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EPR Spectroscopy

EPR Spectroscopy

EPR is magnetic resonance on unpaired electrons

Species that can be studied by EPR:
« free radicals
« transition metals with odd numbers of electrons or high spin

« excited states with S=0 e.qg. triplet states

Molecules with all electrons paired have no electron magnetic
moment — no EPR spectrum.
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Bioinorganic EPR

« The metals in metalloproteins usually do redox chemistry and
are the active sites of the protein.

« The redox states are often paramagnetic.
* These states can be studied by EPR

« No background signals from the rest of the protein or sample.

Examples: Iron-sulfur proteins, heme and non-heme iron proteins, iron-
nickel proteins, copper proteins
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Outline

» Basics of the EPR experiment

* The hyperfine interaction and solution EPR

» QOirientation dependence and EPR in Proteins

e g-anisotropy, single crystals

« Couplings between electrons, Zero Field Splitting

* High spin systems and Rhombograms
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Basics of EPR

Electrons have spin angular momentum S which generates a magnetic
dipole moment ..

$ s = 8.Bes(s+1)

p,= Bohr magneton
g, = free electron g-value
Ug s = spin angular momentum quantum number

g, =2.002319 B, =927x10*J/T
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EPR Experiment

In a magnetic field the
spin states are split by the
Zeeman interaction.

Transitions with Am = =1
are allowed in an EPR
experiment.

Energy

gehfa’e =28.02GHz /T

2014 PSU Bioinorganic Workshop
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Comparison with NMR spectroscopy

The resonance frequency for a free electron is about 600 times
larger than for a proton in the same magnetic field:

300 MHz '"H NMR — 180 GHz EPR

180 GHz = 6 cm' microwave/far infrared

Couplings involving electrons are generally much stronger this leads
to much broader spectra:

NMR: 1 Hz - 100 kHz
EPR: 1 MHz — several GHz
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Basics of EPR

In atoms and molecules the electrons have both orbital and spin angular
momentum. Each of these generates a magnetic dipole moment.

! u, =B +1)
U = g,B,/s(s+1)
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Basics of EPR

The magnetic moment of a bound electron is determined by its total
angular momentum J

u=_gP,\J(J+1)

The g-value depends on the spin-orbit coupling:

Examples.
Cu(ll) in Cu(acac), g=2.13
Ti(lll) ions in solid TiO, g=1.96

2014 PSU Bioinorganic Workshop
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Choice of Field and Frequency

Commercially available spectrometers:

Frequency Frequency Band Field for
(GHz) g=2.0023 (T)
1.2 L 0.043
24 S 0.086
9.5 X 0.34
34 Q 1.2
95 W 3.4
263 mm-band 9.4

X-band spectrometers are by far the most common.

2014 PSU Bioinorganic Workshop
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The EPR Experiment

In most spectroscopic experiments the absorbance is measured
as a function of frequency.

v

source

In an EPR experiment the absorbance is very weak and this
method is only feasible at very high magnetic fields.
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Factors that lead to weak EPR signal intensity

The population difference between the spin states is small:
N,/ N, =exp(-g.p.B,/kT)
AN /N =10 for B, =330 mT
Spin relaxation:
» Fast relaxation causes line broadening

» If the relaxation is slow equalization of the populations can

occur if the absorption rate is fast (power saturation)

2014 PSU Bioinorganic Workshop
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Factors influencing signal intensity
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The EPR Experiment

To overcome the problem of weak signals a resonator is used:

« The sample is placed in a resonant cavity such that it sits in the
magnetic component of the resonant microwave field

®
magnetic electric lines
lines of force of force
\ /
g
‘3}; /;//Zv
"""" |
sample

Many other resonator designs are possible. Each has its advantages
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The EPR Experiment

The microwaves are usually brought An “iris” is placed at the entrance
to the resonator using a waveguide to the resonator to couple it.

waveguide

S

resonator

'

entrance slit

Image: Buker ER 4103TM cylindrical mode resonator Hagen “Biomolecular EPR Spectroscopy” Fig. 2.6
http://www.bruker.com/typo3temp/pics/e 75d2deld39.jpg
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EPR Cavity Coupling

The source is critically coupled to the cavity so no power is reflected.

Over coupled

Reflected power

v

Frequency
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Reflected power

Critically coupled

v

Frequency

Under coupled

Reflected power

v

Frequency
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The EPR Experiment

 When an EPR transition occurs in the sample, the resonance is
disturbed and power is reflected

» The reflected power gives a stronger signal than directly measuring
the absorbance of the sample

2014 PSU Bioinorganic Workshop
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Schematic Diagram of an EPR Spectrometer
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EPR Spectrometer

Typical resonator bandwidth: ~1-10 MHz

Spectral width: up to several GHz

Net result:
Cannot sweep the frequency.

Therefore EPR spectrometers
typically use electromagnets and
the microwave absorption is
monitored as the field is varied.

Image: Bruker EMX EPR Spectrometer

2014 PSU Bioinorganic Workshop from Physikalische Technische Bundesanstalt 20
http://www.ptb.de/de/org/6/62/624/bilder/apparat(3.jpg



EPR Spectroscopy

Field modulation technique:

Even with a resonator the signals are still very noisy. So a different
detection scheme is used.

To improve signal to noise, a small modulation field is added to the
main magnetic field

The modulation coils are
placed on the sides of
the resonator

2014 PSU Bioinorganic Workshop Image: Buker ER 4103TM cylindrical mode resonator
http://www.bruker.com/typo3temp/pics/e 75d2deld39.jpg
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Field modulation technique:

absorption line —

modulated
signal

rr;odulation fiéla

»Bo

The amplitude of the modulated signal is measured and its
phase is compared to a reference signal
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Field modulation technique:

amplitude of modulated signal

The amplitude of the modulated signal plotted as the EPR spectrum.
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Field modulation technique

Two drawbacks:

The first derivative of the spectrum is obtained
The signal amplitude and shape depends on the modulation amplitude
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Field modulation technique

Main advantages:
Much better signal to noise
Structure of spectrum is emphasized in first derivative

absorption spectrum first derivative
I v I v I v I v I ' ! I v I v I I I
326 328 330 332 334 326 328 330 332 334
B, (mT) B, (mT)
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Hyperfine coupling Energy level diagram for coupling to a
nitrogen nucleus with / = 1
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The interaction between
the unpaired electron
and neighbouring nuclei
leads to splitting of the
energy levels and the
spectrum.
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Solution EPR Spectra of Free Radicals (rapid motion limit)
Each nucleus with / = 0 that couples to the unpaired electron
gives 2/ + 1 lines of equal intensity.

a
< >

H 1=1/2

14N =1

magnetic field
2014 PSU Bioinorganic Workshop
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General Features of Solution ESR Spectra of Free Radicals

Groups of equivalent nuclei give characteristic patterns of lines.

The number of hyperfine lines, My from a group of, n, equivalent
nuclei of spin [ is:

n,. = (2nl +1)

The total number of hyperfine lines, n, from several
groups of equivalent nuclei:

n =IQ2nl +1)=02nl +1)2n,1, +1)...

total

This number can become very large

2014 PSU Bioinorganic Workshop
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Simulations:

In general simulations are necessary to obtain the
hyperfine coupling constants

— experiment
--- simulation

| I | L | I | L |
3440 3460 3480 3500 3520
Magnetic Field (Gauss)

EasySpin: A free Matlab® toolbox for simulating EPR spectra written
and maintained by Stefan Stoll

http://www.easyspin.org/
2014 PSU Bioinorganic Workshop

29



EPR Spectroscopy

Interpretation of the hyperfine coupling:

Hyperfine coupling constants have two contributions:

Fermi contact a, = 3” PP, 2,8,|p(0)

C
electron spin density
at the nucleus

2
Dipolar coupling a, =4 PL, gegn<3cos 6_1>

adlpolar 4 T h r 3

In solution this average is zero

2014 PSU Bioinorganic Workshop
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Protein EPR

The EPR spectra of metalloproteins are very different from those of
small radicals in solution because:

 The motion is slow at low temperature.
« Number of hyperfine couplings is usually large.

« Zero field splitting may be present

The Zeeman interaction, hyperfine coupling and zero-field splitting
are all orientation dependent

2014 PSU Bioinorganic Workshop
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Single crystal EPR

The orientation dependence of the spectra can be studied in single
crystals

crystal axis

/ goniometer rod
magnet []

0
\ ] 4 [ magnetic field

crystal

2014 PSU Bioinorganic Workshop 32
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Single crystal EPR

A series of spectra
are collected at
different
orientations ...

2014 PSU Bioinorganic Workshop
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Single crystal EPR

The g-values of the lines are fitted to the equation:

8oy =8.,c08 0 +2g’ cosOsinf + g, sin’ 6

4.1

Rotation in 3 independent
planes gives values of

2 2 2 2 2 2
gaa ’gbb ’gcc ’gab ’gac ’gbc

36 | T | T | T |
0 50 100 150
Rotation Angle (degrees)
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Single crystal EPR

The g-tensor is then diagonalized numerically

2 2 2
gaa gab gac

2 2 2
gac gbc gcc

2 2 2 5
8w 8ww  8pe

g, 0 0
0 giy 0
0 0 g

this gives the principal
g-values g, ., 8y and g__

The diagonalization is achieved by the transformation:

ngU_l = gc%iagonal

The tranformation matrix U gives the orientation of the
principal axes x,),z in the crystal axis system a,b,c

2014 PSU Bioinorganic Workshop
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Example Iron Sulfur Clusters in Photosystem |I:

2014 PSU Bioinorganic Workshop

Rotation about c-axis
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Kamlowski ef al Biochim. Biophys. Acta 1319 (1997) 185-198
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Example Iron Sulfur Clusters in Photosystem |I:

mixed valence
Fe(Il)/Fe(lll) atoms

2
Dot

vE
<

Ixx

° % o [ degree
Ixx 9yy
F-  1.856 1.941
F~  1.880 1.916

2014 PSU Bioinorganic Workshop
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92,
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Kamlowski et al Biochim. Biophys. Acta 1319 (1997) 185-198
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giso
|
Powder Spectra
isotropic
For randomly oriented samples the g il
spectrum is a sum of all possible P axial
orientations. ¢

L

The principal g-values can be o
obtained from features in the L
spectra. \f
The shape of the spectrum depends

on the symmetry of the molecule J\/\/\/Mw

330 335 340 345
Magnetic Field (mT)
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g-Anisotropy

The g-anisotropy depends on the spin orbit coupling.
Perturbation theory gives:

mixing of molecular orbitals

AN —
'z N

gy =g, +23 3 LWL

Jw) (W,
/I

EO - En
spin-orbit coupling
parameter

2014 PSU Bioinorganic Workshop
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g-anisotropy

General trends:
« Radicals with light elements e.g. C, H, O, N .

- Weak spin orbit coupling

- Small g-anisotropy and signals near g=2.0023.
« Transition metals

- Moderate to strong spin-orbit coupling

- Larger g-anisotropy

- g-anisotropy depends on the electronic configuration and
the symmetry of the ligand field.

2014 PSU Bioinorganic Workshop
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g-Anisotropy and Spin-Orbit Coupling

Chlorophyll cofactor P

700

Very high frequency EPR is

needed to resolve the g-

anisotropy

g,, = 2.00317
g,y = 2.00264
g,, = 2.00226

2014 PSU Bioinorganic Workshop
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g-Anisotropy and Spin-Orbit Coupling

Fy
FeS clusters in Photosystem |I. g i a J

Spectra well resolved at X-band |
(9.5 GHz).
Spin-orbit coupling is much .
stronger because of the metal r
atoms / !

Proo

I ' I ' I ' I ' I
320 340 360 380 400
B, /mT
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Zero-Field Splitting

For systems with S > 1/2, spin-orbit coupling and spin-spin
coupling, split the spin states :

S=3/2
S=1
m,=+3/2
. m,=+1
- m,=-1
m =0 m,==+1/2

This splitting has a large impact on the EPR spectra

2014 PSU Bioinorganic Workshop
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Zero-Field Splitting

Because the splitting occurs even when there is no magnetic field
present is referred to as Zero-Field-Splitting:

The term in the spin Hamiltonian describing this interaction has the form:

1
——D+E 0 0
3
In its principal axes the D~ 0 1h £ 0
matrix D can be written: 3 ,
0 0 D
3

2014 PSU Bioinorganic Workshop 44
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Zero-Field Splitting

If the spin-orbit coupling contribution is negligible then the zero-
field-splitting is determined by the dipolar coupling.

For a triplet state (two unpaired electrons) the ZFS parameters

are.
3 Hy Ho /3)2 ’"12 3Z12
4 47 1’12

d
an E=§ MO( /3)) <y12 'x12>

4 47 1’12

Average over
all positions of
the electrons

2014 PSU Bioinorganic Workshop
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Zero-Field Splitting

For a radical pair the two electrons are far apart.

We can make the approximation that »,, = z,, and

”12>

By measuring D the distance between the electrons in a radical pair
can be determined.

D= —éﬁ(gﬁ) <

and
E=0

2014 PSU Bioinorganic Workshop
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Zero-Field Splitting

Organic triplet sates: The parameters D and E are generally

smaller than the Zeeman energy at X-band

400 —
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There are two allowed
transitions in the EPR.

They occur at different

field values because of
the ZFS
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Zero-Field Splitting

For a powder, the spectrum is a so-called “Pake pattern”

IDI-E]
_ <>
& The parameters D and E can
'c% be determined from the
o positions of the features in the
= spectrum.

_ IDIHE[
< ] S
3(|)0 | 350 | 34|10 | 3(|30 | SE|50 | 4(|)0

Magnetic Field (mT)
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Light-induced Triplet States

Few molecules have triplet ground states but excited triplet states
are often long-lived enough to be observed by EPR.

Such measurements
require transient EPR

laser
pulse

I continuous microwaves
-~ lime

}
| Signal
1’\_ Direct detection is

J T _ - usually used. (No
= ™ field modulation)
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Transient EPR
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Spin Polarization of Triplet States

The sublevels of a light-induced triplet state are selectively populated

— T [ B T
e . o .
— T o 1

The selectivity is determined by the pathway by which the triplet
state is populated.

2014 PSU Bioinorganic Workshop
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Spin Polarization
Example: Photosystem ||

3Pggo in Photosystem |l

radical pair
recombination

m<—>»

relaxation from
singlet state

ottt ottt
300 320 340 360 380 400 300 320 340 360 380 400
B,/ mT B,/ mT
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For a metals with S > 1/2, the zero field splitting is often much
larger than the Zeeman interaction

e.g.S=3/2

For half-integer
spins, transitions
are often observed
at low field (high g-
values)

2014 PSU Bioinorganic Worksr

High Spin Systems
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Rhombograms

The positions of the features in
the spectrum depend on the
ratio of the zero field splitting
parameters D and E.

The expected peak positions
can be calculated as a function
of E/D in a so-called
Rhombogram

2014 PSU Bioinorganic Workshop
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Rhombograms
< < o
g-value Lf[> T N
12K EPR spectrum of the
10 K reduced iron-sulfur cluster

F in the reaction centre of
heliobacteria

8§ K

o [\4\
et WNM

100 200 300 400
mT

Golbeck and van der Est (2013) in “Molecular Biophysics for the Life
Sciences”, Allewell, Nahri & Rayment, Eds.
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Rhombograms

2.0

DA
g-value '~f[> T

12K
10 K

8§ K

o [\4\
gt WNM

100 200 300 400
mT

The main features in the spectrum
correspond to E/D = ~0.2 for a spin 3/2
system.
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Rhombograms

2.0

DA
g-value '~f[> T

o [\4\
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100 200 300 400
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The feature at g=5.4
from the m = +3/2
levels increases
with temperature.

So we have:
N\
= +1/2 ——
2
L] +3/2 ——
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Example Myoglobin
g=6

|
| L

High spin Fe(lll) of Heme proteins

OH

) 9=2 Heme

50 100 150 200 250 300 350 400
mT

Golbeck and van der Est (2013) in “Molecular Biophysics for the Life Sciences”, Allewell, Nahri & Rayment, Eds.
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Example Myoglobin

9=6
\L High symmetry
high spin Fe(lll)

g=2

_ !

I T T T T T T 1
50 100 150 200 250 300 350 400
mT

Golbeck and van der Est (2013) in “Molecular Biophysics
for the Life Sciences”, Allewell, Nahri & Raymond, Eds.
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“Junk lron”
Many biological samples show

a signal at g=4.3 from non- s”
. @ »” © .
specifically bound “junk” Fe(lll). .
S 4
8 o
NADH:quinone oxidoreductase B ]
o 10—
g=43 g =2.00 > 6
w/\/’_/w - WJ/ i S .
/7[' é g
= o

0
10 -

flavin radical E
g o7
rrrrr g1 rrrrrrrrrrr ¢+ T T [ T T 171 636_
1000 1500 2000 2500 3000 3500 4000 g 4-
Magnetic field, G 3

Fadeeva et al, Biochem. (Moscow) (2008),73,123-129 O o
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Summary

» Basics of the EPR experiment

* The hyperfine interaction and solution EPR

» QOirientation dependence and EPR in Proteins

e g-anisotropy, single crystals

« Couplings between electrons, Zero Field Splitting

* High spin systems and Rhombograms
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