 0

0 0 0 0 0 𝑀𝑀66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A4)

Note that the attenuation coefficients in Equations A3 and A4 have been defined in Equation 8 and Equation 37, 
respectively.

Appendix B: Decoupled Form of DFL and VTI-DFL Viscoelastic Wave Equations
The attenuation operator of the proposed DFL viscoelastic wave equation is shown in Equation 8. The benefit 
of the new derived DFL wave equation is the separation of amplitude loss and phase dispersion in the math 
expression. Following Chichinina et al. (2004) and Zhu and Carcione (2014), we can construct two separate wave 
equations to describe amplitude loss and phase dispersion, which is not possible with any conventional wave 
equation. For example, if the first and the third operators representing phase dispersion are eliminated, we can 
obtain a loss-dominated wave equation with the complex modulus of

𝐿𝐿𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 = 𝐶𝐶𝜃𝜃

1

𝑐𝑐
2
𝜃𝜃

(

𝑑𝑑𝜃𝜃𝜃2 + 𝑑𝑑𝜃𝜃𝜃4

(

−∇2
)−

1
2
𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝜃𝜃𝜃5

𝜕𝜕

𝜕𝜕𝜕𝜕

)

. (B1)

The first three terms in Equation 8 form a dispersion-dominated wave equation. Its corresponding complex modu-
lus is

𝐿𝐿𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 = 𝐶𝐶𝜃𝜃

1

𝑐𝑐
2
𝜃𝜃

(

𝜃𝜃𝜃𝜃𝜃1

(

−∇2
)−

1
2 + 𝜃𝜃𝜃𝜃𝜃2 + 𝜃𝜃𝜃𝜃𝜃3

(

−∇2
)

1
2

)

. (B2)

Equation 37 displays the attenuation operators of the VTI-DFL viscoelastic wave equation. With the same oper-
ations, we have the complex modulus of the loss-dominated wave equation
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⎪

⎪

⎪
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⎪

⎪

⎪

⎨

⎪

⎪
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⎛

⎜

⎜

⎝

1 +
𝜋𝜋𝜋𝜋11

𝑐𝑐𝑝𝑝ll

(

−∇2
)−

1

2
𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜋𝜋𝜋𝜋
2
11

𝜔𝜔0

𝜕𝜕

𝜕𝜕𝜕𝜕

⎞

⎟

⎟

⎠

𝑀𝑀33,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐶𝐶33

⎛

⎜

⎜

⎝

1 +
𝜋𝜋𝜋𝜋33

𝑐𝑐𝑝𝑝⟂

(

−∇2
)−

1

2
𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜋𝜋𝜋𝜋
2
33

𝜔𝜔0

𝜕𝜕

𝜕𝜕𝜕𝜕

⎞

⎟

⎟

⎠

𝑀𝑀55,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐶𝐶55

⎛

⎜

⎜

⎝

1 +
𝜋𝜋𝜋𝜋55

𝑐𝑐𝑙𝑙

(

−∇2
)−

1

2
𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜋𝜋𝜋𝜋
2
55

𝜔𝜔0

𝜕𝜕

𝜕𝜕𝜕𝜕

⎞

⎟

⎟

⎠

𝑀𝑀13,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐶𝐶13

⎛

⎜

⎜

⎝

1 +
𝜋𝜋𝜋𝜋13

𝑐𝑐𝑙𝑙

(

−∇2
)−

1

2
𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜋𝜋𝜋𝜋
2
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𝜔𝜔0

𝜕𝜕

𝜕𝜕𝜕𝜕

⎞

⎟

⎟

⎠

�̄�𝑀11,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐶𝐶11

⎛

⎜

⎜

⎝

1 +
𝜋𝜋𝜋𝜋11

𝑐𝑐𝑙𝑙

(

−∇2
)−

1

2
𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜋𝜋𝜋𝜋
2
11

𝜔𝜔0

𝜕𝜕

𝜕𝜕𝜕𝜕

⎞

⎟

⎟

⎠

�̄�𝑀33,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐶𝐶33

⎛

⎜

⎜

⎝

1 +
𝜋𝜋𝜋𝜋33

𝑐𝑐𝑙𝑙

(

−∇2
)−

1

2
𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜋𝜋𝜋𝜋
2
33

𝜔𝜔0

𝜕𝜕

𝜕𝜕𝜕𝜕

⎞

⎟

⎟

⎠

, (B3)

and the complex modulus of the dispersion-dominated wave equation

⎧

⎪
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⎪
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⎪

⎪
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⎨
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⎪

⎪

⎪

⎪
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⎪

⎪
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⎜

⎜

⎝
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𝛾𝛾11𝜔𝜔0

𝑐𝑐𝑝𝑝ll

(

−∇2
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1

2 + 1 + 𝛾𝛾11
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−∇2
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1

2
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⎛

⎜

⎜

⎝

−
𝛾𝛾33𝜔𝜔0

𝑐𝑐𝑝𝑝⟂
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1

2 + 1 + 𝛾𝛾55
𝑐𝑐𝑑𝑑

𝜔𝜔0

(

−∇2
)

1

2
⎞

⎟

⎟

⎠

𝑀𝑀13,𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶13

⎛

⎜

⎜

⎝

−
𝛾𝛾13𝜔𝜔0

𝑐𝑐𝑑𝑑

(

−∇2
)−

1

2 + 1 + 𝛾𝛾13
𝑐𝑐𝑑𝑑
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(

−∇2
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−∇2
)−
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2 + 1 + 𝛾𝛾11
𝑐𝑐𝑑𝑑

𝜔𝜔0

(

−∇2
)

1
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⎟

⎟

⎠

�̄�𝑀33,𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶33

⎛

⎜

⎜

⎝

−
𝛾𝛾33𝜔𝜔0

𝑐𝑐𝑑𝑑

(

−∇2
)−

1

2 + 1 + 𝛾𝛾33
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. (B4)

Appendix C: Analytical Solutions Obtained by Solving Viscoelastic Christoffel 
Equation
The viscoelastic Christoffel equation in TI media are solved in the frequency-wavenumber domain

(

𝐾𝐾
2
𝐆𝐆 − 𝜌𝜌𝜌𝜌

2
𝐈𝐈
)

𝐔𝐔 = 0, (C1)

where 𝐴𝐴 𝐴𝐴 = 𝑘𝑘 − 𝛼𝛼𝛼𝛼 represents the complex wavenumber, 𝐴𝐴 𝐴𝐴 is the attenuation coefficient, G is the complex-val-
ued Christoffel matrix, I is the identity matrix and U denotes the general viscoelastic plane wave solutions. 
Setting characteristic determinant of formula  C1 equal to zero, we obtain the following complex velocities 
(Carcione, 2014)
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𝑣𝑣𝑆𝑆𝑆𝑆 (𝜃𝜃) =

√

𝜌𝜌−1
(

�̃�𝐶66sin
2
𝜃𝜃 + �̃�𝐶55cos 2 𝜃𝜃

)

𝑣𝑣𝑞𝑞𝑆𝑆 (𝜃𝜃) =

√

(2𝜌𝜌)−1
(

�̃�𝐶11sin
2
𝜃𝜃 + �̃�𝐶33cos 2 𝜃𝜃 + �̃�𝐶55 − 𝐴𝐴

)

𝑣𝑣𝑞𝑞𝑞𝑞 (𝜃𝜃) =

√

(2𝜌𝜌)−1
(

�̃�𝐶11sin
2
𝜃𝜃 + �̃�𝐶33cos 2 𝜃𝜃 + �̃�𝐶55 + 𝐴𝐴

)

,

 (C2)

with

𝐴𝐴 =

√

[(

�̃�𝐶11 − �̃�𝐶55

)

sin 2
𝜃𝜃 +

(

�̃�𝐶55 − �̃�𝐶33

)

cos 2 𝜃𝜃
]2
+ 4

(

�̃�𝐶13 + �̃�𝐶55

)2
sin 2

𝜃𝜃 cos 2 𝜃𝜃𝜃 (C3)

where θ is the propagation angle between the wavenumber vector and the symmetry axis. The complex-value 
stiffness coefficients 𝐴𝐴 �̃�𝐶𝑖𝑖𝑖𝑖 have been defined in Equation 25. The analytical solutions of direction-dependent phase 
velocities and quality factors by Equation C2, it gives

𝑣𝑣
𝑝𝑝𝑝

𝑚𝑚 (𝜃𝜃) =

[

Re

(

1

𝑣𝑣𝑚𝑚(𝜃𝜃)

)]−1

, (C4)

𝑄𝑄𝑚𝑚(𝜃𝜃) =
Re

(

𝑣𝑣
2
𝑚𝑚(𝜃𝜃)

)

Im
(

𝑣𝑣
2
𝑚𝑚(𝜃𝜃)

) , 𝑚𝑚 = 𝑞𝑞𝑞𝑞 , 𝑞𝑞𝑞𝑞, 𝑞𝑞𝑞𝑞𝑞 (C5)

Appendix D: Eigenvalues of Attenuation Operator Matrix in DFL/VTI-DFL Wave 
Equations
The attenuation operator matrix of the second-order VTI-DFL viscoelastic wave equation is

�̃�𝐁 =
1

𝜌𝜌

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺𝐺1𝑘𝑘
2
𝑥𝑥 + 𝐺𝐺5𝑘𝑘

2
𝑧𝑧 (𝐺𝐺2 + 𝐺𝐺5) 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧 0 0 0

(𝐺𝐺4 + 𝐺𝐺5) 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧 𝐺𝐺5𝑘𝑘
2
𝑋𝑋
+ 𝐺𝐺3𝑘𝑘

2
𝑧𝑧 0 0 0

0 0 𝐺𝐺1𝑘𝑘
2
𝑥𝑥 𝐺𝐺2𝑘𝑘

2
𝑧𝑧 (𝐺𝐺1 + 𝐺𝐺2) 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧

0 0 𝐺𝐺4𝑘𝑘
2
𝑥𝑥 𝐺𝐺3𝑘𝑘

2
𝑧𝑧 (𝐺𝐺3 + 𝐺𝐺4) 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧

0 0 𝐺𝐺5𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧 𝐺𝐺5𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧 𝐺𝐺5

(

𝑘𝑘
2
𝑥𝑥 + 𝑘𝑘

2
𝑧𝑧

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (D1)

with

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐺𝐺1 = 𝐶𝐶11

(

−
𝛾𝛾11𝜔𝜔0

𝑐𝑐𝑝𝑝ll𝑘𝑘
+ 1 +

𝛾𝛾11𝑐𝑐𝑝𝑝ll𝑘𝑘

𝜔𝜔0

+

(

𝜋𝜋𝛾𝛾11

𝑐𝑐𝑝𝑝ll𝑘𝑘
+

𝜋𝜋𝛾𝛾
2
11

𝜔𝜔0

)

𝑖𝑖𝑖𝑖𝑘𝑘

)

𝐺𝐺3 = 𝐶𝐶33

(

−
𝛾𝛾33𝜔𝜔0

𝑐𝑐𝑝𝑝⟂𝑘𝑘
+ 1 +

𝛾𝛾33𝑐𝑐𝑝𝑝⟂𝑘𝑘

𝜔𝜔0

+

(

𝜋𝜋𝛾𝛾33

𝑐𝑐𝑝𝑝⟂𝑘𝑘
+

𝜋𝜋𝛾𝛾
2
33

𝜔𝜔0

)

𝑖𝑖𝑖𝑖𝑘𝑘

)

𝐺𝐺5 = 𝐶𝐶55

(

−
𝛾𝛾55𝜔𝜔0

𝑐𝑐𝑠𝑠𝑘𝑘
+ 1 +

𝛾𝛾55𝑐𝑐𝑠𝑠𝑘𝑘

𝜔𝜔0

+

(

𝜋𝜋𝛾𝛾55

𝑐𝑐𝑠𝑠𝑘𝑘
+

𝜋𝜋𝛾𝛾
2
55

𝜔𝜔0

)

𝑖𝑖𝑖𝑖𝑘𝑘

)

𝐺𝐺13 = 𝐶𝐶13

(

−
𝛾𝛾13𝜔𝜔0

𝑐𝑐𝑠𝑠𝑘𝑘
+ 1 +

𝛾𝛾13𝑐𝑐𝑠𝑠𝑘𝑘

𝜔𝜔0

+

(

𝜋𝜋𝛾𝛾13

𝑐𝑐𝑠𝑠𝑘𝑘
+

𝜋𝜋𝛾𝛾
2
13

𝜔𝜔0

)

𝑖𝑖𝑖𝑖𝑘𝑘

)

�̄�𝐺1 = 𝐶𝐶11

(

−
𝛾𝛾11𝜔𝜔0

𝑐𝑐𝑠𝑠𝑘𝑘
+ 1 +

𝛾𝛾11𝑐𝑐𝑠𝑠𝑘𝑘

𝜔𝜔0

+

(

𝜋𝜋𝛾𝛾11

𝑐𝑐𝑠𝑠𝑘𝑘
+

𝜋𝜋𝛾𝛾
2
11

𝜔𝜔0

)

𝑖𝑖𝑖𝑖𝑘𝑘

)

�̄�𝐺3 = 𝐶𝐶33

(

−
𝛾𝛾33𝜔𝜔0

𝑐𝑐𝑠𝑠𝑘𝑘
+ 1 +

𝛾𝛾33𝑐𝑐𝑠𝑠𝑘𝑘

𝜔𝜔0

+

(

𝜋𝜋𝛾𝛾33

𝑐𝑐𝑠𝑠𝑘𝑘
+

𝜋𝜋𝛾𝛾
2
33

𝜔𝜔0

)

𝑖𝑖𝑖𝑖𝑘𝑘

)

𝐺𝐺2 = 𝐺𝐺13 − �̄�𝐺1 + 𝐺𝐺1

𝐺𝐺4 = 𝐺𝐺13 − �̄�𝐺3 + 𝐺𝐺3

, (D2)
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where 𝐴𝐴 𝐴𝐴 = max {𝑐𝑐𝑝𝑝ll, 𝑐𝑐𝑝𝑝⟂, 𝑐𝑐𝑠𝑠} . The eigenvalues of formula D1 is

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜆𝜆1 = 0

𝜆𝜆2,3,4,5 =
1

2𝜌𝜌

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐺𝐺1𝑘𝑘
2
𝑥𝑥 + 𝐺𝐺3𝑘𝑘

2
𝑧𝑧 + 𝐺𝐺5

(

𝑘𝑘
2
𝑥𝑥 + 𝑘𝑘

2
𝑧𝑧

)

±

√

√

√

√

√

√

√

√

√

√

√

(

𝐺𝐺1𝑘𝑘
2
𝑥𝑥 + 𝐺𝐺3𝑘𝑘

2
𝑧𝑧 + 𝐺𝐺5𝑘𝑘

2
𝑥𝑥 + 𝐺𝐺5𝑘𝑘

2
𝑧𝑧

)

−4𝐺𝐺5

[(

𝐺𝐺1𝑘𝑘
4
𝑥𝑥 + 𝐺𝐺3𝑘𝑘

4
𝑧𝑧

)

− (𝐺𝐺2 + 𝐺𝐺4) 𝑘𝑘
2
𝑥𝑥𝑘𝑘

2
𝑧𝑧

]

+ (𝐺𝐺2𝐺𝐺4 − 𝐺𝐺1𝐺𝐺3) 𝑘𝑘
2
𝑥𝑥𝑘𝑘

2
𝑧𝑧

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (D3)

The attenuation operator matrix of the second-order DFL viscoelastic wave equation is

�̃�𝐁 =
1

𝜌𝜌

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐷𝐷𝑝𝑝𝑘𝑘
2
𝑥𝑥 +𝐷𝐷𝑠𝑠𝑘𝑘

2
𝑧𝑧 (𝐷𝐷𝑝𝑝 −𝐷𝐷𝑠𝑠) 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧 0 0 0

(𝐷𝐷𝑝𝑝 −𝐷𝐷𝑠𝑠) 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧 𝐷𝐷𝑝𝑝𝑘𝑘
2
𝑧𝑧 +𝐷𝐷𝑠𝑠𝑘𝑘

2
𝑥𝑥 0 0 0

0 0 𝐷𝐷𝑝𝑝𝑘𝑘
2
𝑥𝑥 (𝐷𝐷𝑝𝑝 − 2𝐷𝐷𝑠𝑠) 𝑘𝑘

2
𝑧𝑧 2 (𝐷𝐷𝑝𝑝 −𝐷𝐷𝑠𝑠) 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧

0 0 (𝐷𝐷𝑝𝑝 − 2𝐷𝐷𝑠𝑠) 𝑘𝑘
2
𝑥𝑥 𝐷𝐷𝑝𝑝𝑘𝑘

2
𝑧𝑧 2 (𝐷𝐷𝑝𝑝 −𝐷𝐷𝑠𝑠) 𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧

0 0 𝐷𝐷𝑠𝑠𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧 𝐷𝐷𝑠𝑠𝑘𝑘𝑥𝑥𝑘𝑘𝑧𝑧 𝐷𝐷𝑠𝑠

(

𝑘𝑘
2
𝑥𝑥 + 𝑘𝑘

2
𝑧𝑧

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (D4)

with

𝐷𝐷𝜃𝜃 = 𝐶𝐶𝜃𝜃

1

𝑐𝑐
2
𝜃𝜃

(

𝑑𝑑𝜃𝜃𝜃1𝑘𝑘
−1 + 𝑑𝑑𝜃𝜃𝜃2 + 𝑑𝑑𝜃𝜃𝜃3𝑘𝑘 +

(

𝑑𝑑𝜃𝜃𝜃4𝑘𝑘
−1 + 𝑑𝑑𝜃𝜃𝜃5

)

𝑖𝑖𝑖𝑖𝑘𝑘
)

𝜃 (𝜃𝜃 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (D5)

where 𝐴𝐴 𝐴𝐴 = max {𝑐𝑐𝑝𝑝, 𝑐𝑐𝑠𝑠} . The eigenvalues of formula D4 is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜆𝜆1 = 0

𝜆𝜆2,3 =
1

𝜌𝜌
𝐷𝐷𝑝𝑝𝑘𝑘

2

𝜆𝜆4,5 =
1

𝜌𝜌
𝐷𝐷𝑠𝑠𝑘𝑘

2

. (D6)

Data Availability Statement
The original Salton Trough velocity model can be freely accessed on https://www.geol.lsu.edu/persaud/Data.
html. The 3D simulation code with examples can be found at https://zenodo.org/record/5548874.
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