3rd Penn State Bioinorganic Workshop May/June 2014

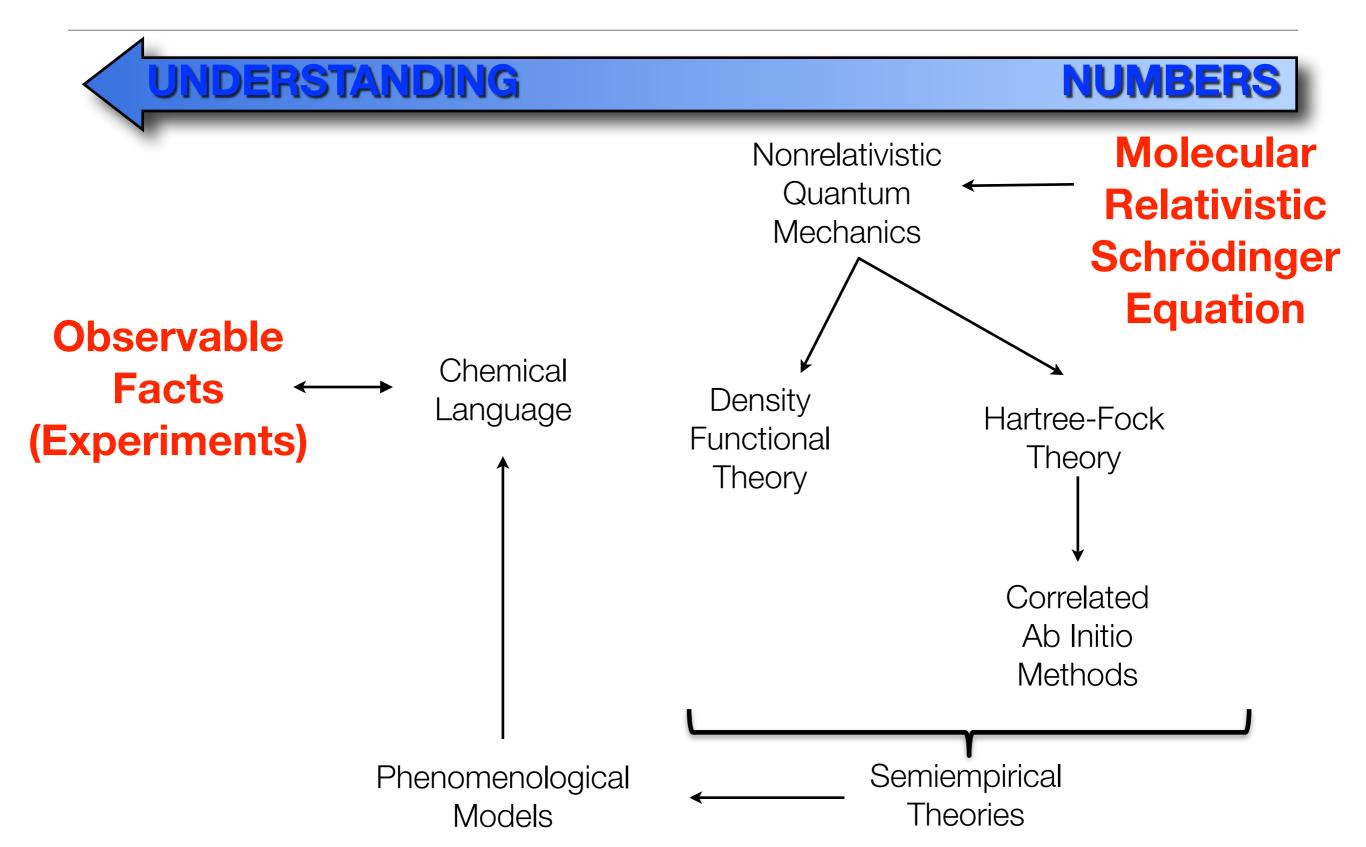
Ligand Field Theory

Frank Neese

Max-Planck Institut für Chemische Energiekonversion Stifstr. 34-36 D-45470 Mülheim an der Ruhr

frank.Neese@cec.mpg.de

Theory in Chemistry



What is Ligand Field Theory?

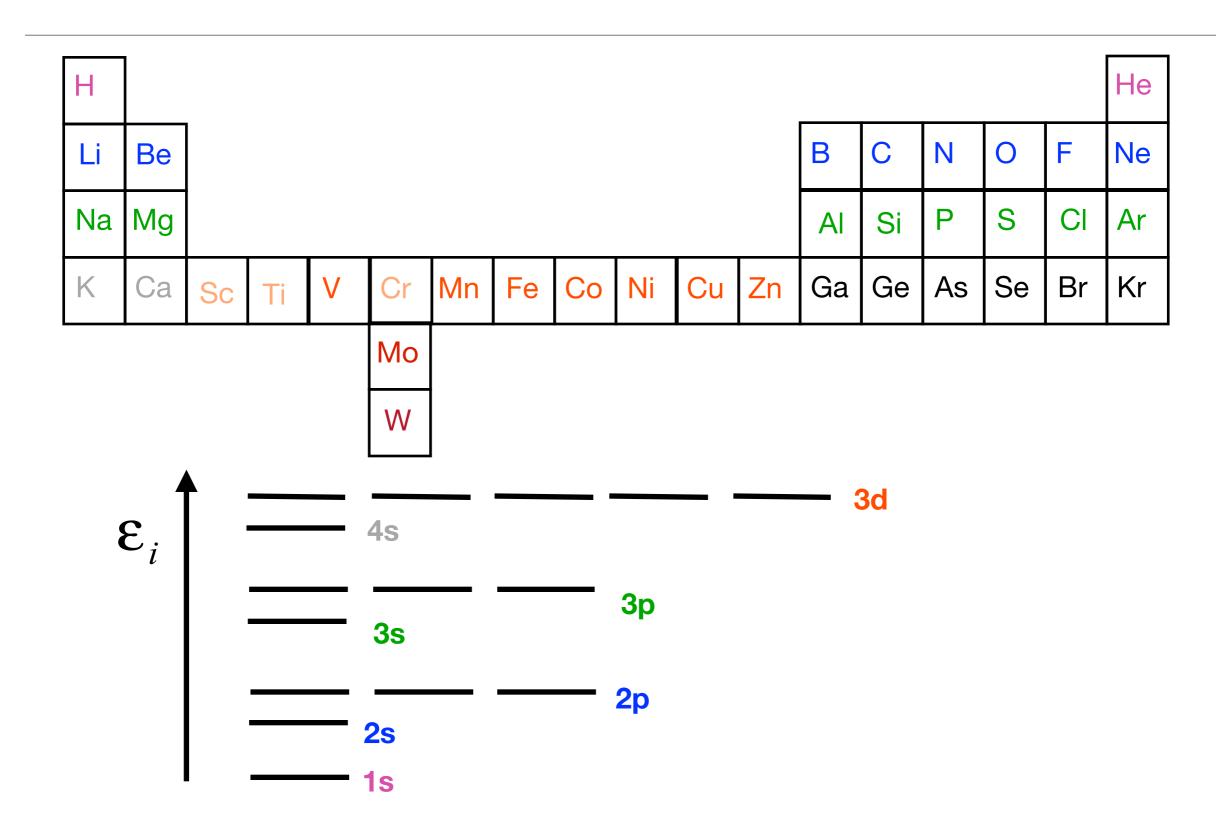
★ Ligand Field Theory is:

- A semi-empirical theory that applies to a CLASS of substances (transition metal complexes).
- A LANGUAGE in which a vast number of experimental facts can be rationalized and discussed.
- A MODEL that applies only to a restricted part of reality.

★ Ligand Field Theory is NOT:

- An ab initio theory that lets one predict the properties of a compound, from scratch'
- A physically rigorous treatment of transition metal electronic structure

Many Electron Atoms and the ,Aufbau' Principle



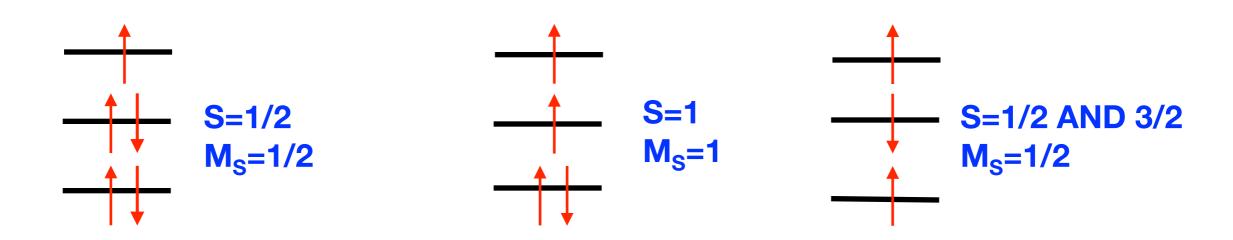
States of Atoms and Molecules

- Atoms and Molecule exist in STATES
- ORBITALS can NEVER be observed in many electron systems !!!
- ★ A STATE of an atom or molecule may be characterized by four criteria:
 - 1. The distribution of the electrons among the available orbitals (the electron CONFIGURATION) (A set of occupation numbers)
 - 2. The overall **SYMMETRY** of the STATE (Γ Quantum Number)
 - 3. The **TOTAL SPIN** of the STATE (S-Quantum Number)
 - 4. The **PROJECTION** of the Spin onto the Z-axis (M_S Quantum Number)

The Total Spin

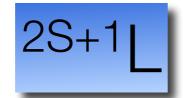
For the **Total Spin** of an atom or molecule the rules apply:

- 1. Doubly occupied orbitals do NOT contribute to the total Spin
- 2. Singly occupied orbitals can be occupied with either spin-up or spin-down electrons
- 3. Unpaired electrons can be coupled parallel or antiparallel to produce a final total spin S
- 4. For a state with total spin S there are 2S+1, components' with M=S,S-1,...,-S
- 5. The $M_{\rm S}$ quantum number is always the sum of all individual $m_{\rm s}$ quantum numbers



Atoms: Atomic "Russel-Saunders" Terms

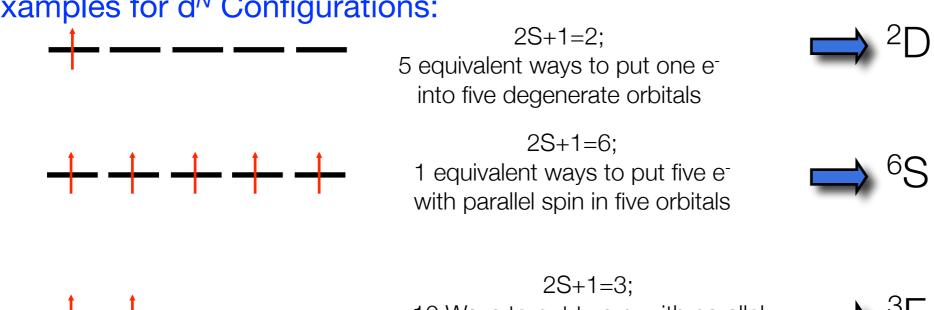
Atomic Term Symbol:



Rules:

- ► A L-Term is 2L+1 fold orbitally degenerate and (2S+1)(2L+1) fold degenerate in total
- L=0,1,2,3,4... terms are given the symbols S,P,D,F,G,...
- Terms of a given configuration with higher S are lower in energy (Hund I)
- Terms with given configuration and equal spin have the higher L lower in energy (Hund II)

Examples for d^N Configurations:



10 Ways to put two e-with parallel spin in five orbitals

Molecules: Symmetry and Group Theory

- ★ A Molecule can be classified according to the operations that turn the molecule into itself (=symmetry operations), i.e rotations, improper rotations, inversion, reflection.
- ★ The precise mathematical formulation is part of "group theory"
- ★ The results is that states can be classified according to their "irreducible representation" ("symmetry quantum number")

Rules for naming "irreducible representations":

Small Letters : Reserved for orbitals (One-electron level)

Capital Letters : Reserved for states (Many electron level)

T,t : Triply degenerate level

E,e : Doubly degenerate level

A,B : Non-degenerate Levels

Term-Symbol:

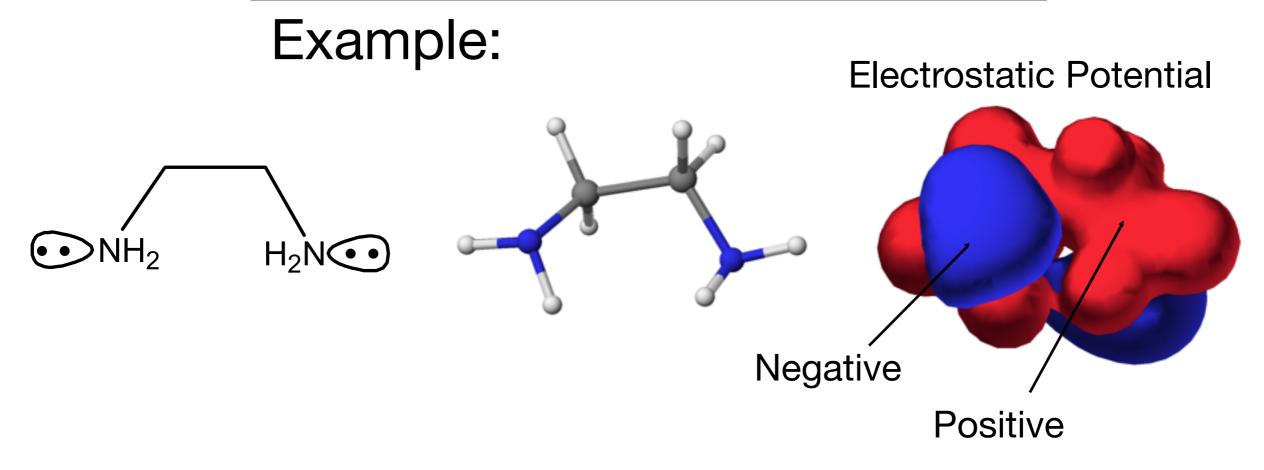
2S+1

2S+1 : "Multiplicity" = Spin Degeneracy

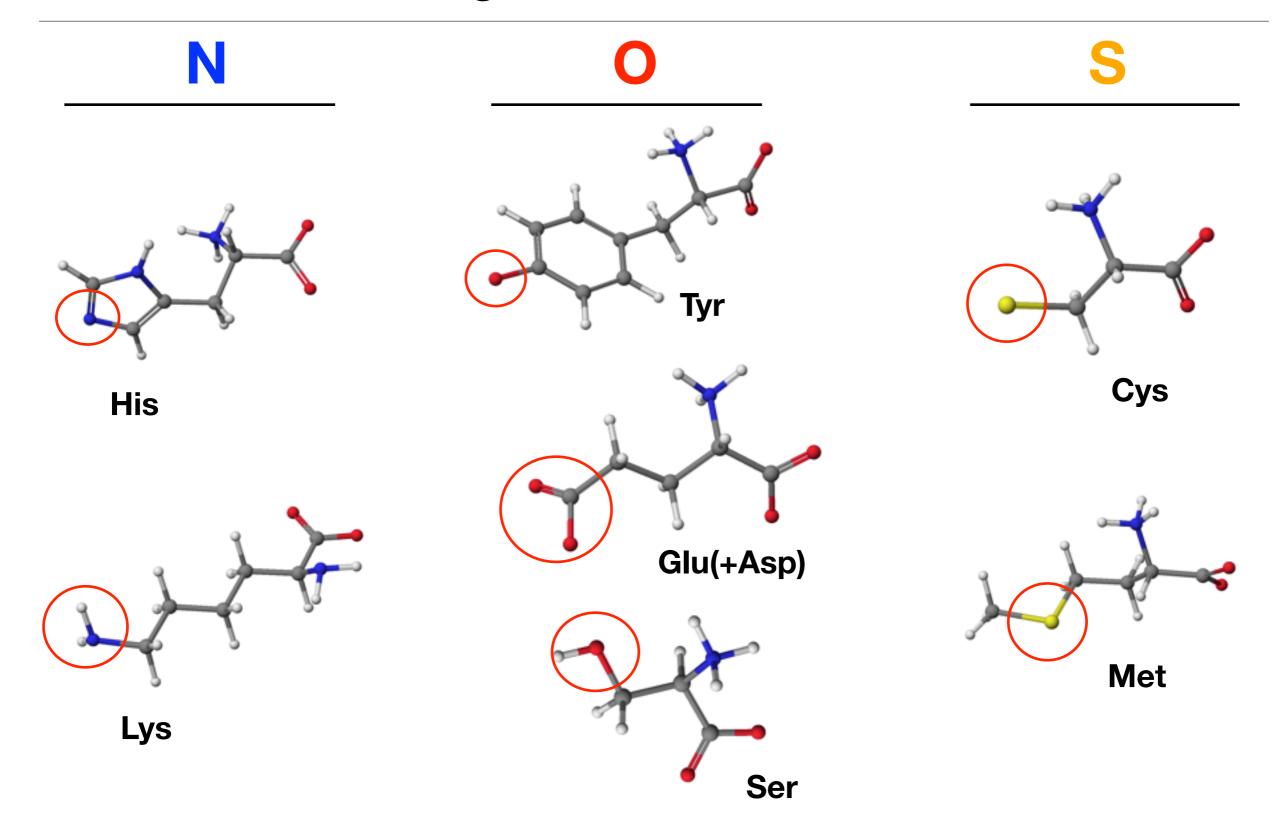
Γ : "Irreducible Representation"

Principles of Ligand Field Theory

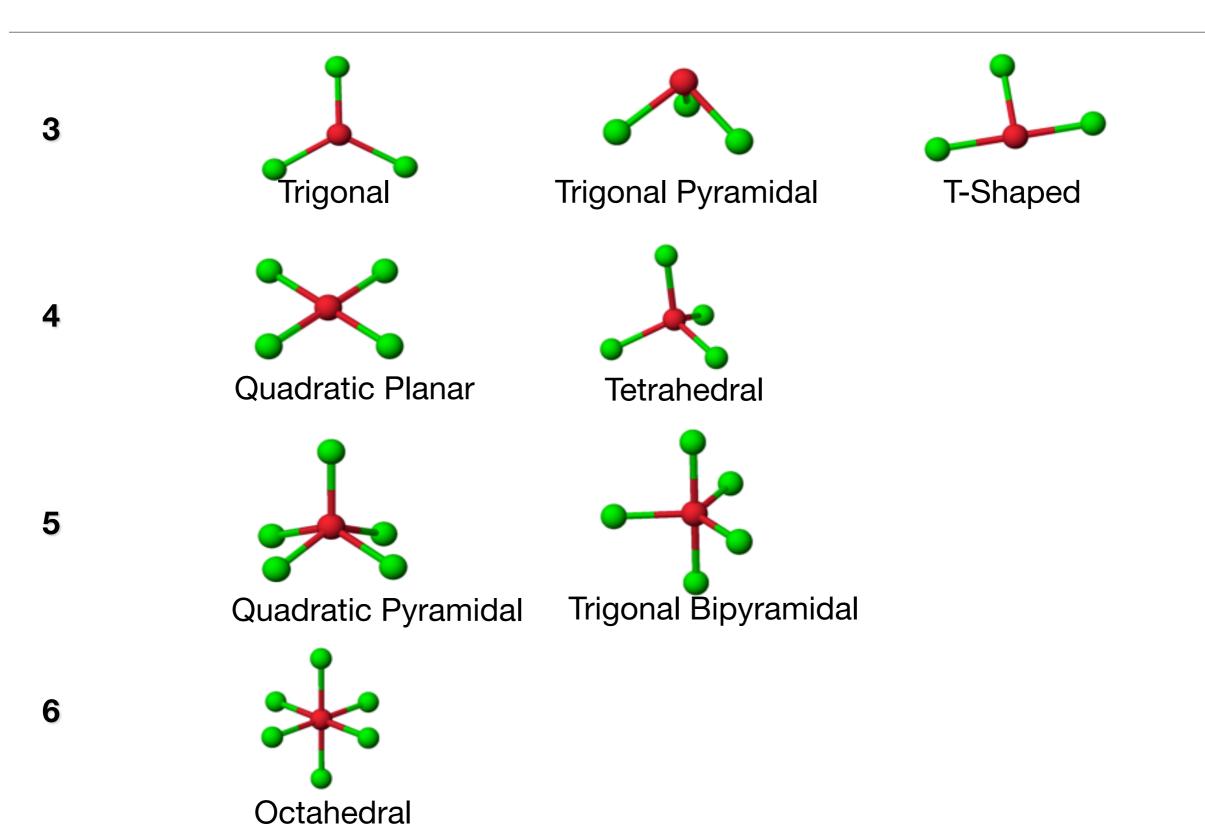
 $\begin{array}{c|c} R\text{-}L & M \\ \hline \delta\text{-} & \delta\text{+} \\ \text{Strong Attraction} \end{array}$



Protein Derived Ligands

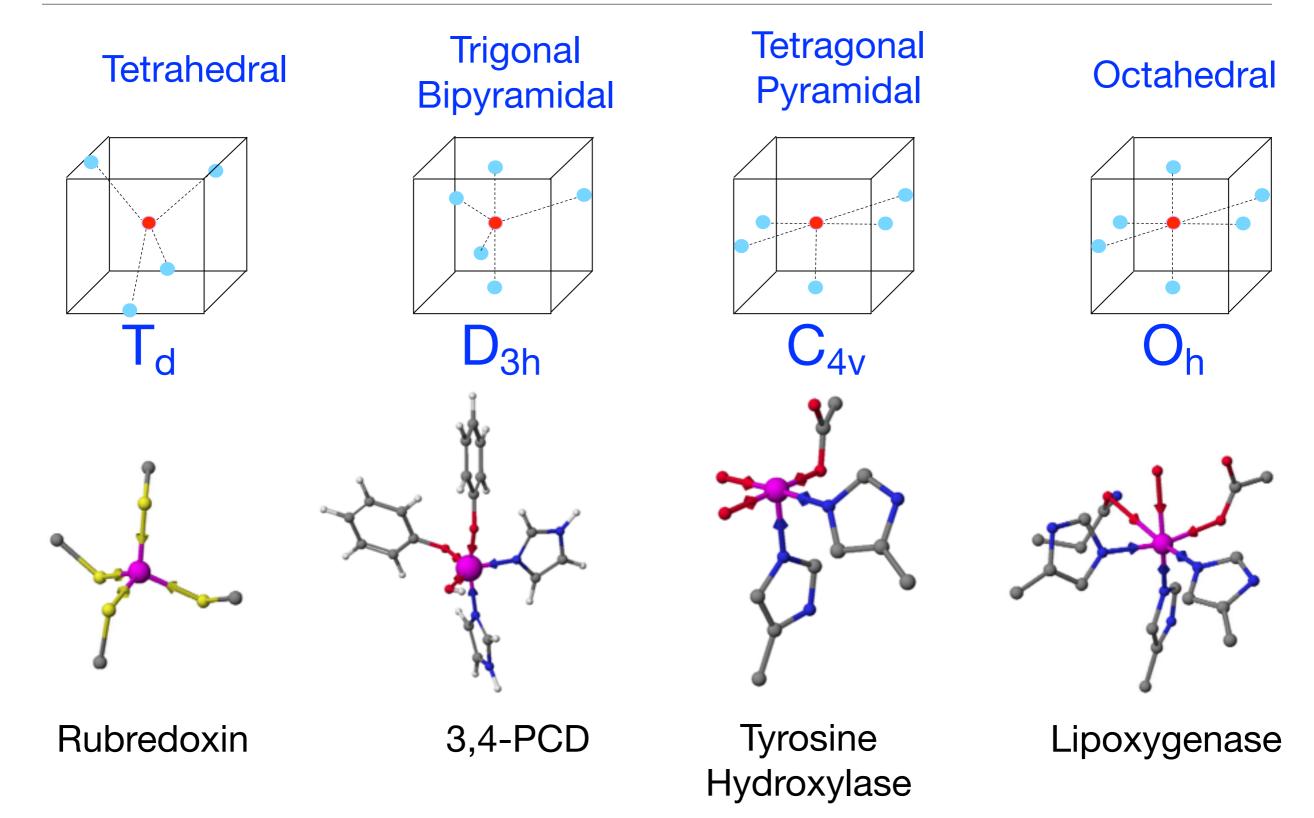


Complex Geometries

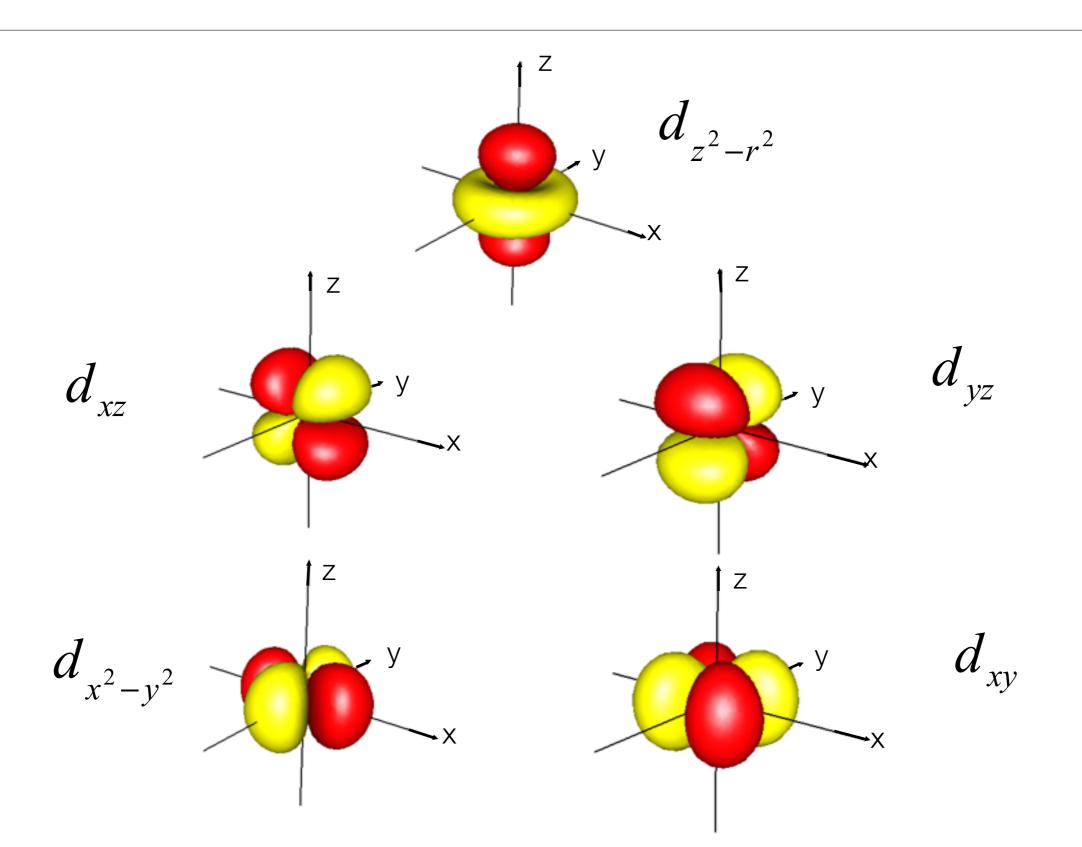


Coordination Geometries

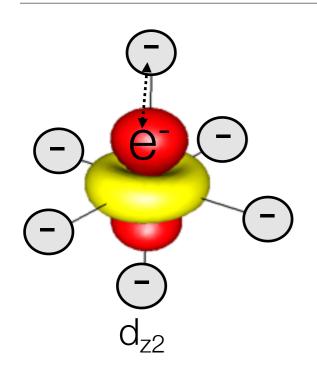
- Approximate Symmetries Observed in Enzyme Active Sites -

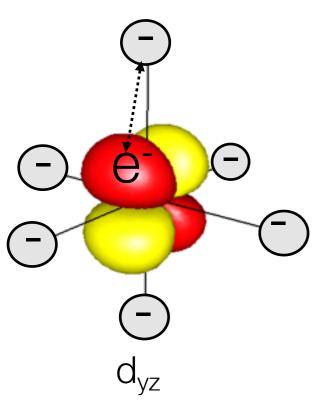


The Shape of Orbitals



A Single d-Electron in an Octahedral Field



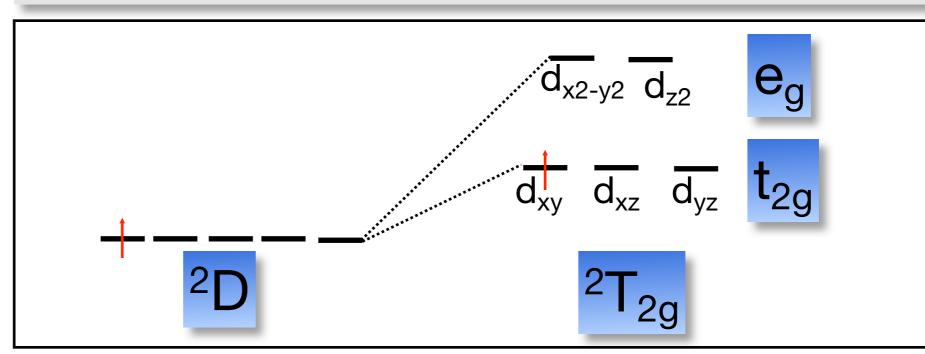


The Negatively Charged Ligands Produce an Electric Field+Potential

The Field Interacts with the d-Electrons on the Metal (Repulsion)

The Interaction is NOT Equal for All Five d-Orbitals

- 1. The Spherical Symmetry of the Free Ions is Lifted
- 2. The d-Orbitals Split in Energy
- 3. The Splitting Pattern Depends on the Arrangement of the Ligands



Making Ligand Field Theory Quantitative

Charge Distribution of Ligand Charges: $\rho(\mathbf{R}) = \sum_{i=1}^{N_L} q_i \delta(\mathbf{R} - \mathbf{R}_{L_i})$

Hans Bethe 1906-2005

Ligand field potential:

$$V_{LF}(\mathbf{r}) = \int \frac{\rho(\mathbf{R})}{|\mathbf{R} - \mathbf{r}|} d\mathbf{R}$$

q_i=charges

$$\frac{1}{|\mathbf{R} - \mathbf{r}|} = \sum_{l=0}^{\infty} \frac{4\pi}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} \sum_{m=-l}^{l} S_{lm}(\mathbf{R}) S_{lm}(\mathbf{r})$$

 S_l^m =real spherical harmonics r_{<,>} Smaller/Larger or r and R

Insertion into the potential:

$$V_{LF}(\mathbf{r}) = \sum_{l=0}^{\infty} r^{l} \sum_{m=-l}^{l} S_{lm}(\mathbf{r}) A_{lm}$$

"Geometry factors":

$$A_{lm} = \sum_{i=1}^{N_L} \frac{4\pi}{2l+1} \frac{q_i}{R_{L_i}^{l+1}} S_{lm} \left(\mathbf{R}_{L_i}\right)$$

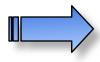
Ligand-field matrix elements:

$$\left\langle d_{i} \middle| V_{LF} \middle| d_{j} \right\rangle = -\sum_{l=0}^{\infty} \left\langle r^{l} \right\rangle \sum_{m=-l}^{l} A_{lm} \begin{pmatrix} l_{i} & l_{j} & l \\ m_{i} & m_{j} & m \end{pmatrix} \stackrel{!}{\overset{!}{\cdot}}$$

$$\begin{pmatrix}
l_i & l_j & | l \\
m_i & m_j & | m \\
\end{pmatrix}$$

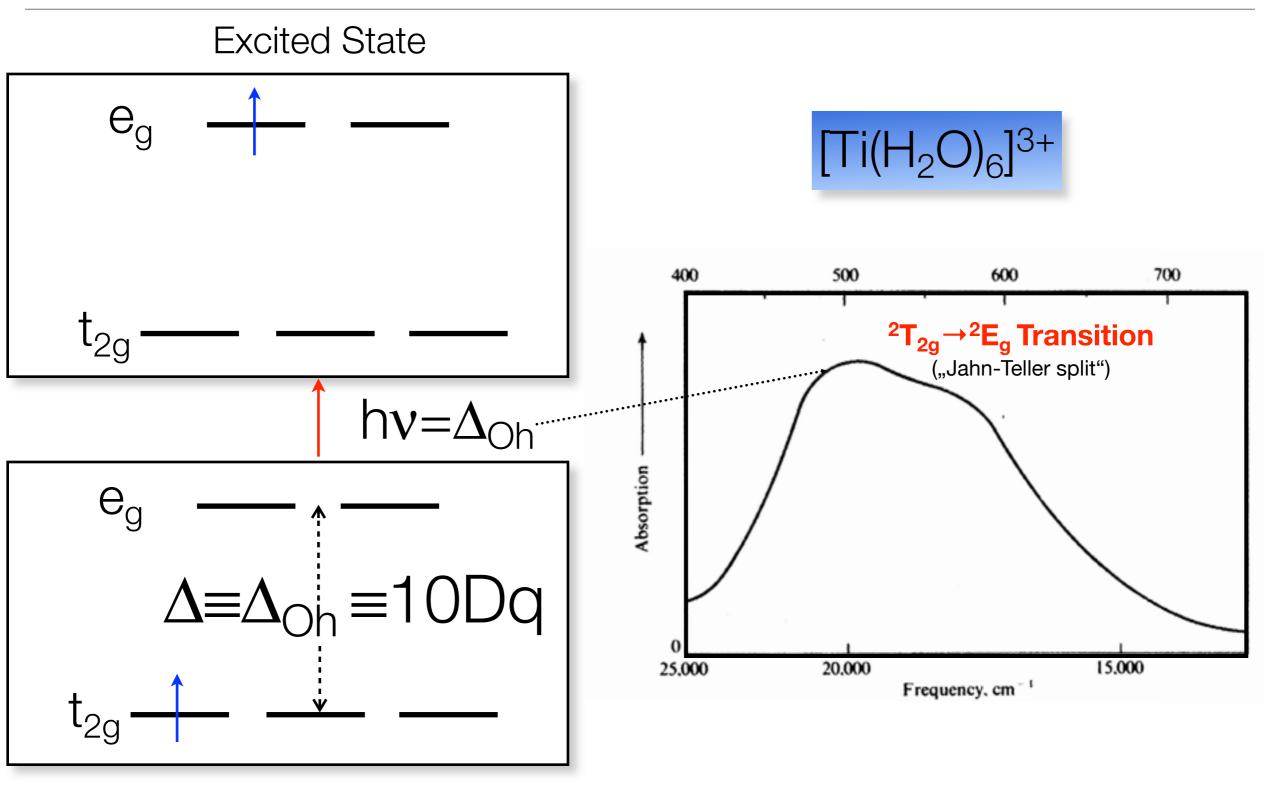
Ligand-field splitting in O_h:
$$\left| \left\langle d_{e_g} | V_{LF} | d_{e_g} \right\rangle - \left\langle d_{t_{2g}} | V_{LF} | d_{t_{2g}} \right\rangle \equiv 10 Dq = \frac{5}{3} \frac{q}{R^5} \left\langle d | r^4 | d \right\rangle$$

=Gaunt Integral (tabulated)



Don't evaluate these integrals analytically, plug in and compare to experiment! LFT is not an ab initio theory (the numbers that you will get are ultimately absurd!). What we want is a parameterized model and thus we want to leave 10Dq as a fit parameter. The ligand field model just tells us how many and which parameters we need what their relationship is

Optical Measurement of Δ : d-d Transitions



Ground State

The Spectrochemical Series

A "Chemical" Spectrochemical Series

$$I^{-} < S^{2-} < F^{-} < OH^{-} < H_2O < NH_3 < NO_2^{-} < CN^{-} < CO^{-} NO < NO^{+}$$

 Δ SMALL

Δ LARGE

A "Biochemical" Spectrochemical Series (A. Thomson)

Asp/Glu < Cys < Tyr < Met < His < Lys < His

ΔSMALL

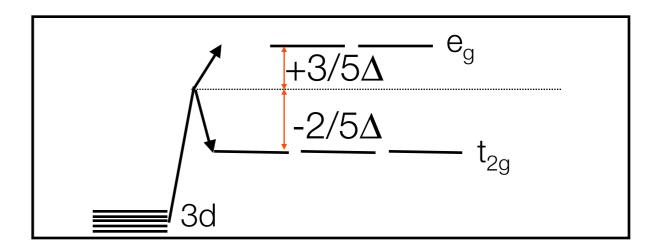
Δ LARGE

Ligand Field Stabilization Energies

Central Idea:

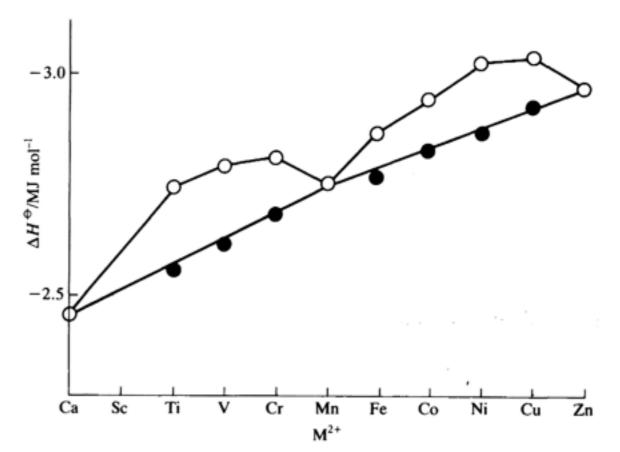
- → Occupation of t_{2g} orbitals stabilizes the complex while occupation of e_g orbitals destabilizes it.
- Ligand Field Stabilization Energy (LSFE)

d ^N	LSFE
1	-2/5∆
2	-4/5∆
3	-6/5∆
4	-3/5∆
5	0
6	-2/5∆
7	-4/5∆
8	-6/5∆
9	-3/5∆
10	0



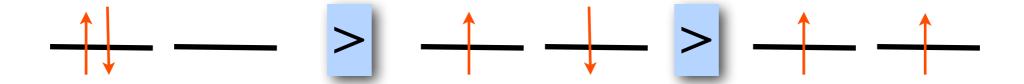
Experimental Test:

→ Hydration energies of hexaquo M²⁺



Many Electrons in a Ligand Field: Electron Repulsion

BASIC TRUTH: Electrons REPEL Each Other



Rules:

- Electrons in the SAME orbital repel each other most strongly.
- Electrons of oppsite spin repel each other more strongly than electrons of the same spin.

Consequences:

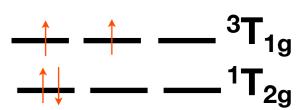
- In degenerate orbitals electrons enter first with the same spin in different orbitals (→Hund's Rules in atoms!)
- A given configuration produces several states with different energies

Ligand Field Theory:

► Electron repulsion can be taken care of by ONE PARAMETER: B (~1000 cm⁻¹)

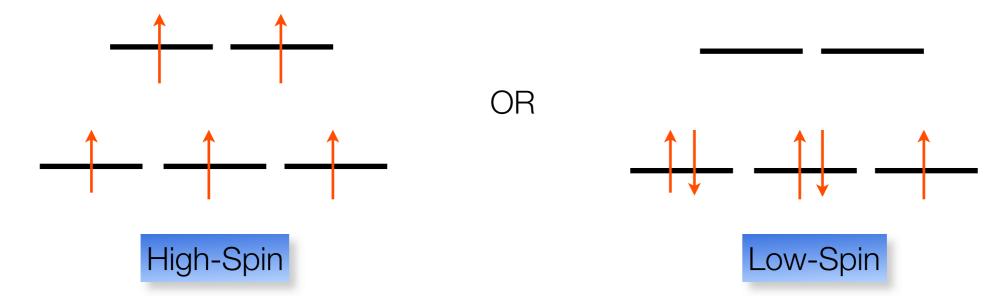
Example:

• d^2 -Configuration: $\Delta E(^1T_{2g}-^3T_{1g}) \sim 4B \sim 3,000-4,000 \text{ cm}^{-1}$

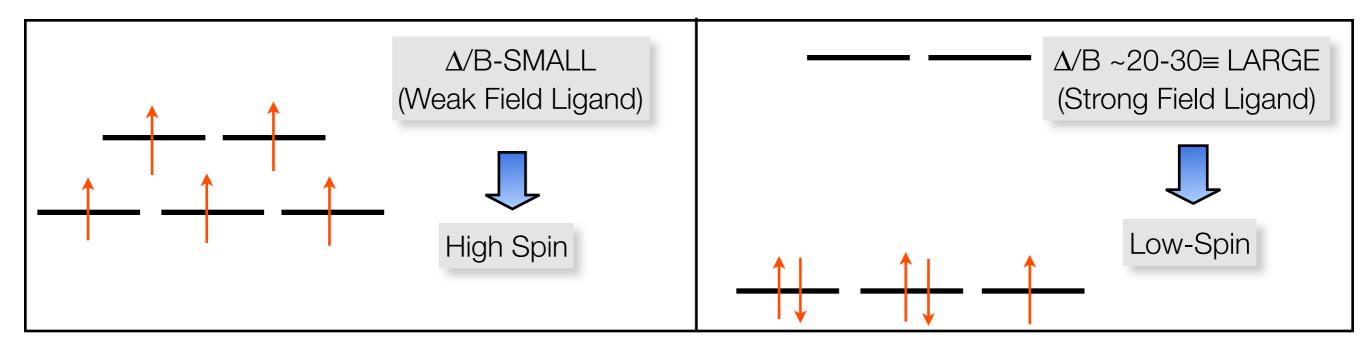


High-Spin and Low-Spin Complexes

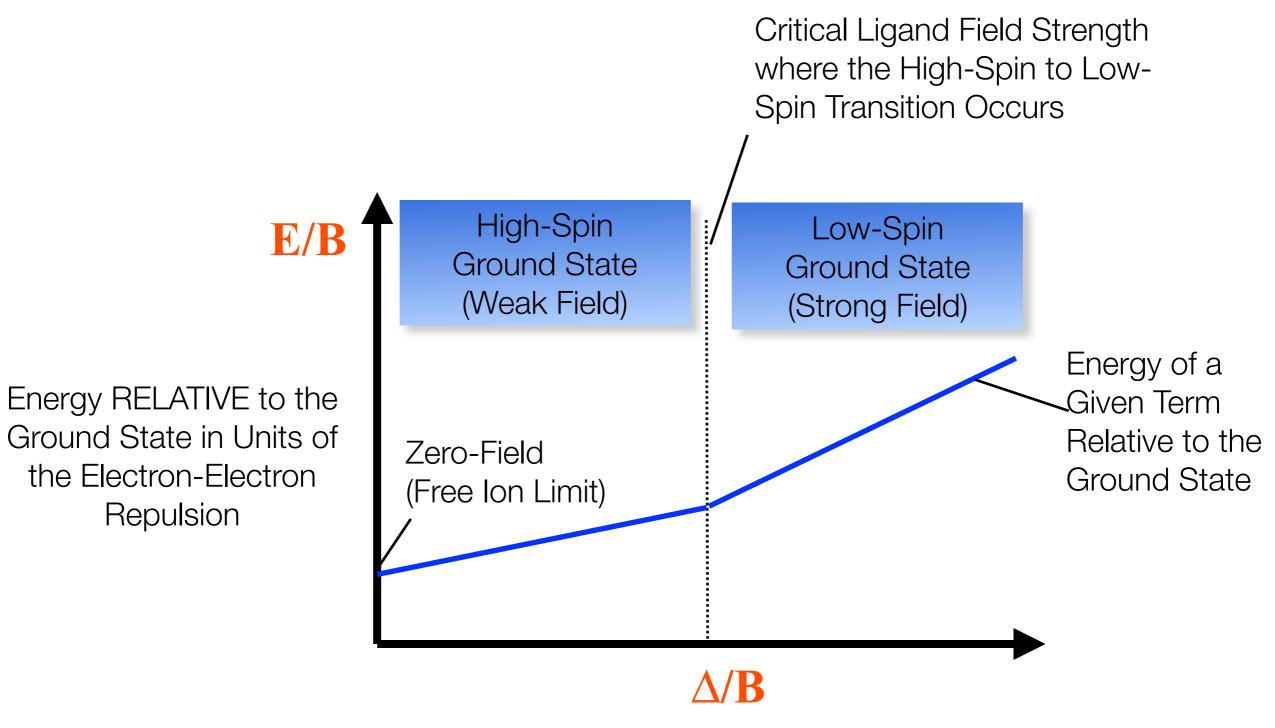
QUESTION: What determines the electron configuration?



ANSWER: The balance of ligand field splitting and electron repulsion (,**Spin-Pairing Energy**' P=f(B))

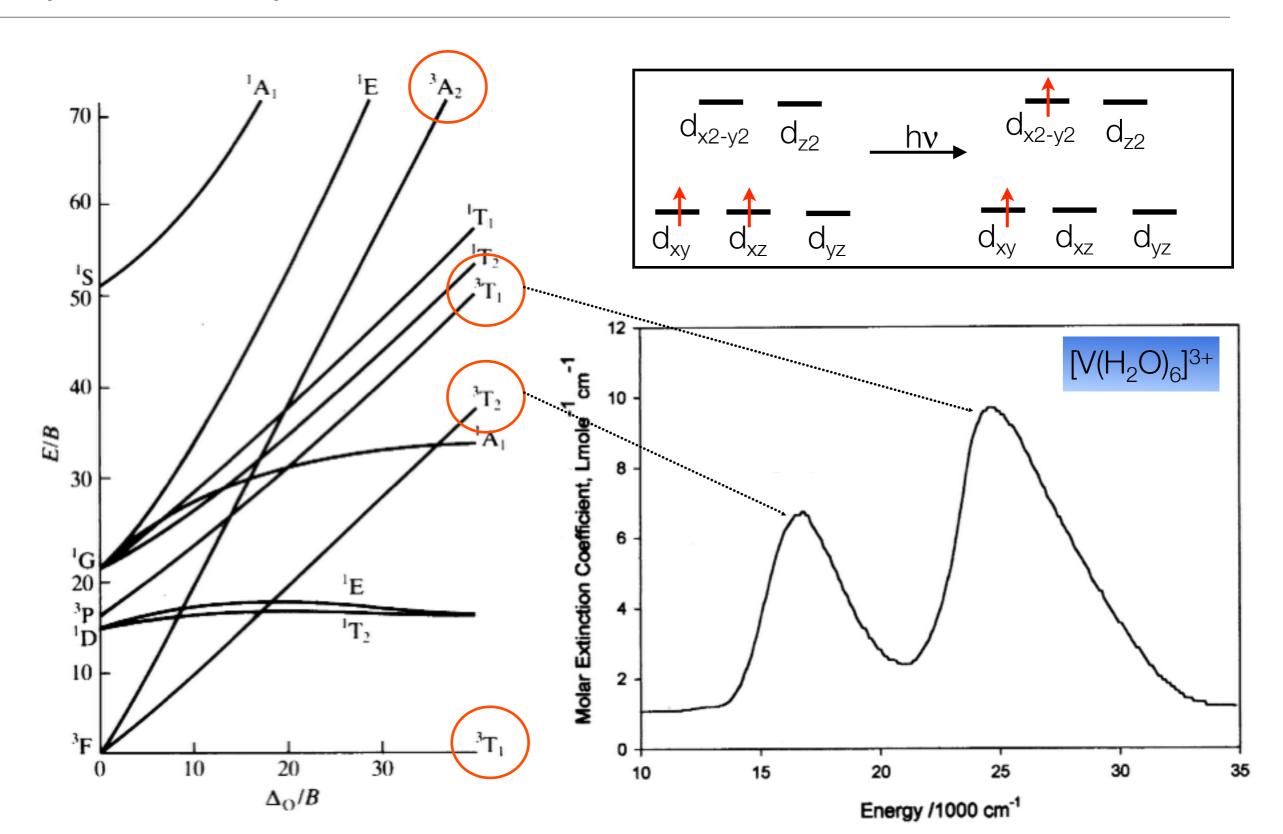


Inside Ligand Field Theory: Tanabe-Sugano Diagrams

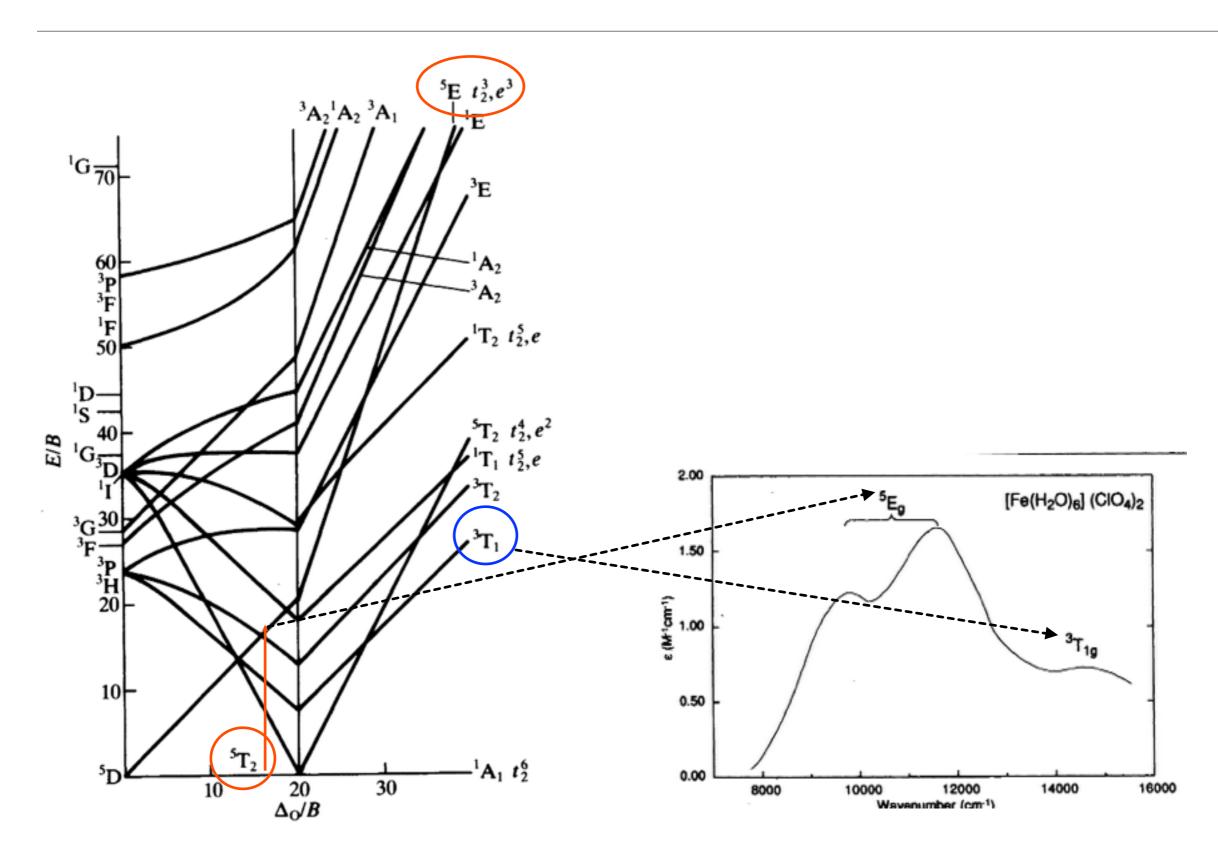


Strength of Ligand Field Increases Relative to the Electron-Electron Repulsion

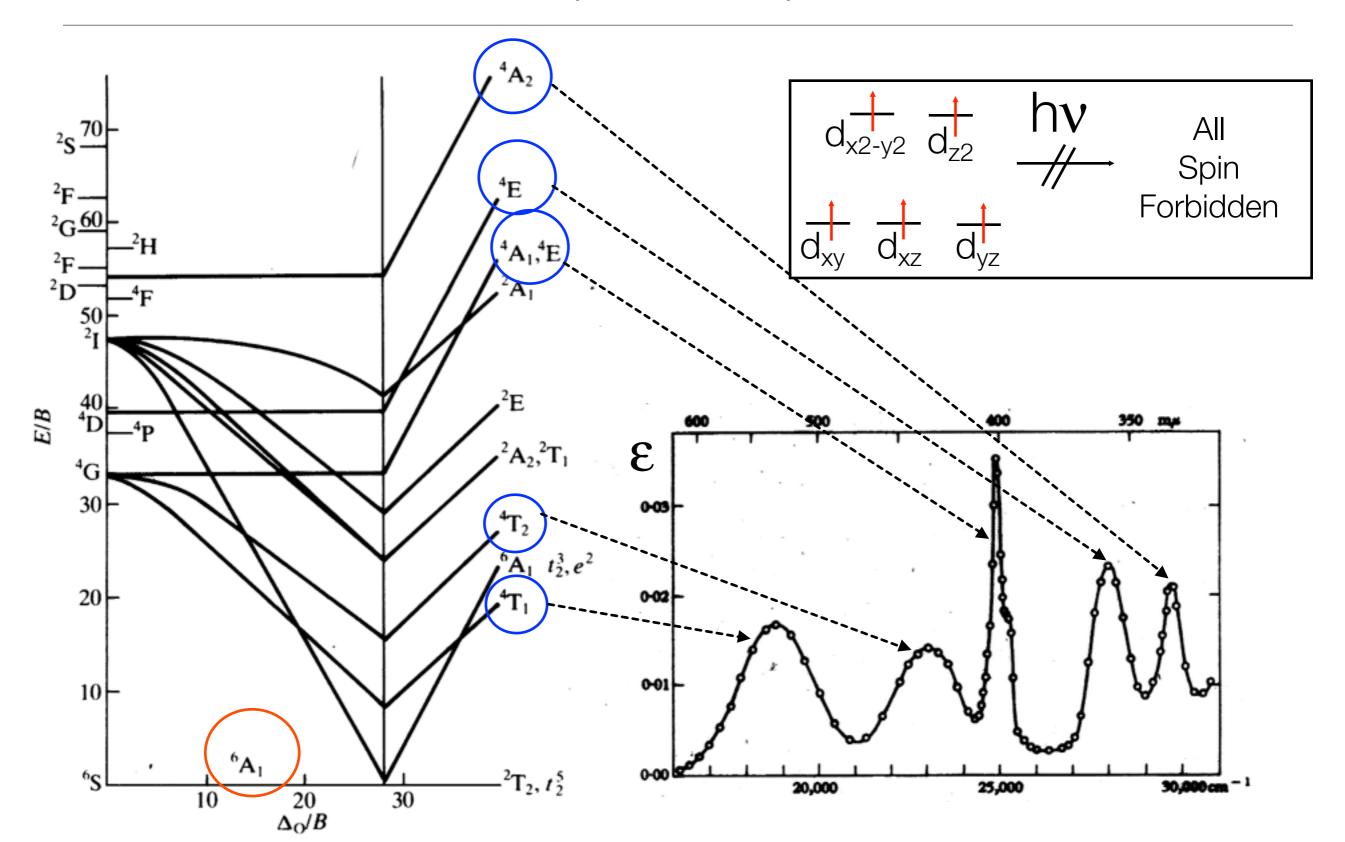
Optical Properties:d-d Spectra of d² Ions



d-d Spectra of d⁶ Ions (Fe^{II}, Co^{III})



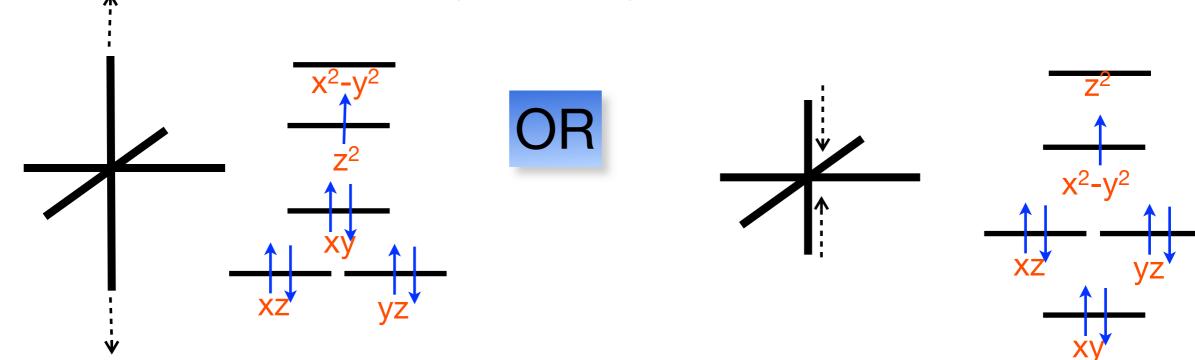
d-d Spectra of d⁵ Ions (Fe^{III}, Mn^{II})



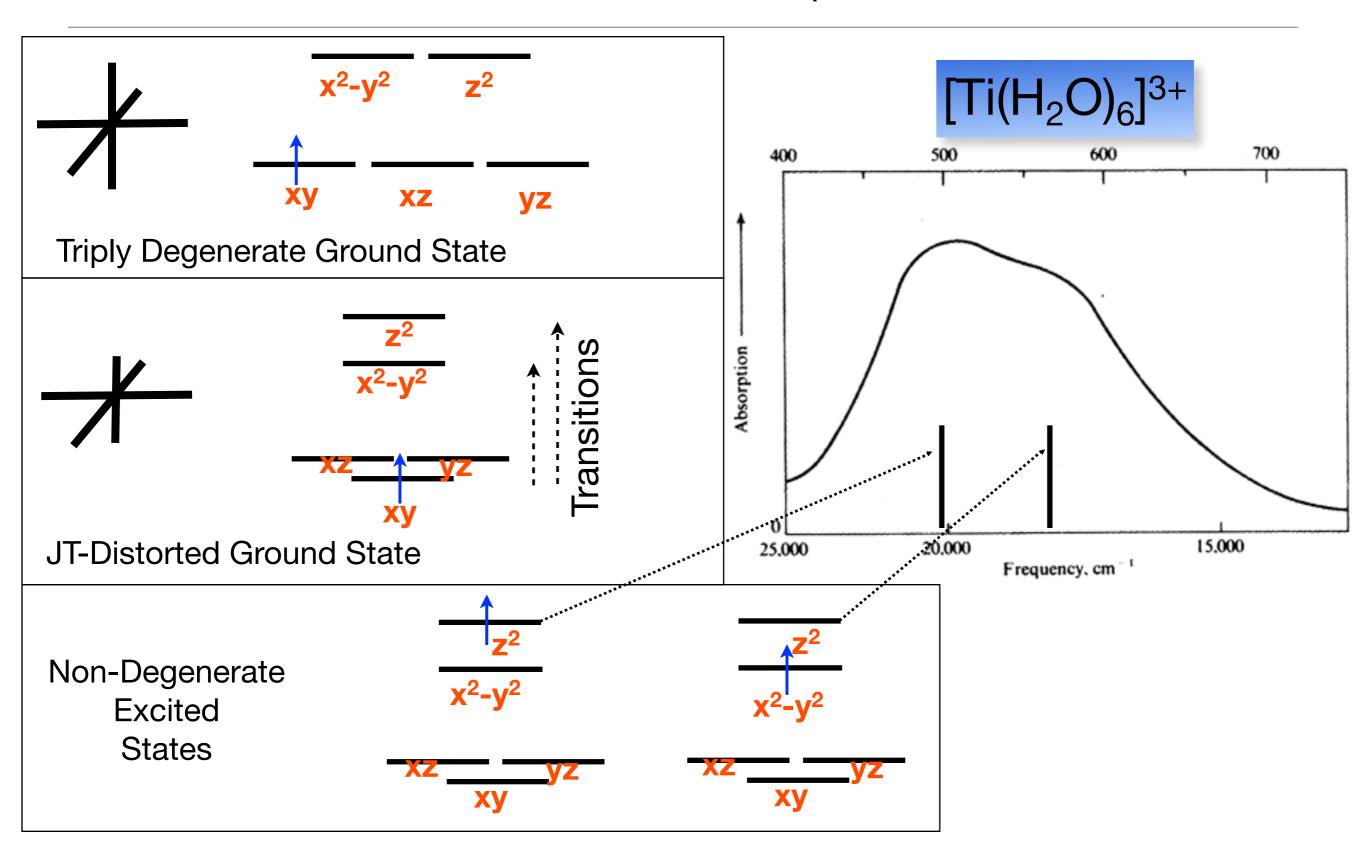
The Jahn-Teller Effect: Basic Concept

QUESTION: What happens if an electron can occupy one out of a couple of degenerate orbitals?

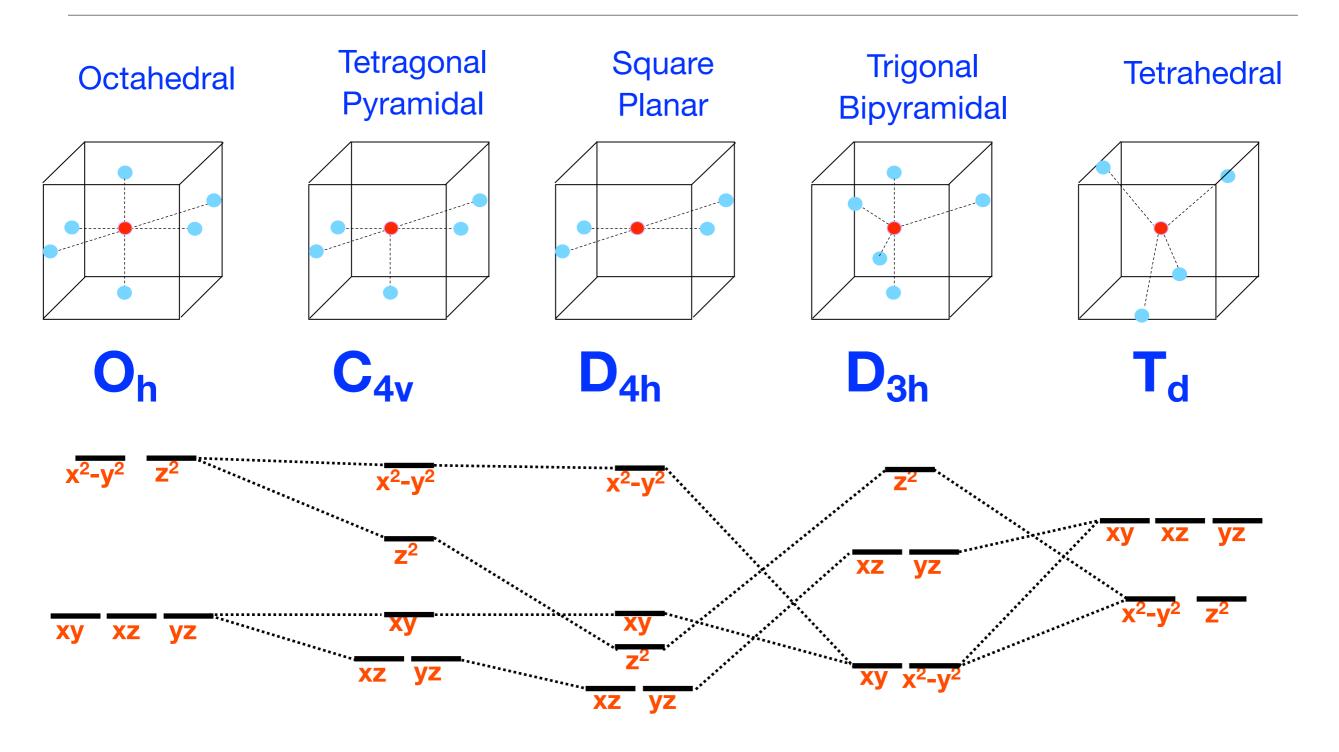
ANSWER: There is **ALWAYS** a nuclear motion that removes the degeneracy and ,forces' a decision! (JT-Theorem)



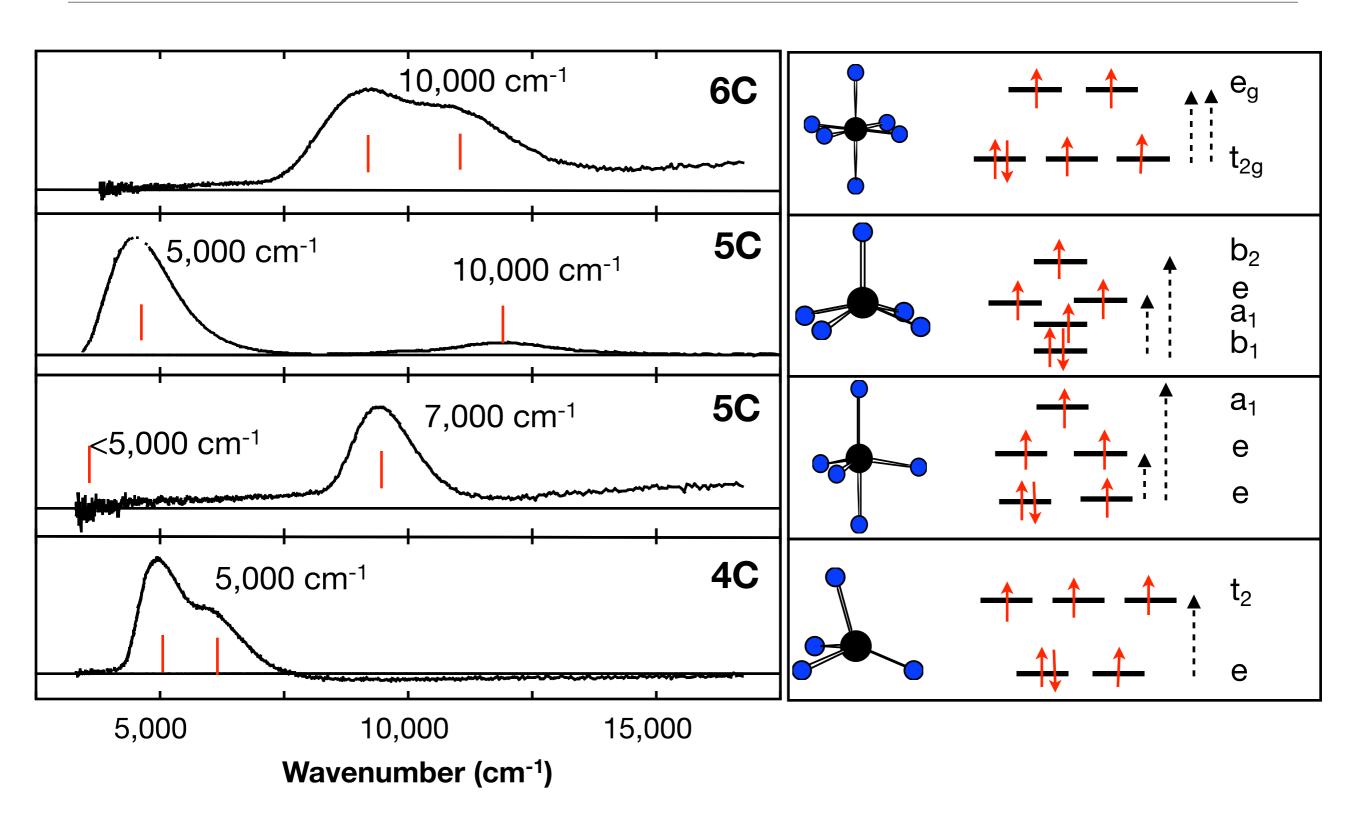
The Jahn-Teller Effect: An Example



Ligand Field Splittings in Different Coordination Geometries

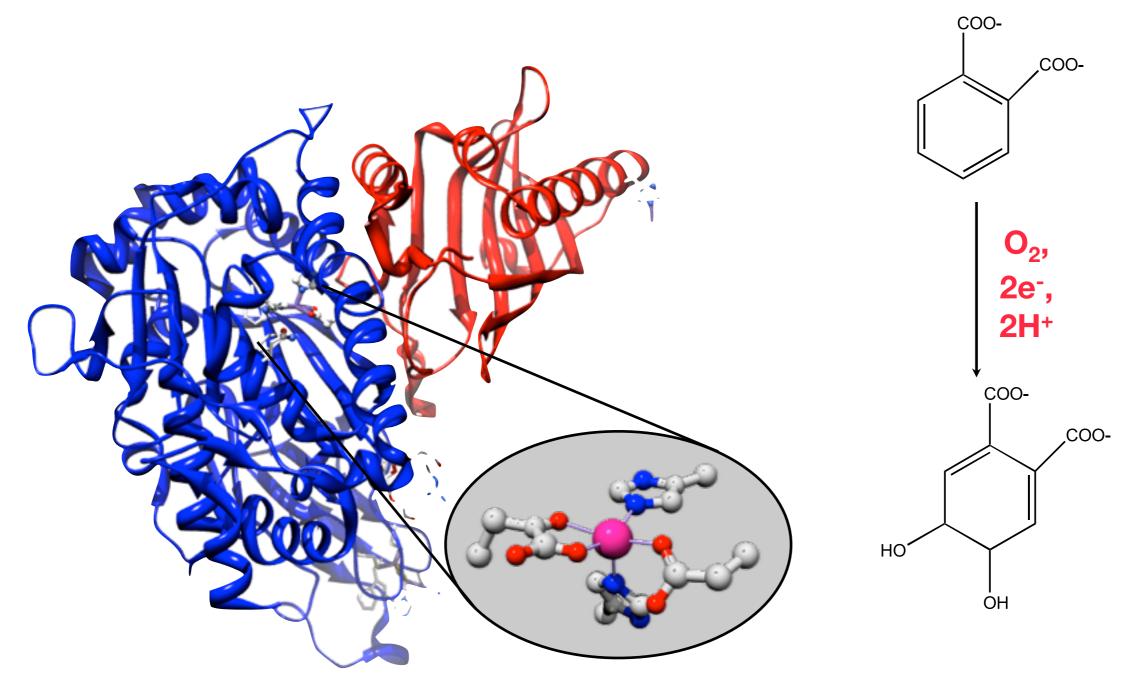


Coordnation Geometry and d-d Spectra: HS-Fe(II)

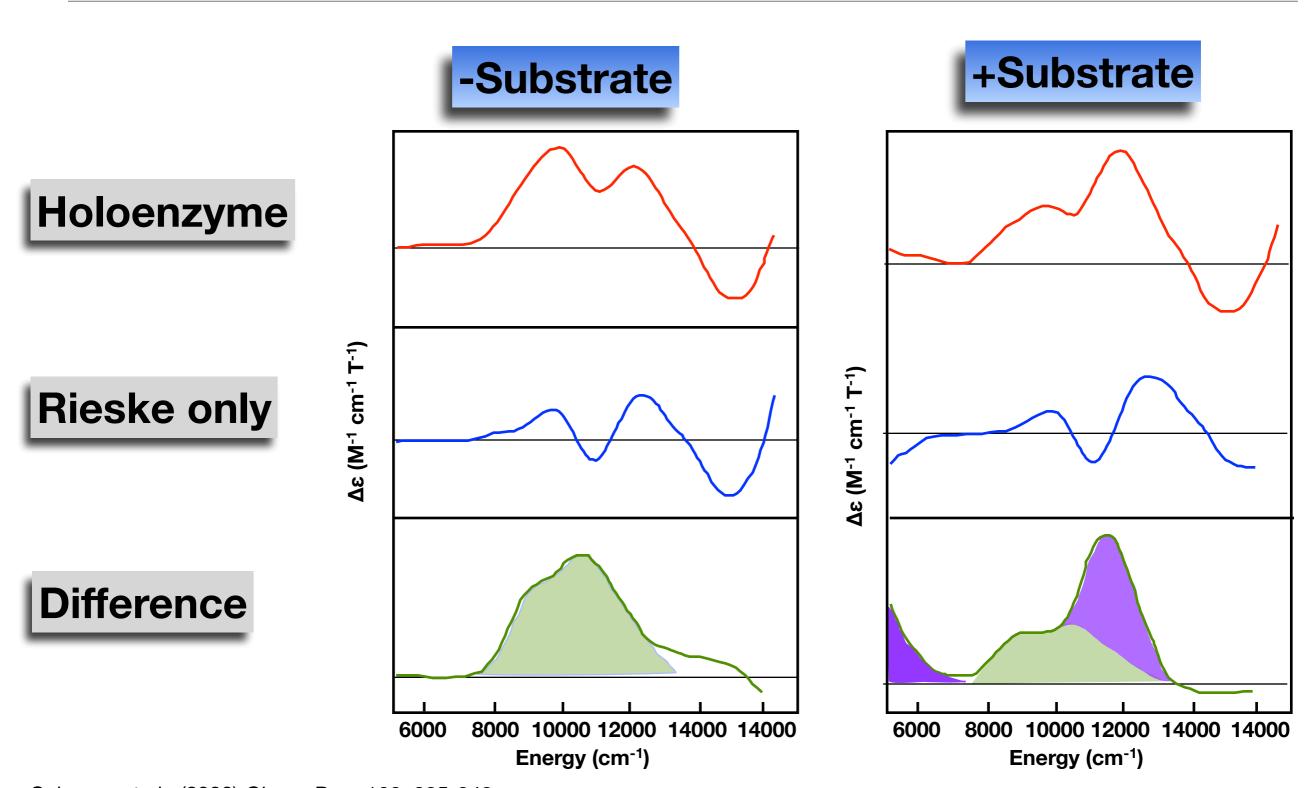


Studying Enzyme Mechanisms

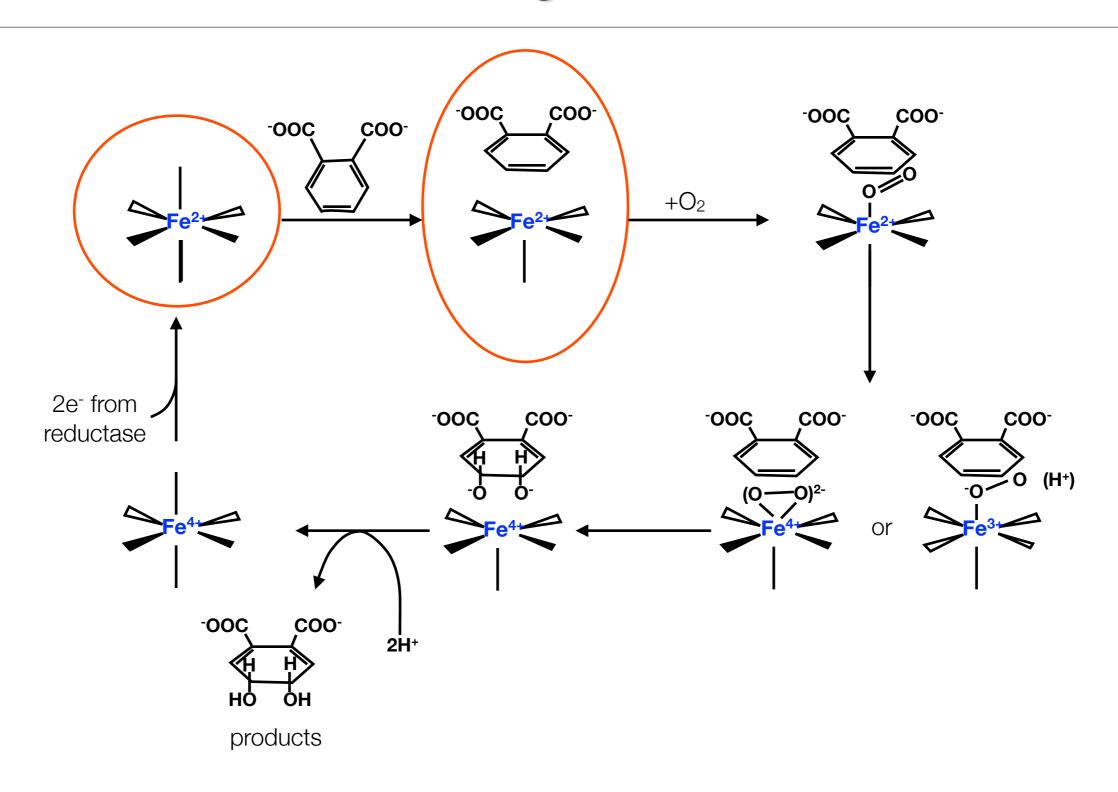
Rieske-Dioxygenases



Active Site Geometry from d-d Spectra



Mechanistic Ideas from Ligand Field Studies

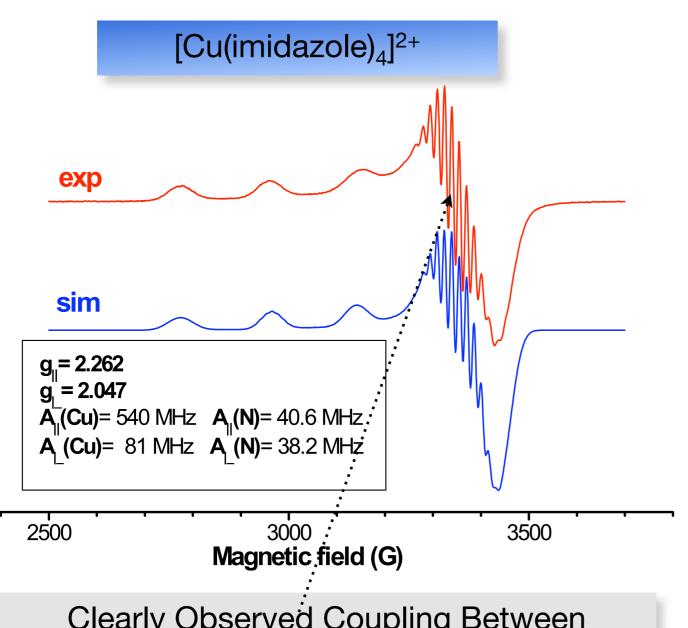


Beyond Ligand Field Theory

"Personally, I do not believe much of the electrostatic romantics, many of my collegues talked about"

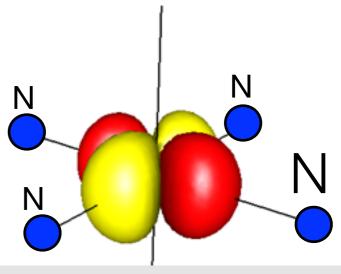
(C.K. Jörgensen, **1966** Recent Progress in Ligand Field Theory)

Experimental Proof of the Inadequacy of LFT



Clearly Observed Coupling Between
The Unpaired Electron and the Nuclear Spin
of Four ¹⁴N Nitrogens (I=1)

Ligand Field Picture

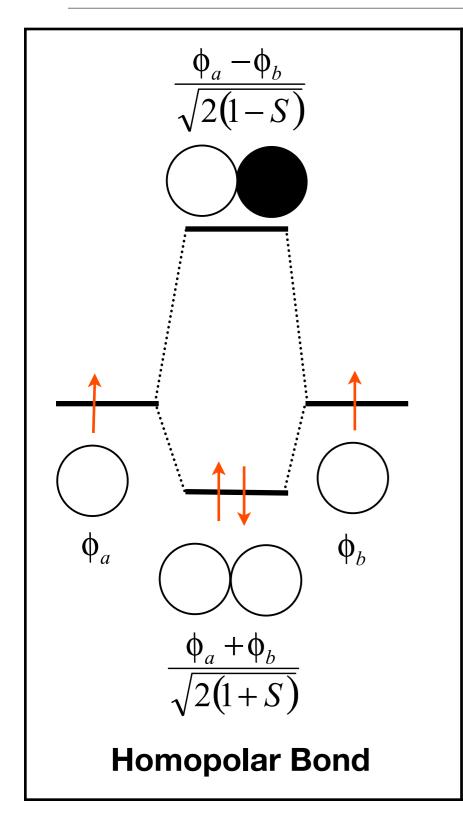


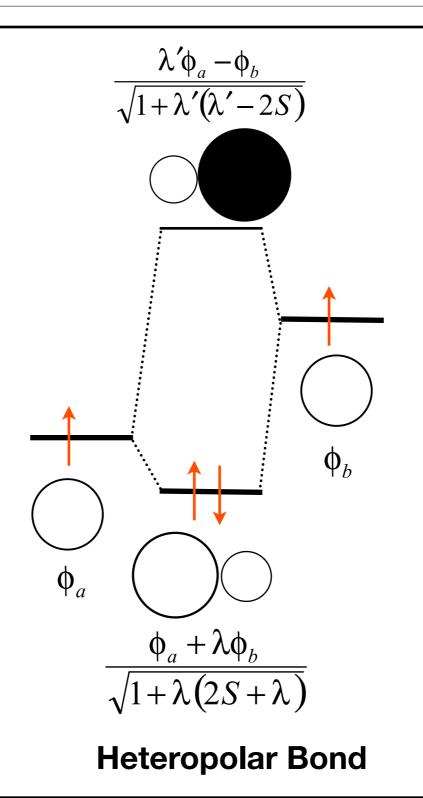
Wavefunction of the Unpaired Electron Exclusively Localized on the Metal

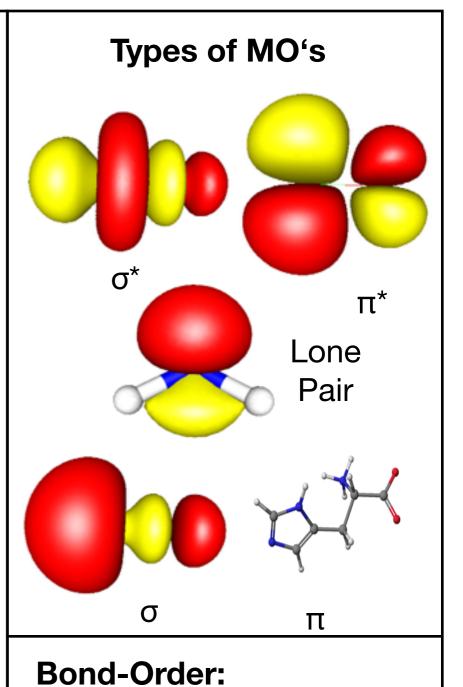
No Coupling Expected

Need a Refined Theory that Includes the Ligands Explicitly

Description of Bonds in MO Theory

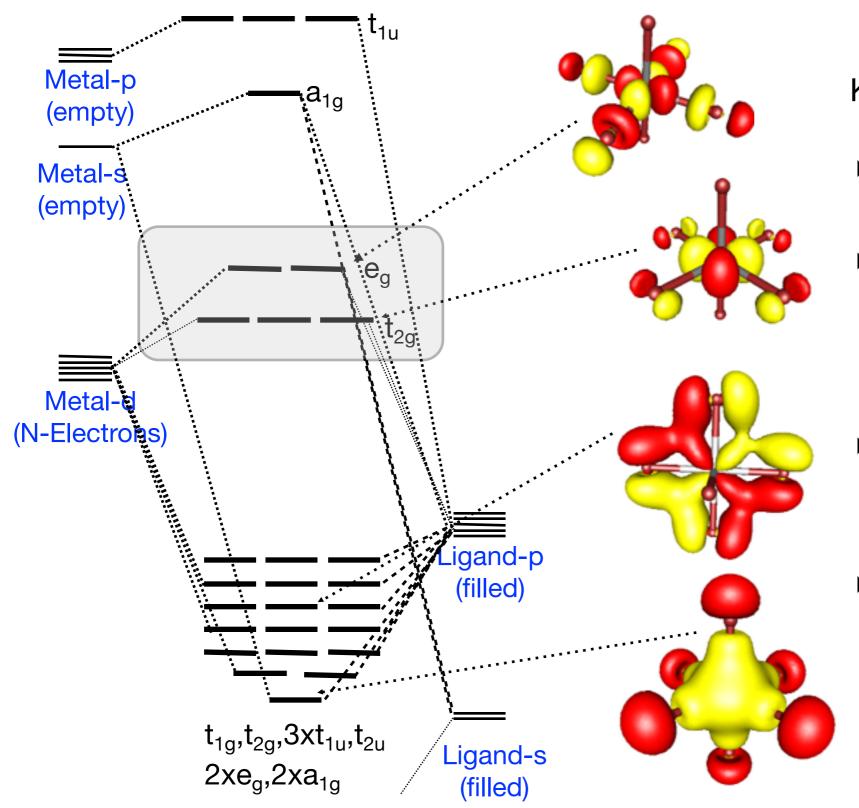






 $B = \frac{1}{2} (N_B - N_A)$

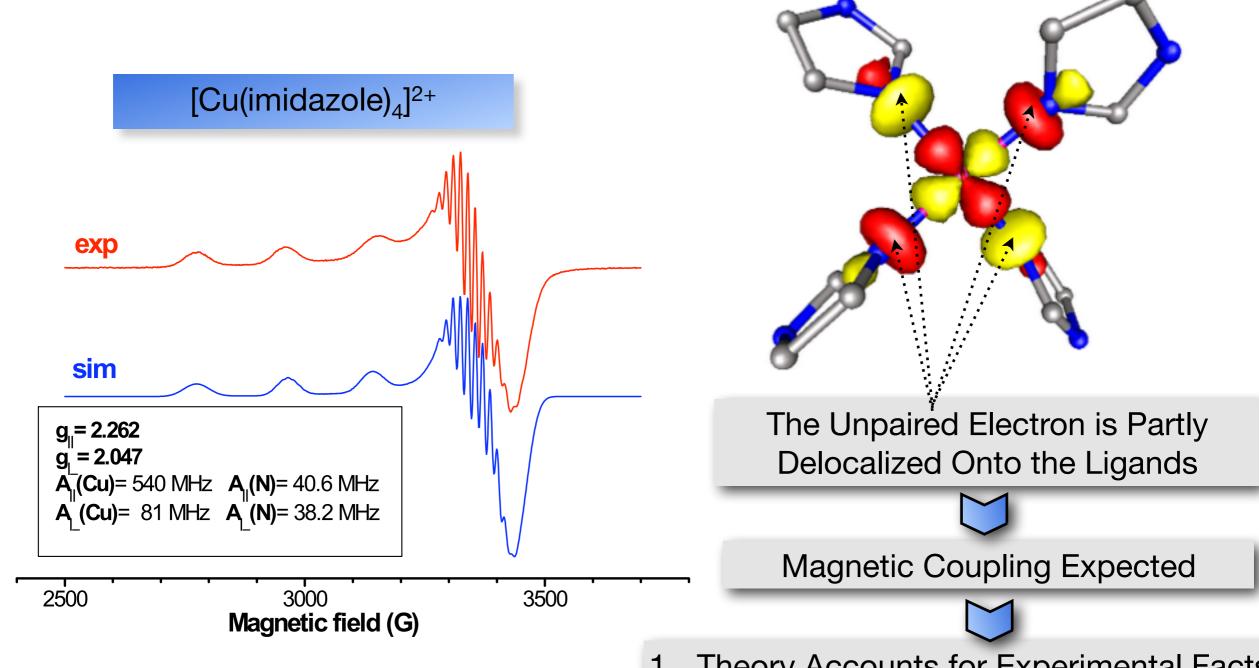
MO Theory of ML₆ Complexes



Key Points:

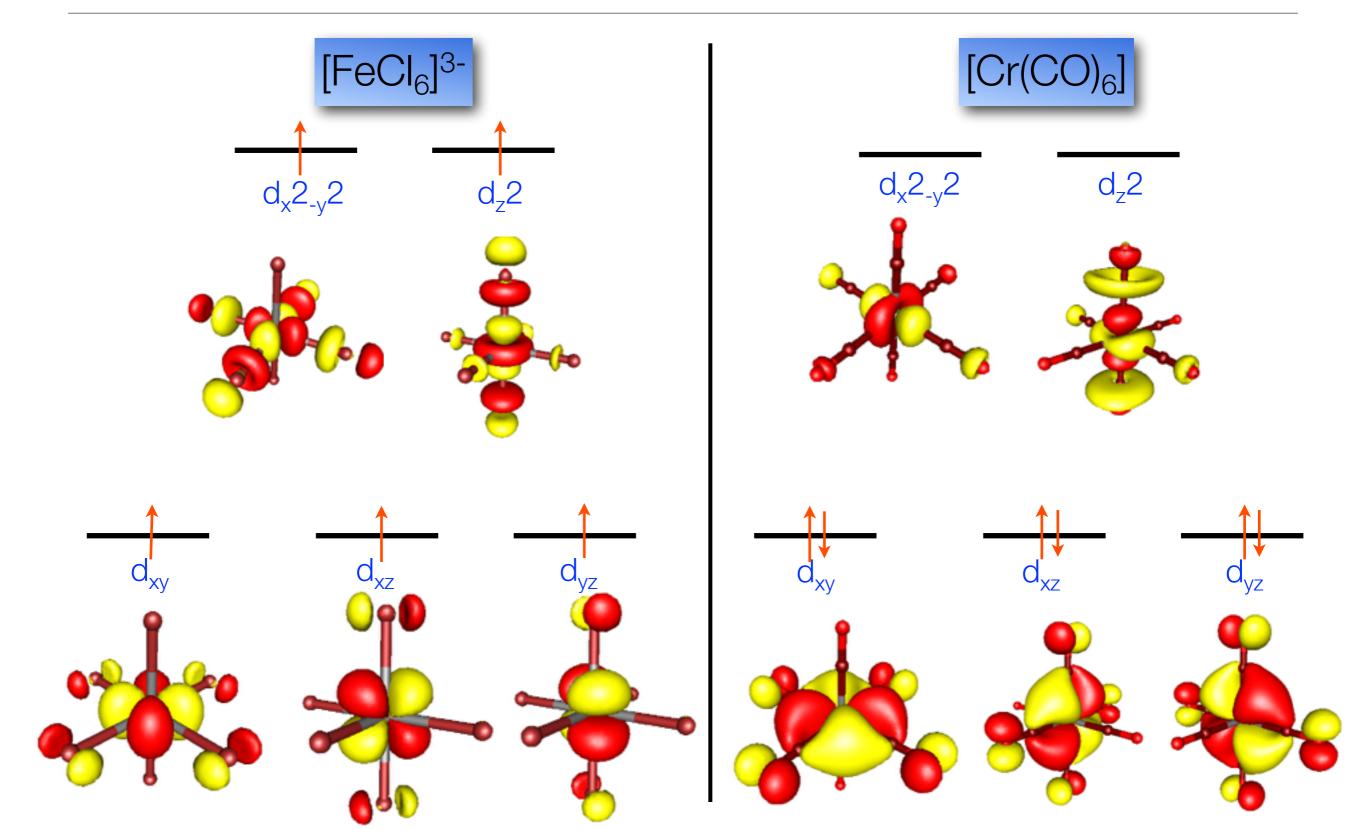
- Filled ligand orbitals are lower in energy than metal d-orbitals
- ► The orbitals that are treated in LFT correspond to the antibonding metal-based orbitals in MO Theory
- Through bonding some electron density is transferred from the ligand to the metal
- ▶ The extent to which this takes place defines the covalency of the M-L bond

MO Theory and Covalency



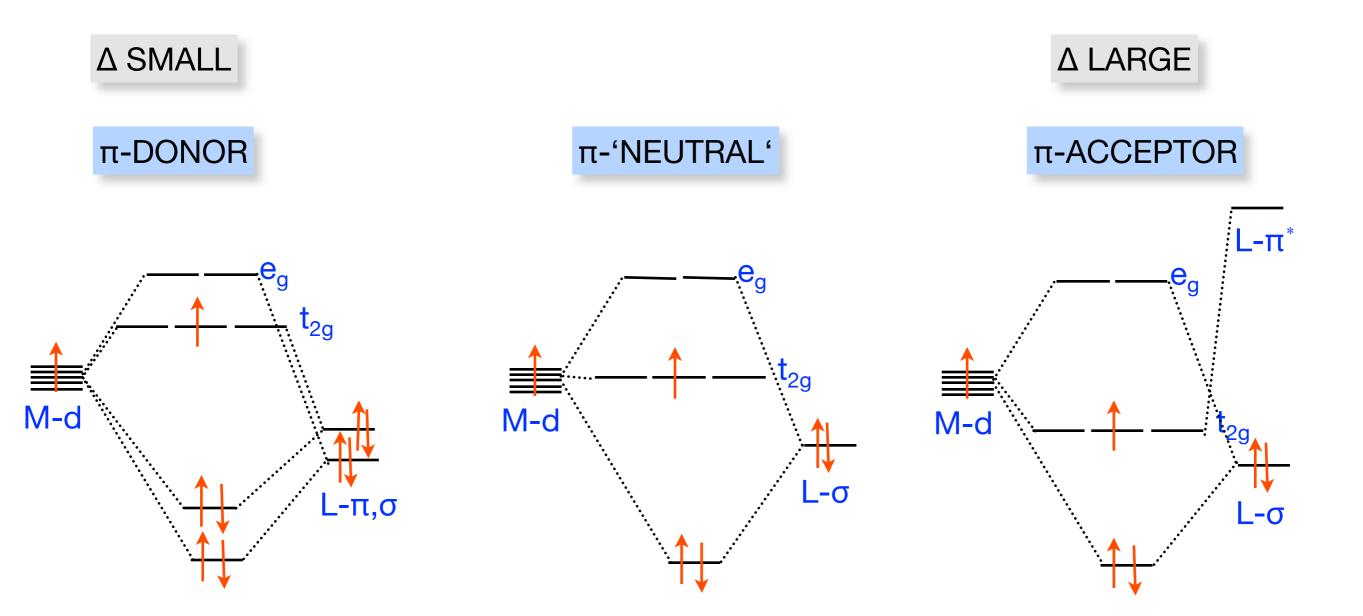
- 1. Theory Accounts for Experimental Facts
- 2. Can Make Semi-Quantitative Estimate of the Ligand Character in the SOMO

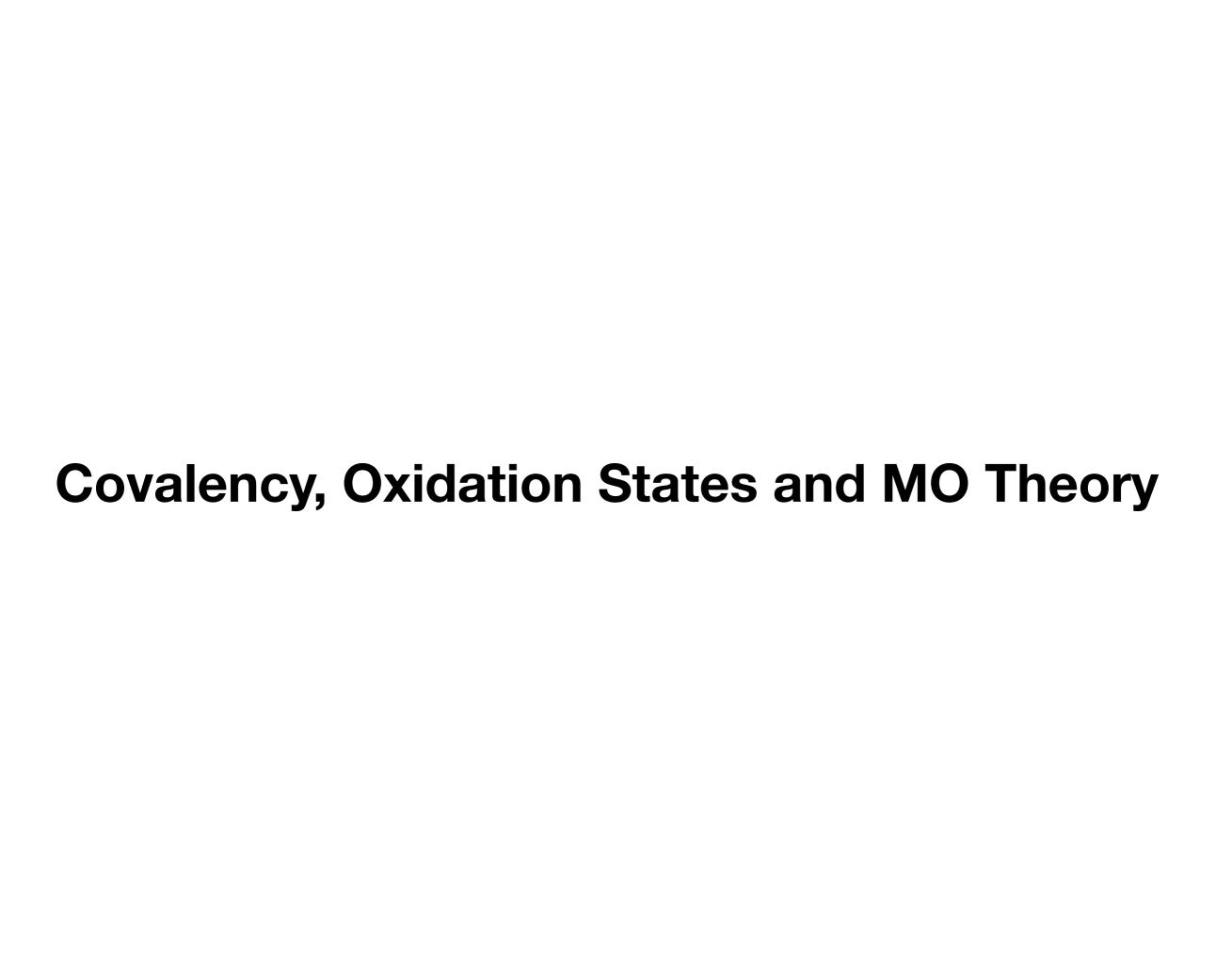
$\pi\text{-Bonding}$ and $\pi\text{-Backbonding}$



Interpretation of the Spectrochemical Series

 $I^{-} < S^{2-} < F^{-} < OH^{-} < H_2O < NH_3 < NO_2^{-} < CN^{-} < CO^{-} NO < NO^{+}$



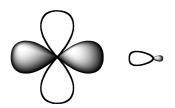


What is Covalency?

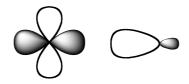
- ★ Covalency refers to the ability of metal and ligand to share electrons ("soft" concept with no rigorous definition)
- ★ Operationally, covalency can be defined in MO theory from the mixing coefficients of metal- and ligand orbitals

$$\psi_{_i} \,\cong \alpha_{_i} \, \Big| M_{_i} \Big\rangle - \sqrt{1 - \alpha_{_i}^2} \, \Big| L_{_i} \Big\rangle \qquad \qquad \text{(overlap neglected)}$$

- The value 1- α^2 can be referred to as "the covalency" of the specific metal ligand bond. It is the probability of finding the electron that occupies ψ_i at the ligand
 - The maximal covalency is 0.5, e.g. complete electron sharing
 - The covalency might be different in σ and π -bonds (e.g. it is anisotropic)
 - In σ-donor and π-donor bonds these are antibonding. The bonding counterparts are occupied and lower in energy
 - In π-acceptor bonds these orbitals are bonding. The antibonding counterparts are higher in energy and unoccupied



Typical Ionic bond; hard ligands
Werner type complexes $\alpha^2 = 0.8 - 0.9$

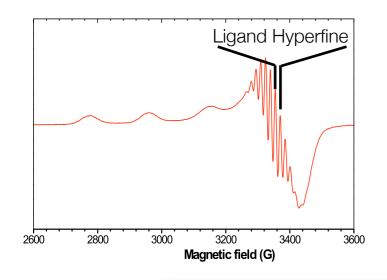


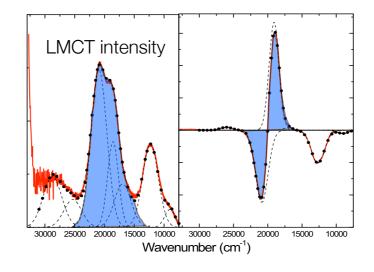
Typical covalent bond Organometallics; soft ligands α^2 =0.5-0.8

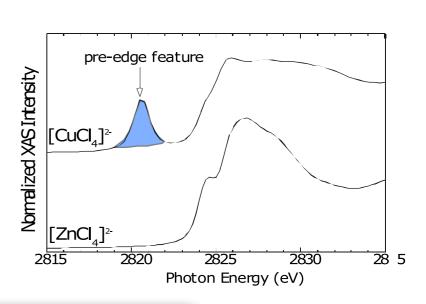
Typical π -backbond Heterocyclic aromatic ligands ; CO, NO+... α^2 =0.7-0.95

"Measurements" of Covalency?

- ★ Can covalency be measured?
 - Rigorously speaking: NO! Orbitals are not observables!
 - On a practical level: (more or less) YES. Covalency can be correlated with a number of spectroscopic properties
 - ▶ EPR metal- and ligand hyperfine couplings
 - Ligand K-edge intensities
 - Ligand-to-metal charge transfer intensities
 - As all of this is "semi-qualitiative" you can not expect numbers that come out of such an analysis to agree perfectly well. If they do this means that you have probably been good at fudging!







Covalency and Molecular Properties

Metal-Ligand Covalency Affects Many Chemical Properties!

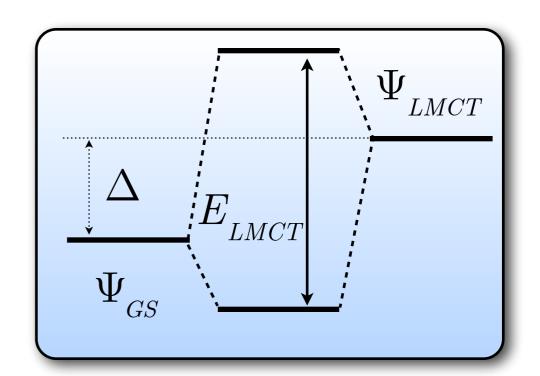
- 1. The stability of a complex increases with metal-ligand covalency
- 2. Covalency reflects charge-donation. The larger the charge donation the more negative the redox potential
- 3. Covalency may affect ,electron transfer pathways'
- 4. Covalency taken to the extreme might mean that ligands are activated for radical chemistry
- 5. ...

Covalency and Ligand-to-Metal Charge Transfer Spectra

$$\Psi_{\scriptscriptstyle GS} = \left| \psi_{\scriptscriptstyle L} \overline{\psi}_{\scriptscriptstyle L} \psi_{\scriptscriptstyle M} \right| \qquad \qquad \Psi_{\scriptscriptstyle LMCT} = \left| \psi_{\scriptscriptstyle L} \overline{\psi}_{\scriptscriptstyle M} \psi_{\scriptscriptstyle M} \right|$$

Energy Difference $\Delta = I_{\scriptscriptstyle L} - A_{\scriptscriptstyle M}$

Interaction $\beta = F_{_{LM}} \propto S_{_{LM}}$



Transition Energies:

- ★ Low if ligand is easy to ionize
- ★ Low if metal is strongly oxidizing (high oxidation state)
- Increases for large ML overlap
- ★ Overlap increases for highly polarizable (soft) ligands

Transition Intensities:

- ★ High for large covalent binding (beta=large, Delta=small)
- ★ Maximal for equal mixing (Delta=0)
- ★ Transitions are always most intense for bonding to antibonding excitations (polarized along the M-L bond)

Estimating Covalency

From the little valence bond model, we can obtain the two eigenstates as:

$$\left|\Psi_{\scriptscriptstyle GS}'\right\rangle = \alpha \left|\Psi_{\scriptscriptstyle GS}\right\rangle + \sqrt{1-\alpha^2} \left|\Psi_{\scriptscriptstyle LMCT}\right\rangle$$

$$\left|\Psi_{GS}'\right\rangle = \alpha \left|\Psi_{GS}\right\rangle + \sqrt{1 - \alpha^2} \left|\Psi_{LMCT}\right\rangle \qquad \left|\Psi_{LMCT}'\right\rangle = \sqrt{1 - \alpha^2} \left|\Psi_{GS}\right\rangle - \alpha \left|\Psi_{LMCT}\right\rangle$$

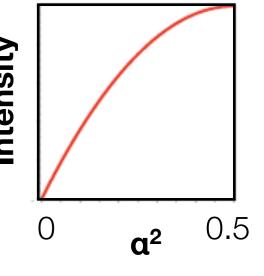
The Transition Energy:
$$E_{LMCT} = \Delta + 2\frac{\beta^2}{\Delta} - 2\frac{\beta^4}{\Delta^3} + O(\beta^6)$$

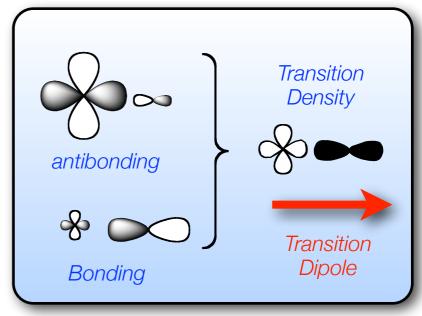
The Transition Intensity:
$$\left|\left\langle \Psi_{GS}' \mid \vec{\mu} \mid \Psi_{LMCT}' \right\rangle \right|^2 \equiv D_{ML}^2 \approx \alpha^2 (1-\alpha^2) R_{ML}^2 \approx \frac{\beta^2}{\Delta^2} R_{ML}^2$$

This can be turned around to obtain the model parameters from the measurable quantities: R_{ML} ,

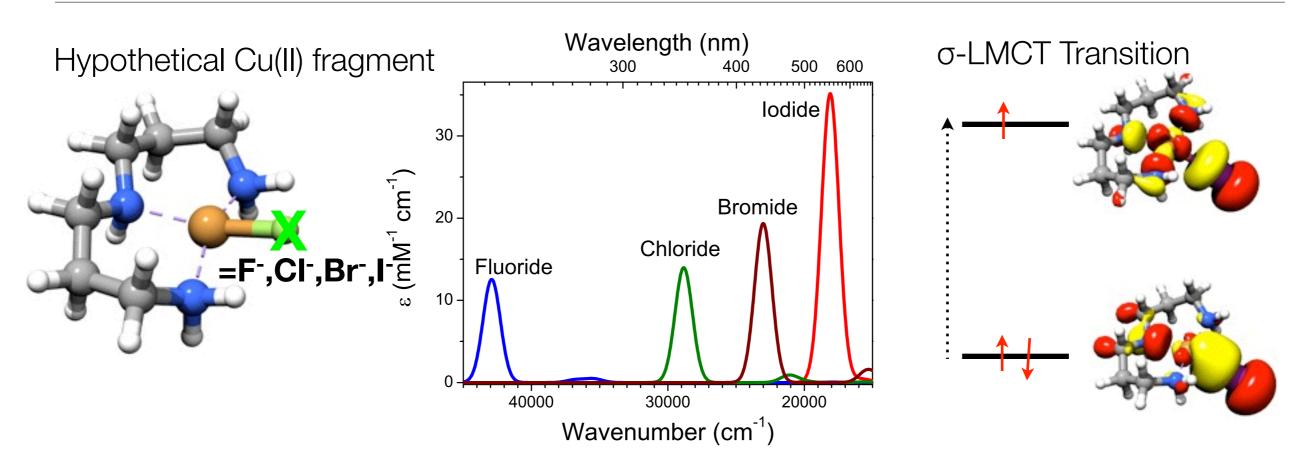
D_M/ and **E**_{LMCT}

$$\beta = \pm D_{ML} \frac{R_{ML}}{R_{ML}^2 + 2D_{ML}^2} E_{LMCT} \quad \Delta = \frac{R_{ML}^2}{R_{ML}^2 + 2D_{ML}^2} E_{LMCT}$$





Let's Apply it (in silico)

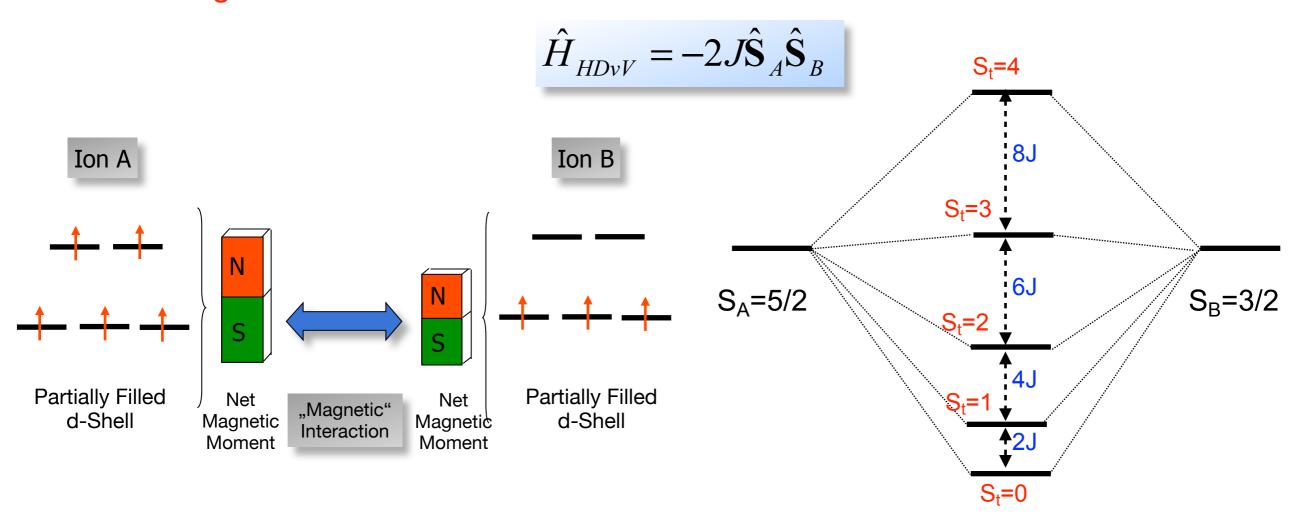


	IP/eV	R	D	E	∆ /eV	β /eV	β
F	2,8	1,818	4,29	42918	4,79	1,12	0,05
CI	3,2	2,228	7,12	28340	3,13	0,77	0,06
Br	3,4	2,373	12,35	23010	2,41	0,73	0,09
I	3	2,644	28,53	18096	1,67	0,69	0,17

The Spin State Problem: Exchange Coupling

What is Exchange?

The interaction of two paramagnetic ions (or more generally fragments) leads to a "ladder" of total spin states which are described phenomenologically by the Heisenberg-Dirac-VanVleck Hamiltonian



What is the origin of this "magnetic" interaction and how do we calculate it?

With no other magnetic interactions, the energy of a given spin-state is simply: $E(J, S, S_A, S_B) = -J[S(S+1) - S_A(S_A+1) - S_B(S_B+1)]$

"Exchange Coupling": Anderson Model

2e⁻ in 2 orbitals problem: $|\Psi_1\rangle = |\psi_1\,\overline{\psi}_1\rangle = |\psi_1\,\overline{\psi}_1\rangle = |\psi_2\,\overline{\psi}_2\rangle = |\psi_2\,\overline{\psi}_2\rangle = |\psi_2\,\overline{\psi}_2\rangle = |\psi_1\,\overline{\psi}_1\rangle = |\psi_1\,\overline{\psi}_2\rangle = |\psi_1\,\overline{\psi}_2\rangle = |\psi_2\,\overline{\psi}_2\rangle = |\psi_2\,\overline{\psi}_2\rangle = |\psi_1\,\overline{\psi}_2\rangle = |\psi_1\,\overline{\psi}_2$

Orbitals $\psi_2 \sim a - b$



Integrals

$$J_{aa} = J_{bb} = \left(a(1)a(1) \mid r_{12}^{-1} \mid a(2)a(2) \right)$$

On-Site Coulomb Integral

$$J_{ab} = \left(a(1)a(1) \mid r_{12}^{-1} \mid b(2)b(2)\right) \propto R_{ab}^{-1}$$

Inter-Site Coulomb Integral

$$K_{ab} = \left(a(1)b(1) \mid r_{12}^{-1} \mid a(2)b(2)\right) \propto e^{-\alpha R_{ab}}$$

Inter-Site Exchange Integral

$$F_{ab} = h_{ab} + \left(a(1)a(1) \mid r_{12}^{-1} \mid a(2)b(2)\right) + \left(b(1)b(1) \mid r_{12}^{-1} \mid a(2)b(2)\right)$$

Fock Like "Transfer" Integral